
Stateful Breakpoints: A Practical Approach to Defining
Parameterized Runtime Monitors

Eric Bodden
Software Technology Group, Technische Universität Darmstadt
Center for Advanced Security Research Darmstadt (CASED)

bodden@acm.org

ABSTRACT
A runtime monitor checks a safety property during a pro-
gram’s execution. A parameterized runtime monitor can
monitor properties containing free variables, or parameters.
For instance, a monitor for the regular expression“close(s)+
read(s)” will warn the user when reading from a stream
s that has previously been closed. Parameterized runtime
monitors are very expressive, and research on this topic has
lately gained much traction in the Runtime Verification com-
munity. Existing monitoring algorithms are very efficient.
Nevertheless, existing tools provide little support for actu-
ally defining runtime monitors, probably one reason for why
few practitioners are using runtime monitoring so far.

In this work we propose the idea of allowing programmers
to express parameterized runtime monitors through stateful
breakpoints, temporal combinations of normal breakpoints,
a concept well known to programmers. We show how we
envision programmers to define runtime monitors through
stateful breakpoints and parameter bindings through break-
point expressions. Further, we explain how stateful break-
points improve the debugging experience: they are more ex-
pressive than normal breakpoints, nevertheless can be eval-
uated more efficiently. Stateful breakpoints can be attached
to bug reports for easy reproducibility: they often allow de-
velopers to run directly to the bug in one single step. Fur-
ther, stateful breakpoints can potentially be inferred from a
running debugging session or using property inference and
fault localization tools.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Validation; D.2.5
[Testing and Debugging]: Debugging aids

General Terms
Human Factors, Verification

Keywords
Parameterized runtime monitors, Stateful breakpoints

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

1. NEW IDEA: DEFINING RUNTIME
MONITORS WITH BREAKPOINTS

A runtime monitor checks safety properties of some pro-
gram under test during that program’s execution. In run-
time monitoring, the program under test is instrumented to
notify the monitor about certain events of interest during
the program’s own execution. The monitor then reacts to
those events, typically by changing some monitor-internal
state. When runtime monitors are used for runtime verifi-
cation, erroneous sequences of events will typically drive the
runtime monitor into an error state, causing the monitor to
notify the program of a property violation.

Runtime monitors that react to a single, flat stream of
events are, however, not very expressive. For instance, con-
sider a monitor that is supposed to notify users when read-
ing from a stream that has previously been closed. Such
a monitor would typically be denoted by a regular expres-
sion “close+ read”. Now assume a program execution in
which the program opens streams s1 and s2, then closes s1
but reads from s2. A näıve monitor would signal an error
even in this case, although the close and read operations
involved different objects. Researchers have therefore in-
troduced the concept of parameterized runtime monitors.
In the parameterized approach, the regular expression is ex-
tended to“close(s)+ read(s)”: a violation only occurs when
both events involve the same stream object s.

Runtime verification, and in particular runtime verifica-
tion with parameterized runtime monitors is perceived as a
powerful concept within the Runtime Verification commu-
nity. Opposed to many static program analyses, runtime
monitors usually have no false positives, i.e., they notify the
user only of actual error as they occur on a particular pro-
gram run, and integrate well with testing. Efficiency used
to be problematic: if implemented näıvely, parameterized
runtime monitors can slow down the program under test by
several orders of magnitude because at every event of in-
terest the program needs to wait for the monitor to update
its internal state. In recent years, however, researchers have
shown that even parameterized runtime monitors can be im-
plemented with little to no runtime overhead in the vast
majority of cases [3–5]. Hence, runtime monitoring is finally
arrived at a point where one would assume the technology
to become mainstream. Nevertheless, two key problems still
hinder adoption by main-stream programmers: (1) How to
define runtime monitors? (2) How to debug the program
once an error has been found? In this paper, we propose to
address both problems at once by defining monitors through
the well-known concept of breakpoints.



