
Delta-oriented Monitor Specification

Eric Bodden1, Kevin Falzon1, Ka I Pun2, and Volker Stolz2,3

1 Secure Software Engineering Group, European Center for Security and Privacy by
Design (EC SPRIDE), Technische Universität Darmstadt, Germany

2 Dept. of Informatics, University of Oslo, Norway
3 UNU-IIST, Macau S.A.R.

Abstract. Delta-oriented programming allows software developers to
define software product lines as variations of a common code base, where
variations are expressed as so-called program deltas. Monitor-oriented
programming (MOP) provides a mechanism to execute functionality
based on the execution history of the program; this is useful, e.g., for
the purpose of runtime verification and for enforcing security policies.
In this work we discuss how delta-oriented programming and MOP can
benefit from each other in the Abstract Behavior Specification Language
(ABS) through a new approach we call Delta-oriented Monitor Specifica-
tion (DMS). We use deltas over monitor definitions to concisely capture
protocol changes induced by feature combinations, and propose a nota-
tion to denote these deltas. In addition, we explore the design space for
expressing runtime monitors as program deltas in ABS.
A small case study shows that our approach successfully avoids code
duplication in monitor specifications and that those specifications can
evolve hand in hand with feature definitions.

Keywords: Runtime Verification, Monitor-oriented Programming, Interface Pro-
tocols, Software Product Lines

1 Introduction

Delta-oriented programming (DOP) allows software developers to define software
product lines as variations of a common code base. Variations are expressed
as program deltas, which can add, remove, and re-define units of code such as
classes or methods [5]. Delta-oriented programming has been proposed as a way
to structure software product lines (SPL) [6] and as a more structured alternative
to other conditional-compilation constructs such as #ifdef [12].

The application interfaces (APIs) of software products frequently come with
implicit or explicit usage contracts that describe how the individual methods of
the API are to be called, e.g., in which order or with what parameters. Runtime
monitoring is commonly used to verify the adherence to such usage contracts at
runtime [3]. In runtime monitoring, the program under test is instrumented with
(often stateful) runtime checks that signal an error if clients of the API violate
the usage rules at runtime. In practice, the runtime monitoring machinery can
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be used for other purposes. More specifically, runtime monitors can be seen as
a declarative programming paradigm in which code is executed based on events
observed in the execution history of the program — a programming style coined
Monitor-oriented Programming (MOP) [3].

Subjecting a product line’s code to program deltas complicates its monitor-
ing, as the introduction of the deltas may modify or extend usage contracts, or
in the more general case of MOP, may expose new or altered execution histories.
Thus, it follows that any runtime monitors present in the system may need to
be updated as well.

In this work, we describe an initial design of Delta-oriented Monitor Spec-
ification (DMS), our approach to updating finite-state-machine based monitor
specifications in line with delta definitions for regular program code. DMS allows
programmers to deploy monitors as deltas, and to define deltas over monitor def-
initions comprising additions, removal or replacements of individual transitions,
the introduction of new initial states and variable bindings or the additions,
removal or replacement of transition guards.

We situate our approach in the context of the Abstract Behaviour Specifica-
tion language (ABS), a modelling language for active objects [4] that has built-in
support for DOP. Concretely, we provide an example based on ABS and propose
a tool approach for integration with the ABS platform. We also report on the
suitability of ABS for Monitor-oriented Programming.

To assess the viability of our approach, we apply Delta-oriented Monitor
Specification to a small case study of a cashier system from the component-
based development community. The Common Component Modelling Example
(CoCoME) [15] is given as a use case with optional variabilities, which we treat
as features in a software product line. Firstly, we use the example to introduce
the ABS language, and then use the same language mechanism to instrument
the example program, to monitor and enforce consistent API use through DMS.
We give an implementation strategy that generates the necessary deltas which
augment every method with monitoring code. As DMS are rather explicit since
they describe changes with respect to a base automaton, we also introduce a
more accessible, graphical high-level notation, from which one can automatically
calculate the delta automaton.

To summarize, this paper contains the following original contributions:

– The idea of and a design for Delta-oriented Monitor Specifications, including
a formalization and an implementation strategy.

– A discussion of the suitability of ABS for Monitor-oriented Programming.

– An assessment of the viability of the approach using a small case study.

The remainder of this paper is organized as follows: we present the salient
features of the ABS language and its support for SPLs in the context of a running
example in Sec. 2. A short motivation for runtime verification and protocols is
provided in Sec. 3. We formalize the base automata with variable bindings and
delta-automata to capture protocol changes in Sec. 4. Sec. 5 outlines how deltas
can be used to enforce protocols as an optional feature in SPL products. Sec. 6
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concludes with related work and a few suggested features to improve ABS’s
support for runtime verification.

2 Overview

ABS is very much in the style of traditional programming languages like Java or
C++, but also models asynchronous behaviour, similar to Actors [9]. Every ob-
ject can be understood as a process receiving and sending messages, with explicit
release points in method bodies over boolean guards on the object state. On the
static level, ABS uses subtyping through interfaces, but not code inheritance,
making formal reasoning in ABS simpler than in other languages that support
code inheritance. However, the language supports another important mechanism
for reuse, since it directly includes a notion of software product lines (SPL), a
feature language, and a low-level assembly mechanism for so-called “deltas”.

In an SPL, features are mapped to sets of deltas, each of which may modify
the program by removing/adding fields or methods, and overriding method-
bodies with new code that can call back into the original code, allowing a
construct similar to the around()-advice with super-calls of aspect-oriented
programming. ABS is thus closer to an aspect-oriented programming language,
although it lacks the flexibility of, e.g., wildcard matches on method invocation.

In previous work [2], we have used techniques from aspect-oriented program-
ming [10] to instrument applications with runtime checks that enforce a particu-
lar protocol between objects. In runtime verification, one is generally interested
in detecting patterns in the execution history, usually described by linear tempo-
ral logic formulas or regular expressions. Additionally, one may specify an action
which must be taken when a monitor is triggered. When a monitor matches, the
behaviour of the program is overridden with the behaviour annotated to the
monitor. Enforcing protocols can be useful to add security aspects to an API,
or guard against the misuse of an interface. Monitor specifications are often
domain-specific, and can often be derived from the (informal) documentation.

In this paper, instead of using the full power of aspect-oriented programming
techniques, we show that the more restricted subset of ABS programs is—in
general, save some minor elements which have not yet been implemented in the
prototype of the ABS language—sufficient to implement runtime verification.

Most importantly, we lift the notion of deltas to the level of monitoring.
This allows us to customize protocols for features and products using a similar
mechanism that customizes the code. Deltas are thus used twice in our approach:
as part of the input, they define the products, and our approach contributes an
additional delta which implements the monitoring per product.

Next, we give an overview of the ABS language and its support for SPLs.

ABS in the CoCoME case study We illustrate our approach with an exam-
ple derived from the CoCoME case study [15]. It specifies a simple supermarket
system on various levels (single cashdesk, single shop, enterprise) using compo-
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nents (the cashdesk, a store-component providing back-end services, a bank for
credit card payments, etc.).

Based on an informal description of the principal use case, we focus here on
the design of the cashdesk and how the cashier interacts with it. The scenario
also conveniently specifies variabilities which we can express using features.

For each customer, the cashier initiates a new sale, and processes the pur-
chases by scanning them with a barcode scanner. The backend provides necessary
information such as price and description. All purchases are aggregated into a
sale, and after indicating that the processing has finished, the system calculates
the total. The cashier retrieves the money from the customer and enters the
amount into the system. The system displays the amount of change to return.
After receiving the change, the customer leaves, and the cashier starts over.

We obtain a self-explanatory program for the cashdesk with interface func-
tions startSale, enterItem, finishSale and pay. In addition to the business
logic in the form of methods, data types and (pure) functions over those data
types are defined in the functional subset of ABS, e.g., key/value maps.

module CoCoME;
class Cashdesk ( Store s ) implements Cashdesk {

Store s t o r e = s ;
Int t o t a l = −1;
Bool f i n i s h e d = False ;
L i s t<Item> i tems = Ni l ;

Unit s t a r t S a l e ( ) { t o t a l = 0 ; f i n i s h e d = False ; i tems = Ni l ; }
Unit enterItem ( Int code , Int qty ) {

assert s t o r e != n u l l ;
Item item = s t o r e . lookup ( code ) ;
t o t a l = t o t a l + qty∗ p r i c e ( item ) ;
i tems = Cons ( item , items ) ;

}
Unit f i n i s h S a l e ( ) { f i n i s h e d = True ; }
Int pay ( Int g iven ) {

assert given >= t o t a l ;
return given−t o t a l ;

}
}

Features of CoCoME On top of this base program, we define the following
optional features: the system should permit credit-card payment as an alterna-
tive, and support an express-checkout lane for customers with only a few items.
When a cash-desk is in express checkout mode, customers may only purchase a
bounded number of products, and only cash payments are allowed.

