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ABSTRACT
Dynamic analyses reason about a program’s concrete heap
and control flow and hence can report on actual program
behavior with high or even perfect accuracy. But many dy-
namic analyses require extensive program instrumentation,
often slowing down the analyzed program considerably.

In the past, researchers have hence developed specialized
static optimizations that can prove instrumentation for a
special analysis unnecessary at many program locations: the
analysis can safely omit monitoring these locations, as their
monitoring would not change the analysis results. Arguing
about the correctness of such optimizations is hard, however,
and ad-hoc approaches have lead to mistakes in the past.

In this paper we present a correctness criterion called
Continuation Equivalence, which allows researchers to prove
static optimizations of dynamic analyses correct more eas-
ily. The criterion demands that an optimization may alter
instrumentation at a program site only if the altered instru-
mentation produces a dynamic analysis configuration equiv-
alent to the configuration of the un-altered program with
respect to all possible continuations of the control flow.

In previous work, we have used a notion of continuation-
equivalent states to prove the correctness of static optimiza-
tion for finite-state runtime monitors. With this work, we
propose to generalize the idea to general dynamic analyses.

Categories and Subject Descriptors
F.3.2 [Semantics of Programming Languages]: Pro-
gram Analysis

General Terms
Performance, Verification, Theory
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1. INTRODUCTION
Dynamic analyses reason about a program’s concrete heap

and control flow and hence can report on actual program be-
havior with high or even perfect accuracy, and in terms of
an actual program execution. This is in stark contrast to
static analyses that need to abstract from program inputs
and the environment and hence must make conservative ap-
proximations on many levels, often leading to false positives
that distract from the actually interesting analysis results.

Many dynamic analyses, however, share the problem of
requiring extensive program instrumentation, which can of-
ten slow down the analyzed program by up to several orders
of magnitude [1]. While such slowdowns are always unde-
sired, they can sometimes even prohibit practical use of a
particular dynamic-analysis technique in practice.

But what if the expensive instrumentation could be omit-
ted for at least some of the program’s code location? In
the past, researchers have developed specialized static opti-
mizations that exploit properties of the program’s code to
prove program instrumentation unnecessary at certain pro-
gram locations [4–9, 14]. Focusing on one special dynamic
analysis problem, such static optimizations try to find pro-
gram locations for which a static approximation can prove
that monitoring those locations can safely be omitted. In
general, omitting to monitor such a location is safe when
the analysis reports the same result no matter whether the
location is monitored or not.

It is non-trivial, however, to argue about the soundness of
such a static optimization, and many papers on this topic ar-
gue about soundness in a rather ad-hoc way. In publications
by this author [8] and others [11], such ad-hoc proofs have
lead to mistakes within the proofs and eventual unsoundness
of the design and implementation of the proposed optimiza-
tion. A general method or framework for proving the cor-
rectness of such static optimizations would aid researchers
in conducting those proofs more easily and reliably.

We address this very problem by presenting a general cor-
rectness criterion for static optimizations of dynamic analy-
sis, called Continuation Equivalence. The criterion demands
that an optimization alters the instrumentation at a pro-
gram site only in such a way that, when visiting the site at
runtime, the altered instrumentation will produce a dynamic
analysis configuration that is equivalent to the configuration
of the un-altered program with respect to all possible con-
tinuations of the control flow that can follow after that site.
The particular notion of equivalence depends on the chosen
dynamic analysis and is hence a parameter to our approach.

In previous work we have used a notion of continuation-



equivalent states to prove correct a static optimization for
finite-state runtime monitors [3,4]. In this work, we propose
to generalize this notion to the setting of general dynamic
analyses, by lifting the notion of Continuation-equivalent
automaton states to Continuation-equivalent analysis con-
figurations.

To summarize, this paper contains the following original
contributions:

• examples of dynamic analyses and possible static op-
timizations,

• a discussion of the criteria that static optimizations of
dynamic analyses need to fulfil, in order to be correct,
and

• the idea of a general framework for proving the correct-
ness of static optimizations of dynamic analyses using
a notion of continuation-equivalent configurations.