1.1 State of the art: textual monitor definition
paired with code generation

Many programmers nowadays use Integrated Development
Environments (IDE) that support rapid application devel-
opment through features such as instant feedback, instant
compilation, code completion, and so on. Traditional run-
time verification tools, on the other hand, require a com-
plex, multi-step development process. Programmers typi-
cally need to define the monitor through some textual declar-
ative monitor specification, using a monitoring logic such as
Linear Temporal Logic [9], Context-free Grammars, or Reg-
ular Expressions [1, 4]. The runtime verification tool then
reads this textual specification as an input, along with the
code of the program under test, emitting a version of that
program instrumented with the runtime monitor that the
textual specification defines. The programmer then needs to
test-run this version of the program to search for potential
property violations. This multi-step process is problematic,
as it does not align well with the way in which many of to-
day’s programmers write and maintain their program code
in modern IDEs.

But let’s assume that the programmer does test-run the
instrumented program, and the runtime monitor indeed no-
tifies the user of a property violation. This is great, we have
just found a programming error! But then what? Current
runtime verification tools typically issue an error message
on the command line, potentially along with a stack trace
at the time at which the violation was detected. While this is
useful, the user often still needs to establish a debug session
to actually find out the root cause of the bug.

1.2 Proposed solution: Runtime monitors as
stateful breakpoints

In this work we propose to integrate runtime monitoring
tightly with the debugging support of a modern IDE. The
idea is to provide developers with a means to define param-
eterized runtime monitors using a concept typically well-
known to them: breakpoints. In our approach, a runtime
monitor resembles a “stateful breakpoint”. Such a break-
point comprises three important elements:

1. a set of primitive (ordinary) breakpoints, along with
textual labels for these breakpoints,

2. a pattern defining a temporal ordering over these la-
beled breakpoints,1 and

3. a set of variables (parameters). Every primitive break-
point can define a program expression for each vari-
able. The expressions will be evaluated when the break-
point “hits”, binding the expression’s return value to
the variable.

We are currently integrating support for such stateful break-
points into the Eclipse IDE [7]. Figure 1a shows how we
envision programmers to define runtime monitors with our
Eclipse plugin. Figure 1b shows an example program which
the programmer may want to debug using the stateful break-
point from Figure 1a. The intention of the stateful break-
point is to halt the program during debugging when reading
from a closed stream. In the example program, this is the
case when line 19 executes in the context of the method call
in line 10.

1We propose to use a regular expression.

Name No read after close

Breakpoint Label Variable 1
• Example - line 14 closeStream stream

• Example - line 19 readStream is

Pattern: closeStream+ readStream

(a) Schematic view of monitor definition

1 class Example {
2

3 public static void main(String[] args) {
4 InputStream s = new FileInputStream(..);
5 InputStream s2 = new FileInputStream(..);
6

7 closeit(s2);
8 readit(s);
9 closeit(s);

10 readit(s);
11 }
12

13 static void closeit(InputStream stream) {
14 • stream.close(); //<-- prim. breakp. "close"
15 }
16

17 static void readit(InputStream is) {
18 int i;
19 • while((i=is.read())>-1) { //<-- prim. breakp. "read"
20 System.out.println(i);
21 }
22 }
23

24 }

(b) Example program using streams

Figure 1: Example monitor and program

As Figure 1a shows, our envisioned user-interface lets users
define monitors through a table-like view. On the left, in the
column “Breakpoint”, the user can select primitive break-
points from a list of breakpoints defined through Eclipse’s
usual Breakpoints View. In the column “Label”, the user
can assign every breakpoint a name. Our plugin will assign
a sensible default to the label but in principle the user can
choose any label she wishes. The “Pattern” at the bottom
defines a temporal ordering over these labeled breakpoints.
In the example, the monitor detects a property violation,
and halts the program during debugging, when the break-
point “read” at line 19 is visited after the program’s exe-
cution has passed through the breakpoint “close” at line 14
at least once. The column “Variable 1” allows programmers
to restrict the matching of the regular expression to such
fragments of the execution trace where the expressions de-
fined in this column all evaluate to the same value/object.
In the example, the programmer stated that the program
should halt only if the expression stream at line 14 returns
the same object as the expression is at line 19. Users can
add further Variable columns as needed.

We wish to note that primitive breakpoints cannot only
comprise line-based breakpoints as shown in Figure 1b. Inte-
grated Development Environments like Eclipse further offer
the opportunity to define primitive breakpoints that trigger
on any invocation of a specific method no matter where the



invocation is taking place, on read or write accesses to a spe-
cific field, and on throwing exceptions of a certain type. A
programmer can use all these kinds of breakpoints as prim-
itive breakpoints within a stateful breakpoint.

The “Pattern” to be entered is in our current design a
regular expression over an alphabet Σ of literals defined by
the breakpoints’ labels. In our example, for instance, we
have Σ = {closeStream, readStream}. In our current pro-
totype, we plan to allow for the operators +, *, ?, · and
(·) respectively, with their usual semantics. In the expres-
sion, literals end at operators or at white space. Hence,
“closeStream readStream” is a valid expression while the ex-
pression “closeStreamreadStream” is not: the latter expres-
sion refers to a single literal closeStreamreadStream, which
is not defined as a label. Our current prototype eases the
writing of regular expressions with using a code-completion
approach that suggests declared labels while typing.

1.3 Benefits over traditional breakpoints
Stateful breakpoints are much more expressive than prim-

itive breakpoints. The stateful breakpoint in the example
allows programmers to halt at line 19 only if the “read”
was preceded by a “close”. This avoids unnecessary step-
ping through the code. The support for parameters such as
“Variable 1” allows for further filtering and ease of debug-
ging: without parameter support, the debugger would need
to halt the program also when the “read” at line 19 executes
in the context of the method call in line 8, although at this
point the program has closed only stream s2 and not s.

Stateful breakpoints provide several interesting software
engineering benefits.

• They extend the well-known concept of breakpoints in
a natural way.

• If defined correctly, they allow the debugger to execute
the program directly until the point of error in one
single step.

• We plan to allow users to persist stateful breakpoints,
and to attach them to bug reports. This allows users
to easily communicate bugs to developers.

• Conversely, API developers can ship their libraries with
stateful breakpoints that get loaded into the IDE au-
tomatically when the library is used. Should the de-
veloper accidentally misuse the library, e.g. by calling
methods in the wrong order, the program will halt au-
tomatically, providing the programmer full context for
debugging.

While we believe that stateful breakpoints are reason-
ably easy to define, in future work we will consider inferring
stateful breakpoints automatically from a debugging session
that uses primitive breakpoints only. By observing the or-
der in which the programmer sets, disables and re-enables
primitive breakpoints we hope to be able to infer higher-
level stateful breakpoints automatically. Fault localization
tools [11] and approaches to API property mining could be
another source of useful stateful breakpoints.

Another interesting piece of future work would involve
the evaluation of stateful breakpoints not within the virtual
machine that hosts the debugger (the Debugger-VM) but
rather directly within the virtual machine that hosts the
program under test. This way of breakpoint evaluation has

the potential to reduce the communication between both
virtual machines by orders of magnitudes, hence speeding
up the debugging process significantly: instead of notify-
ing the Debugger-VM of every single event of interest, the
Debugger-VM would only be notified once the monitor has
actually reached an error state.

1.4 Benefits over traditional runtime
verification tools

Stateful breakpoints support properties just as expres-
sive as the ones supported by traditional runtime verifica-
tion tools. Nevertheless, stateful breakpoints provide several
software engineering benefits over those tools.

• Stateful breakpoints can be defined directly in the IDE.

• Stateful breakpoints are defined using the concept of
breakpoints, which should be familiar to most pro-
grammers.

• Stateful breakpoints allow programmers to immedi-
ately halt the program when a property violation is
detected. At this point, the programmer can use all
tooling provided by the debugger to identify the cause
of this violation.

• Stateful breakpoints are a “push-button technology”.
There is no need for separate monitor definition, code
generation and execution of the instrumented program.
Instead, the debugger simply executes the original, un-
instrumented program, but is notified of the necessary
events through the debugging protocol.

2. NOVELTY OF THE IDEA
The idea is new because it is the first attempt to bring

declarative monitor specifications into an IDE. Further, it is
the first attempt to express runtime monitors with the well-
known concepts of breakpoints. In traditional approaches,
monitors are instead defined through some form of declara-
tive event patterns, typically AspectJ [2] pointcuts.

While there has been one approach [6] (see below) to
adding the notion of control flow to breakpoints (see Sec-
tion 3), our approach goes much beyond the simple notion
of control flow: we propose to define fully-fledged runtime
monitors, parameterized through variable bindings that bind
free variables to the return values of program expressions.
Parameters are essential for obtaining breakpoints that are
expressive enough so that they can allow programmers to
run “to the bug” in one single step.

3. RELATED WORK
The most related work is the work by Chern and De Volder

on Control-Flow Breakpoints [6]. The authors observed that
traditional breakpoints can be made much more useful if pro-
grammers can constrain them to halt the program only after
some other breakpoints were visited already (or not visited
yet). Using an empirical evaluation, the authors show that
the ability to restrict breakpoints using such control-flow re-
strictions can indeed ease the reproduction of a significant
portion of known bugs.

Our idea of using stateful breakpoints to define runtime
monitors goes, however, much beyond the idea of simple
control-flow restrictions. In particular, we propose to enable
programmers to define stateful breakpoints using declarative



patterns such as regular expressions. Further, we argue that
stateful breakpoints must support parametric runtime mon-
itors. Otherwise, the monitor will yield too many false pos-
itives, halting the program although no property violation
has been observed.

The work of Chern and De Volder is also different in the
sense that it fulfils a different goal. Chern’s and De Volder’s
goal was to ease debugging. Our primary goal is rather to
make runtime verification a mainstream technology. Break-
points are merely our means to achieve this goal and the
improved ease of debugging is a welcome side effect.

4. EXPECTED FEEDBACK
We are currently finalizing the implementation of our re-

search prototype. The author’s research group has a good
understanding of the techniques involved to make the tech-
nology work. To be able to evaluate parameterized runtime
monitoring without having to resort to code generation (as
in traditional runtime verification tools), we implemented a
novel runtime verification library called MOPBox [8]. This
library encapsulates the entire matching logic required to de-
termine whether or not to hold at a particular breakpoint.

At the conference, we hence expect feedback mainly with
respect the two following important topics:

• Does the user interface appear intuitive to other de-
velopers? Can it be improved, and if so, how?

• How can we effectively evaluate the usefulness of our
approach? In the runtime verification community [10],
runtime monitoring approaches are typically evaluated
with respect to their expressiveness or with respect
to the ability to implement efficient monitors for the
approach. Usability evaluations are rarely performed.

5. CONCLUSION
We have presented the idea of defining runtime monitors

through a concept well known to programmers: breakpoints.
A runtime monitor is defined as a “stateful breakpoint” that
halts the program only after its primitive breakpoints have
been visited in a given order, and only if the context at
the times during which these breakpoints were visited fulfils
certain constraints. Stateful breakpoints are very expressive
and often allow developers to directly run to a bug in one sin-
gle step. This makes it useful to persist stateful breakpoints,
and to attach them to bug reports as a means to commu-
nicate bugs to developers. Conversely, developers can ship
libraries along with stateful breakpoints which will halt the
client’s program when misusing the library.

We are currently implementing the proposed approach as
an extension to the popular Eclipse IDE [7]. To be able to
evaluate parameterized runtime monitoring without having
to resort to code generation (as in traditional runtime veri-
fication tools), we implemented a novel runtime verification
library called MOPBox [8].

Acknowledgements.
We wish to thank the anonymous reviewers for their help-

ful and thorough feedback. This work was supported by the
Center for Advanced Security Research Darmstadt, CASED
(www.cased.de).

6. REFERENCES
[1] