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Abstract. A hybrid cloud combines a trusted private cloud with a pub-
lic cloud owned by an untrusted cloud provider. This is problematic:
When a hybrid cloud shifts computation from its private to its public
part, it must trust the public part to execute the computation as in-
tended. We show how public-cloud providers can use dynamic anomaly
detection to increase their clients’ trust in outsourced computations. The
client first defines the computation’s reference behavior by running an au-
tomated dynamic analysis in the private cloud. The cloud provider then
generates an application profile when executing the outsourced computa-
tion for its client, persisted in tamper-proof storage. When in doubt, the
client checks the profile against the recorded reference behavior. False
positives are identified by re-executing the dubious computation in the
trusted private cloud, and are used to re-fine the description of the ref-
erence behavior. The approach is fully automated. Using 3,000 harmless
and 118 malicious inputs to different Java applications, we show that our
approach is effective. In particular, different characterizations of behavior
can yield anything from low numbers of false positives to low numbers of
false negatives, effectively trading trustworthiness for computation cost
in the private cloud.

Keywords: Cloud security, dependability, dynamic analysis, anomaly detec-
tion, hybrid clouds

1 Introduction

Cloud computing allows companies to outsource part of their computations to
server farms, usually owned by a cloud provider. It promises many benefits, such
as reducing infrastructure investments, the ability to quickly adapt its compute
power according to the demands (the so-called “elastic cloud”), or the adoption
of a pay-as-you-go billing model [22].



But cloud computing comes at a risk. While a company controls its private
computer servers, it has limited control over resources rented in the cloud. This
motivates the so-called “hybrid cloud” scenario, in which a company owns a
private cloud of trusted compute servers, while at the same time this private
cloud shares data with a public cloud service owned by a public cloud provider,
executing another set of computations. Which computations are performed in the
private and which ones in the public cloud depends on the company’s preferences
and policies.

All instances of hybrid clouds share the common problem that, when shifting
computation from their private to their public parts, they must trust the public
part to execute the computation as intended. But what justifies that trust?

In this work, we introduce behavior compliance control, in which a cloud
provider uses methods from dynamic anomaly detection to provide clients trust-
worthy evidence about the absence of “abnormal” executions caused by incorrect
server configurations, version mismatches, hardware glitches or malicious attacks
by third parties [20]. Providing such evidence is very important in scenarios
where faults or attacks occur through invalid program inputs such as incorrect
or compromised configuration files.

Our approach starts with a learning phase in which the client uses an auto-
mated tool to learn the behavior of an application by running it in the trusted
private cloud on a collection of representative inputs. This process, conducted
before outsourcing the application, results in a so-called application model. The
model is considered to characterize the application’s intended behavior. In this
work we study and compare models at different levels of granularity.

After the application has been outsourced into the public cloud, the out-
sourced application uses runtime monitoring techniques to log critical runtime
information into a securely sealed storage, thus yielding trusted evidence on the
application’s remote behavior. Next, the client verifies if the observed log infor-
mation, according to this evidence, complies with the application model learned
in the learning phase. If the run is found to be compliant, the outsourced com-
putation is assumed to have executed correctly. If the run is not compliant this
can be either due to an actual anomaly in the public cloud, or due to a false
positive caused by an imprecise application model. We restrict ourselves to de-
terministic programs, which the client can re-execute in the private cloud to tell
both cases apart. If this trusted re-execution yields the same result then the
client has identified a false positive, and can use this false positive to refine the
application model. If not, then the client has found an anomaly, i.e., an actual
piece of evidence of a faulty or maliciously influenced computation in the public
cloud.

In this work, we present the first work leveraging dynamic anomaly detection
for the scenario of hybrid cloud computing. In particular, we present the follow-
ing contributions. We present an abstract architectural framework for behavior
compliance control. The framework is defined in terms of its abstract security
requirements, and hence independent of any concrete implementation. In addi-



tion, however, we present and make publicly available1 a concrete instantiation
of this framework for the Java platform. In this instantiation, we implement a
sealed storage using Trusted Computing technologies.

Another main contribution is an empirical evaluation showing how the effi-
cacy of our approach depends on the choice of application model. We evaluate
three kinds of models that abstract from an application’s dynamic behavior with
increasing granularity, by recording (1) the set of called methods, (2) a dynamic
call graph, or (3) a dynamic calling context tree. We used our Java-based imple-
mentation to produce and evaluate application models for three different open-
source applications, applied to 3,000 publicly available documents we believe to
be harmless and 118 known malicious documents containing web exploits. Our
results show that our approach is effective. In particular, different choices of
models can yield anything from low numbers of false positives to low numbers of
false negatives. This gives clients a large degree of freedom in trading increased
trustworthiness for increased computation cost in the private cloud.