2. EXAMPLES
In this section we briefly discuss examples of dynamic

analyses and static optimizations that could go along with
them. We will aim to identify factors that could impact the
soundness of the respective optimizations.

2.1 Optimizing Finite-state Runtime Monitors
One large class of dynamic analyses is concerned with run-

time verification [12]. In runtime verification, programmers
use specialized tools to instrument a program under test
with runtime checks. Those checks often resemble a finite-
state machine: program events move the machine from one
state to another, and the instrumentation will issue an er-
ror message if the program ever causes the state machine to
reach a declared error state. Figure 1, for example, shows a
finite-state runtime monitor for the “Connection” property:
a connection is initially connected but can be disconnected
and re-connected; it is an error to write to a disconnected
connection.

Runtime-verifying such finite-state properties has been
shown to be very costly, as the dynamic analyses must as-
sociate different states with different (e.g. Connection) ob-
jects. Program slow-downs of several orders of magnitude
have been observed [1,2]. Static optimizations can lower the
monitoring overhead by removing program instrumentation
(and hence the number of events dispatched to the runtime
monitor) at program locations at which it is correct to do
so. We found that in about 80% of all our benchmarks, such
static optimizations are so precise that they can prove all in-
strumentation unnecessary, rendering runtime monitoring of
the program under test entirely obsolete [4].

In earlier work, Fink et al. have developed an approach
completely based on static analysis [10] that attempts to
solve a very similar problem. For any object of any type in
the program whose object’s needs to follow a given finite-
state protocol, the authors use a forward analysis to track
the possible states of each object at any given program loca-
tion. If the analysis encounters an error state at a statement
s, the analysis signals a possible property violation at s.

In earlier work, we and others [8,11] independently devel-
oped different approaches based on Fink et al.’s idea, but
with the goal to use the analysis results to optimize finite-
state runtime monitors. As an example, consider the code in
Figure 2a. First consider a version of this code where line 6 is

connected
dis-

connected
error

disconnect

reconnect

disconnect,
reconnect, write

write

disconnect write

Figure 1: Finite-state machine for “Connection” property

not commented out. This code would yield the control-flow
graph in Figure 2b. For this program fragment, monitor-
ing of the “Connection” property from Figure 1 is entirely
unnecessary: When the program writes to the connection
in line 8, the connection is guaranteed to be connected, as
it is re-connected along both branches. Hence, the runtime
monitor can never reach its error state on this program, and
runtime monitoring of this program is obsolete altogether.
In particular, note that the reconnect call at line 4 requires
no monitoring—we will return to this statement in a minute.

In the example just discussed, a simple forward analysis
works correctly. The following example will show, however,
that a pure forward analysis is generally insufficient when it
comes to optimizing a dynamic analysis: it lacks knowledge
about the possible “future”, or more formally the continua-
tion, of the execution. Hence, let us now consider the case in
which line 6 is commented out, as shown in Figure 2a. This
code yields the control-flow graph in Figure 2c. Opposed to
the earlier version, this program version can cause the run-
time monitor to trigger an error message: when taking the
else-branch, the program will write to a closed connection.
Hence, it should be clear that one may not omit runtime
monitoring of the disconnect and write statements at lines
2 and 8: removing the instrumentation at those statements
would cause the runtime monitor to falsely not report the
violation of the Connection property—a false negative.

More interestingly, however, also the reconnect statement
at line 4 requires monitoring. To see why this is the case, as-
sume for a moment that we removed the instrumentation at
line 4, thereby disregarding reconnect events during static
analysis. Now further assume that the program executes
its then-branch, i.e., line 4. On this execution, the runtime
monitor should not issue an error message, as the connec-
tion was correctly reconnected before being written to, how-
ever because the optimized program now monitors a close

followed by a write, the monitor will report a (false) error
message for the optimized program—a false positive.