Instead of changing the program to support those features directly using
object-oriented design, we use ABS’s software product lines to specify the dif-
ferent products. Delta Credit introduces a new method Bool cardPay(CCData

cc). Likewise, we ignore the details of refusing a customer should she try to buy
too many items when the desk is in express mode—note that the number k of
items is configurable by the feature through the delta. We also trigger an as-
sertion when she attempts a credit-card payment while in this mode. The other
requirement involving the interaction between both features is specified in delta
ExpressCC. In express mode, no card payments are allowed:
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delta Credit {
modifies c lass Cashdesk {
adds Bool cardPay (CCData cc )
{ return s t o r e . au thor i z e ( cc ) ;}

adds Int cashPay ( Int g iven )
{ return this . pay ( g iven ) ; }

}}

delta ExpressCC {
modifies c lass Cashdesk {
modifies Bool cardPay (CCData cc ) {

// Not al lowed in express mode
assert ˜mode ;
return original ( cc ) ;

}}}

It is evident that the sequence in which deltas are applied is relevant, such as
when overwriting the cardPay() method following its introduction by a previous
delta, or when accessing the mode attribute. Here, we need ABS’s mechanism
of explicitly ordering deltas for a particular feature. This is recorded through
the after-clause in the product-line specification, which assembles the features
shown below. We will later show that from our protocol deltas, we can derive a
delta which is almost identical to this, since the functionality expressed in the
requirement is exactly a protocol issue (enabledness of a method based on the
execution history).

As a last ingredient, we need to define the valid products in this product
line. We have the base product without any features, and both optional features,
yielding four possible products in total.4

productline CoCoME
features Express , Credit ;
delta Credit when Credit ;
delta Express (10) when Express ;
delta ExpressCC after Credit

when Express && Credit ;

product Base ( ) ;
product Credit ( Credit ) ;
product Ex( Express ) ;
product CCEx( Express , Credit ) ;

3 Enforcing correct behaviour

The intended use of a programming API, such as our Cashdesk system, is usually
not directly inferable from the code. This is problematic, and frequently leads to
usage errors. It is therefore desirable to support programmers by documenting
and checking usage restrictions.

In [2], we have formalized usage protocols to make their intended use explicit
within the code, and to make it automatically checkable. The protocol is specified
in a machine-readable notation as annotations in the Java code. Method invo-
cations, including constructors, are specified via atomic propositions (or equiv-
alently, as transition labels). Any violation of the contract, i.e., a method invo-
cation that is not allowed by the protocol, will terminate the execution. While
this is generally undesired for production code (there should not be any runtime
errors), this approach is useful for defining testing oracles.

Extension to deltas. As the protocol is clearly application specific, if the appli-
cation is the product of an SPL, there must be support for various protocols in
different products. This gives us two possible options: specifying the full proto-
col per product, or incrementally changing the protocol, similarly to how deltas
change code. We argue that the latter approach is preferable.

4 ABS supports a product-selection language from, e.g., mutually-exclusive features,
or dependencies, which is more than we can make use of in our example. See [6].
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To correctly assemble a product from features, which map to sets of deltas,
a designer needs intricate knowledge of the internal structure of the program.
Features, and consequently their deltas, manipulate a potentially large base ap-
plication. Clearly, a major focus on the protocol design will be on the base
system. Modification of existing methods may make it necessary to update the
protocol, and new methods must be incorporated (unless they require no special
interaction protocol). Deletion of methods is straightforwardly handled by re-
moving any occurrence of the method call in the protocol. Thus, we expect that
specifying the changes in the protocol per feature is cheaper in terms of syntax
and effort than re-specifying the complete protocol for each product.