The remainder of this paper is structured as follows. In Section 2, we describe
our three choices of behavioral abstractions. Section 3 defines our architectural
framework for behavior compliance control, while Section 4 describes our con-
crete instantiation for Java. In Section 5, we discuss our empirical evaluation,
assessing the usefulness of our three abstractions for the purpose of behavior
compliance control, as well as the performance of our approach. We discuss re-
lated work in Section 6 and our conclusions in Section 7.

2 Characterizing Behavior

Behavior compliance control builds on techniques from dynamic anomaly detec-
tion [8,9,11,13,18], a methodology that attempts to detect anomalous executions
by comparing certain execution characteristics with those known to be character-
istic for correct and “compliant” executions. Our technique significantly extends
traditional anomaly detection by a means to conduct the detection process in a
distributed but nevertheless trustworthy fashion. Yet, an important design deci-
sion that both previous approaches as well as ours have to make is how to best
characterize an application’s runtime behavior.

Since all previous approaches describe behavior at one level of granularity and
have therefore some disadvantages, we decided to not restrict ourselves to a single
mind set: Instead of fixing one given classification of behavior upfront, we decided
to implement three white-box abstractions on different levels of abstraction,
and to compare their relative usefulness for the behavior compliance control of
outsourced applications. Clients can then choose which abstraction best fits their
needs.

1 Our implementation is available, in source, along with all our raw data and scripts
to reproduce our empirical results, at http://seceng.de/research/projects/bcc

http://seceng.de/research/projects/bcc


Behavior Models. We regard function calls as a main ingredient for characterizing
behavior.2 Consequently, we have evaluated three approximations of behavior
by tracing which functions a program calls during its execution, and in which
contexts. Each approximation thereby induces a different kind of application
model for our behavior compliance control approach. We distinguish models
according to the amount of information that they contain (from least to most):

– Functions: A set of functions F the application called during the execution.

– Call graph: A call graph, with nodes representing functions, and an edge
from f to f ′ if f calls f ′ at least once during the execution.

– Calling context tree: A calling context tree [1], with the root node repre-
senting the program’s entry point and a node f ′ as child of node f if f calls
f ′ in the same context at least once during its execution.

To illustrate these abstractions, consider the example program in Figure 1.
Figure 2a shows the “Functions” representation of the example program. Herein,
the model just consists of the set of all functions called during the program’s
execution. Figure 2b, on the other hand, shows the program’s dynamic call graph.
Note that in a call graph, every function, such as bar, is represented by exactly
one node, no matter in how many different contexts the function is invoked.
Figure 2c shows the program’s calling context tree. In this representation, calling
contexts are kept separate: Because bar is called by two different functions, once
by main and once by foo, it appears twice in the tree, just under the appropriate
contexts.

We chose these three different characterizations of behavior carefully, so that
one can construct a model of higher abstraction from a model of lower abstrac-
tion. This allows us to compare the models directly to each other, based on the
very same data set. The fact that the three different abstractions form such a to-
tal order allows us to evaluate different characterizations of behavior at opposite
ends of the granularity spectrum: The “Functions” abstraction is quite coarse-
grained but can be computed very efficiently. Yet, by its nature it may have
the tendency to yield false negatives, i.e., to miss anomalies. Hence, the amount
of trustworthiness that this abstraction provides is relatively low. The calling
context trees at the other end of the spectrum are very fine-grained. Their com-
putation consumes more time, and by their nature they tend to cause a relatively
large number of false positives, increasing the necessary computation cost in the
private cloud. But nevertheless, this may still be a price worth paying for the
additional trustworthiness they provide. In Section 5, we present an extensive
evaluation demonstrating the absolute and relative utility of those abstractions
for the task of behavior compliance control. We formalize our abstractions in the
appendix.

2 We use the term “function” instead of “method” because our approach is not bound
to Java. Our functions are not “functional” in the strict sense: They may have side-
effects.



1 public stat ic void main ( St r ing args [ ] ) {
2 f oo ( ) ;
3 bar ( ) ;
4 }
5

6 stat ic void f oo ( ) { bar ( ) ; }
7

8 stat ic void bar ( ) { }
Fig. 1: Example program

{main, foo, bar}
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(c) Calling context tree

Fig. 2: Three abstractions of the example program

Model Generation in the Learning Phase. For the purpose of behavior compli-
ance control, models should be sensitive to malicious inputs, where faults or
attacks occur through them, such as incorrect or compromised configuration
files.

We therefore opt for a dynamic approach that collects an application model
as a union of a set of runtime execution profiles. Within the trusted private cloud,
the client collects an execution profile for every test run. The application’s final
model for this training data is then defined as the union of all those individual
profiles. In the case of Functions we use simple set union, while in the case of
call graphs or calling context trees we define the union in the natural way, by
computing the union over the graph’s, respectively tree’s, node and edge sets.
We call the resulting profile the application’s model. Since the union operation
is associative, one can compute the model in a step-wise and iterative way, i.e.,
after each individual profile is collected, or instead compute the union once over
all collected individual profiles.

