
7
Partially Evaluating Finite-State Runtime Monitors Ahead of Time

ERIC BODDEN, Technische Universität Darmstadt
PATRICK LAM, University of Waterloo
LAURIE HENDREN, McGill University

Finite-state properties account for an important class of program properties, typically related to the order
of operations invoked on objects. Many library implementations therefore include manually written finite-
state monitors to detect violations of finite-state properties at runtime. Researchers have recently proposed
the explicit specification of finite-state properties and automatic generation of monitors from the specifica-
tion. However, runtime monitoring only shows the presence of violations, and typically cannot prove their
absence. Moreover, inserting a runtime monitor into a program under test can slow down the program by
several orders of magnitude.

In this work, we therefore present a set of four static whole-program analyses that partially evaluate
runtime monitors at compile time, with increasing cost and precision. As we show, ahead-of-time evaluation
can often evaluate the monitor completely statically. This may prove that the program cannot violate the
property on any execution or may prove that violations do exist. In the remaining cases, the partial evalua-
tion converts the runtime monitor into a residual monitor. This monitor only receives events from program
locations that the analyses failed to prove irrelevant. This makes the residual monitor much more efficient
than a full monitor, while still capturing all property violations at runtime.

We implemented the analyses in CLARA, a novel framework for the partial evaluation of AspectJ-based
runtime monitors, and validated our approach by applying CLARA to finite-state properties over several
large-scale Java programs. CLARA proved that most of the programs never violate our example properties.
Some programs required monitoring, but in those cases CLARA could often reduce the monitoring overhead
to below 10%. We observed that several programs did violate the stated properties.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification—
Validation

General Terms: Algorithms, Experimentation, Performance, Verification

Additional Key Words and Phrases: Typestate analysis, static analysis, runtime monitoring

ACM Reference Format:
Bodden, E., Lam, P., and Hendren, L. 2012. Partially evaluating finite-state runtime monitors ahead of
time. ACM Trans. Progam. Lang. Syst. 34, 2, Article 7 (June 2012), 52 pages.
DOI = 10.1145/2220365.2220366 http://doi.acm.org/10.1145/2220365.2220366

1. INTRODUCTION AND CONTRIBUTIONS

Finite-state properties constrain acceptable operations on a single object or a group
of interrelated objects, depending on the object’s or group’s history. Typestate sys-
tems [Strom and Yemini 1986], an instantiation of the idea of finite-state properties,
enable the specification and (potentially static) verification of finite-state properties for

Portions of this work were published in Bodden et al. [2007, 2008a, 2010b] and Bodden [2010].
This work was supported in part by Canada’s Natural Science and Engineering Research Council, the Ger-
man Federal Ministry of Education and Research (BMBF) within EC SPRIDE, and by the Hessian LOEWE
excellence initiative within CASED.
Author’s address: P. Lam; email: p.lam@ece.uwaterloo.ca.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permission may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 0164-0925/2012/06-ART7 $10.00

DOI 10.1145/2220365.2220366 http://doi.acm.org/10.1145/2220365.2220366

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:2 E. Bodden et al.

Fig. 1. “ConnectionClosed” finite-state property: no write after close.

program understanding and verification. One can define type systems [Bierhoff and
Aldrich 2007; DeLine and Fähndrich 2004] that prevent programmers from writing
code with typestate errors. Unfortunately, current typestate systems require elaborate
program annotations, essentially to identify statements that may access an object (and
hence modify its typestate) and variables that may or must point to the same objects
(i.e., may or must alias). Such annotations are hard to maintain, possibly explaining
in part why such type systems have not been adopted.

A more pragmatic approach is to instead monitor programs for violations of finite-
state properties at runtime. Several researchers have proposed notations and tools to
support monitoring for finite-state properties expressed using tracematches or other
formalisms [Allan et al. 2005; Bodden 2005; Chen and Roşu 2007; Krüger et al. 2006;
Maoz and Harel 2006]. The tracematches formalism combines regular expressions
with AspectJ [Kiczales et al. 2001] pointcuts to provide a high-level specification lan-
guage for runtime monitors. JavaMOP [Chen and Roşu 2007] is an open framework
for notations that can generate monitors from high-level specifications written in dif-
ferent concrete notations such as linear temporal logic, regular expressions or context-
free grammars. Runtime monitoring is appealing because monitor specifications can
be very expressive: they can reason about concrete program events and concrete run-
time objects, and thus completely avoid false warnings. However, runtime monitoring
basically amounts to testing, where the runtime monitor merely provides a principled
way to insert high-level assertions into the program under test. Testing, however, has
several drawbacks. A suite of sufficiently varying test runs may be able to identify er-
rors or strengthen a programmer’s confidence in her program by not identifying errors,
but it does not constitute a correctness proof if the test suite is not complete. Secondly,
runtime monitoring requires program instrumentation, and, as we show in this arti-
cle, this instrumentation may slow down the program under test by several orders of
magnitude, making exhaustive testing even less of an option in many cases.

In this work we therefore propose a hybrid approach that starts with a runtime
monitor but then uses static analysis results to convert this monitor into a residual
runtime monitor. The residual monitor captures actual property violations as they oc-
cur, but updates its internal state only at relevant statements, as determined through
static analysis. Unlike static type systems, our approach requires no program anno-
tations; it is fully automatic. Program annotations for state changes are replaced by
nonintrusive AspectJ pointcuts. Program annotations for aliasing constraints are not
necessary in our approach because we infer aliasing constraints through a combination
of precise pointer analyses.

Static analyses for optimizing monitors have different requirements from fully
static approaches. Consider our running example, in which programmers must not
write to a connection handle that is currently in its “disconnected” state. Figure 1
shows a nondeterministic finite-state machine for this property. It monitors a connec-
tion’s CLOSE, RECONNECT and WRITE events and signals an error at its accepting

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:3

state. (The looping transitions on the initial state implement our matching semantics,
where the runtime monitor signals an error each time it reaches a final state. Because
the machine is nondeterministic, the self-loops shown in the figure enable the monitor
to report more than one violation for a single runtime trace.) A correct runtime monitor
must observe events like CLOSE and WRITE that can cause a property violation, but
also events like RECONNECT that may prevent the violation from occurring. Missing
the former causes false negatives while missing the latter causes false positives, that
is, false warnings. Both are unacceptable, so our approach guarantees that executions
of the generated monitor have no false positives or false negatives—it may do so by
deferring some decisions until runtime. Sound static approaches that only attempt to
prove the absence of property violations but have no runtime monitoring component
[Fink et al. 2006], have no such option; deferring decisions is not acceptable. They can
only declare false positives.

We present a set of four static analysis algorithms that evaluate finite-state runtime
monitors ahead of time, with increasing precision. All algorithms analyze so-called
shadows [Masuhara et al. 2003]. The term “shadows” is popular in the aspect-oriented
programming community and refers to program locations that can trigger runtime
events of interest. The first analysis, the Quick Check, uses simple syntactic checks
only. In our example, the Quick Check may be able to infer that a program opens and
closes connections but never writes to a connection. Such a program cannot violate
the property: if there are no writes, then no write can ever follow a close operation.
The second analysis stage, the Orphan-shadows Analysis, applies a similar check on
a per-object basis. If a program opens and closes some connection c, but never writes
to c, then the analysis can rule out violations on c (but not on other connections, based
on this information). This stage uses points-to analysis to handle aliasing, that is, to
decide whether or not two variables may point to the same runtime connection object.
The third stage, the Nop-shadows Analysis, takes the program’s control-flow into ac-
count. Using a backward analysis, it first computes, for every transition statement
s (e.g., statements causing events of type CLOSE, RECONNECT or WRITE), sets of
states that are, at s, equivalent with respect to all possible continuations of the control
flow following s. The analysis then uses a forward pass to find transition statements
that only switch between equivalent states. Switching between equivalent states is
unnecessary, and the analysis removes such transitions.

As we prove, all three analysis stages are sound, that is, when an analysis asserts
that a program location requires no monitoring, then removing transitions from that
location will never alter the program locations at which the runtime monitor will (or
will not) reach its error state. However, all three analyses are also incomplete: they
may fail to identify program locations that actually require no monitoring. We there-
fore investigated and developed a fourth analysis, the Certain-match Analysis, which
reports no false positives but may miss actual violations. This analysis is thus sim-
ilar in flavor to unsound static checkers as implemented, for instance, in FindBugs
[Hovemeyer and Pugh 2004] or PMD [Copeland 2005]. The Certain-match Analysis
applies the same forward pass as the Nop-shadows Analysis, but instead identifies
program locations at which the program certainly triggers a property violation. Such
certain matches help programmers find true positives in a larger set of potential false
positives.

We have implemented our analyses in CLARA (CompiLe-time Approximation of
Runtime Analyses), our novel framework for partially evaluating runtime monitors
ahead of time [Bodden et al. 2010b; Bodden 2010]. We developed CLARA to facili-
tate the integration of research results from the static analysis, runtime verification
and aspect-oriented-programming communities. CLARA features a formally specified
abstraction, Dependency State Machines, which function as an abstract interface,

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:4 E. Bodden et al.

decoupling runtime monitors from their static optimizations. The analyses that we
present in this article therefore apply to any runtime monitor implemented as an As-
pectJ aspect that uses Dependency State Machines. Our analyses are therefore com-
patible with a wide range of state-of-the-art runtime verification tools [Allan et al.
2005; Bodden 2005; Chen and Roşu 2007; Krüger et al. 2006; Maoz and Harel 2006],
if they are extended to produce Dependency State Machines. We ourselves have suc-
cessfully used CLARA in combination with tracematches and JavaMOP [Bodden 2009;
Bodden et al. 2009].

To evaluate our approach, we applied the analysis to the DaCapo benchmark suite
[Blackburn et al. 2006]. In our experiments, in 68% of all cases CLARA’s analyses can
prove that the program is free of program locations that could drive the monitor into
an error state. In these cases, CLARA statically guarantees that the program can never
violate the stated property, eliminating the need for runtime monitoring of that pro-
gram. In other cases, the residual runtime monitor will require less instrumentation
than the original monitor, therefore yielding a reduced runtime overhead. For moni-
tors generated from a tracematch [Allan et al. 2005] specification, in 65% of all cases
that showed overhead originally, no overhead remains after applying the analyses.
The Certain-match Analysis, on the other hand, does not appear to be very effective:
in our benchmark set, it could only identify a single match as certain, even though our
runtime monitors signal several matches at runtime. Due to the design of our analyses
and the CLARA framework, our analyses are equally effective on any runtime monitor
for a given property, independent of the source of the monitor.

To summarize, this article presents the following contributions.

— A set of three static whole-program analyses that can partially evaluate finite-state
monitors ahead of time, with increasing precision

— Soundness proofs for those three analyses
— A novel Certain-Match that can determine inevitable property violations on an in-

traprocedural level
— A system for presenting analysis results to the user to support manual code inspec-

tion in the Eclipse integrated development environment
— An open-source implementation of these analyses in the context of the CLARA

framework and a large set of experiments that validates the effectiveness of our ap-
proach based on large-scale, real-world benchmarks drawn from the DaCapo bench-
mark suite

The relationship of this article to previous publications is as follows. Two of the
contributions in this article are entirely novel: the design, implementation, and evalu-
ation of the Certain-match Analysis (Section 8), and the Eclipse plugin for presenting
analysis results to developers (Section 9). This article also presents improved—more
precise or faster—versions of two previously presented static analyses for eliminating
unnecessary monitoring points (see Section 11.3 for details), and presents a complete
description of the Nop-shadows Analysis (Section 7), for the first time, including its
handling of pointers and interprocedural effects. We have also improved the presenta-
tion of the soundness proofs for the static analyses from Bodden’s Ph.D. thesis 2009.
In summary, this article presents a consolidated view of the entire CLARA framework,
notably including all of its static analyses, the relevant correctness proofs, and a full
evaluation, in a single publication.

2. RUNNING EXAMPLE

We continue by presenting a specification for the ConnectionClosed finite-state prop-
erty and explaining how our static analyses can analyze programs for conformance

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:5

Fig. 2. “ConnectionClosed” aspect with Dependency State Machine.

with this property. In particular, we will demonstrate how our analyses behave on
code that always violates the property, code that sometimes violates the property, and
code that never violates the property.

Recall that the ConnectionClosed property specifies that programs may not write to
closed connections. Figure 2 presents a textual specification of the ConnectionClosed
property using Dependency State Machines, CLARA’s intermediate representation for
runtime monitors. Specifications in CLARA consist of an AspectJ aspect (implementing
a runtime monitor for the property), augmented with additional annotations that aid
static analysis. The example aspect consists of three pieces of advice (lines 4–13) that
intercept disconnect, reconnect, and write events. When disconnecting a connection,
the CLOSE advice places the closed connection object into the set closed. When the
connection is re-connected, the RECONNECT advice removes it from the set again. Fi-
nally, the WRITE advice issues an error message upon any write to a connection in the
closed set. Note that the aspect uses its own data structure—the set in line 2—to keep
track of closed connections. CLARA seeks to be independent of such internal implemen-
tation details. The aspect therefore carries an additional, CLARA-specific annotation
in lines 15–25: the monitor’s Dependency State Machine. This state machine encodes
the internal transition structure of the pieces of advice that implement the monitoring
logic. Note that this is a textual representation of the state machine from Figure 1. We
will formally define the semantics of Dependency State Machines in Section 4. Bodden
[2009] presents the formal syntax for these annotations.

The design of Dependency State Machines in CLARA allows them to function as
an abstract interface, bridging the efforts of the static analysis community to efforts
of the runtime verification community. Many state-of-the-art runtime verification
tools generate monitors in the form of AspectJ aspects, because such aspects offer a

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:6 E. Bodden et al.

Fig. 3. “ConnectionClosed” tracematch.

convenient and declarative way to define the program points that require instru-
mentation. Figure 3, for example, shows a high-level tracematch [Allan et al. 2005]
specification for ConnectionClosed. Tracematches allow programmers to match on the
execution history via a regular expression over AspectJ pointcuts. Line 2 states that
the tracematch reasons about one connection c at a time. Lines 3–5 define the set of
events that the monitor wishes to process. The events form symbols of an alphabet
(hence the keyword sym), and line 7 uses this alphabet to define the regular expression
“CLOSE+ WRITE”. The body (lines 7–9) will therefore execute after one or more
disconnects, followed by a write, as long as there is no intervening reconnect. The
tracematch implementation generates an AspectJ aspect similar to the one we showed
in Figure 2 from this specification. Other runtime verification tools also generate
similar aspects from their specification languages. By augmenting an aspect with a
Dependency State Machine annotation, a tool can easily make its generated aspects
available for CLARA to analyze and optimize. In our experiments, we will focus on
optimizing runtime monitors from tracematches. However, in previous work [Bodden
et al. 2009], we have shown that our analyses are equally effective on monitors
generated from other types of high-level specifications. The only requirement for
CLARA’s clients is that the provided Dependency State Machine annotations must be
semantically equivalent to the annotated runtime monitor. In Section 4.1 we provide
a full dynamic semantics of Dependency State Machines, which clients can use to
prove that the provided Dependency State Machine annotations are indeed correct.

Next, we discuss our analysis of ConnectionClosed on the code in Figure 4.
Figure 4(a) always triggers the final state of the monitor, since it contains a connection
close followed by a write on the same connection. Our Certain-match Analysis will de-
termine that it always triggers the final state. It does so by performing a flow-sensitive
propagation of possible states for the connection c; after line 2, the connection is in the
initial “connected” state. Following the CLOSE and WRITE transitions, our analysis
can deduce that the connection is sure to reach the final “error” state.

Our remaining analyses are staged: CLARA runs a series of analyses in turn, from
least computationally expensive to most expensive. The idea is to do as little work
as possible to try to guarantee that programs do not violate properties. The first
stage, Quick Check, therefore only collects the labels of transitions in the program,
and eliminates the transitions that never affect whether the program triggers a final
state. The second stage, Orphan-shadows Analysis, sharpens this information with
pointer information. Finally, the third stage, Nop-shadows Analysis, is flow-sensitive:
it uses information about the ordering of potential transitions in the program to rule
out transitions that can never trigger the final state. CLARA then groups the remain-
ing transitions into potential failure groups, using points-to information: transitions
that can potentially affect the same object appear in the same group. As we explain in
Section 9, this eases manual code inspection.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:7

Fig. 4. Example programs.

Figure 4(b) presents one example of a program that never triggers the final tran-
sition. In this case, the program contains both WRITE and CLOSE transitions, so
the Quick Check cannot remove these transitions. However, our pointer analysis finds
that the connection objects c1 and c2 are distinct, so that no single object executes both
the WRITE and CLOSE transition. The Orphan-shadows Analysis therefore instructs
CLARA to remove both transitions in Figure 4(b).

Figure 4(c) also never triggers the final state, even though it contains all of the nec-
essary transitions on appropriate objects. The analysis must track object abstractions
through their potential states. In particular, our Nop-shadows Analysis establishes
that the connection starts in its initial state after instantiation at line 2. Next, it fol-
lows the transitions in lines 3 and lines 4 to reason that these lines never trigger the
monitor. Finally, since connection c does not escape the main method, the analysis can
conclude that no other transition in the program affects c, so that none of the tran-
sitions on c in the main method affect a possible match. Note that it is much harder
to prove that transitions are unnecessary than that they are necessary (as we did for
Figure 4(a)).

Finally, Figure 4(d) illustrates a program for which no static analysis can determine
whether or not the final state is triggered, in this case because the transitions taken
depend on program input. Each of our analyses would state that each transition could
occur and has a potential effect on the state machine.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:8 E. Bodden et al.

Parameterized Traces. Every program run generates a parameterized trace [Chen
and Roşu 2009] over the pieces of advice applicable to that run. (The traces are pa-
rameterized by object identities.) We reason about these traces by using abstract pa-
rameterized runtime traces, which are sequences of sets of abstract events. Sets of
abstract events enable us to account for the fact that every concrete program event
(e.g., method calls) can potentially be matched by a number of overlapping pieces of
advice. Section 4 formally defines the semantics of dependency state machines over
abstract parameterized runtime traces.

For instance, consider the program from Figure 4(b). This program generates the
parameterized trace “{CLOSE(c �→ o(c1))}{WRITE(c �→ o(c2))}”: the “disconnect”
method call is only matched by the CLOSE piece of advice, and this piece of advice
binds the aspect’s variable c to o(c1), the object referenced by c1. Similarly, the “write”
method call is only matched by the WRITE piece of advice and binds c to o(c2). Pa-
rameterized traces give rise to “ground” traces by projection onto compatible variable
bindings. In this example, we can project onto c �→o(c1) and c �→o(c2). Projection onto
c �→o(c1) yields the trace “close”, while c �→ o(c2) yields the trace “write.” Neither pro-
jected trace belongs to the language that the Dependency State Machine in Figure 2
accepts.

The program from Figure 4(a) yields the trace “{CLOSE(c �→o(c))} {WRITE(c
�→ o(c))}.” Here, projection onto c �→o(c) yields the ground trace “close write”, which is
in the language of the Dependency State Machine, indicating that this program may
(and indeed will) violate the property that this Dependency State Machine describes.

3. CLARA FRAMEWORK

CLARA (CompiLe-time Approximation of Runtime Analyses) is a novel research frame-
work for partially evaluating runtime monitors ahead of time. We developed CLARA
to support easy implementations of the analyses presented in this article, and to facil-
itate the integration of research results from the static analysis, runtime verification
and aspect-oriented programming community in general. CLARA’s major design goal
is to decouple code generation for efficient runtime monitors from the static analyses
that convert these monitors into optimized, residual monitors that are triggered at
fewer program locations. In this work, we provide a brief summary of CLARA’s de-
sign; previous work [Bodden et al. 2010b] and the first author’s dissertation [Bodden
2009] give a more detailed account. CLARA is available as open-source software at
http://bodden.de/clara/.

Figure 5 gives an overview of CLARA. At the beginning of the work flow (top right)
stands a component designer who wrote an application interface (API), which comes
with usage requirements expressed as finite-state properties. In our running example,
this would be the programmer who initially provides the “Connection” API. As part
of the API, the designer specifies a runtime monitor that captures property violations
at runtime, for instance as a tracematch. Further, the programmers uses a runtime-
verification tool to automatically translate the high-level specification into an AspectJ
aspect, annotated with a Dependency State Machine. We extended the tracematch
implementation so that it automatically annotates the aspects that it generates. The
authors of JavaMOP [Chen and Roşu 2007] are currently in the process of extending
their tool accordingly, and many other runtime verification tools will likely support
Dependency State Machines in the future.

The programmer invokes CLARA with the aspect-based monitor definition and a
program as inputs. CLARA compiles the code of the runtime monitor and “weaves”
the monitor into the program under test, that is, instruments the program with code
that notifies the monitor about state transitions that the program performs. (CLARA

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:9

Fig. 5. Overview of CLARA.

uses the AspectBench Compiler [Avgustinov et al. 2005] for weaving.) CLARA then
invokes its static analysis engine, which may include third-party static analyses.
These analyses collect information about the finite-state property to approximate the
set of relevant instrumentation points. Whenever an analysis declares that an in-
strumentation point does not affect whether or not the program violates the property,
CLARA disables the instrumentation for this property at this point. The result is an
optimized instrumented program that updates the runtime monitor only at program
points at which instrumentation remains enabled.

Our Certain-match Analysis also reports certain matches to the programmer.
Such matches denote program locations that certainly lead to a property violation if
executed.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:10 E. Bodden et al.

CLARA outputs a list of potential failure groups. Each group is a set of shadows
containing a single potential point of failure, that is, a shadow at which the program
may violate the stated property at runtime, along with a set of context shadows, which
trigger events on the same objects as the potential point of failure, and hence may
contribute to the property violation. This presentation of our analysis results was
particularly useful for manual inspection.

4. DEFINITIONS

We now provide a formal description of finite-state runtime monitors. These definitions
allow us to reason formally about the correctness of our static analyses.

4.1. Runtime Monitors

We begin by stating standard definitions from automata theory.

Definition 1 (Finite-State Machine). A nondeterministic finite-state machine M is a
tuple (Q,�, q0,�, QF), where Q is a set of states, � is a set of input symbols, q0 the
initial state, � ⊆ Q × � × Q the transition relation and QF ⊆ Q the set of accepting
(final) states.

We will also call final states “error states.” We consider that a finite-state property
has been violated when the state machine associated with the property reaches a final
state. (In that sense, our properties are negative properties that describe forbidden
behavior.)

Definition 2 (Words, Runs and Acceptance). A word w = (a1, . . . , an) is an element
of �∗; word w has length |w| = n. We define a run ρ of M on w to be a
sequence (q0, qi1 , . . . , qin) that respects the transition relation �; that is, ∀k ∈
[0, n). ∃ak. (qik, ak+1, qik+1) ∈ �, with i0 := 0. A run ρ is accepting if it finishes in an
accepting state, i.e. qin ∈ QF. We say that M accepts w, and write w ∈ L(M), if there
exists an accepting run of M on w.

We further require the notion of a prefix.

Definition 3 (Set of Prefixes). Let w ∈ �∗ be a �-word. We define the set pref (w) as:

pref (w) := {p ∈ �∗ | ∃s ∈ �∗ such that w = ps}.
Definition 4 (Matching Prefixes of a Word). Let w ∈ �∗ be a �-word and L ⊆ � a

�-language. Then we define the matching prefixes of w (with respect to L) to be the
set of prefixes of w also belonging to L:

matchesL(w) := pref (w) ∩ L.

We write matches(w) instead of matchesL(w) if L is clear from the context.

CLARA uses finite-state machines to model and implement runtime monitors.
CLARA first generates a finite-state machine from the provided monitor definition.
It then instruments the program under test such that the program will issue a trace
(effectively a word in �∗) when executed. The finite-state machine reads this trace
as input. The instrumented program executes the monitor’s associated error handler
whenever the machine reaches an accepting state, that is, whenever the prefix of the
trace read so far is an element of L.

Generalizing to Multiple Monitor Instances. It would be a severe restriction to allow
for only one monitor instance at runtime. Consider ConnectionClosed from Section 1.
Programs typically use many simultaneously active connection objects, where each

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:11

connection object could be in a different state. Modern runtime monitoring systems
therefore allow the user to define parametric runtime monitors [Chen and Roşu 2009].
A parametric monitor effectively comprises a set of monitors, one monitor for every
variable binding. CLARA’s semantics is defined over parametric monitors, which we
now define.

Definition 5 (Variable Binding). Let O be the set of all runtime heap objects and V a
set of variables appearing in monitor specifications. Then we define a variable binding
β as a partial function β : V ⇀ O. We call the set of all possible variable bindings B.

Due to variable bindings, runtime monitoring does not operate on a single trace from
�∗, but rather on a parametrized trace, consisting of a trace of parametrized events.
Parametrized events associate bindings with events.

Definition 6 (Parametrized Event). A parametrized event ê is a set of pairs (a, β) ∈
� ×B. �̂ is the set of all parametrized events. A parametrized trace is a word from �̂∗.

We use sets of pairs because one program event can yield multiple monitoring
events. This occurs when multiple monitors listen for the same program events.

Every monitored program will generate a parametrized event trace when it exe-
cutes. The instrumentation that CLARA inserts into the program notifies the runtime
monitor at every event of interest about the monitor transition symbol a ∈ � as well as
the variable binding β ∈ B identifying all monitor instances that need to process the
event.

For instance, executing the program from Figure 4(b) with the ConnectionClosed
monitoring aspect from Figure 2 yields the following parametrized trace:

{(CLOSE, c �→ o(c1))} {(WRITE, c �→ o(c2))}
Here, o(v) represents the object referred to by program variable v.

However, monitor instances are ordinary finite-state machines, which process sym-
bols from the base alphabet �, rather than parametrized events from �̂. We therefore
project the unique parametrized program trace that the program generates onto a set
of ground traces: words over �. Every ground trace is associated with a binding β and
contains all events whose bindings are compatible with β.

Definition 7 (Compatible Bindings). Let β1, β2 ∈ B be two variable bindings. These
bindings are compatible if they agree on the objects that they jointly bind:

compatible(β1, β2) := ∀v ∈ (dom(β1) ∩ dom(β2)). β1(v) = β2(v).

Definition 8 (Projected Event). For every parametrized event ê and binding β we de-
fine a projection of ê with respect to β:

ê↓β := {a ∈ � | ∃(a, βa) ∈ ê such that compatible(βa, β)}.
Definition 9 (Parametrized and Projected Event Trace). Any finite program run in-

duces a parametrized event trace t̂ = ê1 . . . ên ∈ �̂∗. For any variable binding β we
define a projected trace t̂↓β ⊆ �∗ by only keeping events compatible with β. Formally,
t̂ ↓ β is the smallest subset of �∗ for which, if e f (i) := êi ↓ β for all i ∈ {1, . . . , n}, with
f : [1, n] → [1, m] order-preserving and m ≤ n, then

e1 . . . em ∈ t̂↓β.

In the following we will call traces like t, which are elements of �∗, ground traces, as
opposed to parametrized traces, which are elements of �̂∗.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:12 E. Bodden et al.

In our semantics, a runtime monitor will execute its error handler whenever the
prefix read so far of one of the ground traces of any variable binding is in the lan-
guage described by the state machine. We exclude the empty trace (with no events)
because this trace cannot possibly cause the handler to execute: empty traces contain
no events, while we require handlers to see at least one event before executing. This
yields the following definition.

Definition 10 (Set of Nonempty Ground Traces of a Run). Let the trace t̂ ∈ �̂∗ be the
parametrized event trace of a program run. Then the set groundTraces(t̂) of nonempty
ground traces of t̂ is:

groundTraces(t̂) :=

⎛
⎝⋃

β∈B
t̂↓β

⎞
⎠ ∩ �+.

We intersect with �+ to exclude the empty trace.

Definition 11 (Matching Semantics of a Finite-State Runtime Monitor). Let M :=
(Q,�, q0,�, QF) be a finite-state machine. Let t̂ ∈ �̂∗ be a parametrized event trace
generated by a program execution. We say that t̂ violates the property described by M
at position i when:

∃t ∈ groundTraces(t̂). ∃p ∈ matchesL(M)(t). |p| = i.

By our definition of runtime monitoring, the monitor will execute its error handler
at every position i at which t̂ violates the monitored property.

Correct Definitions of Dependency State Machines. In the future we expect run-
time verification tools that currently generate runtime monitors as AspectJ aspects
to instead generate aspects annotated with Dependency State Machines. That way,
the monitors become automatically analyzable by CLARA. The only requirement on
CLARA’s clients, that is, on the runtime verification tools, is that the semantics of the
generated Dependency State Machine (as defined by Definition 11) must coincide with
the semantics of the annotated monitor. Such proofs are simple to conduct for the two
tools we tried, tracematches and JavaMOP, and we expect them to also be simple for
other finite-state runtime monitoring tools.

4.2. Statically Optimizing Parametrized Monitors

Our definition of the matching semantics for finite-state runtime monitors states when
a runtime monitor needs to trigger on an input trace t̂. Any sound static optimization
of such runtime monitors must obey this semantics, that is, must guarantee that
the monitors trigger (or don’t trigger) exactly at the same times with or without the
optimization.

We next define a runtime predicate called mustMonitor that, for every symbol a ∈ �,
every parametrized trace t̂, and every position i ∈ N in this trace, returns true when
a-transitions must be monitored at position i of t̂ according to the given semantics
and false when the transition need not be monitored, that is, when processing of the
a-transition may safely be omitted.

mustMonitor : � × (�̂)∗ × N → B

mustMonitor(a, t̂, i) := ∃t ∈ groundTraces(t̂) such that necessaryTransition(a, t, i).

The mustMonitor predicate depends on the predicate necessaryTransition(a, t, i).
This predicate is a free parameter to our semantics, enabling the use of any suitable

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:13

Fig. 6. Example automaton to illustrate Quick Check.

definition of necessaryTransition. Our semantics demand that necessaryTransition
must meet the following soundness condition.

Condition 1 (Soundness Condition for necessaryTransition). Any sound implemen-
tation of necessaryTransition must satisfy:

∀a ∈ �. ∀t = a1 . . . ai . . . an ∈ �+. ∀i ∈ N.
a = ai ∧ matchesL(a1 . . . an)
= matchesL(a1 . . . ai−1ai+1 . . . an)

=⇒ necessaryTransition(a, t, i).

In other words, a transition a must be monitored at position i whenever not moni-
toring a at i would change the set of matches for a runtime monitor. Note that it is only
possible to approximate necessaryTransition; the optimal function is uncomputable
because it would require knowledge about future events: the most accurate possible
necessaryTransition requires that, while observing the i-th event, one would need to
know whether the remainder of the trace will or will not lead to further matches.

Sections 5 through 7 define three different approximations to necessaryTransition
that are computable at compile time. We will prove that these approximations imply
the soundness condition.

5. SYNTACTIC QUICK CHECK

The Quick Check is, as the name suggests, a simple analysis that can execute within
milliseconds. This analysis rules out transitions that have no effect because they are
unreachable or have no effect in the program under analysis. The Quick Check uses
only syntactic information that is available to the compiler after it inserts runtime
monitoring instrumentation; it runs in time polynomial in runtime monitor size and
linear in program size.

Examples and Discussion. As an example, consider again the ConnectionClosed au-
tomaton from Figure 1 in combination with a program that closes and perhaps re-
connects connection objects but never writes to them (for instance, the program from
Figure 4(a) without line 4). In this case, the Quick Check first removes all WRITE-
transitions from the finite-state machine. Next, the algorithm finds that all states
have become unproductive.1 This way, the Quick Check correctly determines that no
symbol requires monitoring.

The Quick Check sometimes eliminates only some of the transitions in a finite-
state machine. Consider the automaton in Figure 6. In this example, if the program
can produce all events except b events, then the Quick Check will reduce the state
machine to states 0, 2, and 3. Along the remaining acyclic path through the automaton,

1A productive state is a state that is reachable from an initial state and from which some final state can be
reached.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:14 E. Bodden et al.

the symbols c and d change the machine’s state, and hence require monitoring. The
symbol a, however, does not require monitoring: on the remaining productive states
0, 2, and 3, a-transitions always loop. The Quick Check would report that b must be
monitored, but that is moot, since b events cannot occur in our program.

Similarly, consider the case where the program can produce all events but d events.
The Quick Check would determine that symbols a, b and c require monitoring: a and
b because they transition from one productive state to another, and c because states
1 and 3 have no outgoing c-transition and therefore would possibly reject words when
reading a c.

To clarify the last point, assume a program that generates a trace “a c b .” The
monitor should not trigger on this trace because “a c b” is not in the language of this
finite-state machine. But if we failed to monitor c, then the state machine would ef-
fectively only observe the partial trace “a b .” This trace would drive the finite-state
machine into its final state, which would be incorrect. This point applies to our subse-
quent analyses as well.

The Quick Check generally works well in cases where properties do not apply to the
program under test. For instance, in the ConnectionClosed example, the Quick Check
would succeed only if the program either never closes connections or never writes to
them. One may wonder why monitors would track properties that a program can obvi-
ously never violate. We envision a scenario in which monitors and programs are writ-
ten by different people. In our example, the monitor for the ConnectionClosed property
would be written by the developers of the Connection interface, and distributed along
with that interface. The library developers cannot know in advance which parts of the
distributed properties actual programs will use.

Algorithm. Algorithm 1 computes a set of symbols that need monitoring, given a set
L of labels that occur. First, the set �L filters out transitions from the monitor carrying
labels that do not occur in the program. Next, the set Qp retains only productive states
from Q—states that are reachable through �L from the initial state q0 and can reach
some final state in QF. The set of productive transitions �p then retains from �L
only those transitions that lead from and to productive states. Finally, the algorithm
returns the set of symbols either appearing in nonlooping productive transitions or for
which a productive state has no outgoing transition at all. The latter class of symbols
must remain, as they cause input words to be rejected.