Base protocol The intended API use of our component can be specified
through a labelled transition system, where the labels are (guarded) method
calls, as shown in Fig. 1. The intended usage, as indicated by the system use case,
is that the cashier starts a sale for a new customer, records all items, indicates
that all items have been processed, and handles the payment. Correspondingly,
the state labels s, b, f are mnemonics for “starting”, “buying”, “finished”. In
Sec. 4, we will formalize the automaton construction.

s

b

f

startSale

finishSale

enterItempay

Fig. 1. Base protocol

finishSale

startSale

cardPay [pay/cashPay]

Fig. 2. Credit card payment

setExpress(bool mode )

startSale

startSale

Fig. 3. Mode switch

finishSale

!mode & cardPay

startSale
setExpress

Fig. 4. ExCC

For the behaviour of the different products, we informally give the relative
change in the protocol. Fig. 2 shows that after finishSale(), there are now
two payment methods available. We have renamed the existing method from
pay to cashPay for clarity, and added the cardPay method. The diagram shows
wildcard states that the changed transitions attach to; the intention here is to
add the new option as an alternative to the existing edge. Any existing edges
that are not referred to in the protocol delta are left unchanged. The dashed
transitions are used to determine which states in the original protocol to attach
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to. Since state names should only be used implicitly, one of our design goals is to
avoid referring to states, matching, instead, on existing transitions. We elaborate
on the necessary pointcut expressions in Sec. 4.

Fig. 3 introduces the mode-switch method, which can optionally be called
before the startSale method. We make use of a binding occurrence with formal
parameter mode that must match the signature of the operation. Note that the
state s before the startSale invocation in the original protocol is an initial state.
Therefore, the semantics of “before” should include relocation of the initial state.

Fig. 4 illustrates the interaction between the two available features of credit-
card payment and express mode, where the previous mode switch pattern binds
data (the current mode), and the new, additional part uses the data in the guard.
Here, the intention is that the (existing) cardPay transition is only enabled when
the mode-flag is not set to express mode. It is obvious that applying the second
protocol constraint can only be valid in the presence of the former with the
binding occurrence. This corresponds to the delta ExpressCC in our product
line from the previous section.

4 Formalization

We model our protocols as finite automata with an extension to bind formal
parameters of method calls to their instantiated values upon taking a transition.
A transition in the automaton refers to variables used as placeholders in its
binding function.

4.1 Defining Base Automata

Given that Θ := VAR → VAL is a set of functions that resolve the name of a
variable to its bound value, a base automaton M is a tuple 〈Q,Σ×−−→VAR, q0, θ0, Γ 〉,
with Q states, an alphabet Σ with a list of formal parameters, an initial state
q0 ∈ Q, an initial variable binding θ0 ∈ VAR → VAL and a set of transitions Γ ,
where:

Γ ⊆ Q︸︷︷︸
current
state

× (Σ ×−−→VAR)︸ ︷︷ ︸
method

signature

× (Θ → B)︸ ︷︷ ︸
guard

× ((Θ ×−−→VAL)→ Θ)︸ ︷︷ ︸
variable-binding
transformation

× Q︸︷︷︸
next
state

Each transition relates a pair of states via a symbol with its parameters, a
guard function and a state-binding function. The guard function is evaluated
during traversal, with an outgoing transition only being chosen when its guard
evaluates to true. The state-binding function will return a new binding function
derived from the current bindings s and the input parameters ~c. For the sake of
brevity, one may forego specifying a guard or a state-binding function, in which
case the functions are replaced by an always-true guard and an identity function,
respectively. Thus, (q, e, q′) := (q, e, λs.true, λ(s,~c).s, q′). We also assume correct
arity of formal parameters and binding functions.
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Configurations A base automaton configuration is a pair consisting of a state
and a variable binding. The initial configuration Φ0 is thus defined as (q0, θ0).

Configurations Over Single Transitions An automatonM accepts an input
a := e(c0, . . . , cn), e ∈ Σ, ci ∈ VAL if, given its current configuration, there is an
outgoing transition for the input symbol e whose guard evaluates to true. The
evolution from a configuration Φ to Φ′ within automaton M on receiving input
a is denoted by Φ

a−→M Φ′ and is defined as follows:

(q, θ)
e(c0,...,cn)−−−−−−−→M (q′, θ′) := (q, e(x0, . . . , xn), guard, binding, q′) ∈ Γ