This property is key to our approach: When a model appears too restrictive,
it can easily be expanded by joining the application’s current model with new
execution profiles. Clients can make use of this property after having identified a
false positive. The model is extended accordingly, to avoid the same false positive
in the future. This process can be fully automated.



3 Platform Architecture

In this section, we present our abstract platform architecture for behavior com-
pliance control. The architecture assumes the presence of a trusted logger that
is sufficiently tamper-resistant, as well as securely sealed storage on the host
that performs the computation. Assuring the integrity of these components is
a problem complementary to the one of behavior compliance control and may
be achieved through several means. In Section 4 we will describe a concrete in-
stantiation of the generic architecture that fulfills these requirements, including
concrete mechanisms for establishing the integrity of collected profiles.

As described in Section 2, the client first computes an application model by
running the software in a trusted environment, the private cloud. Subsequently,
the client outsources the application and executes it in the untrusted public
cloud. After execution, the public cloud provides the client with evidence about
the application’s behavior. The client finally verifies the evidence locally to decide
on its trustworthiness, and, if required, refines the application model. In the
following, we detail the individual phases of this procedure.

I: Learning phase. As described in Section 2, the client generates an applica-
tion model m, characterizing the behavior of the application, by running the
application in the client’s trusted private cloud collecting the generated profiles.
Afterwards, the application is outsourced to the public part of the cloud.

II: Runtime phase. Figure 3 shows the abstract platform architecture of the
hosting platform. We assume the presence of trusted system measurement com-
ponents, which assure the load-time integrity of the loaded applications and
the trusted logger. The load-time integrity of the public cloud platform can be
verified by the client before outsourcing takes place. Those mechanisms in fact
assure the client that, at load time, exactly those components are brought to
execution that the client intended to execute.

The trusted logger logs the events coming from the application itself (i.e., in
case of using instrumented code) or from the middleware (e.g., the Java Virtual
Machine, or a business process engine), on which this application runs. As men-
tioned previously, a core task of the public cloud is to generate logs about the
execution of the outsourced application in a trustworthy way. As the generated
logs are security critical, secure storage is required.

III: Compliance verification phase. Once the client has obtained the log and
verified its integrity, he compares the log against the application model collected
in the learning phase. We write l |= m if the log l corresponds to the model
m and l 6|= m otherwise. Whenever l 6|= m, this means that the log diverged
from the model, indicating a dubious execution. Such a divergence could be the
effect of an execution anomaly but could also just be a false positive, due to an
overfitting application model.

To tell apart a false positive from an actual anomaly, the client would then
re-execute the application in the private cloud and record the resulting log l′. We
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Fig. 3: Our architecture for behavior compliance control

write l ≡ l′ if the log l is equivalent to the log l′ and l 6≡ l′ otherwise. Whenever
l ≡ l′, the execution in the public cloud is considered correct and trustworthy,
and the divergence was a false positive. In this case, the client expands m by
including l. By doing so, m can be continuously improved to decrease the overall
false positives rate. (Note that there is a trade-off: By including l in m the
model also becomes more permissive, which may yield more false negatives as
well.) If otherwise l 6≡ l′, the execution is considered untrustworthy. Concrete
implementations of the “|=” and “≡” operators depend on the kind of profile
being used. We discuss our concrete instantiation in Section 4.

Note that, in contrast to intrusion detection, where a very low false positive
rate is imperative, our approach can tolerate higher rates. Essentially, the false-
positive rate determines how much outsourced computation has to be re-done in
the private cloud. Thus, in the hybrid cloud environment, a false-positive rate
in the order of a few percent may well be acceptable, as still the bulk of the
computation is performed in the public cloud.

Threat model and limitations. Our approach hinders attacks by the cloud provider
but cannot fully prevent them. This is because we demand the existence of a
trusted logger, whose integrity can only be assured through specialized hard-
ware. The cloud provider has access to this hardware and thus may have the
means to compromise it. Assuming, however, that the trusted logger can indeed
be trusted, our architecture guarantees that detected anomalies can be com-
municated to the client in a tamper-proof way. Our approach can effectively
identify execution anomalies caused by malicious program inputs of any kind,
of by faults or misconfigurations in the execution environment. The former is
particularly useful to identify attacks on such systems in the public cloud that
have a public interface, for instance web servers or document servers.

Our approach is passive, i.e., anomalous behavior is detected only after the
fact. As such, our approach cannot prevent anomalous behavior from happening.
Instead it allows the client to identify the anomaly, and thereby to re-execute the
original computation (and thus circumvent the anomaly) in the trusted private
cloud, and to take other appropriate measures such as legal actions in case
the anomaly was caused by a malicious intruder. While approaches to active
compliance control are possible (e.g., by inserting a runtime monitor that checks



model compliance just in time), such an approach would greatly suffer from any
false positives: When a monitor detects an anomaly at runtime, it must decide
whether the anomaly is real or a false positive at that point in time. In most
cases, this is impossible. In any case, such active compliance control would not
be able to provide the flexible trust/cost trade-off that we see as one of the
greatest benefits of our approach.