Algorithm 1 Compute symbols required under Quick Check.
Input: set L of labels of all transition statements in the program
Output: set symbolsThatNeedMonitoring
1: let �L = {(qs, a, qt) ∈ � | a ∈ L} in
2: let Qp = {q ∈ Q | ∃ path in �L from q0 to q ∧ ∃ path in �L from q to q f ∈ QF} in
3: let �p = {(qs, a, qt) ∈ �L | qs ∈ Qp ∧ qt ∈ Qp} in
4: return {a ∈ � | ∃qs ∈ Qp. ((∃qt ∈ Qp. (qs, a, qt) ∈ �p ∧ qs
= qt) ∨

(¬∃qt ∈ Qp. (qs, a, qt) ∈ �p))}

To connect the Quick Check to CLARA’s optimization engine, we simply define a
new predicate necessaryTransitionQC as an instantiation of the predicate necessary-
Transition:

necessaryTransitionQC(a, t, i) := a ∈ symbolsThatNeedMonitoring.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:15

Soundness of the Quick Check. To show that the Quick Check meets the soundness
condition from Section 4 we need to show the following:

∀a ∈ � ∀t = a1 . . . ai . . . an ∈ �+ ∀i ∈ N :
a = ai ∧ matchesL(a1 . . . an)
= matchesL(a1 . . . ai−1ai+1 . . . an)

=⇒ necessaryTransitionQC(a, t, i)

PROOF. Follows immediately from Algorithm 1. Assume matchesL(a1 . . . an)
=
matchesL(a1 . . . ai−1ai+1 . . . an). Because the matches sets differ, we know that after hav-
ing read the prefix a1 . . . ai−1, the automaton must either move from one productive
state to another (ensured by the first disjunct of the return value and the definition of
�p) or it must move to no state at all (ensured by the second disjunct). In either case,
a ∈ symbolsThatNeedMonitoring, so necessaryTransitionQC(a, t, i) holds.

6. FLOW-INSENSITIVE ORPHAN-SHADOWS ANALYSIS

The flow-insensitive Orphan-shadows Analysis sharpens the results of the Quick
Check by taking pointer information into account: it removes transitions that are in-
effective because they are bound to objects that never match. The Orphan-shadows
Analysis runs in time polynomial in runtime monitor size and in shadow count; it in-
curs setup overhead beyond the Quick Check, though, because it relies on points-to
information. In particular, the Orphan-shadows Analysis models runtime objects us-
ing the static abstraction of points-to sets. For any program variable p, the points-to
set pointsTo(p) is the set of all allocation sites, as represented by new statements, that
can reach p through a chain of assignments.

Example and Motivation. Recall the example from Figure 4(b), which never
matched because the CLOSE and WRITE events occurred on different objects: the
points-to set for variable c1 referenced at line 4 would contain the new statement at
line 2, while the points-to set for variable c2 referenced at line 5 would contain the new
statement at line 3. The points-to sets pointsTo(c1) and pointsTo(c2) would be disjoint:
it is impossible for c1 and c2 to point to the same object.

At runtime, variable bindings β connect monitor variables to runtime heap objects.
Points-to sets can serve in the place of these heap objects, and we denote static variable
bindings that use points-to sets by β̃. Static variable bindings summarize runtime
bindings. That is, let v be a monitor specification variable and o be a runtime object.
Then β(v) = o implies that o was created at one of the new statements n such that
n ∈ β̃(v).

Bindings are critical to matching. A runtime monitor only reaches its error state
after having processed appropriate transitions with a “compatible variable binding.”
That is, each pair of transitions comes with bindings βi and β j; we require that, for
each pair of transitions leading to a match, compatible(βi, β j).

We statically approximate variable bindings using points-to sets. To do so, we define
a static approximation stCompatible of the compatibility predicate compatible. Instead
of requiring equality as in the runtime case, we instead declare two bindings to be
statically compatible when their points-to sets overlap on their joint domains. That is,
variables in common may possibly be assigned the same objects at runtime:

stCompatible(β̃1, β̃2) := ∀v ∈ (dom(β̃1) ∩ dom(β̃2)). β̃1(v) ∩ β̃2(v)
= ∅.

Shadows. Programs contain shadows, which are static program points causing
finite-state machine transitions. Pointcuts in the declaration of the dependency state

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:16 E. Bodden et al.

Algorithm 2 Compute symbols required under Orphan-shadows Analysis
Output: set necessaryShadows
1: function compSyms(s) = { l ∈ L | ∃s′ ∈ S . stCompatible(s, s′) ∧ l = label(s′)}
2: return {s ∈ S | label(s) ∈ QuickCheck(compSyms(s))}

machine induce shadows. Each shadow binds some number of variables. At run-
time, shadows cause events, and their variables become bound to heap objects. We
use points-to sets to approximate the heap objects occurring in variable bindings. We
denote the set of all shadows by S.

We say that two shadows s1 and s2 are compatible, and write stCompatible(s1, s2), if
their bindings are statically compatible. Like most points-to analysis clients, our static
analysis exploits the negation of stCompatible: it disregards transitions or events that
can, in combination, only lead to incompatible variable bindings. Such events clearly
cannot drive the runtime monitor into an error state.

Algorithm. Algorithm 2 presents the algorithm for the Orphan-shadows Analysis.
This algorithm runs the Quick Check once for each shadow s. Each invocation of the
Quick Check is told that only the labels for shadows compatible with s exist. Then
s is necessary for Orphan-shadows Analysis iff, considering only the set of shadows
compatible with s, the Quick Check declares that s is necessary.

To connect the Orphan-shadows Analysis to CLARA’s optimization engine, we pro-
ceed analogously to the Quick Check, and define the predicate necessaryTransition-
OSA, as a second instantiation of necessaryTransition:

necessaryTransitionOSA(a, t, i) := shadow(ai) ∈ necessaryShadows

6.1. Soundness of the Orphan-Shadows Analysis

To show soundness for the Orphan-shadows Analysis (as per Section 4) we must show:

∀a ∈ � ∀t = a1 . . . ai . . . an ∈ �+ ∀i ∈ N :
a = ai ∧ matchesL(a1 . . . an)
= matchesL(a1 . . . ai−1ai+1 . . . an)

=⇒ necessaryTransitionOSA(a, t, i)

PROOF. Assume matchesL(a1 . . . an)
= matchesL(a1 . . . ai−1ai+1 . . . an). As with the
Quick Check, after having read the prefix a1 . . . ai−1, the automaton must either move
from one productive state to another or it must move to no state at all (because no
current state has a ai-transition). In either case, the disequality implies that the tran-
sition at position i must have a variable binding compatible with all bindings of all
transitions at positions 1 through n. Therefore, by construction, it must hold that
shadow(ai) ∈ necessaryShadows and hence necessaryTransitionOSA(a, t, i).

6.2. Benefits of a Demand-Driven Pointer Analysis

To compute points-to sets we use the demand-driven, refinement-based, context-
sensitive, flow-insensitive pointer-analysis by Sridharan and Bodı́k 2006. Context-
sensitive analyses distinguish objects that are allocated in different calling contexts
but using the same allocation sites, for instance, multiple iterators that are all instan-
tiated by calling the same iterator() method in the Java runtime library. Sridharan
and Bodı́k’s analysis starts with context-insensitive information computed by Spark
[Lhoták and Hendren 2003] and then refines the context-insensitive results with ad-
ditional context information on demand. This is relatively fast because the refine-
ment only needs to be computed for variables that we are interested in, that is, for

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:17

program variables that the monitor actually refers to. The pointer analysis is also
demand-driven: it computes context information up to a certain level, defined by a
user-provided quota. If the refined information is precise enough to distinguish the
computed points-to sets from others, then we are done. Otherwise, we can opt to have
the points-to set refined further with a higher quota.

To use the demand-driven approach, we augmented points-to sets with wrappers.
Upon an emptiness-of-intersection query for points-to sets pointsTo(c1) and pointsTo-
(c2), the wrappers compute a first approximation of pointsTo(c1) and pointsTo(c2).
If this approximation is sufficient to determine that pointsTo(c1) ∩ pointsTo(c2) = ∅,
then the wrappers immediately return false. Otherwise, the wrappers refine the
approximations of both points-to sets and re-iterate until finding two approximations
with empty intersection (yielding false), or until exhausting a pre-defined quota,
yielding true.

7. FLOW-SENSITIVE NOP-SHADOWS ANALYSIS

The key technical contribution in this work is our novel Nop-shadows Analysis. This
analysis is a flow-sensitive intraprocedural analysis, which incorporates interprocedu-
ral information from the flow-insensitive Orphan-shadows Analysis. Its abstractions
track, for each program statement, (1) the set of heap objects that could be in each
state of the Dependency State Machine, and (2) sets of states from which objects could
reach a final state.

Using this information, our analysis identifies nop shadows, which are shadows that
do not affect whether the Dependency State Machine can reach a final state.

Two main reasons motivated our design decision to use an intraprocedural analysis.
First, intraprocedural analyses almost always run more quickly than interprocedural
analyses, since they consider far less code. Our second reason is empirical. We man-
ually investigated the still-active instrumentation points in our benchmarks following
the application of the flow-insensitive Orphan-shadows Analysis, and found that, in
most cases, intraprocedural analysis information suffices to rule out unnecessary in-
strumentation points, when combined with coarse-grained interprocedural summary
information available from the Orphan-shadows Analysis. Most procedures appear
to locally establish the conditions that they require to satisfy the type of conditions
that we currently specify and verify with CLARA. The results presented in this article
confirm these findings.

We next explain the need for flow-sensitivity by presenting some code that exercises
our running example, the ConnectionClosed tracematch. Our first example is straight-
line code involving a single connection object; however, in Section 7.6, we discuss how
our analysis handles loops, multiple methods, and events on arbitrary combinations of
aliased objects.

7.1. Example

Figure 7 presents example code. It is annotated with a simplified version of the analy-
sis information that our analyses will compute; an explanation of this information fol-
lows. The code creates a connection and executes some operations on that connection,
all of which cause transitions on the ConnectionClosed aspect. Because our example
code only manipulates one connection object, we can defer our discussion of aliasing to
Section 7.6.1.

While this example is contrived, it demonstrates the possibilities for optimization
by taking control flow into account. (The flow-insensitive Orphan-shadows Analysis
does not suffice: both disconnect and reconnect events occur on the same object.) The
only events that must be monitored to trigger the monitor for this example at the right

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:18 E. Bodden et al.

Fig. 7. Example program, annotated with combined analysis information.

time are 1) the write at line 7 and 2) one of the two disconnect events at lines 5 and 6.
In particular, the disconnect and reconnect operations at lines 3 and 4 do not need to be
monitored: they are on the prefix of a match, but the match can be completed without
monitoring this prefix. Conversely, the operations at lines 8 to 10 do not lead to a
pattern violation and hence need no monitoring either. Soundness requires monitoring
at least one of the two disconnects at lines 5 and 6, but not both.

Using the Nop-shadows Analysis results, the compiler need only retain instrumen-
tation at lines 5 and 7, or 6 and 7—the minimal set of instrumentation points guar-
anteeing an optimized instrumented program will report an error if and only if the
unoptimized program would have reported an error.

7.2. Analysis Overview

The Nop-shadows Analysis identifies nop shadows one at a time, by combining results
from two analysis phases. The first phase uses a backward dataflow analysis to tell
apart, for every statement in a method, (1) states that may possibly lead (in the rest
of the program) to a final state (“hot states”) and (2) states that will never give rise
to a final state (“cold states”). The second phase uses a forward dataflow analysis to
compute possible monitor states at each statement s. The analysis can then identify
nop shadows by combining results from the two phases.

Let shadow s lead from q to q′. Then s must be monitored, that is, is not a nop
shadow, if there is some continuation for which q and q′ are not in the same equiva-
lence class. Two situations require shadows to remain enabled: (1) a transition at s
may move the automaton from a hot to a cold state, leading to false positives if dis-
abled; or (2) a transition from a cold state to a hot state, leading to false negatives if
disabled. In (1), disabling s may lead to false positives at runtime; because the transi-
tion is disabled, the monitor state remains hot and the monitor may therefore signal
a violation that s would have prevented. In (2), the transition moves the automaton
from cold to hot. In this case, disabling s may yield a false negative; the monitor could
fail to signal an actual violation.

We can disable s in all other cases: if, for all continuations of s, all possible source
states q and target states q′ are either all hot or all cold. Such a transition would not
change whether or not the automaton matches, and we declare that s is a nop shadow.

Dependencies between shadows require us to iterate our algorithm until it reaches
a fixed point, removing one shadow at a time.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:19

We describe the algorithm by first discussing the forward and backward phases, as
they apply to a single set of variable bindings; Section 7.6.1 presents our full abstrac-
tion, which maps Dependency State Machine states to logical formulas over binding
representatives.

7.3. Forward Pass

The forward pass determines, for each statement s, the set of automaton states that
the automaton could be in at statement s. The forward analysis works on a de-
terminized input state machine2. CLARA builds the deterministic automaton using
subset-construction:

Definition 12 (Determinizing a Nondeterministic State Machine). Let L ⊆ �∗ be a
regular �-language and let M = (Q,�,�, Q0, F) be a nondeterministic finite-state
machine with L(M) = L. Then we define the deterministic finite-state machine det(M)
as det(M) := (P(Q),�, δ, Q0, F̂) by:

δ = λQs.λa. {qt ∈ Q | ∃qs ∈ Qs such that ∃(qs, a, qt) ∈ �};
F̂ = {QF ∈ P(Q) | ∃q ∈ QF such that q ∈ F}.

Figure 8(a) reproduces the nondeterministic finite-state machine for the Con-
nectionClosed example. Figure 8(b) shows the equivalent deterministic finite-state
machine. We have assigned a fresh state number to each state in the deterministic
automaton.

In Figure 7, next to the downwards-pointing arrow, we have annotated each state-
ment with the states of the deterministic automaton just before and after executing
that statement. In this example, the program has only a single control-flow path, and
therefore our analysis will only associate a single state with each statement. How-
ever, if there are multiple control-flow paths reaching a statement s, and the execution
along these paths yields different states q1 and q2, then our analysis will associate
both q1 and q2 with s; it does not merge states. In the sequel, we will denote the set
of source states associated with s by sources(s). Also, we will refer to the deterministic
finite-state machine det(M) as Mfwd.

7.4. Backward Pass

The backward analysis determines, for every statement s, sets of states that are “hot”
at s; it finds one set for every possible continuation of the control flow after s that
reaches the final state. Like the forward analysis, the backward analysis uses a de-
terminized state machine. In particular, it uses a determinized state machine for the
mirror language L, which consists of the reverse of every word in L. Given a nondeter-
ministic finite-state machine M with L(M) = L, one can easily obtain a nondetermin-
istic finite-state machine rev(M) accepting L by reversing the transition function.

For any nondeterministic finite-state machine M,

L(rev(M)) = L(M).

Our backward analysis operates on the state machine

Mbkwd := det(rev(Mfwd)).

Note that L(Mbkwd) = L. Figure 8(c) shows the state machine that the backward anal-
ysis uses for the ConnectionClosed example. The states of Mbkwd are actually subsets

2Determinizing ensures that the state machine will be in only one state at a time. This simplifies the
backward pass, which partitions the states into equivalence classes.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:20 E. Bodden et al.

Fig. 8. Finite-state machines for Connection example.

of the state set of Mfwd; we labelled every state of Mbkwd with the corresponding state
set of det(rev(M)) (Figure 8(b)). For presentation purposes, we omitted the reject state
from the Figure; the reject state represents the empty state set. By construction,
Mbkwd is minimal. (See Brzozowski [1962] for a proof.)

The forward analysis conceptually starts at the beginning of the program execu-
tion. (Since our analyses are intraprocedural, we use Orphan-shadows Analysis to
summarize caller effects). The backward analysis, on the other hand, starts at every
statement that potentially reaches a final state, that is, at every shadow s such that
label(s) = l with an l-transition into a final state qF ∈ F.

In Figure 7, we show how the states of Mbkwd evolve through the backward analysis.
At first, the only label that can bring the ConnectionClosed monitor into a final state is
a WRITE. The analysis therefore starts immediately before every write statement. The
analysis then proceeds exactly as the forward analysis. For instance, starting in state
{2} and reading a WRITE through the automaton in Figure 8(c), the analysis infers
that the next state, just before the WRITE, is {1}. Due to the symmetries between the
analyses, we have implemented the forward and backward analyses using a common
code base; the only difference is in the inputs (state machines, control-flow graphs)
that we provide to them.

7.5. Determining Nop Shadows

The analysis information in Figure 7 enables us to identify and disable nop shadows.
Our notion of a nop shadow is related to the novel idea of continuation-equivalent

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:21

states. We say that states q1 and q2 are continuation-equivalent at a shadow s, or
simply equivalent at s, and write q1 ≡s q2, if, for all possible continuations of the control
flow after s, the dependency state machine reaches its final state at the same program
points, whether we are in state q1 or q2 at s. We formally define this equivalence
relation as follows.

For every shadow s, call the sets of states computed by the backward analysis im-
mediately after s the futures of s. Further, call the states computed by the forward
analysis immediately before s the sources of s, and for every state q in sources(s), let
target(q, s) be the target state reached after executing an s-transition from q. For in-
stance, for the disconnect statement at line 5 of Figure 7 we have:

futures(line 5) = { {}, {0, 1, 2} };
sources(line 5) = {0};

target(0, line 5) = 1.

We further define continuation-equivalence for states as:

q1 ≡s q2 := ∀Q ∈ futures(s). q1 ∈ Q ⇔ q2 ∈ Q.

A shadow is a nop shadow when it transitions between states in the same equiva-
lence class, unless the target state is an accepting state. (Because reaching a final state
triggers the monitor, such transitions have an effect even though they switch between
equivalent states.) Recall that F is the set of accepting, that is, property-violating,
states of Mfwd.

Definition 13. A shadow at a statement s is a nop shadow if:

∀q ∈ sources(s). q ≡s target(q, s) ∧ target(q, s)
∈ F.

The first conjunct states a nop-shadow transitions only between states that are in
the same equivalence class. However, if target(q, s) ∈ F, then the shadow triggers the
runtime monitor. According to CLARA’s monitoring semantics, a monitor must signal
repeated property violations every time the violation occurs; some monitors execute
error-handling code. For instance, on “c.disconnect(); c.write(); c.write()”, the monitor should
signal a violation after both WRITE events. However, the second WRITE event does
not change the monitor’s state; we have 2 = target(2, s) = 2, so we must explicitly
handle such cases.

Examples. The disconnect statement at line 5 of Figure 7 has source(s) = {0} and
target(0, s) = 1. For both sets Qfut ∈ futures(s) = { {}, {0, 1, 2} }, 0 ∈ Qfut ⇔ 1 ∈ Qfut.
Consequently, we have 0 ≡s 1. Because 1
∈ F, s is a nop shadow.

The write statement at line 7 is different. Here, source(s) = {1} and target(1, s) = 2.
The set Qfut = {2} ∈ futures(s) has 2 ∈ Qfut but 1
∈ Qfut. Hence, 1
≡s 2, that is, s is not
a nop shadow, and must therefore remain enabled.

Remark on Minimization. Although any machine accepting the mirror language
would work for the backward analysis, the definition of nop shadows explains why
we use a minimal deterministic finite-state machine: in a minimal state machine, all
(forward-)equivalent states are collapsed together. The collapsed state will be labeled
with a larger set Qfut of Mfwd states than the uncollapsed sets would have been. Hence,
after collapsing equivalent states, more sets Qfut will contain both source and target
states.

Need to Reiterate. Our example program contains several nop shadows. For in-
stance, all shadows in lines 3–6 from Figure 7 are nop shadows, and indeed it is sound

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:22 E. Bodden et al.

to disable any single shadow from that set. However, we can only remove shadows
one-by-one: after disabling a shadow, we need to recompute the analysis information
for its containing method, because disabling a shadow changes the monitor’s transi-
tion structure within the method. For instance, in our example, disabling both CLOSE
transitions at lines 5 and 6 is unsound: removing both shadows leads to the monitor
not reaching its final state at line 7.

Algorithm 3 presents the main loop of the Nop-shadows Analysis. For each shadow-
bearing method in the program, this algorithm iterates the forward and backwards
passes, along with the Orphan-shadows Analysis (when necessary), greedily removing
shadows until it reaches a fixed point. On our benchmarks, two iterations of the outer
loop always sufficed.

Algorithm 3 Main loop for Nop-shadows Analysis.
repeat

for each method m still bearing enabled shadows do
repeat

compute forward and backward analysis results for m.
if m contains nop shadows then

arbitrarily choose and remove any one nop shadow.
re-run Orphan-shadows Analysis on shadows from m.

end if
until no nop shadows remain in m.
if we have removed any nop shadows from m then

re-run Orphan-shadows Analysis on entire program.
end if

end for
until we failed to remove a nop shadow in the previous iteration

In the example, the algorithm would leave one of the shadows at lines 5–6, and the
shadow at line 7—exactly the minimal set of shadows in this case.

Figure 9 shows how often we reiterate the analysis of each method, summarizing
results over all methods from our benchmark set where Nop-shadows Analysis
applies. Observe that we iterate only a few times for the vast majority of cases—this
number is bounded by the number of still-enabled shadows in the method—and there
are only twelve cases in which we have to iterate more than ten times. There was one
method that required 78 re-iterations: fillArray in class CompactArrayInitializer
of the bloat benchmark with the FailSafeIter tracematch. This method contains a
large number of statements that modify a collection (an instruction stream).

Our simplified discussion ignored the following features of Java code:

(1) conditional control flow and loops,
(2) multiple methods with virtual dispatch,
(3) aliased objects, and
(4) more general specification patterns referring to more than one object.

In the following, we explain an analysis that takes all of these features into account.
We show that it is sound for any single-threaded Java program without reflection; in
continuing work, we are investigating the use of dynamic information for circumscrib-
ing the potential impact of reflection on program behavior [Bodden et al. 2011].

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:23

Fig. 9. Number of re-iterations per method (log scale).

7.6. Full Description of the Nop-Shadows Analysis

We next present a sound implementation of the function necessaryTransition for the
Nop-shadows Analysis. First, we motivate the need for flow-sensitive alias informa-
tion. Recall that we defined the semantics of a dependency state machine over ground
traces, which are projections of the single trace of parameterized events occurring at
runtime. Our static analysis needs an analogue of projection to extract subtraces for
different variable bindings. We next define object representatives and explain how
they are used in our abstraction.

7.6.1. Abstractions: Object and Binding Representatives. Runtime monitors associate au-
tomaton states with variable bindings, that is, mappings from free variables declared
in the dependency state machine to concrete runtime objects. Because concrete run-
time objects are not available at compile time, we use a static abstraction. We model a
runtime binding x = o(v1) ∧ y = o(v2) with a binding x = r(v1) ∧ y = r(v2), where r(vi)
is the “object representative” of o(vi). Object representatives are a static abstraction
that uniformly incorporate aliasing information from multiple alias analyses. A full
description of object representatives is beyond the scope of this article; see Bodden
et al. [2008b] for details. In brief, object representatives almost transparently sub-
stitute for runtime objects by supporting both may-alias and must-alias queries. The
must-alias relation is the equality relation for object representatives. That is, when
our implementation generates a set of two object representatives {r1, r2}, then if r1 and
r2 must-alias, we have r1 = r2, so the set reduces to {r1} = {r2}. This smaller represen-
tation saves time and memory during analysis.

At compile time, we implement object representatives as objects that are instanti-
ated with a local variable v and statement s as parameter. An object representative
hence represents the object pointed to by v at s. We omit s when it is clear from the
context, or when v has a single assignment, and write o(v). (Note that storing s is nec-
essary because our internal representation is not in Static Single Assignment Form
[Cytron et al. 1991]. If it were, s could be inferred from v.) Each object representative
r1 also has access to a flow-insensitive context-sensitive whole-program pointer analy-
sis and to intraprocedural flow-sensitive must- and must-not-alias analyses, allowing
the representative to decide aliasing relations to other object representatives r2 on a

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:24 E. Bodden et al.

Table I. Aliasing Relations between Object
Representatives

r1 ≈ r2 Object representatives may-alias
r1 = r2 Object representatives must-alias
r1
= r2 Object representatives must-not-alias

best-effort basis (while defaulting to “may alias”, denoted r1 ≈ r2). Table I summarizes
the relations between object representatives.

We call the set of all object representatives Õ. For any subset R ⊆ Õ of object
representatives, we define sets mustAliases(R) and mustNotAliases(R) as follows:

mustAliases(R) := {r′ ∈ Õ | ∃r ∈ R such that r = r′};
mustNotAliases(R) := {r′ ∈ Õ | ∃r ∈ R such that r
= r′}.

Binding representatives resemble the static bindings β̂ that we used in the Orphan-
shadows Analysis, but contain richer information: a binding representative contains
both positive and negative information. The positive information records which objects
a variable could possibly be bound to, while the negative information records which
objects a variable cannot be bound to.

Binding representatives are key to our abstraction. Our analyses maintain, for each
program statement and Dependency State Machine state, a set of binding represen-
tatives representing objects that could be in a given state (or that are hot, for the
backward pass).

We define a binding representative b ∈ B̃ as a pair (β+, β−) containing a positive
binding β+ and a negative binding β−. Both binding functions map a Dependency
State Machine’s free variables to sets of object representatives. We extend both partial
functions to total functions by mapping a free variable v to ∅ when no other mapping
for v is defined.

For example, the binding representative

({x �→ {r1, r2}, y �→ {r3}}, {x �→ {r4}})
states that x can only be bound to objects represented by both r1 and r2, and can cer-
tainly not be bound to objects represented by r4. (We can deduce r1 ≈ r2: if r1
= r2, then
x could not simultaneously be bound to both r1 and r2, while if r1 = r2, then we would
only store either r1 or r2.) Also, y can only be bound to objects represented by r3.

We sometimes choose to write binding representatives as a conjunction of equations.
For instance, one can write this binding representative as:

x = r1 ∧ x = r2 ∧ y = r3 ∧ x
= r4.

This representation allows us to easily identify and perform simplifications on binding
representatives; see Bodden [2009] for details. These simplifications can reduce self-
contradictory binding representatives to false, increasing the precision of our analysis.

Recall the important concept of compatibility, which we use to determine when a
given shadow affects an abstract state. For any variable-to-object representative bind-
ing β : V → Õ, and any binding representative b = (β+, β−), we define compatibility
between β and b :

compatible(β, (β+, β−)) := �v such that β(v) ∈ mustNotAliases(β+(v))
∨ β(v) ∈ mustAliases(β−(v)).

That is, β is incompatible with b if β binds some variable v to an object representative
that must-not-aliases some object representative in v’s positive binding, or if some
v must-aliases some object representative in v’s negative binding. Note that when

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:25

β is empty, that is, binds no variables at all, β will be compatible with any binding
representative.

Shadows may also be compatible with binding representatives. Every shadow s
induces a variable binding βs = shadowBinding(s) of type V → Õ. We will often write
compatible(s, b) in place of compatible(βs, b).

Using the notion of compatibility, we can define an inclusion relation on binding rep-
resentatives, which we will use to accelerate our analysis passes: we don’t propagate
representatives that are subsumed by other representatives. Let b1 and b2 be binding
representatives. Then b2 is at least as permissive as b1, or b1 ⊆B̃ b2, if:

b1 ⊆B̃ b2 :⇐⇒ (∀β. compatible(β, b1) → compatible(β, b2)
)
.

That is, b1 ⊆B̃ b2 if, for every variable v, every object o that can be bound to v according
to b1 can also be bound to o according to b2.

We define strictly more permissive, or ⊂B̃, in terms of ⊆B̃, as follows:

b1 ⊂B̃ b2 :⇐⇒ b1
= b2 ∧ b1 ⊆B̃ b2.

We will denote the empty binding representative, in which both binding functions
β+ and β− are undefined for all variables, by �. Note that

∀b ∈ B̃ : b ⊆B̃ �.

7.6.2. The Worklist Algorithm. We next describe the forward and backward analyses
that, together, enable us to identify nop shadows. Algorithm 4 presents the work-
list algorithm that implements our analyses. Our forward and backward analyses
both compute sets of configurations before and after each statement. A configuration
(Qc, bc) is an element of P(Q) × B̃, that is, a configuration combines a set Qc ⊆ Q of
automaton states with a binding representative bc. The underlying state set Q is the
state set of Mfwd; the forward and backward analysis operate on the same state set,
but use reversed transition functions.

While this algorithm builds on the worklist algorithm used in standard dataflow
analyses, it differs in a number of ways: 1) it integrates the results of a flow-insensitive
interprocedural analysis at call sites and returns; 2) it does not merge dataflow facts
at control-flow merges (and is hence intraprocedurally path-sensitive); 3) it processes
invididual configurations, not the entire in set for each statement at each iteration;
and 4) it prunes subsumed configurations on the fly. Section 7.6.4 describes how our
algorithm initializes the worklist. The worklist contains jobs (stmt, cs), which map
from statements to sets of configurations. For every statement stmt, wl contains a
set of configurations reaching stmt whose successor configurations must be computed.
The worklist is empty if it maps every statement to the empty set. The algorithm
also initializes mappings before and after to store previously computed configurations.
These mappings allow us to detect the fixed point.

Lines 6–7 implement an optimization. Effectively we conduct a merge operation
on each statement’s before set. However, unlike most other merge operations, ours is
lossless: it only removes redundant information, that is, configurations that are sub-
sumed by others also present in the set. The algorithm first computes the union cstemp
of the old before set and the configurations that need to be computed at the current
statement, according to the job popped from the worklist. Because the worklist maps
statements stmt to jobs, the current job is the only job for stmt, so the set cstemp holds
all information computed so far for stmt. At line 7, the algorithm removes subsumed
configurations (Qc, bc) where cstemp contains a configuration (Qc, b ′

c) with b ′
c strictly

more permissive than bc. (Any shadow that is compatible with bc will also be com-
patible with b ′

c. Hence, if (Qc, bc) causes a shadow to be identified as a necessary

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:26 E. Bodden et al.

Algorithm 4 worklist(initial, succcfg, succext, δ)

1: wl := initial
2: before := after := λstmt. ∅ // associate ∅ with every statement
3: while wl non-empty do
4: let (stmt, cs) = wl.pop() in
5: // reduce configurations so that only most permissive ones remain
6: let cstemp = cs ∪ before(stmt) in
7: let csnew = {(Qc, bc) ∈ cstemp | �(Qc, b ′

c) ∈ cstemp. bc ⊂B̃ b ′
c} \ before(stmt) in

8: let cs′ = if shadows(stmt) = ∅ then csnew

else {c′ | ∀c ∈ csnew. ∀s ∈ shadows(stmt). c′ = transition(c, s, δ)} in
9: before.put(stmt, before(stmt) ∪ cs)
10: let cs′

new = cs′ \ after(stmt) in // filter out configurations already computed
11: if cs′

new non-empty then
12: after.put

(
stmt, after(stmt) ∪ cs′

new

)
13: // add jobs for intraprocedural successor statements
14: for stmt′ ∈ succcfg(stmt) do
15: wl.put

(
stmt′, wl(stmt′) ∪ cs′

new

)
16: end for
17: // add jobs for interprocedural successor statements
18: for stmt′ ∈ succext(stmt) do
19: wl.put

(
stmt′, wl(stmt′) ∪ reachingStar

(
cs′

new, relevantShadows (stmt)
))

20: end for
21: end if
22: end while

shadow, then so will (Qc, b ′
c).) This optimization reduced the number of configurations

computed for many methods by two to three orders of magnitude.
Finally, line 7 also removes from the resulting set all configurations contained in the

before set and places the final result into csnew. Since the algorithm previously com-
puted successor configurations for these configurations (line 8), it need not recompute
this information.

The remainder of the algorithm implements the standard work-list dataflow analy-
sis algorithm, using transition as described below. Lines 17–20 handle interprocedural
control flow by adding intraprocedural edges to the beginning or end of the current
method (see Section 7.6.3 for details.)

The Transition Function. Algorithm 5 implements our transition function. For a
given configuration and shadow, the algorithm computes a set cs of successor config-
urations. Our implementation directly mirrors Avgustinov et al.’s implementation of
the tracematch runtime [Allan et al. 2005]. Because object representatives can approx-
imately stand in for runtime objects at compile time, static analysis algorithms based
on object representatives can closely resemble their corresponding runtime algorithms.

The transition function δ computes the set of target states from the shadow’s label
l and the incoming states Qc. For the forward analysis, δ is the transition function of
Mfwd, and for the backward analysis, it is the transition function of Mbkwd.

The remaining part of Algorithm 5 handles variable bindings. At runtime, the event
induced by shadow s changes the states of runtime monitors compatible with βs from
Qc to Qt. The resulting variable binding after a change is bc ∧ βs. The monitors for
all variable bindings incompatible with βs remain in Qc. Hence, the variable bindings
that remain in Qc are bc ∧ ¬βs. Lines 3–6 compute successor configurations for all the
variable bindings that move to Qt, using the function and. In lines 8–9, the algorithm

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:27

Algorithm 5 transition((Qc, bc), s, δ)
1: cs := ∅ // initialize result set
2: l := label(s), βs := shadowBinding(s) // extract label and bindings from s
3: β+ := and(bc, βs) // compute configurations for objects moving to target states
4: if β+
= ⊥ then
5: cs := cs ∪ {(δ(Qc, l), β+)}
6: end if
7: // compute configurations for objects staying in Qc

8: B− :=
⋃

v∈dom(βs)

{ andNot(bc, βs, v) } \ {⊥}

9: cs := cs ∪ {(Qc, β
−) | β− ∈ B−}

10: return cs

Algorithm 6 and((β+, β−), βs)
1: β+

new := β+, β−
new := β−

2: for v ∈ dom(βs) do
3: if βs(v) ∈ mustNotAliases(β+(v)) ∨ βs(v) ∈ mustAliases(β−(v)) then
4: return ⊥ // bindings were incompatible
5: end if
6: // add new positive binding
7: β+

new := β+
new[v �→ β+

new(v) ∪ {βs(v)}]
8: // prune superfluous negative bindings
9: β−

new := β−
new[v �→ β−

new(v) \ {r− | r−
= βs(v)}]
10: end for
11: return (β+

new, β−
new)

creates configurations for all these variable bindings that remain in Qc, using the
function andNot. We explain both functions below.

Note that the algorithm applies andNot for each bound variable v separately, follow-
ing the tracematch runtime [Allan et al. 2005]. Consider a shadow s with a variable
binding βs which binds two variables, for instance, x = r(v1) ∧ y = r(v2). Then:

β− ≡ bc ∧ ¬βs

≡ bc ∧ ¬(x = r(v1) ∧ y = r(v2))
≡ (bc ∧ ¬x = r(v1)) ∨ (bc ∧ ¬x = r(v2)).

