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Abstract—It is generally a challenging task to tell apart mal-
ware from benign applications: obfuscation and string encryption,
used by malware as well as goodware, often render static anal-
yses ineffective. In addition, malware frequently tricks dynamic
analyses by detecting the execution environment emulated by the
analysis tool and then refraining from malicious behavior.

In this work, however, we present HARVESTER, a novel
approach that combines a variation of program slicing with
dynamic execution, and show that it can be highly effective in
the triage of current mobile malware families. For this malware,
HARVESTER allows a fully automatic extraction of runtime values
from any position in the Android bytecode. Target phone numbers
and messages of SMS messages, decryption keys or concrete
URLs that are called inside an Android application can usually be
extracted even if the application is highly obfuscated, and even
if the application uses anti-analysis techniques (e.g., emulator
detection or delayed execution / “time bombs”), dynamic code
loading and native method calls for string decryption. As we show,
HARVESTER not only aids human malware analysts, but also acts
as an automatic deobfuscation tool that reverts the introduction
of encrypted strings and reflective method calls as they are often
introduced by obfuscators such as DexGuard.

We will make available HARVESTER as open source. Experi-
ments on 13,502 current malware samples show that HARVESTER
can extract many sensitive values from applications, usually in
under one minute, and this fully automatically and without
requiring the simulation of UI actions. Our results further show
that HARVESTER’s deobfuscation can enhance existing static and
dynamic analyses, for instance with FlowDroid and TaintDroid.

I. INTRODUCTION

Android has long become the most popular smartphone
operating system with about one billion installations worldwide
and 1.5 million new devices activated every day [3]. According
to a study conducted by Gartner Inc., this gives Android a
total market share of more than 80% [23]. One reason for
the success of the platform is the availability of applications
for almost every need: More than one million applications are
now available from various vendors. While this abundance of
applications is very convenient for the user, it also makes it
much harder to decide whether or not an app should be installed,
since the trustworthiness and competence of the developer is
usually hard to judge, as is the quality of the application itself.
Even the official Google Play market is not devoid of malicious
applications or apps containing grave security flaws [11], [28].

To assess the quality or security of an Android application,
experts are frequently interested in its runtime values. Knowing
runtime values is important in many aspects. For instances, the
analyst often needs to know which URLs data is transmitted
to, which phone numbers SMS messages are sent to, what
the contents of these messages are, and which databases the
app reads from the phone (contacts, e-mail, SMS messages,
etc.). If an application, for instance, opens http instead of https
connections, this can hint at a security flaw. If SMS messages
are sent to well-known premium-rate scamming numbers,
this indicates malware. However, even if applications are not
outright malicious, many of them are obfuscated to protect their
respective author’s intellectual property, nevertheless hindering
manual inspection. The app’s bytecode often contains string
constants only as encrypted byte sequences. The analyst then
has to manually investigate this particular app decrypts those
strings at runtime and reconstruct every such string—a very
costly and labor-intensive undertaking that must be repeated
for every new application [27].

Obfuscation also poses challenges for automated static-
analysis tools. In modern Android malware such as Obad [42]
or FakeInstaller [37], methods are often not called directly
but through reflection, with the target method’s name being
stored in an encrypted format. The actual call-target string is
computed not before runtime, which makes it unavailable to
classic static-analysis tools. Without this information, however,
these tools have an incomplete picture of the code’s behavior,
effectively hindering malware detection. Inter-component or
inter-application analyses such as EPICC [31] face similar
challenges. In Android, inter-application and inter-component
communication is usually performed using so-called intents,
where the target can be specified as a string. If this string is
obfuscated, static analyses can no longer determine the intent’s
recipient. The availability of powerful obfuscation tools such
as DexGuard [41] or ProGuard [18], the latter of which is even
shipped with the Android SDK, aggravate the problem as they
help spreading such obfuscation techniques.

At runtime, all required values are eventually computed, and
thus become detectable. Nevertheless, dynamic analyses aiming
at extracting those values also face challenges when analyzing
real-world malware samples. Some analyses, for instance, rely
on intercepting malicious network traffic through man-in-the-
middle proxies [5]. This only works, however, if the code paths
that produce the respective network traffic are actually executed



at runtime. But generally neither the tool nor the analyst can
cover all possible execution paths in a finite amount of time.
Furthermore, the code may behave differently depending on
the execution environment (emulator vs. real phone, different
phone models, etc.). In fact, malicious applications nowadays
use so-called time bombs, which cause the malware to be
executed only at a certain time, or date or logic bombs which
activate the malware based on some environmental trigger [10],
[33], [45]. This also includes bot-net malware that only acts in
response to a command received from a command-and-control
server—a command that dynamic analysis tools will miss.
Equally important, Android applications are heavily interactive.
To trigger the malicious behavior certain user interactions may
be required. Dynamic tools need to simulate these interactions,
as they can gather information only about code paths that they
actually execute. Previous work [9], [21], [36] has shown that
because of this even for medium-sized Android apps complete
code coverage is often impossible to achieve. Consequently,
many runtime values of interest remain unknown when using
purely dynamic tools. This makes it very difficult for automatic
classifiers or human analysts to detect malicious behavior.

In this work, though, we show that by combining a particular
variation of traditional static-analysis algorithms known from
program slicing with dynamic code execution one can build
an approach that allows for the fully automatic extraction of
most interesting runtime values for current Android malware
applications. This includes even sophisticated malware families
such as Obad, Pincer, or FakeInstaller. Our tool HARVESTER
works on Android bytecode, requiring no source code of
the analyzed app. The approach is hybrid. Using slicing, it
first statically isolates all program code that contributes to
the computation of a value of interest; all other bytecode
instructions that do not influence this value are discarded.
Crucially, though, our static slicing algorithm differs in some
respect from the traditional algorithm as proposed by Weiser
and others [4], [32], [46]. Their definitions are sound based
on a fixed environment for code execution. HARVESTER
deviates from this soundness concept by generating parametric
slices that emulate the behavior of the original program in
different environments, in particular on actual devices opposed
to emulators. Using traditional slicing would require a precise
model each of these environments which is impractical for real-
world Android systems, for instance because every smartphone
has a different number, different accounts, different contacts,
etc. HARVESTER thus instead simulates not the environment
values, but the reactions to different environments the target
app implements. If an app, for instance, changes its behavior
based on a command from a command-and-control server in a
botnet, HARVESTER creates a parametric slice that allows each
of these behaviors to be triggered explicitly without having to
model the botnet communication as such.

In a second step, HARVESTER executes the statically ex-
tracted program slices dynamically, on an unmodified Android
emulator or stock Android phone. It explicitly triggers all the
different behaviors of the parametric slice which allows the
complete reconstruction of the values of interest, decrypting
any encrypted values along the way. HARVESTER directly
instruments the reporting mechanism for the values of interest
into the slices, so no changes to the runtime environment
(emulator, Android firmware, etc.) are necessary. Moreover,
HARVESTER invokes each slice directly, regardless of its

original position in the application code. By the way the slices
are constructed, at least for all current malware we analyzed,
this eliminates the need for UI interaction or other external
input during slice execution. In these situations, HARVESTER
thus overcomes the problem of limited code coverage that exist
with classical UI-testing approaches. Security analysts can also
use the slices computed by HARVESTER to improve existing
analyses such as TaintDroid [13]. Since TaintDroid can only
detect a data flow if the respective code is actually executed,
directly invoking a slice avoids the same code-coverage problem
of classical testing tools.

In a third step, HARVESTER integrates the dynamically
discovered values directly into the application. This means
that code statements that use reflection, for instance, are
complemented by statements that directly call the target
method originally called through the reflection API. As we
show, this injection allows off-the-shelf static analyses such
as FlowDroid [17] to correctly interpret formerly obfuscated
behaviors that they would otherwise not be able to detect—
without any modification to the analysis tool.