Last but not least, it should be noted that all security-related approaches
to anomaly detection, including our own one, are susceptible to mimicry at-
tacks [30, 36], in which an attacker tries to execute behavior that is malicious,
but nevertheless mimics legal behavior in such a way that the malicious behav-
ior remains undetected. This problem can be mitigated somewhat by keeping
the application model undisclosed, but to the best of our knowledge no way to
absolutely avert mimicry attacks is known to date.

4 Platform Instantiation

We next discuss our instantiations of the generic architecture described in Sec-
tion 3 to the Java language and platform. As a way to provide secure storage,
we base our instantiation on concepts from Trusted Computing. Our full im-
plementation of this instantiation is available online, in source, on our project
website.

4.1 Adaption to Java

To generate execution profiles, we use JP2, an open source calling-context-tree
profiler for Java [26,27]. This light-weight profiler consists of a small Java agent,
which instruments the profiled application at load time, and an accompanying
tool to instrument the Java runtime library ahead-of-time. This combination
enables us to generate execution profiles which cover not only the application
but also the Java runtime library itself. Moreover, JP2’s profiles cover not only
methods that have a bytecode representation but also method calls made in
either direction across the bytecode-native code boundary. The following details
are specific to a Java-based setting:

– Virtual machine-based execution: The Java platform allows for easy
load-time transformation of code. Hence, to introduce a runtime monitor, a
client does not need to instrument his application in house. Instead, the ap-
plication can be transformed remotely, by a custom class loader [23] or trans-
formation agent. Such instrumentation is performed on the level of bytecode
and requires no access to source code. JP2 does exactly this.

– Generated code: The same class-loader mechanism that makes it easy to
introduce a runtime monitor at load time also makes it possible to generate
classes at runtime. Such classes frequently bear a randomized name, and
that name must be canonicalized to ensure that the same method, up to
renaming, can be reliably identified across program runs. To that end, we



integrated the hashing facility from TamiFlex [5] with the calling-context-
tree profiler described next.

– Recursion: When using the Calling Context Tree abstraction, recursive
calls can cause the profile to grow very large. One way to address this would
be to “fold” those sub-trees in the CCT that exhibit a recursive structure.
The generated profiles would hereby be bounded. However, what exactly
counts as recursion in a language with dynamic dispatch is not obvious: Do
only calls to the same target method count or also calls to a different target
method of the same call site? Calls of the latter kind are frequent, e.g., when
operating on objects structured using the Composite pattern [10]. Moreover,
mutual recursion or, more generally, larger cycles of calls could be considered
recursive as well and maybe thus subject to folding. For the purpose of this
paper we restrict the discussion to the straight-forward calling context tree
abstraction produced by JP2 and do not fold recursive calls; thus, the tree
structure mirrors the entire computation.

In our current implementation, we always collect full calling context trees (CCTs),
even if we are just interested in call graphs or function sets. Call graphs are com-
puted from a CCT by merging nodes with the same name, and method sets are
computed by a simple exhaustive search through the call graph. This method-
ology is a limitation of our prototype. For efficiency, a realistic implementation
would record only the information required for the chosen behavior characteriza-
tion. We implement the “|=” operator from Section 3 by simply checking whether
the calling context tree, call graph or function set collected on the server is a
sub-tree, sub-graph or sub-set of the respective application model. For the “≡”
we define that l ≡ l′ if the respective trees or graphs are isomorphic, or in the
case of function sets if they are equal. We store calling context trees and call
graphs in a normalized fashion that allows us to decide l ≡ l′ in time linear in
the size of the operands.

4.2 Integrity of Trusted Components & Runtime-Secure Storage

To safeguard not only against anomalies caused by accidental misconfigurations
or hardware glitches but also against (certain classes of) malicious attacks, it is
necessary to store the runtime information collected in a trustworthy manner.

Our particular choice to instantiate the integrity measurement components
and the secure storage relies on the concepts of Trusted Computing. To assure
load-time integrity of the trusted logger in the public cloud, we first build a
chain of trust, starting from the cloud server’s hardware up to the trusted logger
itself. For this purpose, our hardware was equipped with a TPM chip. Trusted
boot is assured using the Grand Unified Bootloader (GRUB) version 0.97 to-
gether with TrustedGrub [35] version 1.1.5. We used the attestation framework
IMA (Integrity Measurement Architecture [25]) to allow the client to verify the
load-time integrity of the behavior measurement component and the secure stor-
age (effectively comparing cryptographic hashes of the binaries). Clients would



typically use the integrity reporting facilities of those components before the
outsourcing of computations takes place.

To provide a runtime-secure storage, our logging facilities record a hash chain
of all logged events in one fixed Platform Configuration Register (PCR) of the
TPM chip. For each logged event, the register’s current hash value is replaced
by a hash over this current value and the event’s own payload data. A client can
then validate the integrity of the log by re-performing the same hash operation
on the log and comparing the resulting hash values. If they differ, the log has
been tampered with, and the computation should be re-performed in the private
cloud.

In the general context of outsourced applications, the use of a single hard-
ware TPM is insufficient: Many applications execute in the same remote host,
and each can be executed many times. Data measured for different application
must be stored separately. We hence use the concept of virtual TPMs (vTPMs),
which allows us to assign a (unique) virtual TPM instance to each outsourced
process [28]. All vTPMs are managed by a vTPM manager, which provides an
interface to create and access vTPM instances; the vTPM manager is notified
whenever an application instance is started. We implemented a vTPM manager
in Java as a proxy to create and manage vTPM instances. The vTPM instances
themselves are implemented using the TPM emulator proposed by Strasser and
Stamer [29]. To communicate with vTPMs, we use the tpm4java library [33],
which facilitates using the cryptographic functionalities of vTPMs in our Java
applications. In detail, one chooses a particular vPCR i to hold a hash chain of all
recorded events. Whenever a new log entry is generated, the vPCR i is extended
by hashing the log entry using SHA-1 and running the TPM Extend command of
the corresponding vTPM instance as described in the TPM specification [34].
The log entry itself is stored in external (untrusted) storage. Thus, after the
outsourced application terminates, the vPCR register i of the vTPM associated
to the application contains a (securely stored) hash chain of all recorded events;
further, the log l of all events is available on storage.

Subsequently, remote attestation is performed to securely transfer the log
(which is signed by the vTPM) to the client. After verifying the log’s integrity,
the client verifies the compliance of each single log entry (i.e., each call edge)
with the application model as described in Sections 2 and 3.

5 Evaluation

In this section we evaluate our three behavior abstractions from Section 2, func-
tion sets, call graphs, and calling-context trees, with respect to following four
research questions:

RQ1 (Feasibility): In the learning phase, do the collected profiles converge to
a stable model of legal inputs with low false-positive rates?

RQ2 (Effectiveness): To what extent is the application model able to dis-
criminate between legal and illegal inputs?



RQ3 (Scalability): Is the profile size independent of the application’s runtime?
RQ4 (Efficiency): Can our approach be implemented efficient enough to in-

duce a sufficiently low runtime overhead?

5.1 General Experimental Setup

One restriction of our approach is that, to produce representative models, it
requires a representative set of program inputs. This restricted us in our choice
of evaluation subjects; we had to opt for applications for we would be able to
obtain large sets of abnormal/malicious as well as legal/harmless inputs. We
chose the following subjects:

1. Apache pdfbox: A PDF manipulation framework [2].
2. POI-HSLF: A Java API to extract data from PowerPoint documents [3].
3. POI-HWPF: A Java API to extract data from Word documents [3].

All applications operate on popular file types (Adobe PDF, Microsoft Pow-
erPoint .ppt, and Microsoft Word .doc), all of which can be obtained in large
numbers from the web. Moreover, all three file types are well-known attack vec-
tors. For the PDF file type there further exist repositories of malicious inputs,
which serve us to simulate possible manipulations by the cloud provider (details
below).

5.2 RQ1: Feasibility

For behavior compliance control to be feasible, it must be possible to automati-
cally generate a useful application model from only a number of representative
inputs small enough not to be prohibitive. Moreover, the generated application
models must yield false positive rates low enough for the approach to pay off.
Remember that any false positive induces increased computation cost in the
private cloud.

For our evaluation, we used the top 1,000 results of a Google search for
filetype:pdf, filetype:ppt, and filetype:doc, respectively. The resulting
corpus of inputs allowed us to generate application models from various num-
bers of input documents. We believe those 3,000 documents to be harmless,
legal documents.3 Therefore, if a model classified any run as abnormal that was
induced by one of those inputs, we count this classification as a false positive.

To generate the application models, we first used the JP2 profiler (cf. Sec-
tion 4.1) to obtain a calling context tree for each of the applications and inputs.
From the resulting CCTs we then derived both dynamic call-graph and function-
set profiles. This ensures that, for a given input document, all three abstractions
of the application’s behavior are consistent.

3 This is because Google has put in place filters to remove invalid or potentially mali-
cious documents from its search index. In fact we tried to find malicious documents
using Google but failed.



We then used ten-fold cross-validation [21] to determine the false-positive rate
that can be expected of the collected models. For each of the three file types,
the 1,000 profiles were first divided into ten subsets of 100 profiles each. Then,
each profile from one of the subsets was checked for compliance with application
models derived from an increasing number of (randomly chosen) profiles in the
other nine subsets, up to all 900 profiles in the end. Every compliance check
yields either the answer “compliant” or an anomaly warning. Since we consider
our training set to only contain compliant input documents, we consider all
warnings to be false positives.

Figure 4 shows the resulting false positive rates, averaged over the 10 sub-
sets, for various training set sizes. Because we used ten-fold cross-validation, at
most 900 out of the 1000 available inputs were used for model generation. As
Figure 4 shows, for both the Function and Call Graph abstractions it suffices
to use only a few hundred inputs for model generation to obtain a model with
a false-positive rates below 5%. Using the calling-context-tree (CCT) abstrac-
tion, however, requires a larger number of inputs to achieve low false-positive
rates. Even when using 900 inputs to generate the application model, an av-
erage of about 22%, 10%, and 3%, respectively, of the remaining 100 profiles
are deemed non-compliant. We also observe that at least for the Calling Context
Tree abstraction the false-positive rates very much depend on the program under
evaluation.

5.3 RQ2: Effectiveness

To increase trustworthiness, behavior compliance control must be able to detect
abnormal execution behavior. For the purpose of our evaluation we consider an
execution to be abnormal if it executes on an abnormal program input. In reality,
there could be other sources of abnormality such as glitches in the hardware or
execution environment. We obtained abnormal inputs from two distinct sources:
from dedicated repositories of malicious inputs for the file types in question and
from applying fuzzing techniques to legal inputs.

To simulate a targeted attack by a third party, we have used a set of 118
PDFs that have previously been used in exploits.4 For this experiment, we used
application models computed by including all 1,000 profiles for PDF file type.
As Table 1 shows, all abnormal executions were classified correctly when using
the Calling Context Tree abstraction. When using the more coarse-grained Call
Graph and Function abstractions, however, only 34 % respectively 11 % of in-
puts were classified correctly. We therefore conclude that it is essential to use
information-rich profiles to detect targeted attacks reliably. This is the main
trade-off at the heart of this paper: increased trust requires an increase invest-
ment to counter-balance the increased rate of false positives caused by such
information-rich profiles.

4 Test data taken from http://contagiodump.blogspot.com/2010/08/

malicious-documents-archive-for.html (Collection 3).

http://contagiodump.blogspot.com/2010/08/malicious-documents-archive-for.html
http://contagiodump.blogspot.com/2010/08/malicious-documents-archive-for.html
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Fig. 4: False positive rate for differently-sized training sets (arithmetic mean ±
standard deviation of 10 training sets each).

Exploits Fuzzed

Apache pdfbox POI-HSLF POI-HWPF
(.pdf) (.ppt) (.doc)

Functions 11 % 83 % 100 % 100 %
Call graphs 34 % 89 % 100 % 100 %
CCTs 100 % 97 % 100 % 100 %

Table 1: Percentage of inputs (exploits or fuzzed) detected as illegal.

As we were unable to obtain a similarly large number of malicious Power-
Point and Word documents to simulate a targeted attack, we commenced on a
best-effort basis and resorted to fuzzing techniques to simulate an untargeted
attack or a problem caused by a faulty data transmission. For each file type,
we randomly picked 100 documents from of our corpus of legal documents and
applied simple fuzzing techniques to them.5 This process yields 100 documents
each which we define to be abnormal inputs. For each of these inputs we then ran
the corresponding application and compared its behavior, abstracted as Func-
tions, Call Graph, or Calling Context Tree, with the application model of legal
inputs used before.

Table 1 shows the percentage of fuzzed inputs that were successfully detected
as illegal. As these results show, false negatives created by this simple fuzzing
algorithm are easy to recognize. It follows that abnormal program runs induced
by inputs corrupted in this manner will most likely be detected using behavior
compliance control; the abstraction chosen (Functions, Call Graph, Calling Con-
text Tree) has little influence on the detection rate. Those observations hold for
the particular fuzzing approach we consider. More targeted fuzzing approaches,
taking advantage of the input document’s internal structure, may be harder to

5 10 random single-byte changes beyond the first 1024 bytes of data; the latter avoids
corrupting the main document header, a case that is particularly easy to identify as
abnormal.



recognize, but from a security perspective would probably also be less capable
of exploiting a vulnerability in the outsourced application.

5.4 RQ3: Scalability

For behavior compliance control to pay off, checking for compliance must be
affordable, and must scale to large, long-running applications. We thus evaluate
whether the size of the model correlates with the runtime of the application. If
this were the case, the compliance check could be as expensive as re-performing
the actual outsourced computation, hence defeating the purpose of outsourcing.

For the Function and Call Graph abstractions it is immediately obvious that
no such correlation can exist. This is because the number of functions, and con-
sequently the number of call-graph edges, is statically bounded. For the Calling
Context Tree abstraction, however, this is not the case. In particular, the use of
recursion can cause an application’s calling context tree to to any size.6 Figure
5 visualizes the relation between application runtime (with CCT logging en-
abled) and and the number of nodes in the resulting CCT profile. Interestingly,
in our benchmark longer-running applications do not induce significantly larger
profiles; thus, our approach scales well over time.