Since our abstraction stores all information in Disjunctive Normal Form, we must
therefore return multiple configurations in this case, one for every disjunct.

Algorithms and and andNot use simplification rules to (1) return ⊥ whenever the
abstraction allows us to conclude that bc and βs are incompatible, and (2) minimize
the number of bound object representatives in the resulting binding representative,
without losing soundness or precision. Returning ⊥ means that the current config-
uration will not be propagated any further (see Algorithm 5, lines 4 and 8). This is
an essential contribution to the precision of our analysis. Minimizing the number of
bound object representatives leads to a smaller abstraction and to a smaller number
of possible configurations, thus enabling earlier termination of the worklist algorithm.

We explain our implementation of and (Algorithm 6), which adds bindings βs
to a binding representative (β+, β−). For every variable v bound by βs, the algo-
rithm compares the existing positive and negative bindings for v with the object
representative βs(v). The bindings are incompatible if βs(v) must-not-aliases some ob-
ject representative in β+(v), or if it must-aliases some object representative in β−(v).

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:28 E. Bodden et al.

Algorithm 7 andNot((β+, β−), βs, v)
1: if βs(v) ∈ mustAliases(β+(v)) then
2: return ⊥ // bindings were incompatible
3: end if
4: // negative binding redundant if it must-not-aliases a positive binding
5: if βs(v) ∈ mustNotAliases(β+(v)) then
6: return (β+, β−)
7: else // return updated binding
8: return (β+, β−[v �→ β−(v) ∪ {βs(v)}])
9: end if

The algorithm returns ⊥ for incompatible bindings. Next, in line 7, the algorithm re-
fines the positive binding by adding βs(v) to β+

new(v). We consider three cases. When
βs(v) ∈ mustAliases(β+

new(v)) already, then it will not be added to the set again (by the
design of the implementation). The case βs(v) ∈ mustNotAliases(β+(v)) was already
excluded. Hence, βs(v) will only be added if it may-aliases all object representatives
for v. Finally, in line 9, the algorithm prunes superfluous negative bindings. For in-
stance, if βs = x �→ r(v) was just added to β+

new(v), then x = r(v) implies that x
= r−
for all r− where r−
= r(v). Hence we can remove such object representatives r− from
β−

new(v)—such statements are implied by x = r(v) ∈ β+
new(v).

We implemented andNot, which updates (β+, β−) with the fact that v ∈ dom(βs) no
longer binds βs(v), as shown in Algorithm 7. First, if βs(v) must-aliases any object
representative from v’s positive binding, then the bindings are incompatible, and the
algorithm returns ⊥. Otherwise, the algorithm adds βs(v) to the negative bindings and
returns the updated binding representative. However, as with and, we avoid adding
redundant negative information when we know that βs(v) already must-not-aliases
some positive binding for v.

This concludes the description of our transition function. We return to our explana-
tion of the worklist algorithm, Algorithm 4.

7.6.3. The External-Successor Function succext. One of the contributions of this article is
a discussion of how we account for interprocedural control-flow in our intraprocedu-
ral algorithm. These are handled in lines 17–20 of Algorithm 4. Figure 10 illustrates
the analysis of a potentially recursive method m, represented by the central dark rect-
angle. The dashed arrows denote the successor function succcfg given by m’s control-
flow graph. The solid arrows represent a second, interprocedural, successor function
succext. We’ve assumed that m includes method calls, which can potentially recursively
call back to m itself; the recursion may be indirect, through intermediaries in the call
graph.

Call the set of potentially recursive call sites C. Then, configurations that we com-
puted for any c ∈ C must propagate to m’s entry statement (edge (1)) through recursion.
We also need to propagate configurations coming into c to its control-flow successor
(edge (3a)), accounting for the case where c does not infinitely recurse. Furthermore,
configurations that we computed for any of m’s exit statements must also propagate to
all potentially recursive call sites c′ ∈ C in m (edge (2)). For provably nonrecursive call
sites c′′ (as determined by our call graph), we only propagate configurations from c′′ to
its control-flow graph successor, but not to m’s entry statement (edge (3b)). Finally, we
account for the case where multiple recursive calls to m occur within a recursive call
by propagating configurations from m’s exit statement(s) to its entry statement, if m
has any potential recursion (edge (4)).

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:29

Fig. 10. Interprocedural control-flow for the current method m.

We define the function succext as follows. Let heads(m) be the set of entry statements
of m, and tails(m) the set of exit statements of m.3 Further, let recCall(m) be the set
of statements of m that contain an invoke expression through which m can potentially
call itself recursively. Conversely, nonRecCall(m) contains all statements that contain
an invoke expression through which m can certainly not be called. Then:

succext := λstmt.

⎧⎪⎪⎨
⎪⎪⎩

heads(m) ∪ succcfg(stmt) if stmt ∈ recCall(m);
succcfg(recCall(m)) ∪ heads(m) if stmt ∈ tails(m);
succcfg(stmt) if stmt ∈ nonRecCall(m);
∅ otherwise.

Observe that we add some edges from succcfg to succext. When propagating config-
urations along an edge of succext, we do more than just copy configurations from the
edge’s source statement to its target statement: while executing an external successor
edge of m, other methods may also execute and cause state transitions in the monitor-
ing state machine. To model these potential state transitions through other methods,
line 19 of Algorithm 4 adds reachingStar(cs′

new, relevantShadows(stmt)) as well as the
ordinary set of configurations cs′

new for interprocedural successors.

Functions relevantShadows, reachingPlus and reachingStar. We next define three
helper functions. reachingStar computes successor configurations after 0 or more rel-
evant shadow executions, using the flow-insensitive analysis information computed

3Because our backward analysis operates on a reversed control-flow graph, heads(m) for that analysis—the
tails of the input control-flow-graph—can contain more than one element.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:30 E. Bodden et al.

by the Orphan-shadows Analysis. reachingPlus computes successors after 1 or more
shadow executions. Both of these functions summarize the effects of the shadows in
relevantShadows.

We first define relevantShadows. If stmt contains an invoke expression, then
relevantShadows(stmt) contains all shadow-bearing statements in all methods tran-
sitively reachable through the invoke, except for statements from m itself. We exclude
m as we have explicitly accounted for its effects by adding the succext edges to the
heads and tails. If stmt is a head or tail of m, then relevantShadows(stmt) contains
all shadow-bearing statements in the entire program (excluding m). We do not know
which methods execute before or after m (even with the call graph), so we cannot re-
duce this set any further.

Given a statement stmt and a set cs of configurations just before stmt, reachingPlus
computes the set of configurations after executing at least one shadow at a statement
in relevantShadows(stmt). When a configuration c = (Qc, bc) reaches an exit point or a
recursive call site during the analysis of method m, all relevant shadows may perform
transitions on c. However, only shadows compatible with bc can change Qc. Hence, for
every binding representative b ∈ B̃ and shadow set ss ⊆ S, we define compL(b , ss) as:

compL(b , ss) := {a ∈ � | ∃s ∈ ss such that compatible(s, b) ∧ label(s) = a}.

This set contains the labels of all shadows in ss compatible with b .
We then define reachingPlus(cs, stmt) as the set of configurations reachable from

cs by applying at least one compatible shadow that is relevant to stmt. Formally,
reachingPlus(cs, stmt) is the least fixed point satisfying:

— (Qc, bc) ∈ cs ∧ l ∈ compL(bc, ss) =⇒
(δ(Qc, l), bc) ∈ reachingPlus(cs, stmt);

— (Qc, bc) ∈ reachingPlus(cs, s) ∧ l ∈ compL(bc, ss) =⇒
(δ(Qc, l), bc) ∈ reachingPlus(cs, stmt).

We further define reachingStar as the reflexive closure of reachingPlus:

reachingStar(cs, stmt) := reachingPlus(cs, stmt) ∪ cs.

Hence, reachingStar computes the set of configurations reachable from cs by execut-
ing 0 or more shadows that are relevant at stmt.

7.6.4. Initializing the Worklist Algorithm. We next explain how we initialize Algorithm 4,
which takes four parameters: initial, succcfg, succext, and δ. In forward mode, succcfg is
simply the successor function of m’s control-flow graph, succext is the interprocedural
successor function defined previously, and δ is the transition function of Mfwd. For the
backward pass, we simply invert the two successor functions, and use the transition
function of Mbkwd for δ.

We still need to define the set initial of initial configurations, which serves to initial-
ize the worklist from Algorithm 4. We show the initialization, along with subsequent
fixed-point iterations, for the forward analysis in Figure 11(a). The “iteration” box is
described in Algorithm 4; for now, consider only the “initialization” box.

We may assume, without loss of generality, that we are analyzing the first invocation
of method m; Algorithm 4 accounts for subsequent executions of m with the loop in
line 17–20. The first invocation of m enters the method through its first statement (its

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:31

Fig. 11. Initialization and iteration of forward and backward passes.

head). The configurations that can reach m’s head are those that arise starting with
the initial state set Q0 and executing any shadows outside of m, in any order, for any
variable binding (i.e., for �). Hence, for the forward analysis we define:

initial :=
{ (

h, reachingStar({(Q0,�)}, relevantShadows(h))
) | h ∈ heads(m)

}
.

We now give initial for the backward analysis. Our goal is to create jobs associat-
ing statements stmt with configurations c from which the remainder of the execution
(including the execution of stmt itself) could lead into a final state.

Figure 11(b) illustrates the initialization and iteration. Dually to the forward anal-
ysis, we assume that m will not be executed again after its current execution.

The simplest case leading to a final state is intraprocedural. We must initialize a job
when there is a “final” shadow in m itself—a shadow s labeled with a label l = label(s)
such that there exists an l-transition into a final state qF ∈ F.

However, m may also return to its caller, and then the remainder of the execution
could drive the configuration into a final state using shadows in other methods. We
therefore create jobs associating tail statements stmt of m with configurations c in
reachingPlus({F}, relevantShadows(stmt)). This is almost dual to the initialization
for the forward analysis, except we use reachingPlus, not reachingStar: we cannot
reach a final state in F from any of m’s tail statements if there are no shadows in any
other methods at all. reachingPlus only includes configurations that reach in at least
one step.

The last case is where a callee of m reaches a final state. Let this callee be invoked at
stmt. We again associate stmt with reachingPlus({F}, relevantShadows(stmt)). Here,
relevantShadows(stmt) will contain all shadows reachable through the call site stmt,
rather than all shadows in methods other than m.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:32 E. Bodden et al.

We hence initialize the backward analysis with the union of two sets. One set holds
configurations that lead into a final state within m, while the other set holds configu-
rations that could into a final state outside of m:

initial :=
let reachingConfigs = reachingPlus({(F,�)}, relevantShadows(stmt)) in

{ (stmt, {(F,�)}) | ∃s ∈ shadowsOf(stmt) : δ(F, label(s))
= ∅)} ∪
{ (tail, reachingConfigs) | tail ∈ tails(m) ∪ recCall(m) ∪ nonRecCall(m) }.

Here, δ denotes the transition function of Mbkwd, tails the return statements of m.

7.7. Optimizations for Faster Analysis

In Section 7.6.2 we discussed one important optimization that eliminated configura-
tions that were less permissive than other configurations at the same statement. We
now describe other optimizations that also decrease the analysis time.

Abstracted Call Graph. The call graph that we use to identify all shadows in the
transitive closure of an outgoing method call abstracts the call graph computed by
the points-to analysis in Spark [Lhoták and Hendren 2003]; we omit paths that never
reach a shadow-bearing method, accelerating graph look-ups. If a method invocation
cannot transitively call any shadow-bearing methods, then the call graph will not have
any call edge for the invocation and the analysis can identify the call as harmless in
constant time. In our benchmarks, abstracting the call graph was highly effective: on
average, the abstracted graph had only 4.3% of the edges of the complete graph, with
12.9% in the worst case (12984 remaining edges in bloat-FailSafeIter), and 0.02% (26
edges in fop-HasNext) in the best case.

Caching. We cache results extensively, which generally speeds up the analysis, but
seems to cause an out-of-memory error on one of our benchmarks. We cache points-to
sets, must-alias and must-not-alias analysis results for every method, and the set of
methods transitively reachable through method calls. We also cache the set of cur-
rently enabled shadows for each method. Naı̈vely caching enabled shadows does not
work: a disabled shadow must be removed from its containing method, but the re-
moval must also be visible when analyzing other methods later on—the cached list of
shadows for that method is no longer valid.

Aborting Overly Long Analysis Runs. Despite these optimizations, the Nop-shadows
Analysis still takes a long time to finish on a small number of methods. Figure 12
summarizes method peelLoops(int) from EDU.purdue.cs.bloat.cfg.FlowGraph of the
benchmark bloat. For this benchmark, our context-sensitive points-to analysis fails to
compute context information for the iterators and collections. Hence, when analyzing
this method with respect to the FailSafeIter monitor, the Nop-shadows Analysis gets
imprecise information: i1, i2 and i3 could all point to the same iterator. This leads to
a large number of possible configurations. Assume that we have a configuration with
a binding representative b := c = r(c1) ∧ i = r(i1), and we want to compute b ∧ i = r(i2).
Precise points-to information would tell us that r(i1)
= r(i2) (as the iterators cannot be
the same), so that:

b ∧ i = r(i2) ≡ c = r(c1) ∧ i = r(i1) ∧ i = r(i2)
≡ c = r(c1) ∧ false
≡ false.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:33

Fig. 12. Worst-case example for complexity of Nop-shadows Analysis (in the case of imprecise points-to
sets).

However, since we only know r(i1) ≈ r(i2), the analysis cannot reduce “c = r(c1) ∧ i =
r(i1) ∧ i = r(i2).” The many consecutive loops in peelLoops(int) greatly increase the
size and number of configurations to be computed before the analysis reaches its fixed
point. Worse yet, due to the imprecise pointer information, the analysis fails to find
nop shadows.

We therefore recorded the maximal number of configurations computed on a suc-
cessful (i.e., nop shadow-detecting) analysis run in any of our benchmarks. This oc-
curred in visitBlock(Block) of class EDU.purdue.cs.bloat.cfg.VerifyCFG, not quite
coincidentally in the same benchmark. The analysis computed 8828 configurations
before it removed a shadow from this method. We then modified the Nop-shadows
Analysis so that it would abort the analysis of a single method (thus continuing with
the next method) whenever it computed more than a fixed quota of configurations.
We defined this quota to be 15000, comfortably exceeding the 8828 observed configu-
rations. We believe that this value is high enough to yield excellent precision given
precise pointer information; our experiments also showed that it is low enough to
significantly decrease the overall analysis time in the benchmarks bloat-FailSafeIter,
bloat-FailSafeIterMap and pmd-FailSafeIterMap. (CLARA did not abort analysis runs
on any other benchmarks.)

Additionally, the benchmarks bloat, chart and pmd all use reflection in connection
with collections. Figure 13 shows a simplified version of a clone method in chart.
A shortcoming in the Java specification means that, even if an object implements
the Cloneable interface, the object is not required to implement a publicly accessi-
ble clone method. The chart developers work around this shortcoming by calling the
clone method reflectively when it exists. Such reflection confuses the Spark points-to
analysis: the analysis has no idea which class’s clone method will be called—reflection
is not modeled precisely enough in Spark. As a result, there are many possible clone
implementations to consider and the demand-driven analysis (see Section 6.2) fails to
compute context in its given quota.

7.8. Soundness of Nop-Shadows Analysis

Recall that Section 4 defined the semantics of dependency state machines and pro-
vided soundness constraints for the predicates necessaryTransition. Any constraint-
respecting implementation of necessaryTransition implies a sound analysis: if the
predicate holds, the analysis will not affect the runtime behavior of the specified

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:34 E. Bodden et al.

Fig. 13. Clone method in chart using reflection.

monitors. We now show that the Nop-shadows Analysis respects necessaryTransition.
To restate the soundness condition, any sound implementation of necessaryTransition
must respect:

∀a ∈ � ∀t = a1 . . . ai . . . an ∈ �+ ∀i ∈ N :
a = ai ∧ matches(a1 . . . an)
= matches(a1 . . . ai−1ai+1 . . . an)

=⇒ necessaryTransition(a, t, i).

Helper Definitions. We denote the transitive closure of a transition function δ by
δ∗. Also, we define the variant finite-state machine Mq to be the state machine M =
(Q,�, q0, δ, F) with an alternate initial state q ∈ Q, that is, Mq := (Q,�, q, δ, F).

Soundness of Shadow Removal. Assume that the Nop-shadows Analysis disables
a shadow s that triggers the i-th event with label(s) = ai. We will prove that, by
construction,

matches(a1 . . . ai−1aiai+1 . . . an) = matches(a1 . . . ai−1ai+1 . . . an), (1)

implying the soundness condition.
Consider a projected and therefore ground runtime trace t = a1 . . . ai . . . an ∈ �+.

For convenience, define w1 := a1 . . . ai−1, a := ai and w2 := ai+1 . . . an, that is, we have
that a1 . . . an = w1aw2. Let source := δ∗(q0, w1) and target := δ∗(q0, w1a) = δ(source, a).
Since the Nop-shadows Analysis declares shadow s to be a nop shadow, Definition 13
provides:

∀Qfut ∈ futures(s). source ∈ Qfut ⇐⇒ target ∈ Qfut ∧ target
∈ F.

From the definition of matches we know that:

∀w ∈ pref(w1). w ∈ matches(w1w2) ⇐⇒ w ∈ matches(w1aw2).