∧ guard(θ) ∧ binding(θ, (c0, . . . , cn)) = θ′

Trivially, Φ
ε−→M Φ′ := Φ = Φ′. All states in the automaton are implicitly

accepting, and the system is in a correct state as long as a next state is defined
for the given input. Conversely, if the automaton cannot progress, then the
input is invalid, signalling a failure. One can think of such an automaton as
being implicitly total, with the complement of the defined transitions leading to
a failure state. We define single step rejection from configuration Φ on input a:

a 6∈ LM(Φ) := ¬(∃q′ ∈ Q, θ′ ∈ VAR→ VAL · Φ a−→M (q′, θ′))

Accepting and Rejecting Runs The notion of accepted and rejected elements
can be lifted onto sequences of inputs (or runs). Given a run as, with a ∈ Σ×−−→VAL
and s ∈ (Σ ×−−→VAL)∗, one can define the acceptance of a sequence of elements as:

(q, θ)
as
=⇒M (q′, θ′) := ∃q′′ ∈ Q, θ′′ ∈ VAR→ VAL · (q, θ) a−→M (q′′, θ′′)

∧ (q′′, θ′′)
s

=⇒M (q′, θ′)

Trivially, Φ
ε

=⇒M Φ′ := Φ = Φ′.
A rejected sequence w starting from a configuration Φ is denoted as follows:

w 6∈ LM(Φ) := ¬(∃q′ ∈ Q, θ′ ∈ VAR→ VAL · Φ w
=⇒M (q′, θ′))

Thus, a run w is within the base automaton language if ∃Φ ·Φ0
w
=⇒M Φ. Similarly,

a run is not in the language (invalid) if w 6∈ LM(Φ0).

4.2 Well-formedness of Automata

Our use of variables in guards necessitates a notion of well-formedness that
ensures that every variable occurring in a guard on a transition has been assigned
a value on all paths leading to this transition.

Assuming a function vars : Γ → −−→VAR which yields the used variables in a
guard, a transition 〈S, a, g, b, T 〉 is well-formed, iff vars(g) ⊆ defsM(S) where

defsM(S) : Q→ −−→VAR:

defsM(S) := dom(θ0) iff s = q0;⋂
(Sp,e(x0,...,xn),g,θ,S)∈Γ

(defsM(Sp) ∪ {x0, . . . , xn}) otherwise
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where the Sp are the predecessors of the state S. An automaton is well-formed
if all its transitions are well-formed.

4.3 Deltas

Deltas are structures that augment a base automaton by adding, modifying or
removing transitions. It can also redefine the initial state and variable bindings
of the base automaton.

Defining Deltas A delta automaton is a tuple 〈Q∆, Σ∆×−−→VAR, q∆0 , θ∆0 , Γ∆+ , Γ∆− 〉,
where Q∆ is the set of (possibly new) introduced states, Σ∆ × −−→VAR is a set
of symbols, q∆0 is an optional redefined start state, θ∆0 is a binding function
to be composed with any existing initial binding function, and Γ∆+ and Γ∆−
are the transitions to be added and removed, respectively. It is assumed that
Γ∆+ ∩ Γ∆− = ∅.

Applying Deltas Given a base automatonM = 〈QM, ΣM×−−→VAR, qM0 , θM0 , ΓM〉
and a delta automaton ∆ = 〈Q∆, Σ∆×−−→VAR, q∆0 , θ∆0 , Γ∆+ , Γ∆− 〉, the application of
∆ to M yields a base automaton M′ := M ↓ ∆, and is defined as follows:

Q′ := QM ∪Q∆
Σ

′ ×−−→VAR := ΣM ×−−→VAR ∪ Σ∆ ×−−→VAR
q′0 := qM0 if q∆0 = ⊥, q∆0 otherwise
θ′0 := θM0 if θ∆0 = ⊥,

λc.(case θ∆0 (c) = ⊥ ⇒ θM0 (c); otherwise, θ∆0 (c)) otherwise
Γ ′ := (ΓM ∪ Γ∆+ )− Γ∆−

where ⊥ is an undefined element. Deltas can introduce or redefine bindings
stated within the initial binding. In the case of redefinitions, the latest updated
binding will be used. If the empty base automaton is M∅ := 〈∅, ∅,⊥, λc.⊥, ∅〉,
one can redefine a base automaton M as a delta operation on M∅. Formally,
M := M∅ ↓ ∆M, where ∆M := 〈QM, ΣM×−−→VAR, qM0 , θM0 , ΓM, ∅〉. Unreachable
states after applying a delta automaton can be pruned implicitly as they can no
longer influence the behaviour of the monitor.

Example 1. The delta automaton for the credit card payment (Fig. 2) is

∆CC := 〈 ∅, {cashPay, cardPay} no new state/new symbols
⊥,⊥, no initial state/no new initial binding
{(f, cashPay, s), (f, cardPay, s)}, transitions added
{(f, pay, s)}〉 transition removed

As the transitions within the delta do not make use of guards or alter variable
bindings, the shorthand transition notation is used.

Example 2. The delta automaton for switching Express mode (Fig. 3) is
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∆M := 〈 {m}, {setExpress},m, new state/symbol/initial state
λc.(case c = “mode”⇒ true), new initial binding
{(m, setExpress, λs.true, λ(s, x). transitions added

(λy.(case y = “mode”⇒ x0; otherwise, s(y))), s),
(m, startSale, b)},
∅〉 no transitions removed

The newly-added transition redefines the variable binding function, adding a
binding for “mode”. Its value, x0, is the first element of the list of values x
passed on to the setExpress function.

Example 3. The delta automaton for Fig. 4 is

∆ExCC := 〈 ∅, ∅,⊥,⊥, no new state/symbols/initial state/initial binding
{(f, cardPay, λs. !s(“mode”), λ(s,~c).s,m)}, transition added
{(f, cardPay,m)}〉 transition removed

The delta effectively modifies a transition in the original automaton, adding a
guard on the value of “mode”.

Applying all three delta automata to our initial protocol, we obtain the re-
sulting automaton M′ := M ↓ ∆CC ↓ ∆M ↓ ∆ExCC , as shown in Fig. 5.

4.4 Further design decisions

Conceptually, and based on the examples shown, it is clear that explicitly spec-
ifying the source- and target states for a transition does not scale very well:
in general, a method may be used at various times, and accordingly occur in
multiple places in the protocol (our example here is a degenerate case, as every
method only occurs once). Ideally, graph-matching, as intended in Sec. 3, will
take care of this. Matching the transitions in the base protocol and binding the
wild-card states si allows us to calculate the set of transitions to add or remove.

The second important feature, that of binding of values during a run, requires
a suitable representation of terms and a useful collection of function symbols
over primitive types and their interpretation. In [2], we included functions to
test object-identities, and allow invoking arbitrary methods over bound values
in guards. We refer to the aforementioned paper for a detailed discussion.

The third and last important feature is quantification: in our running exam-
ple, the protocol pertains to exactly one interface (or its implementing classes). A
monitor is instantiated per-object. Conceivably, a protocol can cover coordinated
interaction with several objects. Then, the aforementioned object-identities be-
come a mandatory feature. Labels are then of, e.g., the form o.m(x), and guards
could use a more flexible form which allows reference to the variables just bound
in the current call, e.g. o 6= p & o.m(x), denoting that the invoked object must
not correspond to the previously bound p (which could come from either the
callee-, or an argument position in a preceding transition).

Instantiation of such a truly crosscutting monitor would then occur on the
initial matching transitions, and care must be taken when assigning meaning to
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m

s

b

f

setExpress(bool mode )

startSale startSale

finishSale

enterItem

cashPay
!mode & cardPay

Fig. 5. The resulting automaton

delta ExpressMon {
modifies c lass Cashdesk {

adds Maybe<Bool> monMode = Just ( True ) ;
modifies Unit se tExpres s ( Bool m) {

monMode = Just (m) ; // record mode
// Only al lowed between s a l e s
i f ( s t a t e == M) {

original (m) ;
s t a t e = S ;

} else {assert False ; }
}

}}

Listing 6. Binding of argument value

a fragment such as
o.m()−→ · p.n()−→. The “hidden” reference in the second transition to

the monitor instantiated by the first one requires static access to the monitor,
which alas is currently not feasible in the ABS language (see our evaluation of
suitability of ABS in Sec. 6).

5 Implementation

In the following, we outline how delta-protocols can be enforced for an interface
by keeping track of progress through the state machine and generating assertions,
which we naturally deploy using deltas. We will also comment on the use of
annotations to make the protocol formally part of the model.