5.5 RQ4: Efficiency

We comment on the runtime overhead caused by the instrumentation necessary
for profile generation and on the overhead induced by using securely sealed
storage.

For the experiments mentioned above, we used a setup as described in Sec-
tion 2: we collected calling context trees in all cases, and in a second step com-
puted call graphs and method sets based on the collected trees. This procedure
is inefficient. In a real-world setting one would rather opt for a customized in-
strumentation that emits the respective representation directly, as this can safe a
significant amount of execution time. While computing full CCTs will generally
incur a significant runtime overhead (10 times or more), one can bring overheads
down to under 5% by using probabilistic calling context trees [6]. Such proba-
bilistic CCTs appear quite sufficient for our purposes, and we plan to evaluate
their utility in future work. Method sets and call graphs are statically bounded
and can therefore be indexed ahead-of-time, which makes instrumentation pos-
sible that produces little to no observable runtime overhead [16]. We thereby
conclude that sufficiently efficient implementations are possible given the state
of the art in dynamic program analysis. While such implementations are outside
the scope of this paper, we plan to investigate them in future work.

We measured the runtime cost of our runtime-secure storage on a machine
equipped with an AMD Phenom II X2 555 processor and 4 GiB RAM under
GNU/Linux (kernel 2.6.32) and the TPM emulator version 0.7.2. Our tests show
that the most expensive operation is to create a vTPM instance, which takes

6 In practice, the virtual machine’s maximum stack size does impose a (large) limit.
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Fig. 5: Relation between application runtime and model size, measured in number
of calling context tree nodes.

1 second on average. However, this operation is only invoked once, at applica-
tion startup time. The overhead is caused by the expensive TPM TakeOwnership

operation, which creates the Storage Root Key (SRK) key-pair.

The average total cost of storing a CCT profile depends on the average node
number. For pdfbox, POI-HSLF and POI-HWPF those are 120,850, 78,568 and
48,239 respectively. Hashing the unique identifier (8 bytes) of every node takes
about 6 µs. The instruction TPM Extend, which extends a PCR register with a
hash, takes 400 µs. That is, we estimate the overhead of securely storing a full
CCT profile for pdfbox, POI-HSLF and POI-HWPF at about 50, 32 and 20
seconds respectively. When using the more coarse-grained Call Graph abstrac-
tion, only an average 5,313, 2,338 resp. 2,289 nodes must be stored for pdfbox,
POI-HSLF and POI-HWPF respectively, lasting approximately 3.1, 1.95 and
1.93 seconds. The most efficient abstraction are Functions. The overhead for
Functions is 2.1, 1.53 and 1.52 seconds for 2,577, 1,301 and 1,281 functions re-
spectively.

Our results show that the cost of secure storage becomes an issue with CCTs
but appears low enough for the other two abstractions. In any case, note that
storage can be performed asynchronously on a separate processor core (or even
a set of those).

6 Related Work

There is has been a significant amount of previous work on automated property
inference [7, 24, 31, 32] and anomaly detection [13, 18] on many different levels,
both static and dynamic, all with their relative strengths and weaknesses. Many
of those approaches could be integrated into our generic architecture defined
in Section 3. We decided to define our own set of three behavior abstractions
because this setup would allow us to evaluate the relative properties of those
abstractions. Our approach extends all previous approaches to anomaly detection
by allowing anomalies to be identified in a distributed but trustworthy manner.



Our approach is not the first to capture program behavior in terms of calling-
context information. Ammons et al. [1] show how to generate context-sensitive
performance profiles efficiently, using hardware performance counters. Dynamic
sandboxing, proposed by Inoue et al. [19], shows similarities with behavior com-
pliance control. Like behavior compliance control, dynamic sandboxing relies on
dedicated training runs to determine a set of legal behaviors. However, Inoue
et al. only consider profiles at function granularity and validate them in two
very limited scenarios; in particular, they do not provide a detailed, quantitative
evaluation and do not consider a broader applicability of dynamic sandboxing
beyond runtime monitoring.

Our approach builds on ideas from intrusion detection. In the mid-nineties,
Forrest et al. [9] addressed an important problem in intrusion detection, the
definition of what they call “self”, in other words a system’s normal behavior.
The authors propose a method to define “self” for privileged Unix processes
by recording short sequences of system calls. Behaviors that deviate from these
patterns are flagged as anomalous and considered untrustworthy.

None of those approaches considers the scenario of behavior compliance con-
trol in cloud computing. In addition, all approaches are black-box approaches
(in addition to other similar works mentioned in Section 2). Compared to our
approach, this gives them the advantage of being independent of any program-
ming language or compiler. On the other hand, white-box approaches such as
ours yield higher flexibility (as they can obtain more information) and finer
granularity.