The two analyses presented in earlier work were both in-
correct, as they handled this latter case incorrectly. The
problem is that, when focusing on the reconnect statement
at line 4, a forward analysis is not sufficient to tell apart the
case in Figure 2b from the one in Figure 2c: in both cases,
the reconnect is preceded by a close, and hence, a forward
analysis will yield the same information in both cases, al-
though monitoring of the reconnect may be omitted in one
case but not the other.

The essence of the problem can be described by an ap-
parent lack of analysis information at line 4. The decision
of whether or not it is correct to optimize away the instru-
mentation of this statement depends on the nature of the
possible continuations of the control flow after line 4. In
the case of Figure 2b, no error state can be reached at any
statement on this continuation, in Figure 2c, an error state



1 void foo(Connection c) {
2 c.disconnect();
3 if(?) {
4 c.reconnect(); //mark
5 } else {
6 //c.reconnect();
7 }
8 c.write(..);
9 }

(a)

•

•

• •

•

•

c.disconnect()

c.reconnect() c.reconnect()

c.write(..)

(b)

•

•

•

•

•

c.disconnect()

c.reconnect()

c.write(..)

(c)

Figure 2: Example exposing unsoundness in earlier static optimization. The marked reconnect statement requires no monitoring
in (b) but does in (c). Yet, a forward analysis alone cannot possibly distinguish the situations (b) and (c) from one another,
as it propagates information to this statement only along the solid edges, which are equal in both situations.

can be reached at line 8. The applicability (and hence cor-
rectness) of the optimization hence depends on knowledge
about the future, which can most easily be obtained through
a backwards program analysis.

Hence, in a more recent paper [4] we solved the problem by
using a novel notion of continuation-equivalent states. At a
statement s, two states q1 and q2 are said to be continuation-
equivalent if and only if along all possible continuations of
the control flow after s it does not matter whether the run-
time monitor is in q1 or q2: along each continuation, the
monitor will or won’t reach an error state either way. We
compute continuation-equivalent states using a backwards
analysis. This analysis provides additional analysis informa-
tion that is sufficient to tell both cases apart when inspecting
the reconnect statement at line 4. In the case of Figure 2b,
the reconnect statement would transition only between states
that are provably continuation equivalent, while in Figure 2c
those states would not be equivalent, and the optimization
at this statement would hence correctly be suppressed.

Note that, to be correct, such a backward analysis needs
to compute its information along all possible continuations
of the control flow, which may involve complicated control
flows such as loops, method calls, method re-executions, ex-
ception throws and recursion. Fortunately, the construction
of continuations can be reused for different static analyses
that are based on the notion of continuation equivalence.
We hence propose to develop a conceptual framework along
with an application framework that allows the construction
of and reasoning about the relevant abstractions.

2.2 Execution Profiling
To demonstrate that the idea of Continuation Equivalence

is not restricted to the field of Runtime Verification, we next
consider an execution profiler. In this example, we assume
an execution profiler that constructs calling-context trees,
such as the one recently proposed by Sarimbekov et al. [13].
A calling-context tree contains a node for each method call
in each context, but it contains no duplicates in case the
the same method is called in the same context multiple
times. Hence the code in Figure 3a, where the profiling
code is shown as a comment, could be statically optimized
as shown in Figure 3b, where only the last call to accept is
instrumented. Also in this example, the removal of the in-

strumentation of the accept-call at line 2 is only valid (and
can only be proven correct) because it is known that an-
other call to accept will follow, and because this call remains
instrumented. (Note that for ease of presentation we ab-
stract from the problem of possible exceptional control flow.
In other words, we assume that the second accept-call post-
dominates the first one.)

Conclusions from Examples
Both examples show that dynamic analyses can benefit from
static optimization. The example of finite-state runtime
monitoring shows in particular, that static optimizations can
benefit from information about the program’s past execu-
tion: instrumentation for a finite-state runtime monitor can
only safely be disabled if the current possible states at the
optimized statement are known. Information about the past
execution can be computed using a forward analysis.