Given enough knowledge, skill, time and resources, mal-
ware authors can eventually break all known deobfuscation
approaches, including HARVESTER’s. The goal we wanted to
achieve with HARVESTER, though, was to derive an analysis
and deobfuscation approach that is effective at least for all
currently popular malware families. We thus conducted an
evaluation with 13,502 current malware samples. For these
samples, HARVESTER not only discovers runtime value in 99%
of all cases of interest but also proves efficient enough for
mass analyses of Android applications. On average, on a single
malware application HARVESTER takes less than one minute
to extract concrete telephone numbers and text messages of
a potential SMS trojan application. During the course of the
experiments, HARVESTER reported many interesting runtime
values, such as command-and-control messages and addresses,
and successfully deobfuscated malware which hides sensitive
API calls through reflections. Furthermore, HARVESTER suc-
cessfully extracts the obfuscated key used by the well-known
WhatsApp messaging app [34] to encrypt its message store.

In summary, this paper presents a novel hybrid information-
extraction approach for Android applications based on the
following original contributions:

• a variation of traditional slicing algorithms fine-tuned
to optimally support the hybrid extraction of runtime
values in currently known malware,

• a dynamic execution system for running the computed
code slices and extracting the values of interest without
user interaction,

• an augmentation algorithm for re-injecting the obtained
data values into the application as constants to enable
further analysis with other off-the-shelf tools or by
human analysts, and

• an evaluation of the approach’s feasibility for a mass-
analysis on current real-world malware applications.

The remainder of this paper is structured as follows:
Section II motivates our work with the example of obfuscated
Android malware. In Section III, we explain the architecture of



our approach and the algorithms used to compute the runtime
values. The implementation of the HARVESTER tool is discussed
in Section IV, whereas Section V shows the results of our
experimental evaluation. Section VI gives an overview of related
work and Section VII concludes the paper.

II. MOTIVATING EXAMPLE

Listing 1 shows a real-world code snippet taken from
FakeInstaller [37]1, one of the most widespread malware
families according to a recent list of top 10 Android malware
applications [15]. Note that we decompiled the sample to Java
source code and that we added code comments to ease the
understanding. FakeInstaller heavily relies on obfuscation to
hide its behavior from both analysis tools and manual inves-
tigators. The obfuscator generates random class and method
names, eliminating most semantic information. Furthermore, at
runtime, instead of calling methods directly, FakeInstaller takes
a string previously encrypted and decrypts it using a lookup
table. It then uses reflection to find the class and method that
bear the decrypted name and to finally invoke the retrieved
method.

For instance, the string constant VRIf3+In9a.
aTA3RYnD1BcVRV]af in line 6 is decrypted to the name of
the android.telephony.SmsManager operating-system
class which is then loaded using reflection. SMSManager is
a sensitive resource: malware can use it to send expensive
premium-rate SMS messages at the cost of the user. Indeed,
the string BaRIta*9caBBV]a in line 9 is decrypted to
sendTextMessage, the name of the method for sending
text messages, which is also located using reflection. Line 15
finally invokes the method, actually sending out the text
message. With the help of these runtime values we have just
discovered that the method gdadbjrj is responsible for
sending text messages where paramString1 is the number
and paramString2 is the body of the message.

Many current malware applications are obfuscated in a
similar way, either manually or by using commercial tools
such as DexGuard [41]. A human analyst would have to

1Sample MD5: dd40531493f53456c3b22ed0bf3e20ef
1 public static boolean gdadbjrj(String paramString1,

String paramString2){ [...]
2 // Emulator check: Evade dynamic analysis
3 if (zhfdghfdgd()) return;
4 // Get class instance
5 Class clz = Class.forName(gdadbjrj.gdadbjrj
6 ("VRIf3+In9a.aTA3RYnD1BcVRV]af"));
7 Object localObject = clz.getMethod(

gdadbjrj.gdadbjrj("]a9maFVM.9"), new

Class[0]).invoke(null, new Object[0]);
8 // Get method name
9 String s = gdadbjrj.gdadbjrj("BaRIta*9caBBV]a");

10 // Build parameter list
11 Class c = Class.forName(gdadbjrj.gdadbjrj

("VRIf3+InVTTnSaRI+R]KR9aR9"));
12 Class[] arr = new Class[] {
13 nglpsq.cbhgc, nglpsq.cbhgc, nglpsq.cbhgc, c, c };
14 // Get method and invoke it
15 clz.getMethod(s, arr).invoke(localObject, new

Object[] { paramString1, null, paramString2, null,
null });

16 }

Listing 1: Highly obfuscated code sending a text message
(FakeInstaller [37] malware family)

carefully inspect the decompiled bytecode, find the lookup
table, and manually decrypt all strings to detect the behavior
described above. Strings decrypted once cannot usually be
reused, as different malware variants use different lookup tables.
Many static-analysis tools would not be able to find the call
to sendTextMessage at all because they do not interpret
string operations nor the reflection API, and thus lack the
corresponding call-graph edge. And even those static-analysis
tools that do model these APIs can be fooled by attackers who
encode the strings using native-code libraries and the static
analysis fails to model.

But the code in the example challenges dynamic-analysis
approaches just as well. First, they have to find an execution
path actually triggering the gdadbjrj method. If, for instance,
method gdadbjrj is only executed after a delay (time bomb)
or after a specific environment trigger (logic bomb) [10], this is
not a trivial undertaking. In such situations, the analysis never
knows when it is safe to stop the dynamic test execution and
cannot easily speed up analysis either. Other malware might call
the malicious code only when the user clicks on a certain button.
Then, the analysis tool must be able to emulate this button click
and all user actions required to reach the user-interface state
displaying the button in the first place. Various obfuscation
techniques for dynamic approaches, such as emulator-detection
mechanisms [33], [35], [45] complicate this analysis even
further. The check in line 3, for instance, prevents the malicious
code from being executed if the execution environment shows
characteristics of an emulator such as the presence of certain
files or a specific timing behavior. It also aborts if a debugger
is attached to the application. Dynamic analysis environments
can never fully hide all of these characteristics [10] and thus
fail on sophisticated malware.

HARVESTER, on the other hand, fully automatically retrieves
all relevant runtime values of the example in Listing 1. The
security analyst simply specifies the variables for which runtime
values should be retrieved. In a first step, knowing nothing
else about the app, in this example the analyst would likely
choose the first parameters to the forName (line 11) and
getMethod calls and the two variables paramString1 and
paramString2 (line 14) to learn more about the reflective
calls. HARVESTER’s static slicer then automatically extracts
all code computing those values, while crucially, however,
discarding certain conditional control-flow constructs that do
not impact the computed value. (We give details later.) In
the example, this will discard the emulator-detection check at
line 3, and also outside of gdadbjrj will only retain exactly
the code that computes the input values paramString1
and paramString2. HARVESTER’s dynamic component
then runs only the reduced code. Since all emulator-detection
checks are eliminated, the dynamic analysis immediately
executes all those parts of gdadbjrj relevant to the com-
putation of the selected values. At runtime, the analysis
discovers the name SmsManager.sendTextMessage of
the method called through reflection. Lastly, it reports the
concrete telephone numbers (7151, 2858 and 9151) and
bodies (701369431072588745752, 7012394196732588741192
and 7834194455582588771822) of the SMS messages sent.

Note that HARVESTER does not require any manipulations
to the underlying Android framework. It works purely on the
bytecode level of the target application, through a bytecode-to-



bytecode transformation. To aid further static analysis of the
app’s code, HARVESTER also manifests the concrete targets of
reflective calls into the original applications, as direct method
calls. As we show in Section III-C, this enables further analysis
using existing off-the-shelf static-analysis tools such as static
taint analyses. The fact that HARVESTER removes unnecessary
runtime checks (e.g., emulator detection) from the original
application allows security analysts to apply dynamic-analysis
tools such as TaintDroid, which the original application would
have recognized and fooled, to the converted application.

III.SOLUTION ARCHITECTURE

Figure 1 depicts HARVESTER’s general architecture. The
general usage scenario for HARVESTER is to compute so-called
values of interest for which the following two definitions are
required.

Definition 1: A logging point hv, ni is a pair consisting of
a variable or field access v and an arbitrary statement s given
that v is in scope at s.

Definition 2: A value of interest is the concrete value of
variable v at a logging point hv, ni.

For instance, if one is interested in runtime values passed
to a conditional check

s: if(a.equals(b))

the runtime values of a and b are both values of interest
at this statement s, inducing the two logging points ha, si
and hb, si. Another example would be an API call to the
sendTextMessage method such as

s: sendTextMessage(arg1, arg2, arg3, arg4, arg5)

where harg1, si and harg3, si are the logging points at the
method-call s. The corresponding runtime values are the values
of interest.

To compute such values of interest, HARVESTER first reads
the APK file and a configuration file defining the logging points.
Theoretically, the same approach could also be applied to Java
class files, but here we present and evaluate it for Android
APK files.

The first part of the analysis is a static backwards-slicing
computation starting at these code points, as will be further
explained in Section III-A. This slicing step runs on a desktop
computer or computation server. The pre-computed slices are
then used to construct a new, reduced APK file which contains
only the code required to compute the values of interest, and an
executor activity. The task of the executor activity is to invoke
the computed slices and report the computed values of interest.
This new, reduced APK file is then executed on a stock Android
emulator or real phone, as we explain in Section III-B. These
steps are fully automated and no user interaction is required.

Optionally, the security analyst can use off-the-shelf
dynamic-analysis tools such as TaintDroid to screen the reduced
APK further. This is beneficial over analyzing the original
APK, as the reduced APK will only execute the behavior of
interest. For instance, if an analyst is interested in potential data
leakages, he can use HARVESTER to produce a new apk, which
directly executes the slice that potentially leaks some sensitive

information. Alternatively, the analyst can instruct Harvester
to inject the discovered runtime values into the original
application (Section III-C). This enables existing off-the-shelf
static-analysis tools such as CHEX [25], SCanDroid [2] or
FlowDroid [17] to further analyze the application. This is
advantageous over analyzing the original application as runtime
values and reflective method calls are now statically embedded
as constants respectively normal method calls in the application,
allowing the tools to discover those calls and values.

In some highly-obfuscated applications, the logging point
cannot directly be identified. Assume that the application uses
reflection to call the method that sends out a text message
and the analyst is interested in the telephone number to which
the text message gets sent. In this case, he would need to run
HARVESTER twice. In the first round, he retrieves the targets
of all reflective method calls. With this information, he can
then identify the actual logging point for the second round.

The remainder of this section will explain the static
backwards slicing and the runtime execution phase in more
detail.

A. Static Backward Slicing

Figure 2 shows a simplified control flow graph of an
example program. When the user clicks on the “ClickMe”
button, method 1 is called which in turn invokes method 3
at some point. Method 3 contains the logging point, i.e., the
position at which a value of interest shall be retrieved. The
analyst wants to compute this value of interest irrespective
of its original position in the program and without having to
emulate the button click. Even if method 3, for instance, is only
invoked under certain circumstances (time or logic bombs), the
value shall nevertheless be retrieved directly. To achieve this,
HARVESTER uses program slicing to extract the code which
computes the values of interest (nodes printed in solid black
in Figure 2) so that this code can then be run in isolation
irrespective of its original position in the control flow.

In traditional slicing as defined by Weiser [46], a program

Method 3Method 1

ClickMe

Logging 
PointMethod 2

Fig. 2: Important Statements in Backwards Slice
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Fig. 1: Workflow of the HARVESTER Approach

1 String number = null;
2 String logInfo = null;
3
4 String deviceId = getDeviceId();
5 if(deviceId.equals("000000000000000")){
6 return;
7 }
8
9 String model = Build.MODEL;

10 if(!model.equals("generic")) {
11 if(simCountryIso().equals("RU")) {
12 number = "5623";
13 logInfo = "country iso: RU";
14 }
15 if(simCountryIso().equals("US")) {
16 number = "7823";
17 logInfo = "country iso: US";
18 }
19 if(simCountryIso().equals("DE")) {
20 number = "9371";
21 logInfo = "country iso: DE";
22 }
23 }
24
25 if(number != null)
26 sendTextMessage(number, "msg");

Listing 2: Original Code: Emulator-
Checks and Premium-SMS

1 String number = null;
2 /*
3
4
5 removed by slicer
6
7 */
8
9 String model = Build.MODEL;

10 if(!model.equals("generic")) {
11 if(simCountryIso().equals("RU")) {
12 number = "5623";
13 // removed by slicer
14 }
15 if(simCountryIso().equals("US")) {
16 number = "7823";
17 // removed by slicer
18 }
19 if(simCountryIso().equals("DE")) {
20 number = "9371";
21 // removed by slicer
22 }
23 }
24
25 // removed by slicer
26 sendTextMessage(number, "msg");

Listing 3: Traditional Slicing for
number at Line 26

1 String number = null;
2 /*
3
4
5 removed by slicer
6
7 */
8
9 String model = Build.MODEL;

10 if(EXECUTOR_1) {
11 if(EXECUTOR_2) {
12 number = "5623";
13 // removed by slicer
14 }
15 if(EXECUTOR_3) {
16 number = "7823";
17 // removed by slicer
18 }
19 if(EXECUTOR_4){
20 number = "9371";
21 // removed by slicer
22 }
23 }
24
25 // removed by slicer
26 sendTextMessage(number, "msg");

Listing 4: Parametric Slicing for
number at Line 26

slice S is an executable program that is obtained from a program
P by removing statements, such that S replicates the behavior
of P [43] with respect to the slicing criterion. In our example,
methods 1 and 2 are irrelevant and can safely be removed since
all computations required for it are local to method 3. Extracting
the respective code from method 3 and directly invoking it
during the later execution phase (see Section III-B) not only
significantly reduces the size of the code to be executed and
thus makes the execution faster, but also removes the need to
click on the “ClickMe” button. This works because computing
a specific value of interest at a given position typically only
requires the execution of a small fraction of the original program
that is in close proximity to the logging point.

In the following, we will show why this traditional style
of slicing is insufficient for our task at hand. Since real-world
obfuscated malware code such as the one shown in Section II
is too complicated to demonstrate the slicing, we introduce
the artificial example presented in Listing 2. In the example,
the malware sends a text message to a premium rate number
in line 26. The target telephone number is stored in variable
number. Depending on the country of the mobile carrier,
different phone numbers are used (Lines 11, 15 and 19). The

contents of the variable logInfo are not relevant for sending
the premium-rate message.

The example has been inspired by the Pincer malware
family which scans for various system properties and refrains
from the malicious behavior if traces of an emulator are found.
Such checks form a very common pattern which is used in
other malware families as well. In the example, such checks
are carried out in two different places: Line 5 and 10.

Listing 3 shows the output of a traditional slicer for the
example program. All references to the unrelated logInfo
variable have been removed. The first emulator check in Line 5
has also been removed together with all computations that were
only necessary to carry out this single check. This happens
because the conditional in Line 5 only defines if the target
telephone number is computed, not how. The slicing criterion
has no data dependency on this check. This reasoning applies
to most time bombs and logic bombs which can thus safely be
removed without affecting the outcome of the computation of
the value of interest.

Note, though, that when executing the slice in Listing 3
within an emulator, variable number will remain null, since



the emulator check in line 10 will fail. Traditional slicing
aims at constructing a slice that mimics the behavior of the
original program in the current environment. In this current
(emulated) environment it is correct, to compute null for the
number, but to the security analyst, who wants to know all
possible target phone numbers, it is not helpful. More generally,
the analyst wishes to retrieve all values of interest that can
be computed in any environment, regardless of the (typically
emulated) environment in which the slice is currently being
executed. With a traditional slice, the analyst would still have
to emulate all these possible environments. As environment
dependencies in general, and emulator checks in particular,
can be exist in a wide variety of ways [33], [45], simulating
all possible combinations of these environment variables is
infeasible in practice.

To cope with this problem, HARVESTER extends program
slicing with a special treatment of conditionals. For those
conditionals that influence which value is computed, at runtime
HARVESTER must explore both branches as each branch
potentially defines a different runtime value for the respective
variable of interest. To force a specific path to execute,
HARVESTER replaces all conditionals contained in the slice
with static Boolean expressions as shown in Listing 4. This
makes the slice parametric with at least one instance of every
possible value of interest.2 When later executing the slice (see
Section III-B), HARVESTER can then run the example once for
each of the 16 possible combinations of the Boolean values
EXECUTOR_1 through EXECUTOR_4. This enumerates all
possible outcomes of the computation for number.

Applying this principle to real-world apps, however, leads
to a number of challenges which we present using different
code examples in the remainder of this section.

2In general, multiple instances of the parametric slice can lead to the same
value of interest.

Devices Emulators

"5623" "7823" "9371" null

Fig. 3: Retrieving Values of Interest from Different Environ-
ments

a) Internal dependencies within a slice: When replacing
conditionals, it is important not to break the semantics of the
target program. Ideally, for every value of interest computed by
HARVESTER, there should exist a possible runtime environment
in which the original program would have computed the same
value.

Listing 5 shows a more complex computation for the value
of interest at logging point hx, 12i. If one would blindly replace
all conditionals in this example, the slice shown in Listing 6
would compute the value 1 in some case (EXECUTOR_0 set to
true) and not terminate in all other ones (EXECUTOR_0 set to
false). The correct values computed by the original program
(16, 11, 42) would never be computed by the parametric slice.
This happens because the Boolean values remain constant for
each execution, i.e., an instance of the parametric slice will
either always take the left branch or always take the right
branch for the respective conditional.

In program verification, such problems are often addressed
by unrolling loops [16]. Since HARVESTER, however, prepares
a parameterized slice for dynamic execution, unrolling the
loops up to a sufficiently large number of iterations is generally
infeasible. If the number is too low, this causes HARVESTER
to miss the actual output of the computation. If it is too high,
this leads to a combinatorial explosion of the possible Boolean
values and resulting paths: for n conditionals, up to 2n paths
can be explored.

HARVESTER therefore follows a different approach, not
unrolling loops. Instead, conditionals that only have data depen-
dencies on the values of interest, i.e., are internal dependencies
in the slice, are not replaced with Boolean variables in the first
place. They are retained as they are in the original program. In
Listing 5, this means that the conditionals in Lines 5 and 6 are
replaced with EXECUTOR_1 and EXECUTOR_2 respectively,
while expressions in line 3 and 8, which depend on x, are
kept untouched. The result is shown in Listing 7. This way,
HARVESTER can explicitly steer the execution into specific
paths while keeping intact the computation of the values of
interest in most cases. The following paragraph shows a case
in which the replacement of conditionals can nevertheless lead
to a wrong value.

b) Missing value of interest: In some cases, replacing the
original conditionals with Boolean variables may cause the slice
to compute a different value than the original program. More
precisely, there may be environments in which the original
program computed a value that cannot be computed by any
instance of the parametric slice. In Listing 8, the logging point
hphoneNo, 4i has no direct data-flow dependency on the loop
counter i. Therefore, HARVESTER replaces the condition in
Line 2 with a static Boolean expression EXECUTOR_0 which
forces the execution once into skipping the loop completely and
once into looping infinitely, disregarding the original semantics.
In neither case will the execution compute the original value
123.

It is at this point where HARVESTER has to cut corners
and has to restrict itself to the typical cases observed in the
wild. To avoid termination problems, HARVESTER limits the
maximum iteration count to a fixed value and aborts the loop
if this limit is exceeded. Though this may lead to false results,
it does not seem to pose problems for analyzing state-of-the-art



1 int x = 1;
2 while (true) {
3 if (x >= 10)
4 break;
5 if (a) x = x * 2;
6 else if (b) {
7 x = x + 3;
8 if (x % 2 == 0) x = x * 2;
9 }

10 else x = 42;
11 }
12 send(x);

Listing 5: Branching on internal value

1 int x = 1;
2 while (true) {
3 if (EXECUTOR_0)
4 break;
5 if (EXECUTOR_1) x = x * 2;
6 else if (EXECUTOR_2) {
7 x = x + 3;
8 if (EXECUTOR_3) x = x * 2;
9 }

10 else x = 42;
11 }
12 send(x);

Listing 6: Simple transformation with
internal branching

1 int x = 1;
2 while (true) {
3 if (x >= 10)
4 break;
5 if (EXECUTOR_1) x = x * 2;
6 else if (EXECUTOR_2) {
7 x = x + 3;
8 if (x % 2 == 0) x = x * 2;
9 }

10 else x = 42;
11 }
12 send(x);

Listing 7: Internal branching issue
resolved

malware samples as shown in Section V. Most obfuscation
and decryption algorithms used by current malware manipulate
values from the code or from a file. They do not use loops
to dynamically generate completely new values like in the
example.

c) Spurious value of interest: Since HARVESTER over-
approximates the paths to be executed, it may return false
positives, i.e., values that could not be computed by the original
program in any given environment. In Listing 9, the code
computes a different telephone number for every mobile carrier
country. The code assigning the value 0000, however, can
never be reached in the original program because there is no
environment with an XX country code. Since HARVESTER
cannot make any such assumptions about the possible set of
environments, it explores this path as well and returns the
spurious value. In practice it seems that the amount of such
spurious information will be low and not put any significant
burden on the security analyst.

d) Android API Handling: Most applications use API
classes such as Shared Preferences to store data, which
is later retrieved and then e.g., sent out to the internet. Storage
and retrieval can be distributed among the program, such as
being executed when different buttons in the user interface
are clicked. A slicing approach that does not model this data
dependency between user actions would yield an incorrect
slice that tries to read non-existent data from an uninitialized
data store. To handle these cases, HARVESTER resolves all
calls that write to persistent storage and prepends them to the
slice. This approximation may, however, miss some of the
data if the stored value is ambiguous, as only the last value is

1 int phoneNo = 120;
2 for (int i = 0; i < 3; i++)
3 phoneNo++;
4 send("" + phoneNo, "Hello");

Listing 8: Lost Value of Interest

1 String number = null;
2
3 if(simCountryIso().equals("DE")) {
4 number = 9371;
5 }
6
7 if(simCountryIso().equals("XX")) {
8 number = 0000;
9 }

10
11 sendTextMessage(number, "msg");

Listing 9: Path Over-Approximation

retained and all earlier values are overwritten. While handling
the external storage better is an interesting area for future work,
our experiments confirm that our current solution still produces
values for all logging points.

Further special handling is required for API calls that access
environment values such as free-text user input. Since the
slice will automatically be executed without user interaction
in phase 2 (see Section III-B), HARVESTER injects dummy
values instead of the actual API calls that read out the UI. This
prevents the slices from crashing even if they still access some
external resources. Our evaluation has shown that this is not a
problem in practice (see Section V).

Note that HARVESTER can also cope with dynamic code
loading and native methods, as long as all code containing
the logging points is contained within the APK’s bytecode at
instrumentation time. If, for instance, the value of an SMS
message is computed by calling a dynamically loaded function
using reflection, or by invoking a native method, the slicer will
declare this function as required and the dynamic pass will
execute the function as any other function, providing the same
implementation that would also be invoked during normal app
execution.

B. Dynamically Executing the Reduced APK

Every slice computed during the static slicing phase yields a
new method in the reduced APK file produced by HARVESTER.
The executor activity injected into the same APK file calls all
these methods one after another, directly after the new app has
been started on an unmodified emulator or a stock Android
phone. The executor writes the computed runtime values into
an SQLite database on the device’s SD card that can then
be downloaded and evaluated on a desktop computer. Since
the slices are executed directly, regardless of their original
position in the application code, HARVESTER requires no user
interaction that might otherwise be necessary to reach the
code location of the computing statements. If, for instance,
the extracted code was originally contained in a button-click
handler, it would have required the user or an automated test
driver to click that button to be executed. HARVESTER, however,
executes the sliced code directly, making this unnecessary. In
fact, the reduced app does not even contain any GUI elements
from the original app. The reduced app is packaged with the
same resources as the original app, such that code that would
load encrypted strings, for instance, from external resources,
will find those resources also in the reduced APK.

As explained in Section III-A, slices are parametric and



HARVESTER must explore every possible combination of
branches to retrieve the values of interest that can be computed
in all possible environments. For the executor, this means that it
must set all possible combinations of these Boolean values and
re-run the code slice. In general, this leads to 2n paths where
n is the number of conditionals between the introduction of
the variable and the position of the logging point. In practice,
however, n is very limited. In the few cases in which it is not,
many of those paths will yield the same value. HARVESTER
therefore supports randomly picking a predefined maximum
number of slice instances (i.e., combinations of the Boolean
variables) to execute. While this may generally lead to missed
values of interest, in our experiments this point showed not to
be a limitation.

C. Injecting Runtime Values in the original APK

Existing static-analysis approaches usually rely on a call
graph to determine which target method a method invocation
actually causes to execute. For the large fraction of malware
applications that are obfuscated using reflective method calls,
such as the example in Listing 1, call-graph construction fails.
Some tools do not support reflective calls at all during call-
graph construction, while others like Soot [44] do support
resolving reflective calls with constant target strings, but
cannot resolve dynamically constructed method or class names.
HARVESTER, however, can aid those off-the-shelf tools by
manifesting the runtime values of reflective call targets resolved
during the dynamic execution as ordinary method calls in
the application’s bytecode. This allows existing call-graph
construction algorithms to construct a sound call graph with
ease.

Method obfuscated() in Listing 10 shows a simplified
example of a reflective method call. Assume that HARVESTER
detects two different possible runtime values for variable t,
namely "foo" and "bar". HARVESTER replaces method
obfuscated with method directCalls that contains di-
rect call edges to these two target methods. To allow for cases in
which there are further call targets which HARVESTER failed to
detect dynamically, the old reflective call is nevertheless retained
in the fall-through branch (line 10).3 Off-the-shelf analysis tools
such as CHEX [25], SCanDroid [2] or FlowDroid [17] can
then analyze the enriched APK file without requiring special
handling for reflection or string operations used to build the
target method name. To the best of our knowledge, HARVESTER
is the first fully-automated approach that performs such a value
injection on the Android platform. The enriched APK files are
functionally equivalent to their respective originals and only use
normal application-level code. Running them does not require
any changes to the operating system or the emulator.

Our prototype currently supports this technique for reflective
method calls only, but it could easily be extended for other
obfuscated strings as well. Examples are the target telephone
numbers of SMS messages, to aid existing pattern-based
malware-detection tools. Injecting the action strings and URIs of
Android intents used for inter-component and inter-application
communication is also important. Many static analyses fail if
these strings are not constant as they can no longer map intent

3This trick is adopted from the Booster component of the TamiFlex tool [6]
for Java.

1 void obfuscated() {
2 String t = decodeMethodName();
3 this.class.getMethod(t).invoke(this);
4 }
5
6 void directCalls() {
7 String t = decodeMethodName();
8 if (t.equals("foo")) this.foo();
9 else if (t.equals("bar")) this.bar();

10 else this.class.getMethod(t).invoke(this);
11 }

Listing 10: Obfuscated Code Example

senders and receivers. The same applies to class-name strings
used with explicit intents. If they are only decrypted at runtime,
static analyses have no chance but to conservatively assume
all possible recipients, which is highly imprecise. Injecting
these strings as constants enables tools such as EPICC [31]
to reconstruct the inter-component call graph more precisely
and correctly identify the data flows between components
and applications which would otherwise not be possible.
Section V shows how enhancing apps with HARVESTER
benefits TaintDroid and FlowDroid. We plan to assess further
synergies in future work.

IV. IMPLEMENTATION

The static slicing is implemented using the Soot frame-
work [44] for static program analysis and transformation, which
can directly read and write Android APK files. HARVESTER
uses Soot’s Jimple intermediate representation which is a flat,
three-operand language optimized for static analyses.

To make the generated slices as precise (and thus as small)
as possible, HARVESTER requires a precise call graph of the tar-
get application. Soot’s call-graph construction engine Spark pro-
vides such an initial call graph. Soot is capable of building a call-
graph based on a program’s entry points. Since such an entry
point does not exist for Android applications, an artificial main
method is created using the AndroidEntryPointCreator
component of FlowDroid [17], an existing Soot-based open-
source static taint-analysis tool.

Initially, this graph is missing call edges for reflective
calls, as exactly those calls are the task of HARVESTER to
discover during its dynamic pass. Once the calls have been
discovered, and embedded as direct calls in the APK, one can
iterate the same procedure, expanding the call graph, potentially
discovering more reflective call sites, dynamically resolving
their targets, etc. In practice, however, we found that this
reiteration is not usually necessary, as current malware does
not usually call reflection APIs themselves using reflection.

HARVESTER executes the extracted slices by calling their
entry points from an artificial executor activity injected into
the resulting APK file. A slice, however, may have references
to other Android components. Also, if the code was originally
executed after the user clicks on a button, it may expect
the hosting activity to be initialized. HARVESTER must thus
emulate this activity’s lifecycle at runtime. Naive calls to
lifecycle methods, however, can cause problems, as the Android
operating system expects certain internal variables such as the
used Context to be set which cannot be achieved through the
normal interface. HARVESTER therefore uses reflection to inject
these initialization values. The usual way of switching activities
via Intents is not a suitable alternative as it would not give



HARVESTER control over the lifecycle methods, leading to
unnecessary code execution.

Some entry points may raise unhandled exceptions, e.g., due
to environment dependencies not supported by HARVESTER.
Normally, in such a case the Android operating system would
terminate the application, which would, however, also cancel
the execution of all following paths. Therefore, HARVESTER
explicitly catches and reports exceptions, but only skips the
failing path and continues with the next one.

For very large programs, computing exact slices may
be infeasible. HARVESTER therefore supports cut-offs that
prevent it from walking further up (into callers) or down
(into callees) along the call stack while slicing. After the
cut-off, all further callees are taken as-is without any slicing.
All callers exceeding the cut-off are simply disregarded, i.e.,
HARVESTER, assumes that the slice constructed so far does
not depend on any earlier program logic. If some variables are
not yet initialized, HARVESTER inserts artificial initialization
statements that assign dummy values.

V. EVALUATION

We evaluated HARVESTER extensively, addressing the
following five research questions:

• Q1: What is HARVESTER’s recall, i.e., how many
logging points can it reach in real-world applications?

• Q2: How does the recall of HARVESTER relate to
existing static- and dynamic-analysis approaches?

• Q3: How efficient is HARVESTER?

• Q4: Are there any interesting findings in apps?

• Q5: Can HARVESTER support other static/dynamic
approaches to increase their recall?

The cut-offs for the caller- and callee-slicing were both
set to 3 in all of our experiments. They can be configured as
required, trading higher recall for longer analysis time.

Q1: What is HARVESTER’s recall?

We evaluated HARVESTER’s recall based on the coverage of
logging points4. A perfect tool would reach every logging point.
We chose the 13 different malware samples shown in Table I,
some of which are known to be highly obfuscated (FakeInstaller,
GinMaster and Obad). These samples heavily rely on reflection
to mask the targets of method calls. Another malware family,
Pincer, is known to hinder dynamic evaluation through anti-
emulation techniques [33], [45]. Ssucl and Dougalek steal
various private data items.

Table I shows the evaluation results for logging points from
the categories URI, Webview, SMS Number, SMS Text, File,
Reflection and Shell Commands. The results for each malware
sample in each category are represented as circles. Grey slices
indicate the fraction of logging points with constant values,
where no backward-slicing and dynamic execution is necessary.
Executing HARVESTER is not really necessary for those values,

4The reader be reminded that Section III-A defined a logging point as the
combination of a statement and a value of interest

but nevertheless HARVESTER discovers those values at once.
Green slices indicate the fraction of logging points with non-
constant values for which HARVESTER was able to successfully
retrieve at least one value. Red slices indicate the amount of
missing logging points for which HARVESTER could not find
a runtime value. This missed fraction is further represented
on the right side of the circle. If a logging point is reachable
along multiple control-flow paths, it may be executed with more
than one runtime value. The number of distinct non-constant
runtime values that HARVESTER extracts for the respective
logging-point category is shown below the circle.

In summary, the table shows that, averaged over all
categories, HARVESTER detects at least one value for 99%
of all logging points. Due to the controlled execution of
value-influencing branches, HARVESTER succeeds in reporting
multiple values for many logging points. Discovering more than
one value is useful for analyzing the behavior of an application
(e.g., scamming telephone numbers for SMS fraud in different
countries instead of just a single number). HARVESTER is even
able to cope with the anti-analysis techniques used by the
Pincer malware family where it successfully extracts the SMS
number and message, URIs, shell commands and various file
accesses.

