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Abstract. Instrumentation techniques are widely used for implement-
ing dynamic program analysis tools like profilers or debuggers. While
there are many toolkits and frameworks to support the development of
such low-level instrumentations, there is little support for the refinement
or composition of instrumentations. A common practice is thus to copy
and paste from existing instrumentation code. This, of course, violates
well-established software engineering principles, results in code duplica-
tion, and hinders maintenance. In this position paper we identify two
challenges regarding the refinement and composition of instrumentations
and illustrate them with a running example.

Keywords: Instrumentation, composition, aspect-oriented program-
ming, domain-specific languages.

1 Introduction

Many dynamic program analyses, including tools for profiling, debugging, testing,
program comprehension, and reverse engineering, rely on code instrumentation.
Such tools are usually implemented with toolkits that allow for the careful low-
level optimization of the inserted code. While this low-level view is needed to keep
the overhead incurred by dynamic program analyses low, it currently brings with
it a lack of support for refining and composing the resulting instrumentations.
Code duplication, caused either by copy and paste or by the reimplementation
of common instrumentation tasks, is therefore a common code smell of many
instrumentation-based tools; it is known to be error-prone and to hinder software
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maintenance. This is all the more problematic, as errors in low-level code are
notoriously hard to find.

Before we discuss the challenges arising from the refinement and composition
of instrumentations, we first define our terminology and context. An instru-
mentation selects certain sites in the code of a given base program—so-called
instrumentation sites—and inserts code to be executed whenever the control
flow reaches these sites. The inserted code must not change the semantics of the
base program; it must complete after a finite number of instructions without
throwing any exception into the base program and may read but not write any
memory location accessed by the base program. Inserted code must thus resort
to dedicated memory locations to pass data between different instrumentation
sites. For example, local variables invisible to the base program may be used to
pass data between several instrumentation sites within the same method body.
Likewise, thread-local variables or global variables may be used to pass data
between instrumentation sites in different methods. The inserted code typically
invokes analysis methods, e.g., to update a profile. We call the classes defining
those methods the runtime classes of the analysis.

Suitable refinement and composition mechanisms for instrumentations need
to address the following two general challenges:

1. Specification and enforcement of constraints: Instrumentations usually fail
to state important assumptions that are crucial for the instrumentations’
correctness in general and when refining or composing instrumentations in
particular. Such assumptions may constrain the following.
(a) Instrumentation sites: The selection of sites by the different instrumen-

tations must be consistent; different instrumentations, e.g., may need to
refer to the same part of a program, regardless of whether they share
common instrumentation sites or not.

(b) Instrumentation ordering: Composing instrumentations often requires
defining ordering constraints, not only for the instrumentations as a
whole but possibly even for each instrumentation site that they target.

(c) Data passing: Instrumentations may declare variables to pass data be-
tween instrumentation sites. Each of these variables has to be initialized
by one instrumentation before it can be read by another.

2. Avoiding hard-coded dependencies: Usually, the inserted code has hard-coded
dependencies on specific runtime classes. Such dependencies typically resem-
ble invocations of static methods or constructors of runtime classes in the
inserted code. When refining or composing instrumentations, these depen-
dencies may need to be changed to use different runtime classes.

As original contribution, in this position paper we study the aforementioned chal-
lenges regarding refinement and composition of instrumentations and illustrate
them with a running example (Section 2). Section 3 discusses related work and
Section 4 concludes.
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void onMethodExit() {�
  CCTAnalysis.leaveCC();�
}�

CCTInstr�

void onMethodEntry(String mID) {�
  currCC = CCTAnalysis.enterCC(mID);�
}�

@SyntheticLocal CallingContext currCC;�

AllocInstr�

BBInstr�

void onBBEntry(String bbID) {�
  BBAnalysis.profBB(bbID, currCC);�
}�

<write>� <read>�

<read>�

public class IntArrayFactory {�
  public Integer[] createIntArray(int length) {�
  Integer[] intArray = new Integer[length];�
  int i = 0;�
  while (true) {�
    intArray[i] = new Integer(i);�
    if(++i >= length)�
      return intArray;�
}}}�

base code�

[A]�

[B]�

[C]�

[D]�

[E]�

void onAlloc(Object allocObj) {�
  AllocAnalysis.profAlloc(allocObj, currCC);�
}�

