
Technical Report
Nr. TUD-CS-2012-0014
January 17th, 2012

Authors
Eric Bodden (EC SPRIDE, CASED)

Identifying meaningless parameterized linear-temporal-
logic formulas

Identifying meaningless parameterized

linear-temporal-logic formulas

?

Eric Bodden
bodden@acm.org

Secure Software Engineering Group
European Center for Security and Privacy by Design

Technische Universität Darmstadt

Abstract. Parameterized runtime monitoring formalisms allow predicates
to bind free variables to values during the program’s execution. Some run-
time monitoring tools, like J-LO , increase the formalism’s expressiveness by
allowing predicates to query variables already during the matching process.
This is problematic because, if no special care is taken, the predicate’s eval-
uation may need to query a variable that has not yet been bound, rendering
the entire formula meaningless.
In this paper we present a syntactic checking algorithm that recognizes
meaningless formulas in future-time linear temporal logic. The algorithm
assures that a predicate accesses a potentially unbound variable only when
the truth value of this predicate cannot possibly impact the truth value of
the entire formula at the time the predicate is being evaluated. Our approach
allows users to specify a wide range of meaningful parameterized logic for-
mulas, while at the same time forbidding such formulas that would otherwise
have an unclear semantics due to insu�cient bindings.
We have implemented the checking algorithm in the J-LO runtime verifica-
tion tool.

1 Introduction

Many current runtime verification formalisms are parametric [1], i.e., they allow
formulas to contain parameters, free variables that can bind to concrete values
during evaluation over a program trace. Parametric formalisms are more expres-
sive than their non-parametric counterparts. Consider the parameterless formula
“G(close ! XG(¬write))” in Linear Temporal Logic [2] (LTL), which is sup-
posed to induce a runtime monitor alerting the user whenever writing to a closed
connection.1 Such a parameterless formula can easily lead to unintended answers
when events involve multiple di↵erent program values, e.g., method calls on dif-
ferent objects. For instance, consider a program that generates the call sequence
“c1.close() c2.write(..)” when executing. Monitoring this program execution
with the pattern “close write” will cause a warning to be issued although the
close and write method calls occur on di↵erent connection objects (c1 vs. c2), and
hence the program never writes to a closed connection.

Parametric formalisms solve this problem by allowing for free variables. For in-
stance, we could write the regular expression “G(close(c) ! XG(¬write(c)))”,
which is parametric in c. The usual semantics of such parametric formalisms is to
evaluate formulas against fragments of the trace that share a consistent variable
binding [1, 3], i.e., bind variables such as c to the same value (or object) at all

? This work was supported by the German Federal Ministry of Education and Research
(BMBF) within EC SPRIDE and by the Hessian LOEWE excellence initiative within
CASED.

1 Here X stands for “next” and G for “globally”.

events that bind c within that trace fragment. For instance, for the above regular
expression and the trace “close(c=c1) write(c=c2) close(c=c2) write(c=c1)”,
the prominent runtime monitoring tool JavaMOP [4] would issue a warning only
for c1 (after reading the last event), but not for c2. Such a semantics has proven
quite intuitive for monitoring object-oriented programs. Another advantage of pa-
rameterized formalisms is that some runtime monitoring tools, like tracematches [5]
for instance, allow users to access the values of bound variables once a match has
been completed. That way, a monitor can operate on the very objects that actually
caused the observed property violation, for instance c2 on the example above.

Some runtime monitoring tools even go one step further. The J-LO tool [6, 7]
allows predicates in its LTL formulas to access the values of bound variables already
during the matching process. For instance, assume that we want to warn users when
using an iterator i over a collection c if c has been cleared after i had been created.
(This is a specialized version of the FailSafeIter property [3].) The following formula
expresses this condition in Linear Temporal Logic:

G(createIter(c,i) ! XG(clear(c) ! XG(¬next(i))))

In this formula, the event createIter is parametric in c and i (we also say that
it binds c and i), clear is parametric in c and next in i. The above formula has
the problem that it is over-specified: it is ok for the user to clear the collection (and
then still use the iterator) if the collection at that point is empty already. In J-LO ,
users could hence refine the formula as follows:

G(createIter(c,i) ! XG((clear(c) ^ ¬isEmpty(c)) ! XG(¬next(i))))

In this formula, and in the remainder of this paper, we underline that do not repre-
sent program events but rather represent additional conditions that must hold when
other events, such as clear occur. Such underlined “query predicates” query vari-
ables rather than establishing a variable binding. As we can see, the query predicate
in the example enhances the formula’s expressiveness by filtering out, at the time
of the clear event, such traces on which the cleared collection is empty already.

Unfortunately, if no special care is taken, query predicates allow programmers
to write quite meaningless formulas for which it is unclear which truth value they
should evaluate to. For instance, consider the formula ' = p(x)_Xq(x). Here p(x)
binds x to a value and q(x) queries that variable binding. This formula is unprob-
lematic on traces where p does hold initially: in this case the runtime monitor can
just evaluate q(x) using the variable binding that p(x) produced earlier. Crucially,
however, the formula has no semantics if p does not hold at the beginning of the
trace. In this case the truth value of ' only depends on the truth value of q(x) at
the second observed event. But how can we evaluate q(x) in a meaningful way if
p(x) does not hold, and hence no variable binding for x was ever recorded? The se-
mantics of such a formula is unclear. In this paper we propose a checking algorithm
that will flag such a formula as meaningless ahead of time.

Telling apart meaningful from meaningless formulas is non-trivial. For instance,
consider the very similar formula '

0 = ¬p(x) _ Xq(x), where p binds x under
negation. In this case, if p does not hold, because '0 is a disjunction, the truth
value of '0 is true irrespective of the truth value of q(x). This formula hence always
has a truth value, and, opposed to ', should be allowed by our checking algorithm.

In this paper we present a checking algorithm that operates on the syntactic
structure on an LTL formula to determine whether the formula’s truth value could
be undetermined due to query predicates accessing potentially unbound values.
The algorithm is designed to allow programmers to define a large set of meaningful
parametric LTL formulas, while at the same time rejecting such formulas that are

clearly meaningless. We have implemented the checking algorithm in the J-LO
runtime verification tool.

To summarize, this paper contains the following original contributions:

– An static, syntactic checking algorithm for identifying and rejecting LTL for-
mulas that are meaningless because predicates may access potentially unbound
variables.

– An implementation of this algorithm in the J-LO runtime verification tool.

The remainder of this paper is organized as follows. In Section 2 we give a finite-
path semantics for LTL formulas. In Section 3 we then show that any such LTL
formula ' can be split into two formulas, now(') and next('), which are evaluated
over the current and next state respectively. In Section 4 we explain the intuition
behind our checking algorithm in terms of those now and next formulas. Section 5
finally presents our checking algorithm. We present related work in Section 7 and
conclude in Section 8.

2 A finite-path semantics for future-time LTL

Linear-time temporal logic (LTL) [2] is a subset of the Computation Tree Logic
CTL⇤ and extends propositional logic with operators which describe events along a
computation path. The operators of LTL have the following meaning:

– “Next” (X '): The property ' holds in the next step
– “Finally” (F '): ' will hold at some state in the future
– “Globally” (G '): At every state on the path ' holds
– “Until” (' U): ' has to hold until finally holds.
– “Release” (' R): Dual of U; expresses that the second property holds along

the path up to and including the first state where the first property holds,
although the first property is not required to hold eventually.

Usually LTL is defined over infinite paths. For runtime verification, we assume
that the verification process is stopped at some point in time and correspondingly
the LTL formulas have to be evaluated over a finite path. In particular, all proof
obligations must be fulfilled before the finite teace ends. Thus we declare the se-
mantics as follows.

Let P be a set of atomic propositions and w = w[1]...w[n] 2 (2P)n a finite
path. For each path position w[j] (1 j n) and proposition p 2 {p1, ..., pm} and
formulas ' and :

w[j] |= true
w[j] 6|= false
w[j] |= p i↵ p 2 w[j]

|= X ' i↵ j < n and w[j + 1] |= '

|= F ' i↵ 9k (j k n) such that w[k] |= '

|= G ' i↵ 8k (j k n) ! w[k] |= '

|= ' U i↵ 9k (j k n) such that w[k] |=

^ 8l (j l < k) ! w[l] |= '

|= ' R i↵ 8k (j k n) ! w[k] |=

_ 9l (j l < k) such that w[l] |= '

We write w |= ' if w[1] |= '. Furthermore we consider formulas in negation
normal form where negations are pushed down to the propositions using basic
equivalences. We call the set of all LTL formulas in this form LTLNN . The negation
normal form can be computed using a function nnf as follows:

nnf : LTL ! LTLNN

¬true 7! false

¬false 7! true

¬p 7! ¬p
¬¬� 7! nnf (�)

¬(� ^) 7! nnf (¬�) _ nnf (¬)
¬(� _) 7! nnf (¬�) ^ nnf (¬)

¬X � 7! X ¬nnf (�)
¬(� R) 7! (nnf (¬�) U nnf (¬))
¬(� U) 7! (nnf (¬�) R nnf (¬))

Here we assume that the operators F and G have already been reduced to U and
R using the following equivalences:

F � ⌘ true U �

G � ⌘ false R �

3 Dividing formulas into now and next

In the following we will show that any LTL formula ' can be partitioned, with re-
spect to the current state w[i], into two formulae now(') and next(') in such a way
that w[i] |= ' i↵ w[i] |= now(') and w[i] |= next('). We explain this splitting as it
will be important to understand the intuition behind our static checking algorithm.

In the following we assume a path w = w[1], . . . , w[n] with n � 1.

Definition 1 (Function now). The function now : LTL ! LTL is recursively
defined as:

now(p) := p

now(¬p) := ¬now(p)
now(X ') := true

now(' ^) := now(') ^ now()

now(' _) := now(') _ now()

now(' U) := now(_ (' ^X(' U)))

= now() _ now(')

now(' R) := now(^ (' _X(' R)))

= (now() ^ now(')) _ now()

= now()

Note that for any ' the result of now(p) is a Boolean combination of propositions.
The function now(') reflects that part of ' that can be fully evaluated in state w[i],
under the assumption that ' holds on the subsequent path.

Definition 2 (Function next). For 1 i n, the function next : LTL ! LTL

is recursively defined by next(') := X next

0(') with next

0(') defined as:

If i < n then:

next

0(p) :=

(
true if w[i] |= p,

false otherwise

next

0(¬p) := ¬ next

0(p)

next

0(X ') := '

next

0(' ^) := next

0(') ^ next

0()

next

0(' _) := next

0(') _ next

0()

next

0(' U) := next

0(_ (' ^X(' U)))

next

0(' R) := next

0(^ (' _X(' R)))

Else (i = n):

next

0(') := false

Note that the definition of next depends on the state w[i]. Also note that whenever
next(p) 2 {true, false}, then we have the opportunity to apply early fault detection:
The formula is fully determined. One can report satisfaction respectively failure at
once.

Example 1 (Functions now and next). Given the formula ' = p U q and the path
w = {p}{q}, such that w |= ' holds.
The calculation of now leads to:

now(') = now(p U q) = q _ p

The calculation of next leads to:
next(')

= X next

0(p U q)
= . . .

= X(false _ (next0(p) ^ next

0(X(p U q))))
= X(false _ (true ^ (p U q)))
= X(p U q)

Now it holds that w = {p}{q} |= now(') = q _ p and w = {p}{q} |= next(') =
X(p U q).

Theorem 1 (Correctness of now and next). For all ' 2 LTL and all w 2 S+

it holds that:

w |= ' () w |= now(') ^ next(')

We prove this theorem correct in [7]. ut

4 Propagation of variable bindings

In this section we will use some simple examples to explain the basic intuition be-
hind our checking algorithm. We will show that certain variable bindings propagate
through a conjunction, i.e., across the ^ operator, while others propagate through
disjunctions, i.e., across the _ operator. Section 5 will explain our checking algo-
rithm in a formal manner.

Example 2 (Propagation across “^”). Let us consider the following formula:

'(x) := p(x) ^X F q(x)

Like any LTL formula, this formula can be split into two sub-formulas, one that
requires evaluation in the current state, and another formula that requires evalu-
ation in the next state. The formula has an obvious splitting to the sub-formulas
now('(x)) = p(x), and next('(x)), which depends on the current state w[i].

Here, two cases can occur:

1. w[i] |= p(x), say with a binding x = 1. This binding is available for the rest of
the path and in particular for the evaluation of next

'(x,y)('(1)) = F q(1) on
subsequent states.

2. p(x) 6|= p(x). In this case, we have no binding for x at the current state. How-
ever, this binding would not be needed anyway, since the formula now('(x, y))
evaluates to false already, and hence determines the truth value of the entire
formula.

Hence, informally one can say that bindings defined by propositions propagate
over the ^-operator : A binding that is defined by a proposition in one branch of an
^-term is also available in the other branch.

A case which is a bit harder to identify is the following.

Example 3 (Propagation across “_”).

'(x) := p(x) ! X F q(x)

which in negational normal form amounts to:

¬p(x) _X (true U q(x))

At a first glance it seems unclear how a binding should ever be available for the
evaluation of F q(x), given that p(x) occurs in negated form.

However, again it helps to consider all the possible cases:

1. p(x) does not hold at the current state s. In this case, we have no binding for
x at the current state. However, again this does not hurt, since both formulas
now('(x)) = ¬p(x) and next('(x)) evaluate to true.

2. p(x) holds at the current state s, say with a binding x = 1. Again, this binding
is available for the rest of the path and in particular for the evaluation of
next('(1)) = F q(1) on subsequent states.

Informally, one can conclude that bindings defined by negated propositions prop-
agate over the _-operator.

5 Checking algorithm

In this section we present the main contribution of this paper, our structural check-
ing algorithms for parameterized LTL formulas. The checking consists of three steps.
First, we define a function def : LTLNN ! 2V which computes for any LTL func-
tion in negational normal form the set of variables that this formula definitely
binds. Then, conversely, we define a function use that computes variable uses in
query predicates. The checking algorithm is then implemented as a function valid
that uses both def and use.

Definition 3 (Function def). Let ' 2 LTLNN . For any predicate p, let v
�p be

the set of variables that p binds. Then we define def : LTLNN ! 2V as:

def(') := def+(') [def�(')

where

def+(p) := v

�p

def+(¬p) := ;

def+(X ') := ;
def+(' ^) := def+(') [def+()

def+(' _) := def+(') \ def+()

def+(' U) := def+(_ (' ^X(' U)))

= def+(') \ def+()

def+(' R) := def+(^ (' _X(' R)))

= def+()

and

def�(p) := ;
def�(¬p) := v

�p

def�(X ') := ;
def�(' ^) := def�(') \ def�()

def�(' _) := def�(') [def�()

def�(' U) := def�(_ (' ^X(' U)))

= def�()

def�(' R) := def�(^ (' _X(' R)))

= def�(') \ def�()

Here def +(') provides the variables which are bound by propositions contained
in non-negated form at the current point in time. Note that, as we described in our
previous section, such “positive bindings” propagate over the ^ operator. This can
be seen by the fact that for this operator def + computes the union of the positive
bindings of both subformulas.

Conversely def �(') provides those for propositions which occur under negation.
Here, the computed “negative bindings” propagate over the _ operator.

Note that the definitions of def + and def � are entirely symmetric. Also note
that both functions disregard bindings produced by the next portion of the formula
(nested inside X operators), as those bindings will only be supplied at a later point
in time.

Next, we define the logical counterpart, the function use which represents the
variables of P

'

which are used by any of the propositions at some point in time but
not defined by the same proposition.

Definition 4 (Function use). Let ' 2 LTLNN . For any predicate p, let v
�p be

the set of variables that p uses and let �2 2 {^,_,U,R}. Then we define use :
LTLNN ! 2V as:

use(p) := v

�p

use(¬p) := use(p)

use(X ') := ;
use('�2) := use(') [use()

We are now ready to define the function valid('), which is true only if ' defines
any free variable before it is used.

Definition 5 (Function valid). Let ' 2 LTLNN . Let p 2 P. Let �1 2 {¬,X},�2 2
{^,_,U,R}. Then we define valid : LTLNN ! B as:

valid(') := validdef(')(')

where for D ✓ V :

validD(p) := use(p) ✓ D

validD(�1') := validD[def(�1')(')

validD('�2) := validD[def('�2)(') ^ validD[def('�2)()

For our implementation in J-LO , we inline the definitions and so derive reductions
as the following:

validD(X ') := validD[def (X ')(')

= validD

validD(¬p) := validD[def (¬p)(')

= validD[{v�p}

. . . and so forth. This improves the e�ciency of the checking algorithm.

Example 4 (Checking of invalid formula). Let us consider the following formula, in
which q queries parameter x:

'(x) := p(x) _ q(x)

Then we obtain:

valid(') = validdef (')(') = valid;(')

= valid;(p(x) _ q(x))

= use(') ✓ ; ^ valid;[def (')(p(x)) ^ valid;[def (')(q(x))

= {x} ✓ ; ^ valid;(p(x)) ^ valid;(q(x))

= false

Theorem 2 (Correctness of function valid). For any formula ' 2 LTLNN it
holds that:

valid(')) any variable in ' is defined before it is used

Proof (Correctness of function valid).
Let ' 2 LTLNN . Assume valid(') = validD(') = true with D = def ('). We

perform a proof by structural induction and distinguish the following cases:

1. ' = p for some p 2 P. Since valid(p) = true, we know that v
�p ✓ D. Also we

know by the definition of def that D contains only variables which are defined
on this or previous temporal layers, because later temporal layers (which are
explicitly or implicitly guarded by X) do not contribute to the function def.
Hence, any variable in p is defined before it is used.

2. ' = �1'
0 for some '0 2 LTLNN . Since valid(') = true, it must also hold that

validD[def (')('
0) = true. So by induction hypothesis '0 defines all variables

before they are used. Since the move from '

0 to ' introduces no new variables,
the same holds for '.

3. ' = '

0 �2
0 for some '0

,

0 2 LTLNN . This case can be handled as above.

We wish to note that the inverse of Theorem 2 does not necessarily hold:

any variable in ' is defined before it is used 6) valid(')

In other words, our checking algorithm is conservative; the algorithm may reject
formulas that are actually meaningful. However, this incompleteness is restricted to
formulas that use the X operator in an unusual way, such as the following:

X(p(x)) ^X(q(x))

This formula would not pass our valid -check because the two predicates occur
in di↵erent environments (induced by the two X operators). Here, the X operator
was pushed down into both branches of the conjunction. We argue that program-
mers would not usually write such formulas but would instead write the equivalent
formula

X(p(x) ^ q(x))

which passes checking. Another solution would be to re-write the input formula
before the checking, according to the rule above.

6 Implementation in J-LO

We have implemented the proposed static checks in our J-LO runtime verification
tool.2 J-LO first parses the input formula and then converts it into negational
normal form. The formula is then checked using the function valid , as previously
described.

Without the checking algorithm, our implementation could potentially yield odd
runtime errors or even invalid results, as we will now demonstrate using a concrete
example. In previous work [6] we have already reported that we used J-LO to
check for violations of the so-called lock order reversal pattern: we would like to
assert through an LTL formula that if two locks are taken in a specific order (with
no unlocking in between), the system should warn the user if he also uses these
locks in swapped order because in concurrent programs this would mean that two
threads could deadlock when their execution is scheduled in an unfortunate order.
The following formula expresses this pattern in LTL:

¬lock(t1, l2) U (l1 6= l2 ^ lock(t1, l1) ^ (¬unlock(t1, l1) U lock(t1, l2)))
! G¬(t1 6= t2 ^ ¬lock(t2, l1) U (lock(t2, l2) ^ (¬unlock(t2, l2) U lock(t2, l1))))

Note that, in this formula we use two query predicates (underlined) to make sure
that the locks and threads are indeed distinct. J-LO ’s formulas are based on point-
cut expressions taken from the aspect-oriented programming language AspectJ [8].
Hence, in J-LO ’s concrete syntax, the user would express an inequality l1 6= l2

through an AspectJ pointcut if(l1!=l2). To defer evaluation of such expressions,
J-LO parses the given LTL formula, extracting all if-pointcuts into closures. The
pointcut above would be extracted into the following closure function:

2 J-LO website: http://www.sable.mcgill.ca/~ebodde/rv/JLO/

boolean eva l (Map<Str ing , Object> binding) {
Object l 1= binding . get (” l 1 ”) ;
Object l 2= binding . get (” l 2 ”) ;
return l 1 != l 2 ;

}

Here it can quite obviously be seen that the evaluation of this function would yield
invalid results if either l1 or l2 were undefined, as in those cases the get-method
would return null for the respective binding. Our checking algorithm ensures that
the get-method can never return null for any closure. We have tested the algorithm
on several realistic examples, and it typically completes checking of the formula in
just a few milliseconds.

7 Related Work

7.1 HAWK and EAGLE

HAWK [9] is a programming-oriented extension of the rule-based logic EAGLE [10–
12] that is allows for specifications in various temporal logics of di↵erent kinds.
EAGLE computes the truth values of temporal formulae by calculating a minimal
respectively maximal fixed point to the recursive definitions of temporal operators
such as given by F� ⌘ � _X F�. As such EAGLE is very generic and can be used
for virtually any kind of specification logic and programming language of the base
program. From a specification EAGLE generates an observer that implements its
semantics and is notifies whenever events of interest occur.

HAWK is a logic and tool for runtime verification of Java and is built on top
of EAGLE. Specifications written in HAWK are ultimately being translated into
EAGLE monitors. As in J-LO , predicates in HAWK can refer to value previously
bound by other predicates. HAWK should hence su↵er from the same semantic prob-
lems when referring to potentially unbound values. To the best of our knowledge,
HAWK does not contain any static checks to prevent programmers from writing
such formulas.

7.2 JavaMOP

JavaMOP [4] is a Java instantiation of the “Monitor-Oriented Programming” ap-
proach promoted by Roşu and others. The JavaMOP tool accepts formulas in dif-
ferent input formalisms including regular expressions, context free grammars, and
past-time and future-time linear temporal logic. All formalisms can use predicates
similar to AspectJ pointcuts, binding free variables to concrete program values,
typically objects. Crucially, though, JavaMOP does not allow predicates to directly
refer to variable bindings. (JavaMOP allows programmers to associate imperative
Java-code actions with any event, however, those actions are not part of the actual
monitoring formalism.) On the one hand that makes the formalism less expressive
than it could be otherwise, but on the other hand, this prevents the problems de-
scribed in this paper: a predicate can never query an undefined variable binding, as
it can query no binding at all.

7.3 Tracematches

Similar to JavaMOP, tracematches [5] allow predicates in the form of AspectJ point-
cuts, which can bind free variables to concrete values. Pointcuts in a tracematch
cannot refer to variable bindings already established, hence also circumventing the

problems described in this paper. Users can query variable bindings in the trace-
match body. However, this body is only executed once a match is completed. The
tracematch implementation uses a data-flow analysis over the tracematch’s state
machine to assure that all variables will have been bound to a value once a match
is completed. In contrast, our check is syntactic and requires no conversion to a
finite-state machine.

8 Conclusion

In this work we have described the problem of obtaining an unclear semantics if
predicates in temporal formulas query variable bindings that are potentially un-
bound. We have further proposed a static checking algorithm to detect and reject
formulas where such accesses may impact the formula’s truth value and hence lead
to an unclear semantics. We have described our implementation in the J-LO runtime
verification tool, showing a concrete example problem that the checking algorithm
helps to avoid.

References

1. Chen, F., Meredith, P., Jin, D., Roşu, G.: E�cient formalism-independent monitoring
of parametric properties. In: ASE. (2009) 383–394

2. Pnueli, A.: The temporal logic of programs. In: IEEE Symposium on the Foundations
of Computer Science (FOCS), IEEE Computer Society (October 1977) 46–57

3. Bodden, E., Hendren, L.J., Lhoták, O.: A staged static program analysis to improve
the performance of runtime monitoring. In: ECOOP. Volume 4609 of LNCS., Springer
(2007) 525–549

4. Chen, F., Roşu, G.: MOP: an e�cient and generic runtime verification framework. In:
OOPSLA. (October 2007) 569–588

5. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding Trace Matching with
Free Variables to AspectJ. In: OOPSLA. (October 2005) 345–364

6. Stolz, V., Bodden, E.: Temporal Assertions using AspectJ. In: 5th Workshop on Run-
time Verification. Volume 144 of Electronic Notes in Theoretical Computer Science.,
Elsevier (July 2005) 109–124

7. Bodden, E.: J-LO - A tool for runtime-checking temporal assertions. Master’s thesis,
RWTH Aachen University (November 2005)

8. AspectJ team: The AspectJ home page, http://eclipse.org/aspectj/ (2003)
9. d’Amorim, M., Havelund, K.: Event-based runtime verification of java programs. In:

WODA ’05: Proceedings of the third international workshop on Dynamic analysis,
New York, NY, USA, ACM Press (2005) 1–7

10. H. Barringer, A. Goldberg, K.H., Sen, K.: EAGLE does space e�cient LTL monitor-
ing. Pre-Print CSPP-25, Department of Computer Science, University of Manchester
(October 2003)

11. H. Barringer, A. Goldberg, K.H., Sen, K.: Eagle monitors by collecting facts and gen-
erating obligations. Pre-Print CSPP-26, Department of Computer Science, University
of Manchester (October 2003)

12. H. Barringer, A. Goldberg, K.H., Sen, K.: Program monitoring with ltl in eagle.
In: 18th International Parallel and Distributed Processing Symposium, Parallel and
Distributed Systems: Testing and Debugging - PADTAD’04, IEEE Computer Society
Press (April 2004) ISBN 0769521320.