We have two different options for deploying monitors into an existing product
line: either we first deploy the base monitor, and then the delta-protocols on
top, or we first “flatten” the base protocol automaton and its deltas, and then
generate code based on the resulting automaton. The former approach would
require subsequent overwriting of previous enforcement code: we can see this
clearly in the two different protocols that cardPay is involved in, depending on
whether express mode is enabled or not. Although in principle the ABS language
supports targeted original calls, which would aid the implementation, we would
like to avoid redundant manipulation, and settle for the latter option.

For a monitor, we first need to introduce a datatype over all states, and a
corresponding state variable per class which needs monitoring. Next, we collect
all (reachable) transitions from the automaton that a method is involved in. We
modify each method to assert that the transition is enabled, execute the original
code, and update the state variable before returning from the method, similarly
to around-advices in aspect-oriented programming (AOP). For ε-transitions, we
collect the subsequent transitions. For the bindings, we need to introduce a state
variable of the corresponding type, and read (write) the value in guards (binding)
events. Listing 6 shows the generated code for binding the mode-switch.

As ABS lacks the means to apply deltas to classes implementing a particular
interface, we also have to designate or compile the list of classes to be instru-
mented in a preprocessing step as well.
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Storing the base protocol and the protocol deltas as part of the model is
another problem. ABS has built-in support for annotations, which could be a
suitable way of storing the protocol data as part of the file. Annotations attach
values over user-defined datatypes to methods or statements. We can then define
a datatype to specify the transitions of a protocol as annotations. These are then
available during compilation when using the ABS toolchain.

A prototypical implementation of monitoring for the ABS compiler frontend
is available from http://www.mn.uio.no/ifi/english/research/projects/rvabs/.

6 Related Work and Conclusion

We contrast our work with other works from the areas of aspect-oriented program-
ming, model-driven development, monitor-oriented programming, runtime-verification
for software product lines and typestate checking.

Aspect-oriented programming. Both AOP and DOP have in common that they use
programming-language elements that allow programmers to insert code into some ex-
isting “base code” systems. However, both approaches fundamentally differ in their
intent and methodology. The goal of AOP is to modularize concerns that are inher-
ently crosscutting. Most AOP languages therefore support quantification constructs
that allow programmers, for instance, to insert code before all method calls or after
all field accesses. In addition, most AOP languages have a purely dynamic semantics.
While AOP tools typically modify code through static weaving, their semantics are
defined through dynamic entities, e.g., the interception of runtime events. Aspects are
often intended to be re-used among several software systems. DOP, on the other hand,
aims to allow structured compile-time variations of a given piece of software. This is a
purely static view; after compilation, deltas are “flattened away”, there is no notion of
intercepted runtime events. There is also no quantification: in DOP, programmers need
to explicitly specify the code elements that need to be modified, and there is no way
to specify a whole range of such elements in a declarative style. This lack of quantifica-
tion makes it less convenient to implement highly crosscutting features such as runtime
monitoring. On the other hand, DOP makes it simpler to define delta-oriented mon-
itor specifications, because the code-level effects of applying a delta are immediately
obvious. The monitors can thus be defined in terms of the unmodified and modified
interface. In AOP, such definitions would be more complex, as the weaving process in
AOP is typically hidden from the user, and thus the modified interface is not as easy
to deduce.

Model-driven development. The lifting of aspect-oriented techniques to UML models
has been done for activity diagrams in [13]. As activity diagrams are syntactically
richer than state machines, correspondingly we expect a concrete aspect to be equally
verbose. The article does not give a detailed example, but this is confirmed in earlier
work, where matching is clearly not based on the diagrammatic representation [14]. In
the same paper, the authors also indicate their own and other existing approaches to
weave state machines. The manipulations are purely structural, independent of state
machine semantics, whereas in contrast, we have well-formedness requirements on the
resulting model due to the specific nature of our automata. Similar checks could of
course be employed on their resulting models as well.

http://www.mn.uio.no/ifi/english/research/projects/rvabs/
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In the field of SPLs, the Common Variability Language CVL [7] uses an approach
to match fragments in the base model which could be useful to implement user-friendly
matching on the graphical notation and calculate the delta automata. CVL uses match-
ing on boundary elements (which would be states or transitions in our setting) to define
anchor points for substitutions; these anchors are defined in terms of concrete elements
of the base model, which indicates that only exactly one substitution can be carried
out (a suitable matching mechanism for our purposes should find all instances of a
pattern in the base automaton). Again, defining delta automata through substitutions
will result in a very verbose notation, whereas we envision a more convenient, dedicated
notation for adding and removing edges in fragment automata.