The small fraction of missed logging points is mainly caused
by missing initialization of important runtime values due to
configured cut-offs during the static analysis (see Section III-A).

Q2: How does the recall of HARVESTER relate to existing
static- and dynamic-analysis approaches?

In this section we compare HARVESTER with purely static
and purely dynamic approaches for automatically detecting
malicious applications.

Static Analysis: We compared HARVESTER with
SAAF [20], a static approach for identifying parameter values
based on a backward slicing approach starting from a method
call. This method is similar to the static backward analysis part
in HARVESTER (traditional slicing). SAAF and HARVESTER
were evaluated on 2,600 malware samples from MobileSandbox
[39]. The logging points for both tools were the number and
the corresponding message of text messages. The results for
SAAF show that the tool does not support semantics of string
operations such as concatenation. Instead of the concatenated
string, SAAF reports the two distinct operands. This gives only
partial insight into the behavior of the application. In some
cases5, SAAF did not even find all necessary fragments of
the target telephone number (e.g. 1065-5021-80133). In
contrast, HARVESTER extracts the final, complete SMS numbers
for all of the samples and even reports numbers in cases in
which SAAF did not yield any data.

Furthermore, SAAF does not support extracting the texts
of the SMS messages being sent since they are usually not
string constants, but built through concatenation and string
transformation. Due to its static nature, SAAF cannot handle
reflective calls either which is not an issue for HARVESTER
due to the dynamic execution.

5e.g. sample MD5 b238628ff1263c0cd3f0c03e7be53bfd



URI Webview SMS Number SMS Text File Reflection Shell Cmd Sum
FakeInstaller (MD5)

b702b545d521f129e8efc1631a3abcee
0
2

2

0
3

5

0
6

8,686

0
11

8,691

dd40531493f53456c3b22ed0bf3e20ef
0

541

1,686,341

0
541

1,686,341
GinMaster (MD5)

0d2deef5a03fc959c46550d6c2111c4a
2
16

8

5
42

17

2
13

14

9
71

39

ebe49b1b92a3b44eb159d15ca1f25c70
1
13

9

1
1

0

2
42

4,486

0
3

6

4
59

4,501
Obad (MD5)

58617e6a483f59bc93e500c65116eb87
0

257

2,830

0
257

2,830

e1064bfd836e4c895b569b2de4700284
0

185

273

0
185

273

dd1a3ff43330165298db703f7f0626ce
0

159

214

0
159

214
Pincer (MD5)

b2b7d5999dce0559d13ab06d30c2c6ec
0
2

1

0
1

1

0
1

1

0
465

230

0
2

1

0
471

234

9c9afd6b77d8d3a66a2db2d2cf0b94b3
1
3

3

0
2

1

1
2

1

3
12

1,827

1
2

0

0
1

2

6
22

1,834
Ssucl (MD5)

f0bf007b3d2580297b208868425e98c7
0
9

2

0
1

1

0
1

1

0
2

0

0
13

4

c5a2d14bc52f109a06641c1f15e90985
1
10

0

1
1

0

1
1

0

1
3

0

4
15

0
Dougalek (MD5)

95a04cfc5ed03c54d4749310ba29dda9
0
2

0

0
2

36

0
2

36

0
4

2

0
10

74

91d57eb7ee2582e0600f21b08dac9538
0
3

4

0
3

4

SUMMARY
5
60

29

1
4

5

1
7

39

2
7

39

10
565

6,562

3
1166

1,698,364

1
8

3

23
1817

1,705,041

TABLE I: Precision-Evaluation of HARVESTER. Green slices: amount of logging points with non-constant values where a dynamic
analysis is necessary for value extraction. Red slices: amount of missing logging points. Grey slices: amount of logging points
with constant values where no static/dynamic analysis is necessary. Fraction next to circle: fraction of missing logging points for
non-constant values. Value below circle: number concrete extracted values for non-constant logging points

This shows that hybrid approaches such as HARVESTER
have the opportunity to handle semantic operations more
effectively than purely static ones like SAAF.

Dynamic Analysis: As the results above show already,
HARVESTER shows a higher recall than classical testing-based
approaches currently known to literature [9], [21], [26], [36]
which, on average, only reach about 30% to 60% code coverage.
If one assumes that the logging points are uniformly distributed
over the application code, this means that only 30% to 60% of
all logging points are reached at all. These numbers suggest that
a hybrid approach of slicing and executing is more appropriate
to Android applications than finding concrete test patterns.

To validate this impression further, we also tested HAR-
VESTER on 150 samples from 18 malware families taken from
the Malware Genome Project [50]. We compared HARVESTER’s
recall with Google’s Monkey [12] which we ran with at least
1,000 randomly-generated events per app that were limited
to normal user interactions (click, swipe, navigation button
use). The goal was to find the telephone numbers to which
SMS messages are sent. To count the respective logging points
reached by Monkey, we instrumented the bytecode of the
malware samples to create a log entry directly before sending
the message. The results were evaluated by using Logcat. All
tests with Monkey were carried out on an Android 4.1 emulator
(API version 16).



1 public void onStart(Intent intent, int i)
2 ContentResolver cr = getContentResolver();
3 Cursor contacts = cr.query(CONTENT_URI, null, ...);
4 SmsManager sms = SmsManager.getDefault();
5 if (cr.getCount() > 0) {
6 do {
7 int colIdx = cr.getColumnIndex("data1");
8 String telNo = cr.getString(int)>(colIdx);
9 sms.sendTextMessage(telNo, null, "I take

pleasure in hurting small animals, just thought you
should know that", ...);

10 } while (cr.moveToNext());
11 sms.sendTextMessage("73822", null, "text", ...);
12 }
13 }

Listing 11: “DogWars” Game from Malware Genome
Project

As expected, the emulator-detection techniques prevented
Monkey from ever reaching any logging points in most malware
samples. In total, Monkey only found values for 15.6% of all
logging points. In only 9.33% of all apps, it found a value for
at least one logging point. As an example, Listing 11 shows
malicious code extracted from the “DogWars” application. It
accesses the user’s contact database in line 3. Only if contacts
are available on the phone, see line 5, the app sends out the
premium SMS message (line 11). When Monkey executes the
application on an emulator, it usually finds the contact database
to be empty and thus never reaches the logging point for
sending SMS messages. As our results confirm, such behavior
is common among modern malware applications. Since such
checks, however, do not influence the target telephone number,
HARVESTER simply removes the respective condition and
correctly retrieves the number 73822. Note that the taunting
text messages (line 9) get sent to every telephone number in
the user’s address book and are thus data-dependent on the
environment (i.e., the contact database). Thus no general value
can be retrieved by any tool.

Many malicious applications such as the GoldDream,
BaseBridge, and BgServ malware families as well as the
DogWars app perform their malicious activities in a background
service that is started when the phone is rebooted. To obtain
the respective runtime values, traditional dynamic approaches
must also generate such external events and restart the phone.
HARVESTER instead directly executes the code slices containing
the logging points and thus does not need to emulate these
events.

Furthermore, tools such as Monkey can only improve
code coverage by triggering interactions in the user interface.
Some malware apps from the GPSSMSSpy family, however,
contain a broadcast receiver that directly leaks incoming SMS
messages and which is completely distinct from the UI. While
Monkey never executes the respective code, HARVESTER
directly invokes the slice containing the data leak regardless of
its original position in the code.

To overcome these problems with Monkey, we used the
AndroidHooker [7] open-source dynamic testing toolkit which
first prepares the emulator with fake “personal user data” such
as contacts, before installing the application and exercising
it using Monkey. AndroidHooker also sends external events
such as incoming SMS messages and reboots the emulator
during the test to trigger actions that only happen at boot
time. This approach was able to reveal the premium SMS
message in the DogWars app, but does not solve the code-

coverage problem in general. For instance, it still fails if the
malicious code is only executed after receiving a command
from a remote server, such as in the GoldDream malware
family. HARVESTER succeeds nevertheless, as the conditional
checking for the server’s command is not part of the slice that
HARVESTER computes, and the code containing the logging
point is directly and unconditionally executed. Due to such
problems, AndroidHooker only found 16.31% of all logging
points. In 10.67% of all apps, it found a value for at least one
logging point.