Fig. 1. Instrumentation sites for a composition of three instrumentations: calling con-
text profiling (CCTInstr), basic block profiling (BBInstr), and object allocation profil-
ing (AllocInstr)

2 Challenges

There are several challenges that make refinement and composition of instru-
mentations difficult. To explain these challenges, we first introduce a running
example in which three common instrumentations are composed. Next, we moti-
vate the need for specifying and enforcing instrumentation constraints. Finally,
we consider the problem of hard-coded dependencies from inserted code to spe-
cific runtime classes.

2.1 Motivating Example

Figure 1 illustrates our motivating example: a composition of three instrumen-
tations (pseudo-code) applied to some base program. While the inserted code
is intentionally kept simple, the three instrumentations have interactions that
resemble those of complex, real-world analyses.

CCTInstr. The CCTInstr analysis maintains a Calling Context Tree (CCT) [1],
i.e., a data structure that can be used to store dynamic metrics separately for
each individual calling context. To efficiently expose a reference to the CCT
representation of the current calling context to the code inserted into the same
base-program method by the other two instrumentations, CCTInstr declares the
synthetic local variable currCC that will be mapped to a local variable in each
instrumented method. CCTInstr.onMethodEntry(...) represents the code inserted
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at instrumentation site [A]. We assume the instrumentation framework provides
some context information; the string mID identifies the base-program method
to be instrumented. The runtime class CCTAnalysis keeps track of the current
calling context for each thread and maintains the CCT. CCTAnalysis.enterCC(...)
updates the current thread’s calling context on method entry and returns a
reference to it, which is then stored in currCC. CCTAnalysis.leaveCC(), inserted
at instrumentation site [E], updates the current thread’s calling context on
method completion.
BBInstr. The BBInstr analysis counts how often each basic blocks of code is
executed. The code of BBInstr.onBBEntry(...) is inserted at the instrumentation
sites [A], [C], and [E]. As context information provided by the instrumenta-
tion framework, bbID identifies the executed basic block. BBAnalysis.profBB(...)
updates a counter corresponding to bbID in the current calling context (currCC).
AllocInstr. The AllocInstr analysis profiles object allocations. The code
of AllocInstr.onAlloc(...) is inserted at the instrumentation sites [B]
and [D]. As context information, allocObj refers to the allocated object.
AllocAnalysis.profAlloc(...) updates an object allocation counter in the current
calling context (currCC).

2.2 Specification and Enforcement of Constraints
We now describe the implicit constraints that must be respected to preserve
correctness when refining or composing the instrumentations illustrated in Fig. 1.
Instrumentation Sites. To ensure soundness of the CCT, CCTInstr must
be comprehensively applied to all classes. In contrast, restricting the scope of
BBInstr and AllocInstr does not impair the correctness of the (subset of) collected
data. To reduce the runtime overhead of the analysis, it may even be desirable to
restrict expensive instrumentations like BBInstr to a subset of the base-program
classes. To ensure the consistency of one’s measurements, however, it is likewise
desirable to ensure that BBInstr and AllocInstr are applied to the same selection
of classes.
Instrumentation Ordering. A hard constraint of the instrumentations illus-
trated in Fig. 1 concerns the synthetic local variable currCC used to share the
current calling context among the instrumentations. Even if not explicitly stated,
both BBInstr.onBBEntry(...) and AllocInstr.onAlloc(...) expect this variable to be
initialized by CCTInstr.onMethodEntry(...). That is, if multiple instrumentations
insert code on method entry, CCTInstr.onMethodEntry(...) must be applied first.
As a consequence, at instrumentation site [A], CCTInstr.onMethodEntry(...) has
to be inserted before BBInstr.onBBEntry(...). For the other instrumentation sites,
no particular ordering is required.1 Unfortunately, ordering constraints are often
1 Intuitively, at instrumentation site [E], CCTInstr.onMethodExit() should be in-

serted after BBInstr.onBBEntry(...). But as CCTInstr.onMethodExit() does not
modify the synthetic local variable currCC, the insertion order at [E] does not
matter.
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implicit in the implementation of complex instrumentations. Therefore, compos-
ing instrumentations usually requires in-depth knowledge of their implementa-
tion to avoid violating any implicit ordering constraint.
Data Passing. Efficient communication between different composed instrumen-
tations is often necessary to reduce runtime overhead. However, the declaration
of the name and the type of variables used for such communication is usually
hard-coded in the instrumentations; thus, it is difficult to refine them without in-
depth knowledge of all implementation details. In our example, both BBInstr and
AllocInstr expect a variable of type CallingContext named currCC. This constraint
hinders composition of instrumentations, as it is often necessary to update the
code of some instrumentations to communicate through the same variables.

2.3 Hard-Coded Dependencies

Frequently, instrumentations use static method calls to access runtime classes,
often in a desire to avoid the runtime overhead associated with virtual methods.
For example, the instrumentations illustrated in Fig. 1 include static calls to
methods in the runtime classes CCTAnalysis, BBAnalysis, and AllocAnalysis.
These dependencies constrain refinement of runtime classes, as static methods
cannot be overridden. Refactoring runtime classes to adhere to the singleton
pattern helps mitigate the problem, but the static method returning the singleton
instance cannot be refined so as to return an instance of a refined runtime class.
To address this issue, mechanisms for dependency injection are needed.

3 Related Work

In the past, both low-level frameworks and aspect-oriented approaches have been
used for various instrumentation tasks. While the former are typically more
expressive and lead to faster code, the latter may offer more powerful refinement
and composition mechanisms. In the following text, we compare the properties
of both kinds of approaches. For brevity, we limit the discussion to solutions for
the Java Virtual Machine, as it is a widely used deployment platform and has
been targeted by a large body of related work.

3.1 Instrumentation Frameworks

Bytecode Manipulation Frameworks. Low level bytecode manipulation
frameworks like ASM2, BCEL3, Javassist [5], or Soot [15] support the direct gen-
eration or transformation of arbitrary bytecode. While they offer the maximally
possible control over bytecode instrumentation, composition of instrumentations
is not directly supported. When instrumentations are to be developed separately,
2 See http://asm.ow2.org/
3 See http://commons.apache.org/bcel/

http://asm.ow2.org/
http://commons.apache.org/bcel/
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they can thus only be composed by applying them sequentially. In this case,
however, each instrumentation receives the bytecode resulting from the previous
instrumentations as input. Thus, later instrumentations generally cannot distin-
guish between the original code and code inserted by earlier instrumentations.4
As a consequence, controlling the composition of instrumentations becomes in-
feasible. This is also true of the Scala library Mnemonics [11] which is slightly
less low-level than the aforementioned frameworks; by exploiting Scala’s type
system, it ensures that only certain well-formed, type-safe bytecode sequences
can be generated.

RoadRunner. Flanagan and Freund [6] propose a framework for composing
different small and simple analyses for concurrent programs. Each analysis can
stand on its own, but by composing them one can obtain more complex ones:
each dynamic analysis is essentially a filter over event streams, and filters can be
chained. Per program run, only one chain of analyses can be specified. Thus, it is
generally not possible to combine arbitrary analyses; for example, two analyses
that filter (e.g., suppress) events in an incompatible way cannot be combined.

DiSL. DiSL [9, 18] is a domain-specific language for instrumentation. While it
offers high-level abstractions to ease the development of instrumentations, it also
gives the programmer fine-grained control over the inserted code. However, DiSL
lacks refinement and composition mechanisms.