Monitor-oriented programming. MOP, prominently advocated by Chen and Roşu [3],
is a programming model in which program features can be implemented in a declar-
ative style, as responses to sequences of events in the program’s execution history.
One natural application of MOP is runtime verification, in which one uses MOP to
define testing oracles, notifying the user of a failed test run after having observed a
property-violating sequence of program events. However, there are other uses of MOP.
For example, one can envision using MOP to implement an auto-save feature that saves
a file after every 1000 key strokes. Our delta-oriented monitor specifications allow the
delta-oriented adaptation of monitors for the general case of MOP.

Runtime verification for software product lines. Our work on delta-oriented monitor
specifications allows monitor specifications to evolve together with delta-oriented code.
As explained above, this can be particularly useful in the area of runtime verification.
However, there are other ways to combine runtime verification with software product
lines. Kim et al. exploit the constraints imposed by a feature model, paired with a
static program analysis to restrict runtime verifications only to products that actually
have the potential of violating the property in question [11]. This approach could be
extended for delta-oriented monitor specifications, and we consider such an extension
for future work.

Typestate checking. The stateful patterns that runtime monitors match against can
also be checked statically through a mechanism called typestate checking, if appropriate
annotations are present in the code. Plaid, for example, is a programming language
for implementing software in a typestate-checkable way [1]. In Plaid, programmers
annotate methods with the effects that they have on the internal state of a (virtual)
state-based monitor. A static type-checker then verifies whether the usage of those
methods complies with the given finite-state patterns. The annotations necessary for
Plaid bear some similarities to the annotations that we propose in this paper, but
in Plaid are much more verbose. In particular, the programmer must add non-trivial
aliasing annotations.

General Runtime Verification. In earlier work [2], we have used more general finite
alternating automata with variable bindings to support verification of linear-time logics
(LTL) properties at runtime. So-called tracecheck are defined per Java-interface, and a
program is instrumented using AOP. We did not envision variable protocols, and—given
their difficult readability—are of the opinion that LTL-specifications are unsuitable
candidates to relative modifications.

An interface behaviour specification language for the actor-language Creol was pro-
posed in [8]. It is a regular language over constructor- and method invocations with
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variable bindings, which only supports matching of bound object-identities. In combi-
nation with a model checker, a Creol object can then be checked against an interface
specification through synchronous parallel composition, with the usual limitations on
state space explosion when model checking OO systems. It does not address the runtime
of a system, and does not support guards, although this could probably be added.

Conclusion We have presented a definition and implementation strategy for DMS.
Interface protocols, such as [2], for the different products in an SPL can be specified as
relative changes to the protocol of the base product, just as relative changes describe a
software product in the ABS language. Instrumentation of methods to enforce protocols
is done through deltas, as well. Protocol deltas can be generated based on our notion
of flattening a base- and delta automaton.

As future work, we will follow up on using annotations to store protocol deltas
and develop a preprocessor for the ABS toolchain. Also, we would like to formalize
calculation of the delta automata from the (graphical) specification of relative changes
as indicated in Sec. 3. This can most likely be discharged by referring to existing graph-
matching approaches. Naturally, we are also interested in applying our approach to a
non-trivial example.

Currently, one of the limitations of the ABS language is that it neither has con-
structors, nor can a class-initializer be modified by a delta. This makes it difficult to
inject, e.g., a factory for monitor-instances, where many objects communicate with
a single monitor. As an immediate workaround, all call-sites of object instantiations
would need to be instrumented, which in general cannot be done with simple advice
and an original-call, but would require code-duplication.

In this paper, we have not made use of ABS as an actor language. Its release
points, where execution is suspended until a boolean condition on the object state
holds, could be used to alternatively model the protocol: in an actor-based, or even
distributed system, in our opinion it would feel much more natural to ignore a “bab-
bling” participant which sends messages out of turn, instead of terminating execution
(since, e.g., the assertions which we have used would terminate the callee, not the ac-
tually misbehaving caller). We could envision await statements on the state variable
tracking progress through the protocol. Also, the implicit identity of the caller could be
incorporated into protocols (avoiding its explicit occurrence in an argument position).
In addition, an actor-based setting would encourage the study of the use of protocols
in an asynchronous environment.
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