Therefore, prefixes of w1 automatically satisfy Equation 1. We need only consider
nonprefix words w where w
∈ pref(w1). But we need not consider prefixes of w1a either.
Because target
∈ F we know that w1a
∈ matches(w1aw2). Hence,

∀w ∈ pref (w1a). w ∈ matches(w1w2) ⇐⇒ w ∈ matches(w1aw2).

Therefore, without loss of generality, we consider only words w with w
∈ pref (w1a).
For such w, we need to show

w ∈ matches(w1w2) ⇐⇒ w ∈ matches(w1aw2).

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:35

Since we have w = w1aw′ ∈ (pref(w1aw2) \ pref(w1a)) and

∀Qfut ∈ futures(s). source = δ∗(q0, w1) ∈ Qfut ⇐⇒ target = δ∗(q0, w1a) ∈ Qfut,

we know that L(Msource) = L(Mtarget). Hence w is a matching prefix of w1w2 if and only
if it is a matching prefix of w1aw2.

Therefore, all that remains to be shown is that these set of states that we ap-
proximate in our forward and backward passes are correct. In particular, our im-
plementation must ensure that, for every set Qfut ∈ futures(s), the states q ∈ Qfut
are continuation-equivalent, that is, for all ground traces t, the continuation of the
program execution after reading s satisfies,

t ∈ L(Msource(s)) ⇐⇒ t ∈ L(Mtarget(s)).

Our implementation must therefore never merge state sets: merging may cause the
analysis to assume invalid equivalencies. Our worklist algorithm, Algorithm 4, en-
sures that state sets are never merged: while the algorithm does over-approximate
pointer information in various ways, it never merges configurations with differing
state sets Qc. Every configuration c = (Qc, bc) represents one element of the set
futures. Algorithm 4 propagates these configurations but never merges them. In par-
ticular, the algorithm has no special treatment for control-flow merge points: when
two different configurations reach the same statement along different paths, the al-
gorithm simply propagates both configurations; it does not attempt to merge these
configurations.

Further, the algorithm takes into account all possible continuations by propagat-
ing configurations along all possible intra- and interprocedural paths. To properly
propagate configurations, the algorithm needs to conservatively handle binding repre-
sentatives. When propagating intraprocedurally, the algorithm refines configurations’
binding representatives using simplification rules. When propagating configurations
interprocedurally along succext, the algorithm does not refine binding representatives.
Since unrefined binding representatives are at least as permissive as refined represen-
tatives, this is a sound over-approximation.

The soundness of the forward and backward analyses then follow from the fact that
we (1) initialize both analyses with configurations at all nodes where an initial (or fi-
nal) state could be reached; (2) propagate configurations along all possible control-flow
paths (or abstractions of them), taking into account all relevant shadows (as deter-
mined by relevantShadow), and (3) never merge configurations with differing state
sets.

8. CERTAIN-MATCH ANALYSIS

The analysis information obtained during the Nop-shadows Analysis also enables us
to identify shadows s that certainly drive a Dependency State Machine into its final
state. Because such shadows imply that the program is definitely violating a stated
property, developers could profitably use a list of certain matches. Formally, we define
a predicate certainMatch on shadows s ∈ S:

certainMatch(s) := ∀q ∈ sources(s). target(q, s) ∈ F.

As an example, consider again the write shadows in the the two pieces of code from
Figures 4(a) and 4(d). Let s be the write shadow in Figure 4(a). In this figure, there
is only one possible execution, and this execution yields sources(s) = {disconnected}.
Because target(disconnected, WRITE) = error ∈ F, the Certain-match Analysis will
flag the write shadow as a certain match.

On the other hand, there are two possible execution paths leading to the
write shadow in Figure 4(d). One path closes the connection while the other one

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:36 E. Bodden et al.

does not. Hence sources(s) = {connected, disconnected}. As a result, we obtain
target(connected, WRITE) = connected
∈ F, so the Certain-match Analysis will not
flag this write shadow as a certain match.

Because the Certain-match Analysis can operate on analysis information that the
Nop-shadows Analysis already computed, it has negligible compile-time cost. Further,
because the analysis only reports a certain match if the shadow in question completes
the match from all its possible source states, the Certain-match Analysis for a method
m can only yield false positives if m is actually dead, that is, cannot be reached on
any concrete program execution. The Certain-match Analysis may miss some certain
matches; for instance, it may assume that certain control-flow paths are realizable,
while the concrete program never actually realizes these paths. The Certain-match
Analysis therefore satisfies opposite design goals from the other analyses that we pre-
sented: while the other analyses are sound overapproximations that may report false
positives but never miss potential violations, the Certain-match Analysis is an un-
sound under-approximation that may miss actual violations but never reports false
positives (except for dead code, as already explained.)

9. PRESENTING ANALYSIS RESULTS FOR MANUAL CODE INSPECTION

Designing a static analysis that is both sound and precise has obvious benefits. How-
ever, we also quickly experienced the following drawback. Precise analyses are usually
complex, so when they do fall short, it is in complex situations.

In the context of CLARA, some of the shadows remaining after our analyses—
potential property violations—can be difficult to manually classify as certainly vio-
lating or certainly safe. Our hybrid approach enables the programmer to simply not
care: she can test the program with the inserted residual runtime monitor and observe
whether the monitor is actually triggered. Such an approach, however, depends on the
availability of good test cases. We therefore sought to present the static analysis re-
sults in an easily accessible way, easing the task of manual code inspection as much as
possible.

9.1. Potential Points of Failure and Potential Failure Groups

To reduce the workload on the programmer during manual inspection, we first divide
all still-enabled shadows into semantic groups. First, we select all still-enabled shad-
ows from the program that can lead the runtime monitor directly to an error state (e.g.,
all “write” shadows for the ConnectionClosed property). These are the program points
at which the runtime monitor may potentially trigger its error handler at runtime. In
the following, we will call each such shadow a potential point of failure (PPF). Next, we
use points-to sets to associate each PPF with all its context shadows, that is, with all
shadows that potentially may have driven the runtime monitor to a state from which
executing the shadow at the PPF then makes the monitor reach the final state. For ev-
ery PPF p, the context shadows of p are exactly all those shadows compatible with p.
The combination of a PPF with its context shadows is called a potential failure group
(PFG). That way, each group represents one distinct error scenario. CLARA reports its
analysis results as a list of PFGs. The first author’s dissertation [Bodden 2009] shows
that inspecting PFGs instead of individual shadows can reduce the number of items to
inspect by about 70% on average. In previous work, we also demonstrated methods to
rank the reported list of PFGs such that PFGs whose shadows likely remain enabled
only due to analysis imprecision are ranked further to the bottom of the list [Bodden
et al. 2008a]. This, in turn, causes actual property violations more likely to appear at
the top of the list.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:37

Fig. 14. Presentation of analysis results in the Eclipse IDE.

Programmers can inspect the list of PFGs in a textual format. However, such text
files may still be awkward to use. Ideally, one would like to display the analysis results
inline with the analyzed program’s source code. We therefore developed a plugin for
the Eclipse IDE that allows programmers to display the analysis results as an overlay
to the program’s code. Figure 14 shows a screenshot of this plugin on one of CLARA’s
test cases. Lines holding a shadow are highlighted in yellow and give information
about the shadow’s abstract symbol name and the Nop-shadows Analysis’s analysis
information on the right-hand side. (Future versions will also display the property’s
state machine inline.) Further, we use arrows to link relevant shadows. An arrow
exists from a shadow s1 to a shadow s2 if there is a PFG containing both shadows,
both shadows are within the same method and the program’s control may flow from
s1 to s2.

Many of the potential failure groups that remain after analysis, however, are spread
over different methods. This is because our intraprocedural analysis often successfully
rules out PFGs that are confined to a single method (except, of course, for methods that
actually cause a violation). We found the prospect of drawing arrows between multiple
methods or classes unappealing. Instead, we offer users a context menu for shadows,
which automatically links to all shadows in the same PFG but outside the clicked-on
method.

We found this way of presenting our analysis a tremendous improvement over a
textual output. In particular, the plugin helped us to quickly identify implementation
errors in earlier versions of our analyses, and also allowed us to easily identify actual
property violations in our benchmark set. Further, good tool support for manual code
inspection allows programmers to use CLARA as a compile-time-only tool that allows
them to identify possible property violations without ever running a runtime monitor.
For such an approach, it suffices to provide CLARA with a “skeleton” runtime monitor
that consists only of advice definitions and a Dependency State Machine annotation—
such monitors need not contain any code in advice bodies. This is particularly

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:38 E. Bodden et al.

Table II. Monitored Properties for Classes of the Java Runtime Library

important as research has shown that writing correct and efficient code for param-
eterized runtime monitors is highly nontrivial [Avgustinov et al. 2006; Chen and Roşu
2007].

10. EXPERIMENTS

In this section we explain our empirical evaluation and present our experimental re-
sults. Due to space limitations, we can give only a summary of those results. The first
author’s dissertation [Bodden 2009] gives a full account.

This work presents experimental results for monitors generated from tracematch
specifications [Allan et al. 2005]. Because CLARA abstracts from the implementation
details of a runtime monitor through Dependency State Machines, CLARA supports all
AspectJ-based runtime monitors that carry a Dependency State Machine annotation.
Our earlier work [Bodden et al. 2009] showed that the efficacy of our static analyses is
independent of the concrete monitoring formalism.

For our experiments, we wrote a set of twelve tracematch specifications for different
properties of collections and streams in the Java Runtime Library. Table II gives brief
descriptions for each of these properties. We selected properties of the Java Runtime
Library due to the ubiquity of clients of this library. Our tracematch definitions, all our
benchmarks, scripts, and CLARA itself are available at http://www.bodden.de/clara/.
We maintain CLARA as an open-source project.

We used CLARA to instrument the benchmarks of version 2006-10-MR2 of the Da-
Capo benchmark suite [Blackburn et al. 2006] with runtime monitors for the twelve
properties we defined. DaCapo contains eleven different workloads. We consider all
but eclipse. Eclipse makes heavy use of reflection, which CLARA still has trouble with
(see Bodden et al. [2011] for a possible strategy—beyond the scope of this work—for
dealing with reflection). For our experiments, we used a machine with an AMD Athlon
64 X2 Dual Core Processor 3800+ running Ubuntu 7.10 with kernel version 2.6.22-14
and 4GB RAM. We ran the static analysis on IBM’s J9 virtual machine, allowing 3GB
of heap space.

We will now discuss (1) the fraction of shadows that CLARA can successfully identify
as unnecessary for monitoring, (2) the positive impact of disabling these shadows on
the runtime overhead of monitoring, and (3) the effectiveness of our Certain-match
Analysis.

10.1. Fraction of Shadows Identified as Irrelevant

Table III summarizes the analysis results for our 120 tracematch/property combina-
tions. In 11 cases, the property did not apply to the benchmark, leaving 109 cases

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:39

Table III.

Shadows identified as irrelevant, and therefore disabled. White slices
represent shadows our analysis identified as irrelevant. Black slices represent
shadows that we fail to identify as irrelevant, due to analysis imprecision or
because the shadows may help trigger a property violation at runtime. Red (or
gray) slices represent shadows that we confirmed relevant by manual inspec-
tion. Outer rings represent the monitor’s runtime overhead after optimizing
advice dispatch. Solid: overhead ≥ 15%, dashed: overhead < 15%, dotted: no
overhead. OOM = OutOfMemoryException during static analysis.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:40 E. Bodden et al.

to consider. The table reports, as white slices, the fraction of shadows that the anal-
ysis identified as irrelevant. In red (or gray) we show the fraction of shadows that
are known to trigger actual violations at runtime. No sound static analyses could dis-
able these shadows: because the shadows trigger a property violation at runtime, they
must remain enabled. The remaining black slices represent shadows that we are un-
sure about. These shadows remain active even after analysis, either due to analysis
imprecision or due to actual property violations.

As the table shows, our analysis is very effective in most cases. CLARA was able to
prove for 74 out of these 109 cases (68%) that the program cannot violate the property
on any execution (all-white circles). In the remaining cases, the analysis can often
disable a large fraction of the instrumentation. Black slices due to imprecision remain
mainly in bloat, jython and pmd. bloat is notorious for having very long-lived objects
and a literally very bloated code base. This makes it hard for static analyses to han-
dle this benchmark. In fact, bloat has been removed from the new version (9.12) of
the DaCapo benchmark suite. jython and pmd both make heavy use of dynamic class
loading and reflection. This confuses our pointer analysis, which makes very conser-
vative approximations in such situations. Our pointer analysis therefore believes that
certain iterators and enumerations in these benchmark might be aliased even though
no aliasing exists in practice. We are currently trying to extend CLARA so that it can
handle reflection using finer-grained approximations.

For fop/FailSafeIterMap, our analysis ran out of memory, despite having 3GB of
heap space available. fop uses many maps and iterators, and the FailSafeIterMap
tracematch induces 263 shadows in one of fop’s methods. We believe that this method
is the reason that the analysis runs out of memory on fop. The fact that fop is the
largest of our benchmarks seems to be coincidental; however, it does induce a total of
1116 relevant shadows with the FailSafeIter tracematch. Also, the points-to analysis
does not seem to work well on fop, so that the Orphan-shadows Analysis is only able to
eliminate 2 shadows for FailSafeIterMap. The Nop-shadows Analysis must therefore
cope with 1114 shadows, a number much higher than for all other benchmark/property
combinations (see Bodden [2009] for details).

Note that we did not optimize our analysis implementation for memory consump-
tion. Indeed, we cache information where possible. Hence, it may well be possible that
other implementations of our algorithms could cope with fop/FailSafeIterMap, even
with less than 3GB. We certainly do not believe that this limitation is fundamental.

10.2. Reduction of Runtime Overhead

To measure runtime overhead, we ran all benchmark/property combinations before
and after applying our static analysis. We used the HotSpot Client VM (build 1.4.2 12-
b03, mixed mode) with default heap size settings. To execute the benchmarks, we
used DaCapo’s -converge switch, which repeatedly runs benchmarks until they reach
a steady state before measuring runtime, yielding error margins usually below 3%.
Table III gives qualitative information about the residual monitor’s runtime overhead
through the ring that surrounds each circle. A solid ring denotes an overhead of at
least 15%, a dashed ring an overhead of less than 15%, and a dotted ring means that
no observable overhead remains. Table IV quantifies the runtime overheads in more
detail. We marked the 74 cases for which CLARA could prove that the program cannot
violate the property on any execution with “�.” In these cases, monitoring is unnec-
essary because CLARA removes all instrumentation. However, if we chose to test run
these combinations anyway, the runtime overhead would be zero, as the runtime mon-
itor is never called. 37 of the original 109 combinations showed a measurable runtime
overhead. After applying the static analysis, measurable overhead only remained in

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:41

Table IV.

Effect of CLARA’s static analyses on runtime overheads; numbers are runtime overheads in
percent before and after applying the analyses; �: all instrumentation removed, proving that
no violation can occur; >1h: run took over one hour.

13 cases (35% of 37). These cases often show significantly less overhead than without
optimization.

10.3. Effectiveness of Certain-Match Analysis

Our results show that the Certain-match Analysis was much less effective than the
other analyses. Despite several runtime matches, the analysis found only one certain
match: line 218 of method InductionVarAnalyzer.isMu(..) of bloat, with HasNext.
The code is:

Iterator iter = cfg.preds(phi.block()).iterator();
Block pred1 = (Block) iter.next();
Block pred2 = (Block) iter.next();

This code certainly does violate the property: it calls next() twice without calling
hasNext() in between. Hence, Certain-match Analysis did find what it was looking
for. However, the finding also indicates a problem with our HasNext specification: it is
fine for a client to call next() twice in a row, as long as the underlying collection has
at least two elements. bloat maintains the internal invariant that phi nodes should
always point to two blocks. Hence, this situation does not depict a bug in bloat.

It may be surprising that the Certain-match Analysis is so much less effective than
the Nop-shadows Analysis, even though they are based on the same analysis informa-
tion. We suggest two explanations for this difference in effectiveness.

First, our benchmark programs have already been debugged and therefore rarely
violate the correctness properties that we specify. This fact benefits shadow-disabling
analyses (since already-debugged programs require almost no monitoring), but hinders
the Certain-match Analysis: with few violations, there will be few certain matches.

Second, the Certain-match Analysis only reports matches known to be certain. For
a match to be certain, the analysis has to know that (1) all property-violating events

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:42 E. Bodden et al.

must occur on the same object, and (2) these events must execute in a property-
violating order. But our analyses use only intraprocedural must-alias information and
control-flow information. The Certain-match Analysis can therefore only be effective
for violations that (1) refer to objects all bound in the same method, and (2) are in-
deed violations on all possible executions of this method. Both these restrictions are
seldom fulfilled, and they are even more rarely fulfilled in combination. Most of our
properties refer to multiple objects; FailSafeIter, for instance, refers to a connection
and an iterator. For such properties, the Certain-match Analysis could only succeed if
the monitored events on both objects are confined to the method being analyzed.

These observations help explain why the Certain-match Analysis’s success occurs
with the HasNext pattern: this pattern only reasons about a single iterator object,
and iterators are usually only used in a single method (not passed to other methods).
Moreover, in the one case in which the Certain-match Analysis did succeed, the match
is indeed certain, that is, will occur on all executions: there is only one execution path
on this piece of code.