The same example also showed, however, that information
drawn from a forward analysis alone may not be enough.
This is because omitting instrumentation of a given state-
ment, and therefore omitting the processing of events other-
wise generated by that instrumentation, is only sound if this
omission is (1) either irrelevant to the final analysis infor-
mation that the dynamic analysis computes, or (2) is guar-
anteed to be made-up for by other instrumentation on the
continuation of the control flow. This second case is demon-
strated by our second example, profiling for calling-context
trees. After executing the first call to accept, the dynamic
analysis is first in an incorrect configuration in which the
tree-node for accept is missing. However, this omission is
guaranteed to be made-up for by the remainder of the exe-
cution, i.e., all its possible continuations.

3. SHOWING CORRECTNESS BY PROOV-
ING CONTINUATION EQUIVALENCE

This section consists of two parts. First, we present a
dynamic view, defining under which circumstances a code
transformation is correct with respect to the dynamic anal-
ysis of a single dynamic trace. In Section 3.2 we then show
how to use the notion of Continuation Equivalence to prove
correctness with respect to all traces.



1 void visitNode(Visitor v) {
2 left.accept(v);
3 //insertEdge("Node.accept(Visitor)");
4 right.accept(v);
5 //insertEdge("Node.accept(Visitor)");
6 }

(a) Näıvely instrumented code

1 void visitNode(Visitor v) {
2 left.accept(v);
3 right.accept(v);
4 //insertEdge("Node.accept(Visitor)");
5 }

(b) Code with optimized instrumentation

Figure 3: Code with instrumentation (shown as comments) for recording calling-context trees

3.1 Correctness of Program Transformations
Let E be a (likely to be infinite) set of possible program

events. Executing program p on input i will yield an event
trace trace(p, i) = e1 . . . en ∈ E∗. For any trace t = e1 . . . en
we define head(t) := e1 and tail(t) := e2 . . . en.

A dynamic program analysis d is, in the most general
sense, a function that computes, in a step-wise manner, for
a trace t a final “result” configuration Cr, starting from an
initial analysis configuration C0, such that:

d(t, C0) =

d(tail(t), d(head(t), C0)) = Cr

The dynamic event trace is assumed to be generated by
the execution of an instrumented program. For any event
e ∈ E we define loc(e) as the event’s instrumentation point,
i.e., as the static program location causing event e to hap-
pen.1 We define the program path

path(p, i) :=

path(trace(p, i)) := loc(e1) . . . loc(en)

to be the statically projected program path of the dynamic
event trace trace(p, i).

Next assume a program transformation transf on a se-
quence of statements s. Then Figure 4 depicts the circum-
stances under which this transformation is correct. First,
we can divide any program path π into three sub-paths
a, b, c such that π = a · b · c and neither a nor c contain any
statements in s. Because a contains no statements in s, we
know that transf(a) = a, and hence also d(transf(a), C0) =
d(a,C0) =: Ca. In other words, transf cannot affect the
computation of the dynamic analysis on the prefix a.

The transformed section of the program now leads to po-
tentially diverging configurations before and after transfor-
mation. Let d(a · b, C0) = d(b, Ca) =: Cab. Further, let
transf(b) = b′. Then for the transformed program we have
d(transf(a · b), C0) = d(transf(b), Ca) = d(b′, Ca) =: Cab′ .

Definition (Correctness of transf )
Crucially now, we say that transf is correct with respect to
π = a·b·c, if and only if d(transf(c), Cab) = d(transf(c), Cab′).
In other words, even though the transformed statement se-
quence b′ may temporarily compute an analysis configura-
tion different from the one that b would have computed, this
difference does not matter. Either way we will end up in the
final configuration Cabc, under the assumption that c will
still be processed. We say that a transformation transf is
correct in general if it is correct with respect to all paths π.

1For certain events, such as timeouts, no such statement
might exist. Indeed, proofs based on Continuation Equiv-
alence are not applicable if such events are allowed. Hence
we abstract from such events in the remainder this paper.