Other authors have proposed enforcement architectures to control access to
data objects distributed to remote systems [37]. Such architectures control how
outsourced applications can access outsourced objects at runtime, assuming that
these applications are trusted after verifying their load-time integrity. As we
discussed before, behavior compliance control goes well beyond such load-time
based measures.

Trusted Computing allows to remotely attest the integrity of computing plat-
forms. Behavior compliance control goes beyond binary attestation by not only
considering the integrity of the application’s code at load-time, but its actual
runtime behavior. Gu et al. [15] propose an approach to remote attestation that
can be seen as complementary to ours. Behavior compliance control is focused
on assessing the compliance of a single application’s execution to its model. Gu
et al.’s approach, on the other hand, rather focuses on system-wide attestation;
the authors attest behavior by measuring the ways in which different processes
call each other. In an approach called Semantic Attestation, Vivek et al. [17]
propose to use a trusted virtual machine for remote attestation. The core idea is
that such a trusted virtual machine is capable of performing code analysis and
runtime monitoring. In the approach, the appropriate property checkers need to
be programmed manually, though. This is in stark difference to behavior compli-
ance control, in which application models are automatically generated from legal
executions. In more recent work, Gu et al. [14] propose an architecture to attest
the execution of single mission-critical subroutines of an outsourced application.



The authors use the debug facilities of certain CPUs to track the execution of
a specific function. The execution of the function is then transferred to a secure
environment prepared by a secure kernel.

Finally, some effort has been spent on the construction of schemes for ver-
ifiable computation [4, 12], which aim at outsourcing computations to a third
party, while offering a proof of correctness for the result. At the moment, these
constructions are rather impractical and cannot cope with side-effects of the
program execution.

7 Conclusion

We have presented behavior compliance control, a novel approach to increase
the trust in the validity of executions of outsourced applications. The approach
goes beyond load-time based systems for compliance control by considering the
application’s runtime behavior. This allows the client outsourcing the application
to detect abnormal executions even in cases where the application’s code remains
unaltered after loading. Such anomalies can for instance be caused by faulty or
malicious inputs, misconfigurations, version mismatches or hardware glitches.
We have presented a reference architecture for behavior compliance control, and
an instantiation for the Java platform which is available as open source.

We have implemented and evaluated our approach based on three different
abstractions of runtime behavior: function sets, call graphs and calling context
trees. Using a large-scale empirical evaluation we could show that the former
two abstractions yield few false positives, while still being able to identify a
significant number of abnormal executions caused by malicious inputs, and all
cases of abnormal executions caused by fuzzed inputs. Those abstractions can
also be implemented efficiently. Calling context trees identify all malicious inputs
but also yield a larger number of false positives, causing additional computation
cost in the client’s private cloud. It is hence up to the client to decide whether
this additional cost is justified by the increased trust that this abstraction offers.

An interesting piece of future work would be to evaluate optimized imple-
mentations of behavior abstractions in the apparent sweet spot between full
calling context trees and call graphs. An approach with bounded context strings
paired with probabilistic calling contexts [6] appears like a potentially optimal
candidate in this solution space.
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Appendix

Definition 1: (Function set) Let r be a monitored program run. Then the
function set of r, which we denote by functionSet(r), is the smallest set ful-
filling the following property: For any invocation f → f ′ of function f ′ from
function f on r, it holds that {f, f ′} ⊆ functionSet(r).
Definition 2: (Call graph) A call graph is a directed graph (V,E) with V a
set of nodes representing functions, and E ⊆ V ×V a set of directed edges. Then
the call graph of r, cg(r), is a call graph that fulfills the following constraints.
V is the smallest set such that for any invocation f → f ′ of function f ′ from
function f on r, it holds that {f, f ′} ⊆ V . E is the smallest subset of V × V
such that for each such f, f ′ it holds that (f, f ′) ∈ E.
Definition 3: (Calling context tree) Let F be the set of all function identi-
fiers. Then CM , the set of all calling contexts over F , is defined as CM := F+.
The set CM is closed under concatenation: we define a concatenation function
“·” on calling contexts such that for any context c ∈ CM and function f ∈ F
it holds that c · f ∈ CM . A calling context tree is a tree (V,E) with V ⊆ CM

a set of nodes representing calling contexts and E ⊆ V × V a parent-child re-
lationship. We further demand that there exists a unique root node v0 which
has no parents, i.e., for which it holds that ¬∃v ∈ V s.th. (v, v0) ∈ E. Let r
be a monitored program run. Then cct(r) is a calling context tree for which
the following holds. V is the smallest set such that for any invocation c → f
of function f from within context c on r, it holds that {c, c · f} ⊆ V . E is the
smallest subset of V × V such that for each such f, c it holds that (c, c · f) ∈ E.
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