3.2 Aspect-Oriented Approaches

Aspect-oriented programming (AOP) is frequently used as a high-level, language-
based approach to implementing analyses. An analysis roughly maps to one or
more aspects; then the instrumentations of the analysis correspond to pairs of
pointcuts and advice. Pointcuts select the instrumentation sites and advice de-
fine the inserted code, in this analogy. But as aspect-oriented languages typically
focus on high-level interaction with the program execution, the available instru-
mentation sites and context accessible in inserted code is limited. Nevertheless,
the requirements for the re-use and composition of aspects are similar to those of
analyses and their instrumentations. In the following text, we thus briefly discuss
selected aspect-oriented languages and their features with respect to (1) con-
straining instrumentation sites (scope), to (2) specifying the order of aspects at
shared instrumentation sites, and to (3) sharing structure and implementation
between aspects (e.g., to realize data sharing).

AspectJ. In the past, the AspectJ language [8] (or derivatives) has been used
for implementing dynamic analyses; often alternative compilers are used for this
purpose, such as MAJOR [4, 16, 17] and MAJOR2 [10, 13] which allows instru-
menting the Java class library unlike the standard AspectJ weaver. In AspectJ,
4 Soot provides a way to tag statements and bytecode instructions. However, there

are no guidelines that would govern or enforce a principled use of this mechanism.
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aspects extend classes with pointcuts and advice.5 Pointcuts are boolean expres-
sions whose operands are again (possibly primitive) pointcuts. They can also be
named and then referenced from multiple other pointcuts.
Scope: In an abstract aspect, pointcut expressions may also refer to abstract

named pointcuts; e.g., the pointcut expression scope() && call(*.new(..)) se-
lects all constructor call sites at which also the pointcut scope() matches,
which can be declared as an abstract pointcut. Abstract aspects can be ex-
tended whereby concrete expressions must be provided for abstract pointcuts.
In this way, an analysis implemented in an aspect can be re-used while the
scope for applying the analysis may be reduced, e.g., by specifying an ex-
pression for the scope() pointcut that only matches within a certain package.

Order: Ordering constraints between instrumentations (i.e., pointcut-advice
pairs) can be imposed by explicitly declaring the precedence of entire as-
pects, possibly external to the aspects in question.

Sharing: Extending an abstract aspect is the only means to code re-use sup-
ported by AspectJ. The sub-aspect has to concretize abstract pointcuts and
can override virtual methods.

CaesarJ. With respect to the pointcut-advice mechanism, aspects in CaesarJ [2]
are very similar to those of AspectJ. Two extensions are relevant for the scoping
and sharing issue of this paper, however.
Scope: Additionally, it allows to programmatically deploy and undeploy aspects

and to limit their activation to certain threads or objects, thereby refining
the scope of an aspect.

Order: CaesarJ provides the same mechanism for declaring aspect precedence
as AspectJ.

Sharing: The CaesarJ language extends the Java type system with dependent
types, i.e., types which are properties of (aspect) instances. Thus, expressions
like this can be used in type declarations and the compiler can verify that
covariant types are used together consistently.

JAsCo. The JAsCo language [12] extends Java beans with so-called hooks to
aspect beans. Similar to AspectJ and CaesarJ, it offers a pointcut-advice mech-
anism, however, in JAsCo it is composed of several individual concepts which
improve re-usability and configurability.
Scope: A hook is similar to an inner class which defines a context-independent

pointcut in its constructor. Being context-independent, the pointcut expres-
sion does not refer to actual methods but rather refers to the constructor’s
parameters, which are made concrete upon hook instantiation. Besides its
constructor and advice, a hook can contain the possibly abstract method
isApplicable, which furthermore refines the hook’s scope. Hooks are instanti-
ated and deployed using so-called connectors which supply concrete method
patterns to the hooks’ constructors and implement any abstract isApplicable
methods.

5 The extension with inter-type declarations is out of the scope for this paper.
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Order: Connectors not only specify the hooks’ scope, they also fix their order
either explicitly or implicitly through programmatic combination strategies.
The latter can also be used to conditionally remove applicable hooks to
mimic overriding.

Sharing: JAsCo allows to override hook methods on a per-advised-object basis.
In this way aspect beans can be re-used and extended on different contexts.