To summarize, we conclude that the Certain-match Analysis is not very effective be-
cause programs are usually correct, because matches are seldom certain, and because
the analysis has must-information on an intraprocedural level only.

10.4. Analysis Time

We designed our analysis to be particularly efficient by separating it into three dif-
ferent stages. Earlier stages are cheaper to compute and reduce the load on more
complex later stages. Moreover, while the first two stages are interprocedural, the
Nop-shadows Analysis and Certain-match Analysis are mostly intraprocedural: any
information they use from the interprocedural level is flow-insensitive and has al-
ready been computed by the Orphan-shadows Analysis once these analysis stages
execute.

The Quick Check never took longer than one second to execute on any of our bench-
marks. The Orphan-shadows Analysis took never longer than 91 seconds, where this
time includes the time for points-to set and call-graph computation. The analysis it-
self never took longer than 17 seconds, with an average of 1.4 seconds. This second
analysis state is fast because, despite being interprocedural, it is flow-insensitive, and
because we compute context information on demand, only for such variables that we
care about and only for such variables that cannot already be determined to not alias
without context information.

The third stage, the Nop-shadows Analysis, took under 50 seconds on average. This
time includes all re-iterations of the Orphan-shadows Analysis and Nop-shadows Anal-
ysis that CLARA performs. In 90% of the cases, the analysis finished in under one
minute. By far the worst case is bloat-FailSafeIter with just over 19 minutes of anal-
ysis time for this stage. The bloat benchmark contains methods with thousands of
bytecode instructions, many of which use iterators and collections. This explains these
extraordinarily high analysis times. The average analysis time for a single shadow-
bearing method was about half a second.

In all but two cases, the total compilation and analysis time, including all three
analysis stages, was under ten minutes. The combination bloat-FailSafeIterMap took
almost 18 minutes in total, and bloat-FailSafeIter took just about 25 minutes in
total.

11. RELATED WORK

We discuss three broad areas of related work. We first present related work in the area
of runtime monitoring and hybrid static and dynamic approaches to verifying program

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:43

properties like ours. We then discuss static verification of typestate properties: the
properties that CLARA verifies can be seen as typestate properties. Finally, we explain
how our work relates to previous work (by ourselves and others) on statically analyzing
tracematches.

11.1. Runtime Monitoring and Hybrid Approaches

We discuss a number of runtime monitoring tools that influenced the design and imple-
mentation of CLARA. Many of these tools also implement hybrid static and dynamic
approaches similar to those that we propose in this article: statically analyze first,
then monitor remaining cases at runtime.

The first author previously developed J-LO, the Java Logical Observer [Bodden
2005], a tool for checking temporal assertions at runtime in Java programs. The J-LO
tool accepts linear temporal logic formulae over AspectJ pointcuts as input, and gen-
erates plain AspectJ code by manipulating an abstract syntax tree. Like in CLARA,
pointcuts in J-LO specifications can be parameterized by variable-to-object bind-
ings. While the implementation of J-LO is effective in finding seeded errors in small
example programs, its runtime overhead renders J-LO unsuitable for use on larger
programs. CLARA’s specification language supports the annotation of J-LO-generated
aspects with dependency information; CLARA’s static analyses could then remove some
of J-LO’s overhead.

Tracematches. Tracematches were first proposed and implemented by Allan et al.
[2005]. Like J-LO, tracematches generate a low-level AspectJ-based runtime monitor
from a high-level specification that uses AspectJ pointcuts to denote events of interest.
Tracematch implementations generate far more efficient runtime monitors than J-LO.
Furthermore, Avgustinov et al. [2007] perform sophisticated static analyses of a trace-
match’s induced state machine to compute an optimized monitor implementation. Our
reported experimental results use optimized monitor implementations as a baseline,
and show that combining monitor optimizations with our analyses yields low runtime
overhead in most cases.

Another, orthogonal, approach to reducing runtime monitoring overhead is by us-
ing collaborative runtime verification. We previously explored collaborative runtime
verification for tracematches Bodden et al. [2010a], partitioning the monitoring both
spatially and temporally. Spatial partitioning creates many copies of the program be-
ing monitored; each program copy monitors a small subset of the full set of shadows.
We found that most copies incurred no overhead over the uninstrumented program.
Temporal partitioning switches the instrumentation off and on over time, reducing
the overhead of runtime monitoring (as well as the probability of catching a property
violation). CLARA supports spatial partitioning independently of the monitor imple-
mentation. CLARA cannot, however, easily support temporal partitioning, because this
would require additional knowledge about the monitor implementation, which is un-
available from Dependency State Machines.

JavaMOP. JavaMOP provides an extensible logic framework for specification for-
malisms [Chen and Roşu 2007]. JavaMOP accepts specifications in various formalisms
and translates them into AspectJ aspects. Due to its generality, it makes few assump-
tions about any particular specification language. This generality makes it difficult,
if not impossible, to analyze JavaMOP specifications. Feng Chen extended the Java-
MOP implementation [Bodden et al. 2009] to perform a limited specification analysis,
which enabled JavaMOP to annotate generated monitors with dependency informa-
tion. CLARA can use this information to partially evaluate JavaMOP monitors at com-

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:44 E. Bodden et al.

pile time, and we have successfully used CLARA with monitors generated by JavaMOP
[Bodden 2009].

Query Languages. Like tracematches, the Program Query Language [Martin et al.
2005] enables developers to specify properties of Java programs; each property may
bind free variables to runtime heap objects. PQL supports a richer specification lan-
guage than tracematches: it uses stack automata augmented with intersection, rather
than finite-state machines. Martin et al. propose a flow-insensitive static analysis to
reduce the runtime overhead of monitoring programs with PQL. This approach in-
spired our Orphan-shadows Analysis. As the authors show and as we confirm in our
work, such an analysis can be effective in ruling out impossible matches. However,
we also showed that a flow-sensitive analysis enables additional optimizations. PQL
instruments the program under test using the BCEL bytecode engineering toolkit. If
PQL used AspectJ instead, then it should be possible to optimize the generated moni-
tor with CLARA.

The Program Trace Query Language, PTQL [Goldsmith et al. 2005], provides an
SQL-like language for querying properties of program traces at runtime, along with a
compiler for the query language. Its “partiqle” compiler modifies the source program
to notify a monitor about relevant events at runtime. The compiler attempts to par-
tially evaluate program queries at compile time, just like AspectJ compilers only insert
runtime checks when they cannot fully evaluate a pointcut at compile time. Because
PTQL uses its own compiler, and is not based on AspectJ, CLARA cannot currently
evaluate PTQL queries ahead of time. Even if PTQL did generate aspects for mon-
itoring, the PTQL language is very expressive—probably Turing complete. Hence it
remains unclear whether one could effectively determine dependencies within a query
at compile time so that CLARA could exploit these dependencies to optimize PTQL
monitors.

Static Checkers. We compare two fully static checkers, PMD and FindBugs, to our
Certain-match Analysis. PMD [Copeland 2005] aims to find violations of “best prac-
tices” or programming styles, rather than actual programming errors. For example:
“A class that has private constructors and does not have any static methods or fields
is unusable.” PMD has no support for data-flow analyses, so it cannot (in general)
evaluate pointer nullness or variable initialization-before-use. FindBugs [Hovemeyer
and Pugh 2004] is a static rule checker from the University of Maryland. FindBugs
comes with a rich set of checkers that identify common problems when using certain
popular libraries (e.g., the Java Runtime Library). FindBugs rules usually favor false
negatives over false positives: they will often miss programming errors, but emitted
warnings often indicate an actual programming problem. The Certain-match Analy-
sis is closer to FindBugs than PMD, since it uses analysis results to identify definite
problems in a program under analysis. However, it leverages pointer analysis infor-
mation and carries out a more detailed program analysis than FindBugs. Its domain
of applicability, however, is more restricted than that of FindBugs, since it only finds
violations of Dependency State Machine properties.

11.2. Typestate

The target class of Dependency State Machine program properties was inspired by
typestate systems. Typestate systems track the conceptual states that each object
goes through during its lifetime in the computation [Drossopoulou et al. 2002; Fink
et al. 2006; Strom and Yemini 1986]. They generalize standard type systems by
allowing the typestate of an object to change during the computation. Strom and

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:45

Yemini [1986] first proposed the idea of having a value’s type depend on an inter-
nal state: its typestate. Operations can change a value’s type by changing that value’s
typestate.

Two critical differences between our work and the related work on typestate are:
(1) the treatment of false positives; and (2) how our (fundamentally intraprocedural)
approach accounts for effects in other procedures.

False Positives. Our work differs from much of the work we will discuss in its treat-
ment of potential false positives. When our static analysis succeeds completely, it
provides the same guarantee as classical typestate: the program under analysis never
violates the specified typestate properties. However, our work originated in runtime
monitoring, and thus supports a hybrid monitoring/recovery situation. In particular,
CLARA can generate a program that evaluates residual monitors at runtime, with
much less overhead than the full runtime monitor. Our approach thus allows develop-
ers to provide specialized instrumentation and recovery code in the event of an actual
runtime violation detected by a monitor. Fully static approaches, on the other hand,
typically emit a compile-time warning when they fail to verify typestate specifications.
In the fully static context, it is much more critical to eliminate false positives, so these
analyses go to greater lengths to accurately analyze programs.

Interprocedural Analyses. Naeem and Lhoták [2008], Fink et al. [2006] and Das
et al. [2002] all implement interprocedural typestate analyses using IFDS [Horwitz
et al. 1995]; a major challenge in developing a usable flow-sensitive interprocedu-
ral analysis is ensuring scalability, especially for path-sensitive analyses. Our anal-
yses, by contrast, are scalable because they are flow-insensitive at the interprocedural
level. Only our Nop-shadows Analysis is flow-sensitive, but only at the intraproce-
dural level. It otherwise uses summaries of caller and callee effects obtained from a
flow-insensitive whole-program analysis.

Staged Approach. Fink et al. [2006] present a static analysis of typestate proper-
ties for Java programs. Their approach resembles ours—we both use a staged analysis
that starts with a flow-insensitive pointer-based analysis, followed by flow-sensitive
checkers. However, the analysis in Fink et al. [2006] allows only for specifications that
reason about a single object at a time. This prevents programmers from expressing
properties spanning multiple objects. Furthermore, Fink et al. aim to verify prop-
erties fully statically, with the implications discussed previously. Finally, our CLARA
framework supports a range of property languages so that developers can conveniently
specify the properties to be verified; Fink et al. do not describe how developers might
specify their properties.

Integrating Pointer Information; Path Sensitivity. The ESP tool by Dor et al. [2004]
implements interprocedural typestate checking for large C programs using value flow
simulation. Value flow simulation enables the use of a path-sensitive analysis on an
interprocedural level. A key feature of this approach is that, like ours, it takes may-
and must- pointer information into account. Furthermore, both approaches separate
the alias analysis from the analysis of the property in question.

Our memory abstraction differs from ESP’s in two ways: 1) while ESP tracks
one object at a time, we track multiobject properties using binding representatives
(Section 7.6.1), that store information about all relevant objects; and 2) within binding
representatives, we track individual objects using object representatives, while ESP
uses value alias sets. Value alias sets contain program expressions (e.g., variable
names or heap access paths). Both memory abstractions separately track may- and

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:46 E. Bodden et al.

must- information to enable strong updates; the key difference is our support for
multi-object properties. It should be possible to use value alias sets instead of object
representatives as a basis for binding representatives.

Our Nop-shadows Analysis also tracks a richer domain-specific property atop the
memory abstraction. ESP only tracks the current state of the machine (like the for-
ward pass of Nop-shadows Analysis), while we track both the current state and the
set of states that are continuation-equivalent to a final state. This enables our Nop-
shadows Analysis to identify shadows that do not meaningfully change the automaton
state.

ESP was one of the first practical path-sensitive interprocedural analyses; it corre-
lates branches guarded by (simple variants of) the same predicate. To guard against
combinatorial explosion, their analysis only distinguishes the effects of program paths
that have different typestates. To do so, the analysis abstraction tracks constant propa-
gation (or, potentially, other) information along with typestate information. The analy-
sis then performs branch correlation—using propagated constants, it prunes infeasible
paths.

ESP successfully scaled to run in hundreds of seconds on a 140,000 LOC C pro-
gram. Unfortunately, the authors did not evaluate how well their approach would
perform without branch correlation. It is therefore hard to judge how the additional
information in the analysis abstraction impacts analysis speed and precision.

Like ESP, our Nop-shadows Analysis is also path-sensitive—it does not merge infor-
mation from different branches. However, it does not track information about the val-
ues of scalar variables, and hence does not perform branch correlation. Evidence about
the efficacy of branch correlation in ESP would help compare our analysis to ESP. Our
benchmark results suggest that the lack of branch correlation does not appear to pose
a significant problem on our benchmark set; as we discussed in Section 10.1, reflection
seems to be more important than analysis precision. Because Nop-shadows Analysis is
flow-sensitive only on an intraprocedural level, our analysis completes in a reasonable
time despite being path-sensitive.

Annotation-Based Approaches. Bierhoff and Aldrich [2007] present an approach
to enable the checking of typestate properties in the presence of aliasing. Their
Plural tool aims to be modular, and therefore abstains from potentially expensive
whole-program analyses such as the points-to analyses used by CLARA. Bierhoff and
Aldrich instead associate references with access permissions, creating an abstraction
based on linear logic. The access permissions enable their approach to relate the
states of one object (e.g., an iterator) with the state of another object (e.g., a collec-
tion that is being iterated upon). These permissions classify how many other refer-
ences to the same object may exist and define the allowed operations on references.
Their approach requires every method to be annotated with (potentially inferred) in-
formation about how access permissions and typestates change when a method is
executed.

The modularity of the Plural approach implies that, given appropriate annotations
it can analyze any method, class or package independent of context. Our approach,
on the other hand, must analyze the whole program, and expects a complete call
graph, with sufficient precision to avoid unnecessary false positives. When the whole
program is available, and can be analyzed, then CLARA has the advantage of not re-
quiring program annotations. Furthermore, CLARA itself does not carry out any flow-
sensitive whole-program annotations; scalability is mostly limited by the scalability
of the pointer and call graph analysis. In any case, we have found that worst-case
assumptions coupled with coarse-grained side-effect information are surprisingly ef-
fective for quickly analyzing the whole program.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:47

DeLine and Fähndrich [2004]’s approach is similar in flavor to Bierhoff and Aldrich’s
approach. Their Fugue tool checks .NET programs for conformance to typestate
specifications statically, in the presence of aliasing. The authors present a program-
ming model of typestates for objects with a sound modular checking algorithm. As in
Bierhoff and Aldrich’s approach, DeLine and Fähndrich assume that a programmer
(or tool) has annotated the program under test with information about how calls to
a method change the typestate of the objects that the method references. One fun-
damental difference between the two approaches is the treatment of aliasing. Fugue
forbids any state-changing operations on possibly aliased objects. This makes Fugue’s
type system less permissive than Bierhoff and Aldrich’s system, where even aliased
objects can change states.

Safe Regions. Like us, Dwyer and Purandare [2007] use typestate analyses to spe-
cialize runtime monitors. Their work identifies “safe regions” in the code using a static
typestate analysis. Safe regions can be methods, single statements or compound state-
ments (e.g., loops). A region is safe if its deterministic transition function does not
drive the typestate automaton into a final state. The authors summarize the effect
of safe regions and modify the program under test to update the typestate with the
region’s effects all at once when the region is entered, instead of one-by-one during the
region’s execution.

Their “safe region” analysis has the same goal as our work—both approaches en-
able a compiler to emit an optimized monitor, which will execute faster than the full
monitor because it will execute fewer transitions at runtime. However, summary tran-
sitions decouple the link between the code locations that perform a state transition
and the locations that actually cause these transitions. This decoupling may impede
manual understanding and verification of code behavior with respect to the monitored
properties.

Our static analysis does not attempt to determine regions; we instead decide
whether each shadow in the program is a nop-shadow. It is difficult to directly compare
the efficacy of the two approaches, due to the different design decisions taken for each
approach. In any case, Dwyer and Purandare’s analysis is complementary to ours and
should be easily implementable in CLARA. We encourage such an implementation.

11.3. Other Static Analyses for Tracematches

Two of our previous papers presented earlier versions of techniques evaluating trace-
matches ahead of time. CLARA integrates this early work with small but significant
improvements, and it generalizes the previous work to apply to an entire class of run-
time monitoring tools, rather than just tracematches.

In the first paper [Bodden et al. 2007], we presented a staged analysis consisting
of a Quick Check, a flow-insensitive Consistent-shadows analysis and a flow-sensitive
Active-shadows analysis. The earlier Quick Check considered an entire state machine;
it disabled checking of the whole state machine if the program could not reach any final
state along any path. The present Quick Check acts on each path separately: when the
state machine cannot reach a final state along path p, then the check disables moni-
toring of the events on p, even if one can reach the final state along other paths. This
improvement helps with properties that yield state machines with multiple accepting
paths, for instance, for Reader, where one path flags writes to an InputStream whose
Reader was closed, and a second path flags writes to a Reader whose InputStream was
closed.