All in all, with finding values for 74.47% of all logging
points HARVESTER shows a much better recall for these
malware samples as it is limited neither by time bombs, nor
logics bombs, and does not require any external inputs to
be simulated. In 86% of all apps, a value for at least one
logging point was found. The current recall seems to be lower
than 100% only because of two reasons. First, HARVESTER
currently does not handle inter-component communication. This
feature can easily be added by integrating HARVESTER with
the inter-component analysis tool EPICC [31], which we plan
in future work. Since both tools are based on Soot, they should
be directly compatible. The second reason is due to current
technical limitations of Soot’s Dalvik frontend, which still fails
to process some small fraction of apps.

Q3: How efficient is HARVESTER?

App Stores such as the Google Play Store receive many
thousand new or updated Android apps per day [40] which
they need to check for malicious behavior. Therefore, fast tools
which scale to the size of the market are required. We tested
HARVESTER on 10,282 malware samples from VirusShare [1],
620 apps (only SMS trojans) from the Malware Genome
Project [50], and 2,600 malware samples from MobileSand-
box [39]. We configured HARVESTER with 3 logging-points
both for the SMS phone numbers and the respective text
messages. 1,926 of all apps under evaluation contained at
least one logging-point in each of these two categories. We
focused on SMS numbers and messages since SMS trojans are
among the most sophisticated malware applications today [15].
With HARVESTER, one can effectively find the real values for
phone numbers and text messages and compare them to known
blacklists or apply existing filters for identifying scamming
malware.

The performance evaluations reported in this section were
run on a computation server with 12 AMD Opteron 8356 cores
running Debian Linux 2.6 with Oracle’s Java HotSpot 64-Bit
Server VM version 1.7.0 and a maximum heap size of 20 GB
to avoid intermediate garbage collection. We used the Android
ARM emulator in version 22.6.0. On average, HARVESTER took
between 25 and 45 seconds and it extracted various distinct
SMS telephone numbers, and distinct SMS messages. This
shows that HARVESTER can be used for mass analyses and
delivers results very quickly.

Q4: Are there any interesting findings in apps?

In this section, we report interesting values that HARVESTER
extracted from malware applications. Our analysis is based on
the results from the previous section. Some of these results
have already been found through earlier manual investigation



by security experts. However, to the best of our knowledge,
HARVESTER is the first fully-automated approach that is able
to discover all of these findings.

Hiding Sensitive Method Calls: A growing number of
sophisticated Android malware applications such as Obad [42]
uses reflection to call methods identified by encrypted string
constants which only get decrypted at runtime. We used
HARVESTER to recover the targets of these reflective method
calls and found two popular obfuscation patterns. In the first
pattern, only sensitive API calls, such as “getSubscriberID”,
“getDeviceId”, or “sendTextMessage” are obfuscated, which
is likely to be the result of a manual obfuscation to hinder
human analysts or automatic tools that looks for sensitive
API calls such as CHABADA [19]. In the second pattern,
all method calls are obfuscated, even non-critical ones such
as “StringBuffer.append()” or “String.indexOf()” which is
most likely the result of automatic obfuscation tools such as
DexGuard [41]. In some applications, even the reflective calls
themselves were again called via reflection to produce a multi-
stage obfuscation. The motivating example in Listing 1 is such a
multi-stage obfuscation, which is very hard for a manual analyst
to understand. HARVESTER is able to extract the called method
as well as the concrete parameter values of the invocation in
all these cases.

Premium-rate SMS and SMS Command and Control:
Silently sending SMS messages to premium-rate numbers is
one of the most common Android malware schemes [15].
Depending on the provider and the malware, a single message
can cost from about 3.5$ to 6$ [8] which causes a high financial
harm to the user. HARVESTER extracted many distinct premium-
rate numbers from various known SMS trojan malware families
such as “Pincer”. Many numbers can be found in multiple
samples, making them good candidates for blacklisting. Since
many samples are obfuscated, however, powerful extraction
tools such as HARVESTER are required to reliably identify
blacklisted numbers.

Furthermore, most SMS trojans store the number of mes-
sages sent in SharedPreferences, a key-value storage provided
by the Android framework. HARVESTER finds many keys like
“SENDED SMS COUNTER KEY” or “sendCount” used for
this purpose. Some samples even use keys like “cost” for storing
the total amount of money stolen so far. Based on these values,
the malware decides when the next premium-rate SMS message
is sent. We also found applications that contact a command-
and-control (C&C) server via SMS with commands such as
“40659+3079+4128302+x+a”, or “3079+4128302+x+a”. Since
the same commands reappear in many samples, they could also
be used for blacklisting.

Interesting URIs: HARVESTER is able to extract the
concrete URL of http requests sent by applications. These URLs
can give hints as to whether an application is malicious or not.
We extracted not only connections to advertisement servers,
but also many well-known C&C server URLs6. Furthermore, it
also extracts many interesting phone-local URIs for accessing
content providers, such as “content://sms”, “content://mms”
or “tel://<number>” which are used by malware for reading

6http://198.211.118.115:9081/Xq0jzoPa/g L8jNgO.php, http://m-
l1g.net/q.php, and others

SMS/MMS messages or initiating phone calls without user
awareness [50]. In the case of the tel scheme, HARVESTER
found the actual telephone numbers being called. In applications
with advertisement libraries such as AirPush, HARVESTER
revealed a lot of “market://details” URIs which open the
PlayStore app to offer other apps for download.

Executed Commands: We also used HARVESTER to extract
runtime values for command-executing API methods such as
Runtime.exec(). Applications containing su and chmod
commands are likely to be root exploits. HARVESTER can
detect such commands even in the case of obfuscation.

Encryption Keys: Some benign applications encrypt sensi-
tive data such as chat conversations, or credit card information,
before storing it locally on the phone. This encryption, however,
is rendered useless if the same hard-coded symmetric key
is used for all installations of the app. Interestingly, this is
the case in the popular WhatsApp messenger app [34]. Since
the encrypted database is stored on the SD card, malicious
applications can easily access it. Once the key is known, it
can be decrypted and leaked. HARVESTER is able to fully
automatically extract the WhatsApp encryption key by obtaining
the values passed to the constructor of the SecretKeySpec
class.

Q5: Can HARVESTER support other static/dynamic ap-
proaches to increase their recall?

Our results from Table I confirm that many applications
use non-constant values which cannot be extracted by a simple
forward scan. This is an issue since many static malware
detection and classification approaches [39] rely, among others,
on constant values such as hard-coded URLs. As HARVESTER
extracts constant as well as non-constant values from apps,
these approaches can be supported by HARVESTER’s output.

Static Analyses: We compared the recall of the Flow-
Droid [17] static data flow tracker on real-world malware
applications before and after injecting runtime values for
reflective method calls with HARVESTER (see Section III-C).
We chose the Fakeinstaller.AH [37] malware family7 which is
known for leaking private data, but also for its massive use
of reflection to hide calls to sensitive API methods. On the
original obfuscated sample, FlowDroid detected only 9 distinct
leaks. After using HARVESTER with the option of replacing
reflective calls with their respective actual callees, FlowDroid
detected 26 privacy leaks, almost three times as many as before.
These 26 leaks included stealing the IMEI or phone number
via SMS, which was obfuscated through reflection. This also
shows that HARVESTER was able to reconstruct correct values
of interest for these reflective method calls.

Dynamic Analyses: Dynamic tools are known to suffer
from limited code coverage if an application depends on user
inputs. With the code slices extracted by HARVESTER, one can
directly execute the code of interest, regardless of its original
position in the original program. No user interaction with the
application is required, eliminating code coverage issues with
existing input generation approaches. In an approach similar

7Sample MD5: 38a9ed0b5577af6392096b4dc4a61e02



to Anubis [24], TaintDroid 4.1 was run inside the emulator on
the Tapsnake [50] malware sample8 which steals location data
only after a delay of 15 minutes [48]. On the original malware,
the analyst needs to wait this time. With the app reduced by
HARVESTER’s slicing approach, TaintDroid reports the leak
instantly, without any UI interaction.