HyperJ. The HyperJ [14] approach attempts to decompose a program along
different dimensions. For each dimension, a partial program, called a hyperslice,
is written which must be declaratively complete; functionality not provided but
required by a hyperslice must be declared as abstract methods. A control file
then governs the composition of hyperslices, which configures how the methods
of the hyperslices are matched and merged.

Scope: One matching strategy is to match methods with the same names, but
it is possible to compensate mismatches which especially occur when hyper-
slices are developed independently.

Order: The merging strategy is similarly configurable; if all except one of the
definitions are abstract, the merging is trivial. For more than one concrete,
matching unit, HyperJ provides merging strategies such as overriding or
aggregating the result of the separate unit.

Sharing: In HyperJ, abstract methods, together with appropriate matching and
merging strategies, can be used to share functionality among hyperslices.

Composition Filters. The Composition Filters Model [3] is based on the con-
cepts of filters which are applied to method invocations.

Scope: A filter selects invocations based on the method’s name and signature
and it can perform additional actions or influence the execution of the tar-
get method. Filtermodules group filters and can declare data fields holding
shared values. They can declare parameters to be used, e.g., for the type of
fields or in the filters’ expressions for selecting method invocations. A super-
imposition block has to be declared, possibly in a separate module, which
deploys filtermodules on a set of types and provides concrete values for the
parameters.

Order: For jointly superimposed filtermodules, a partial order can be specified.
Other relations like overriding between filters can be declared in a similar
way.

Sharing: A filtermodule can be superimposed multiple times on different type
sets and with different parameter values.

Framed Aspects. In the Frames approach, so-called tags may be inserted into
the code. For these tags a configuration file can then provide an application-
specific replacement.
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Scope: The Framed Aspects approach [7] allows the insertion of tags into as-
pects. Tags can be used, e.g., in place of type or method names, expressions
or in patterns used by pointcuts. Thus, the scope of aspects can be refined
in the configuration file.

Order: The Framed Aspects approach is independent of a concrete aspect lan-
guage. The approach does not by itself offer a mechanism for specifying the
order between aspects, but it inherits the mechanisms of the underlying AOP
languages.

Sharing: Besides adopting the features for re-using aspect offered by the under-
lying language, the Framed Aspects approach itself provides re-usable aspect
templates. The templates can be concretized through the configuration file.

Commonly, the presented approaches allow explicit declaration of precedence
among aspects which can address ordering constraints between instrumentations.
AspectJ and CaesarJ support re-use (i.e., sharing) and configuration (i.e., scop-
ing) through inheritance and overriding; in HyperJ code can be re-used by com-
position while the composition specification (the control file) cannot be re-used
at all. JAsCo and Composition Filters support black-box re-use and configura-
tion through parameterization, however, the languages only support parameters
for a limited set of constructs. These two approaches and CaesarJ additionally
provide control over scoping by means of their programmatic deployment or su-
perimposition features. Framed Aspects supports parameters in a more flexible
way, but parameterization requires a fair amount of variability analysis to deter-
mine extension points of a planned feature. Since it requires predetermination
of extension points, it limits the use of unforeseen instrumentations.

4 Conclusion

Although tools based on instrumentation techniques are in wide-spread use, the
engineering of such tools often violates basic reuse principles. As efficiency of the
tools is of paramount importance, low-level instrumentation frameworks, which
suffer from a lack of mechanisms for refining and composing instrumentations,
are commonly used. As a consequence, instrumentations are often implemented
by resorting to the tedious and error-prone copy/paste anti-pattern.

In this position paper we identified two challenges that need to be addressed
by future mechanisms in support of refinement and composition of instrumenta-
tions: specification and enforcement of constraints, and avoidance of hard-coded
dependencies. We illustrated these challenges with a running example.

In our ongoing research, we are exploring novel refinement and composi-
tion mechanisms in the context of the domain-specific instrumentation language
DiSL [9,18]. We are working on instrumentation contracts that make constraints
explicit and allow for automated checks that enforce these constraints. Further-
more, we are integrating a mechanism for dependency injection to deal with the
problem of hard-coded dependencies.
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