C0

Ca

Cab Cab′

Cabc

⇒
transf

a

b b′

c
c

Figure 4: A correctly optimized dynamic analysis: even
through the transformed sequence b′ may yield a different
intermediate configuration, this difference will be made up
for by the remainder of the execution.

While this correctness criterion only gives a definition of
the circumstances under which the static optimization of a
dynamic analysis is correct, the criterion itself is not con-
structive. In the following, we will show a general way to
prove correctness in the above sense, using the notion of
Continuation Equivalence.

3.2 Proving Correctness by Showing Contin-
uation Equivalence

Ĉ0

Ĉa

Ĉab Ĉab′

Ĉ1
n Ĉk

n

⇒
transf

≡

a

b b′

c1

ck

c1

ck

Figure 5: Computation



Figure 5 gives an outline of what it takes to prove a static
optimization correct by showing Continuation Equivalence.
Assume we want to prove correctness of the transformation
transf . To do so, we first show that Ĉ0 is a sound over-
approximation of C0, as likewise is Ĉa for Ca, and so on. To
show this, one needs to argue why the flow function along a,
b and b′ transfers one soundly over-approximated configura-
tion into another. Crucially this part of the proof could be
conducted as an instance of a generalized proof framework
(and application framework), which we propose to develop in
the near future. Such a framework would allow researchers
to reason about continuations in a fully abstract manner,
leaving the construction of approximations over these con-
tinuations to the framework itself. In particular, researchers
could abstract from complicated control-flow related issues
such as loops, exceptions and recursion. The author’s disser-
tation [3] gives a first idea of what such a framework could
look like.

In the end, we wish to prove that the configurations Ĉab

and Ĉab′ obtained this way are continuation equivalent, i.e.,
any possible difference between Ĉab and Ĉab′ won’t matter,
given the possible continuations of control flow. We want to
prove:

Ĉab ≡ Ĉab′

The exact definition of this equivalence relation “≡” de-
pends on the specific dynamic analysis at hand. To be able
to prove transf correct, however, the relation must be de-
fined such that if Ĉab ≡ Ĉab′ holds, then indeed the pro-
gram transformation on b cannot affect the outcome of the
dynamic analysis on any continuation.

The equivalence relation hence must be based on infor-
mation about the program path’s possible future, which is
most conveniently computed through a backwards analysis
(in the figure depicted by the dashed arrows). This analysis
must be path sensitive: configurations for different continu-
ations must not be confused. For instance, in our analysis
instantiation for optimizing finite-state monitors, we may
have 2 ≡ 3 along one possible continuation and 1 ≡ 3 along
another (where 1, 2, 3 are state numbers) but this does not
imply that 1 ≡ 2 holds as well. In any case, the equivalence
relation must be cased on a “must” analysis: two configura-
tions are only continuation equivalent if they yield equiva-
lent configurations along all executions, not just along some
execution.

Discussing a complete proof is outside the scope of this
idea paper. The author’s dissertation [3, Appendix 2] gives
a complete proof for our static optimization of runtime moni-
tors [4], and we refer the interested reader to this document.

4. CONCLUSION
We have presented the idea of basing correctness proofs

for static optimizations of dynamic analyses on a notion of
Continuation Equivalence. An optimization is correct if it
alters the program in such a way that the optimized dy-
namic analysis ultimately yields the same analysis result as
the un-optimized analysis. During parts of the execution,
the optimization may cause the analysis to be in a configu-
ration that does not accurately reflect the current program
state. According to Continuation Equivalence, this is no
problem, as long as the dynamic analysis of the remainder
of the program execution must ultimately lead to the same
configuration as if the optimization had not been applied.

We have successfully used Continuation Equivalence to
proof correct different static optimizations for the purpose
of runtime verification [4–6], but our investigation suggests
that the same notion can be used for correctness proofs of
optimizations of other kinds of static analyses as well.
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