Precision and Recall: To evaluate how HARVESTER
improves the precision and recall of existing tools on obfuscated
applications, we tested FlowDroid and TaintDroid on ten
randomly-picked applications from DroidBench [17] which we
obfuscated using DexGuard [41]. All API method calls were
replaced with reflective calls on encrypted strings. Table II
compares the detection rate of FlowDroid and TaintDroid
on the obfuscated applications without applying HARVESTER
(BEFORE - column 2 and 4) to the respective detection rates
after injecting the runtime values computed by HARVESTER
(AFTER - column 3 and 5).

These results show that FlowDroid was initially not able
to detect any leak in the obfuscated apps. After deobfuscating
the apps with HARVESTER through runtime-value injection
(see Section III-C), FlowDroid found the same leaks as in
the unobfuscated original version. In “PrivacyDataLeak3”,
FlowDroid always misses one of the two leaks, even in the
original, unobfuscated file, for reasons unrelated to the work
presented here.

TaintDroid was run without any user interaction with the re-
spective apps. In the original app it thus missed leaks depending
on user actions such as in “Button3”. Furthermore, TaintDroid
originally failed on apps containing emulator-detection checks.
When running the slices extracted by HARVESTER (the modified
APK in Figure 1), both types of leaks are found fully automat-
ically without any user or machine interaction. The remaining
missing leaks occur due to TaintDroid not considering Android’s
logging functions (e.g., Log.i()) as sinks, as we confirmed
with the authors of TaintDroid.

These results show that HARVESTER can be used to improve
the precision and recall of both, static as well as dynamic data
flow analysis tools.

8Sample MD5: 7937c1ab615de0e71632fe9d59a259cf

? = correct warning, = missed leak
multiple circles in one row: multiple leaks expected

App (Obfuscated) TaintDroid FlowDroid
Enhancement BEFORE AFTER BEFORE AFTER
Button1 ? ?

Button3 ? ? ?

FieldSensitivity3 ? ? ?

ActivityLifecycle2 ? ? ?

PrivateDataLeak3 ? ? ?

StaticInitialization2 ? ? ?

EmulatorDetection1 ? ? ?

EmulatorDetection2 ? ? ?

LoopExample1 ? ? ?

Reflection1 ? ? ?

TABLE II: Leak detection by TaintDroid and FlowDroid on
Obfuscated DroidBench Apps before and after Value Injection
/ Slicing. Note that we did not have to interact with the app
for the TaintDroid test.

VI.RELATED WORK

Researchers have proposed various approaches for analyzing
the behavior of Android applications. Tools which simply
convert the Android dex code back to Java source code such as
ded [14] or Dare [30] suffer from the problem that obfuscated
applications do not contain sensitive values such as URLs or
telephone numbers in plain, but the analyst rather needs to
reconstruct them by manually applying the deobfuscation steps
that would normally execute at runtime.

The remainder of this section describes more advanced
approaches that provide a higher level of automation using
static, dynamic, or hybrid analysis techniques.

Static Analysis: FlowDroid [17] is a static taint analysis
tool which determines whether sensitive information is leaked
in an Android application. FlowDroid inherits basic support for
reflective method calls from the Soot framework on which it is
based, but cannot handle cases in which the string containing
the target class or method name is decrypted or concatenated
dynamically at runtime. CHEX [25] is a tool that detects
component hijacking vulnerabilities in Android applications
by tracking taints between externally accessible interfaces and
sensitive sources or sinks. Just like FlowDroid, the approach
relies on a complete call graph and thus fails if call targets
are obfuscated using reflection. Therefore, CHEX would also
benefit from our runtime value injection for a more complete
analysis. SAAF [20] is a purely static tool for finding constant
strings in Android applications based on backwards slicing. It
does not aim at providing any runtime semantics, e.g., if an
application decrypts a constant string at runtime, SAAF will
only produce the original ciphertext, leaving substantial work
with the human analyst.

Dynamic Analysis: Dynamic approaches that profile run-
time behavior such as Google Bouncer [29] can only detect
runtime values that violate the Play Store’s policy (e.g.,
blacklisted URLs or telephone numbers) if they are actually
used in API calls during the test run. Malware, however, often
employs sophisticated mechanisms to detect whether it is run
in an emulator or simply waits for longer than the test run
lasts before starting the malicious behavior. TaintDroid [13] is
a dynamic data-flow tracker which detects leaks of sensitive
information at runtime. Other techniques such as Aurasium [47]
inject a native code layer between the operating system and
the Android application which intercepts sensitive API calls
and checks the data passed to them. All these approaches share
the problem of only finding values in code that is actually
executed, thus requiring a test driver with full code coverage.
HARVESTER circumvents this problem by directly executing
the code of interest regardless of its position in the original
application.

Hybrid Analysis: TamiFlex [6] monitors reflective method
calls in Java applications at runtime and injects the found
call targets into the application as call edges to aid static
analysis tools. It however does not support Android and employs
no slicing. Instead, it always executes the application as a
whole, leaving open how full coverage of callees is to be
achieved during the runtime analysis part. AppDoctor [22]
slices Android applications to find user interactions that lead to
application crashes. AppDoctor’s hybrid slice-and-run principle



is similar to HARVESTER. However, AppDoctor executes the
complete derived UI actions, while HARVESTER’s slices only
contain code contributing to the value of a concrete value of
interest. AppSealer [49] performs static taint tracking on an
Android application and then instruments the app along the
respective propagation paths to monitor for actual leaks at
runtime, effectively ruling out false positives introduced by the
static analysis. It then fixes component-hijacking vulnerabilities
at runtime if sensitive data reaches a sink. This approach
can, however, not find leaks missed by the static analysis
and thus inherits the problem of reflective method calls. SMV-
Hunter [38] scans for custom implementations of the SSL
certificate validation in Android applications. It first statically
checks whether custom validation routines are present. If so,
the dynamic part attempts to trigger this code and confirm a
man-in-the-middle vulnerability. The tool only supports simple
UI interactions that neither span multiple pages nor require
complex inputs.

UI-Automation: SwiftHand [9] uses machine-learning to
infer a model of the application which is then used to generate
concrete input sequences that visit previously unexplored states
of the app. SwiftHand however has limited code coverage; on
complex user interfaces coverage can fall under 40%. Code
that is only executed in specific environments (e.g., depending
on data loaded from the Internet) might not be reached at
all. Dynodroid [26] instruments the Android framework for
capturing events from unmodified applications, generated both
by automatic techniques such as MonkeyRunner [12] and by
human analysts. On average, it achieves a code coverage of 55%.
AppsPlayground [36] uses an enhanced version of TaintDroid
[13] for dynamic data flow tracking. The authors changed the
Android framework to additionally monitor specific API and
kernel level methods. For exercising the application at runtime,
they used random testing guided by heuristics leading to a code
coverage of about 33%. Applications that rely on user input
such as credentials may not run correctly and malware can
evade analysis by detecting the emulator and refraining from
its malicious behavior.

Since HARVESTER directly executes the code fragments
of interest, dependencies on user input as well as emulator
detection code that does not influence the actual runtime
values of interest are removed in our approach, avoiding these
problems of existing techniques.

VII.CONCLUSIONS

In this paper, we have presented HARVESTER, a novel
hybrid approach for extracting runtime values from Android
applications even in the case of obfuscation and powerful anti-
analysis techniques (e.g., emulator detection, time bombs or
logic bombs). We have shown that HARVESTER can be used
as a deobfuscator and finds, among others, plain-text telephone
numbers of SMS trojans, command and control messages of
bots, and reflective call targets of various types of malware.
HARVESTER yields a far better coverage of logging points
than current state-of-the art UI automation approaches. We
have evaluated HARVESTER both as a standalone tool and as
an aid for existing static and dynamic analyses by enhancing
applications with the deobfuscated runtime values. Our results
show that HARVESTER massively improves the recall of current

state-of-the art static and dynamic data flow analysis tools. On
average, HARVESTER analyzes an application in less than one
minute, yielding dynamically-computed runtime values which
could not be retrieved with existing approaches.
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