The Consistent-shadows analysis yields identical results to the Orphan-shadows
Analysis that we present here. However, the Orphan-shadows Analysis runs faster

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:48 E. Bodden et al.

and uses less memory than the Consistent-shadows analysis. The Consistent-shadows
analysis is a generate-and-test algorithm, which takes time exponential in the number
of shadows. The Consistent-shadows analysis usually ran quickly enough to be usable,
but suffered from long analysis times and large memory consumption in cases like
bloat-FailSafeIter. The execution time of the Orphan-shadows Analysis is polynomial
in the number of shadows, and it uses a quadratic amount of memory to cache its
results.

Impact of Analysis Abstractions. The third stage from our earlier work, the Active-
shadows analysis, was a first attempt at a flow-sensitive analysis of tracematches.
While CLARA’s third analysis stage, the Nop-shadows Analysis, is flow-sensitive only
on an intraprocedural level, the Active-shadows analysis from our earlier work was
a flow-sensitive, context-insensitive analysis of the entire program. Unfortunately,
the Active-shadows analysis abstraction only allowed weak updates because it did
not encode must-alias information. Furthermore, we chose a flow-insensitive pointer
abstraction, and the computation of typestate information was context-insensitive.
These choices made the earlier analysis so imprecise that it found no nop-shadows at
all in largely the same benchmark set as the one in the present article. The previous
results, in combination with the work that we present here, show that choosing the
right abstractions is key to obtaining good precision. CLARA uses precise intrapro-
cedural flow-sensitive pointer information and context-sensitivity. This information
can yield much optimization potential and therefore significantly improves over the
earlier Active-shadows analysis.

In Bodden et al. [2008a], we presented an analysis similar to the Nop-shadows Anal-
ysis that we present here, except for the following points. Firstly, the earlier analysis
recognizes “necessary shadows” using shadow histories. Unfortunately, this is un-
sound (see Bodden [2010] for details). The earlier analysis is also optimistic: it as-
sumes that a shadow s is unnecessary and can be removed, unless it drives a shadow
history containing s into a final state. The Nop-shadows Analysis that we present
here instead detects “unnecessary shadows,” that is, nop shadows, using a backwards
analysis. This analysis is pessimistic: it assumes that a shadow is necessary until
we prove that it is a nop shadow. Because pessimistic analyses make a pessimistic
base assumption, implementation errors in such analyses are less likely to produce
unsound results: if our analyses misses any corner cases, it would likely keep shadows
alive that are actually nop shadows rather than accidentally disabling shadows that
are not nop shadows.

A second difference between the two analyses is in how we approximate interpro-
cedural control-flow. In earlier work, we assumed that any state machine instance
could be in any state when entering the current method m. This is sound but impre-
cise. In the Nop-shadows Analysis that we present here, we instead use the function
reachingStar to compute a better approximation. Also, we previously did not use the
interprocedural successor function succext. Instead, whenever we recognized an out-
going method call that could (potentially transitively) call a shadow-bearing method,
then we simply “tainted” successor configurations and refused to remove shadows with
tainted configurations. The solution that we present here is not only more elegant, it
is also more precise. Tainting makes a worst-case assumption about outgoing method
calls. Our current implementation considers such method calls more precisely—it con-
siders the potential actions of the rest of the program.

Note also that all of the earlier analyses were designed and implemented to work
for tracematches only. In this article, we present, for the first time, a set of algo-
rithms that is applicable to any runtime monitor written in the form of an AspectJ
aspect. The only restriction is that this aspect must carry an annotation in the form

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:49

of a Dependency State Machine. The CLARA distribution comes with an extensive
set of test cases containing tracematches, hand-written monitors, and monitors gen-
erated by JavaMOP that we annotated by hand. We found that annotating JavaMOP
monitors with Dependency State Machines is easy. In particular, no other changes to
the generated code are required.

The Nop-shadows Analysis presented in this article was first published in Bodden
[2010], in much less detail: due to space restrictions, we did not discuss our treatment
of pointers, nor our flow-insensitive handling of effects from interprocedural control
flow.

Context-Sensitive, Flow-Sensitive Whole-Program Analysis of Tracematches. Naeem
and Lhoták [2008] present a context-sensitive flow-sensitive interprocedural analysis
to analyze typestate-like properties of multiple interacting objects at compile time.
The main difference between their work and ours is that we have no flow-sensitive
interprocedural analysis, while Naeem and Lhoták do. One could integrate their
analysis into CLARA.

Our Nop-shadows Analysis is mostly intraprocedural and uses only flow-insensitive
information to model interprocedural control flow. Naeem and Lhoták’s analysis, on
the other hand, propagates configurations along call edges and then through the bodies
of called methods. This can lead to enhanced precision when multiple methods use
combinations of objects that are relevant to a given specification, at the cost of analysis
time.

Naeem and Lhoták also use a different pointer abstraction from ours. Our pointer
abstraction, object representatives, is flow-sensitive only on an intraprocedural level,
and at outgoing method calls we resort to context-sensitive but flow-insensitive pointer
information. Naeem and Lhoták instead use a “binding lattice,” which models each ob-
ject by the variables that may or must point to the object. This representation encodes
must-aliasing and must-not-aliasing at the same time.

Naeem and Lhoták are reimplementing their analysis to increase precision and per-
formance. We therefore have not yet compared our analysis to Naeem and Lhoták
directly. In the future, we plan to create a joint comparative study in which we con-
sistently use the same tracematch specifications and analyze the same benchmark
versions with the same runtime library, taking into account the same set of potentially
dynamically loaded classes.

12. CONCLUSION

We have presented four static whole-program analyses that partially evaluate
parametrized finite-state runtime monitors at compile time. We implemented the
analyses in CLARA, a novel framework for the partial evaluation of AspectJ-based
runtime monitors. Our evaluation of CLARA on several large-scale Java programs
demonstrated that most of our benchmark programs fulfill our example properties.
For the remaining programs, CLARA reduced the monitoring overhead to below 10%.
We also found multiple property violations in our benchmark suite.

Our results show that CLARA provides push-button technology to statically approx-
imate and optimize expressive runtime monitors. CLARA’s mechanism is largely inde-
pendent of the runtime monitor’s concrete implementation strategy and can therefore
be used with a wide range of current runtime monitoring tools. A direct application
of our static analysis techniques enables runtime monitor optimization. We also ad-
vocate a compile-time-only approach: programmers can use our analyses to identify
code locations where a program could potentially violate a given finite-state prop-
erty. We have explained that an effective integration into an integrated development

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:50 E. Bodden et al.

environment allows programmers to tell apart actual property violations from false
positives relatively easily.

In ongoing work, we are extending the CLARA static analysis framework to bet-
ter cope with native and reflective calls [Bodden et al. 2011], and to analyze and
optimize runtime monitors not only for individual programs but instead for entire
software product lines [Kim et al. 2010]. In future work, we plan to design types-
tate analyses that do not require the entire closed program but instead operate on
individual program modules, for instance, software services. Furthermore, we plan to
investigate how to combine data-flow analyses like the one presented here with model
checking. For instance, Rungta et al. [2009] have recently shown how to effectively
guide a model checker to problem points previously determined through a (generic)
static analysis. Such an approach would allow programmers to rule out even more (if
not all) false positives than CLARA does.

ACKNOWLEDGMENTS

This work would not have been the same without the support of many people, including Pavel Avgustinov,
Julian Tibble, Oege de Moor, Torbjörn Ekman and other members of the Programming Tools Group at
Oxford University, Grigore Roşu, Feng Chen, Matthew Dwyer, Rahul Purandare, Kevin Bierhoff, Ciera
Jaspan, Ondřej Lhoták, Nomair Naeem and Manu Sridharan. Thank you all for your support and for the
lively discussion.

REFERENCES
ALLAN, C., AVGUSTINOV, P., CHRISTENSEN, A. S., HENDREN, L., KUZINS, S., LHOTÁK, O., DE MOOR,

O., SERENI, D., SITTAMPALAM, G., AND TIBBLE, J. 2005. Adding trace matching with free variables
to AspectJ. In Proceedings of the International Conference on Object-Oriented Programming, Systems,
Languages, and Applications. ACM Press, 345–364.

AVGUSTINOV, P., CHRISTENSEN, A. S., HENDREN, L., KUZINS, S., LHOTÁK, J., LHOTÁK, O., DE MOOR,
O., SERENI, D., SITTAMPALAM, G., AND TIBBLE, J. 2005. abc: An extensible AspectJ compiler. In Pro-
ceedings of the International Conference on Aspect-Oriented Software Development. ACM Press, 87–98.

AVGUSTINOV, P., TIBBLE, J., BODDEN, E., LHOTÁK, O., HENDREN, L., DE MOOR, O., ONGKINGCO, N.,
AND SITTAMPALAM, G. 2006. Efficient trace monitoring. Tech. rep. abc-2006-1.

AVGUSTINOV, P., TIBBLE, J., AND DE MOOR, O. 2007. Making trace monitors feasible. In Proceedings of
the International Conference on Object-Oriented Programming, Systems, Languages, and Applications.
ACM Press, 589–608.

BIERHOFF, K. AND ALDRICH, J. 2007. Modular typestate checking of aliased objects. In Proceedings of
the International Conference on Object-Oriented Programming, Systems, Languages, and Applications.
301–320.

BLACKBURN, S. M., GARNER, R., ET AL. 2006. The DaCapo benchmarks: Java benchmarking development
and analysis. In Proceedings of the International Conference on Object-Oriented Programming, Systems,
Languages, and Applications. ACM Press, 169–190.

BODDEN, E. 2005. J-LO - A tool for runtime-checking temporal assertions. M.S. thesis, RWTH Aachen
University.

BODDEN, E. 2009. Verifying finite-state properties of large-scale programs. Ph.D. thesis, McGill University.
BODDEN, E. 2010. Efficient hybrid typestate analysis by determining continuation-equivalent states. In

Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering (ICSE’10). ACM,
New York, NY, 5–14.

BODDEN, E., HENDREN, L. J., AND LHOTÁK, O. 2007. A staged static program analysis to improve the
performance of runtime monitoring. In Proceedings of the European Conference on Object-Oriented Pro-
gramming. Lecture Notes in Computer Science, vol. 4609, Springer, 525–549.

BODDEN, E., LAM, P., AND HENDREN, L. 2008a. Finding programming errors earlier by evaluating runtime
monitors ahead-of-time. In Proceedings of the Symposium on the Foundations of Software Engineering.
ACM Press, 36–47.

BODDEN, E., LAM, P., AND HENDREN, L. 2008b. Object representatives: A uniform abstraction for pointer
information. In Visions of Computer Science: Proceedings of the BCS International Academic Conference.
British Computing Society.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

Partially Evaluating Finite-State Runtime Monitors Ahead of Time 7:51

BODDEN, E., CHEN, F., AND ROŞU, G. 2009. Dependent advice: A general approach to optimizing history-
based aspects. In Proceedings of the International Conference on Aspect-Oriented Software Development.
ACM Press, 3–14.

BODDEN, E., HENDREN, L., LAM, P., LHOTÁK, O., AND NAEEM, N. A. 2010a. Collaborative runtime verifi-
cation with tracematches. J. Logic Comput. 20, 3, 707–723.

BODDEN, E., LAM, P., AND HENDREN, L. 2010b. Clara: A framework for statically evaluating finite-state
runtime monitors. In Proceedings of the 1st International Conference on Runtime Verification. Lecture
Notes in Computer Science, vol. 6418, Springer, 74–88.

BODDEN, E., SEWE, A., SINSCHEK, J., OUESLATI, H., AND MEZINI, M. 2011. Taming reflection: Aiding
static analysis in the presence of reflection and custom class loaders. In Proceedings of the International
Conference on Software Engineering (ICSE’11). ACM, 241–250.

BRZOZOWSKI, J. A. 1962. Canonical regular expressions and minimal state graphs for definite events. In
Proceedings of the Symposium on Mathematical Theory of Automata. Polytechnic Institute of Brooklyn,
529–561.

CHEN, F. AND ROŞU, G. 2007. MOP: An efficient and generic runtime verification framework. In Proceed-
ings of the International Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations. ACM Press, 569–588.

CHEN, F. AND ROŞU, G. 2009. Parametric trace slicing and monitoring. In Proceedings of the International
Conference on Tools and Algorithms for the Construction and Analysis of Systems. Lecture Notes in
Computer Science, vol. 5505, Springer, 246–261.

COPELAND, T. 2005. PMD Applied. Centennial Books.
CYTRON, R., FERRANTE, J., ROSEN, B., WEGMAN, M., AND ZADECK, F. 1991. Efficiently computing static

single assignment form and the control dependence graph. ACM Trans. Program. Lang. Syst. 13, 4,
451–490.

DAS, M., LERNER, S., AND SEIGLE, M. 2002. ESP: Path-sensitive program verification in polynomial time.
In Proceedings of the Conference on Programming Language Design and Implementation. 57–68.

DELINE, R. AND FÄHNDRICH, M. 2004. Typestates for objects. In Proceedings of the European Conference
on Object-Oriented Programming. Lecture Notes in Computer Science, vol. 3086, Springer, 465–490.

DOR, N., ADAMS, S., DAS, M., AND YANG, Z. 2004. Software validation via scalable path-sensitive value
flow analysis. In Proceedings of the International Symposium on Software Testing and Analysis. 12–22.

DROSSOPOULOU, S., DAMIANI, F., DEZANI-CIANCAGLINI, M., AND GIANNINI, P. 2002. More dynamic ob-
ject reclassification: Fickle II. ACM Trans. Program. Lang. Syst. 24, 2, 153–191.

DWYER, M. B. AND PURANDARE, R. 2007. Residual dynamic typestate analysis: Exploiting static analysis
results to reformulate and reduce the cost of dynamic analysis. In Proceedings of the International
Conference on Automated Software Engineering. ACM Press, 124–133.

FINK, S., YAHAV, E., DOR, N., RAMALINGAM, G., AND GEAY, E. 2006. Effective typestate verification in the
presence of aliasing. In Proceedings of the International Symposium on Software Testing and Analysis.
ACM Press, 133–144.

GOLDSMITH, S., O’CALLAHAN, R., AND AIKEN, A. 2005. Relational queries over program traces. In Pro-
ceedings of the International Conference on Object-Oriented Programming, Systems, Languages, and
Applications. ACM Press, 385–402.

HORWITZ, S., REPS, T., AND SAGIV, M. 1995. Demand interprocedural dataflow analysis. In Proceedings of
the Symposium on the Foundations of Software Engineering. 104–115.

HOVEMEYER, D. AND PUGH, W. 2004. Finding bugs is easy. In Proceedings of the International Conference
on Object-Oriented Programming, Systems, Languages, and Applications. ACM Press, 132–136.

KICZALES, G., HILSDALE, E., HUGUNIN, J., KERSTEN, M., PALM, J., AND GRISWOLD, W. G. 2001. An
overview of AspectJ. In Proceedings of the European Conference on Object Oriented Programming
(ECOOP’01). Lecture Notes in Computer Science, vol. 2072, Springer, 327–353.

KIM, C. H. P., BATORY, D., BODDEN, E., AND KHURSHID, S. 2010. Reducing configurations to monitor
in a software product line. In Proceedings of the 1st International Conference on Runtime Verification.
Lecture Notes in Computer Science, Springer.

KRÜGER, I. H., LEE, G., AND MEISINGER, M. 2006. Automating software architecture exploration with
M2Aspects. In Proceedings of the Workshop on Scenarios and State Machines: Models, Algorithms, and
Tools. ACM Press, 51–58.

LHOTÁK, O. AND HENDREN, L. 2003. Scaling Java points-to analysis using Spark. In Proceedings of the
International Conference on Compiler Construction. Lecture Notes in Computer Science, vol. 2622,
Springer, 153–169.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

7:52 E. Bodden et al.

MAOZ, S. AND HAREL, D. 2006. From multi-modal scenarios to code: Compiling LSCs into AspectJ. In
Proceedings of the Symposium on the Foundations of Software Engineering. ACM Press, 219–230.

MARTIN, M., LIVSHITS, B., AND LAM, M. S. 2005. Finding application errors using PQL: A program query
language. In Proceedings of the International Conference on Object-Oriented Programming, Systems,
Languages, and Applications. ACM Press, 365–383.

MASUHARA, H., KICZALES, G., AND DUTCHYN, C. 2003. A compilation and optimization model for aspect-
oriented programs. In Proceedings of the International Conference on Compiler Construction. Lecture
Notes in Computer Science, vol. 2622, Springer, 46–60.

NAEEM, N. A. AND LHOTÁK, O. 2008. Typestate-like analysis of multiple interacting objects. In Proceed-
ings of the International Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations. ACM Press, 347–366.

RUNGTA, N., MERCER, E. G., AND VISSER, W. 2009. E cient testing of concurrent programs with
abstraction-guided symbolic execution. In Proceedings of the 16th International SPIN Workshop on
Model Checking Software. Springer, 174–191.

SRIDHARAN, M. AND BODÍK, R. 2006. Refinement-based context-sensitive points-to analysis for Java. In
Proceedings of the Conference on Programming Language Design and Implementation. ACM Press,
387–400.

STROM, R. E. AND YEMINI, S. 1986. Typestate: A programming language concept for enhancing software
reliability. IEEE Trans. Softw. Engin. 12, 1, 157–171.

Received December 2010; revised December 2011; accepted March 2012

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 2, Article 7, Publication date: June 2012.

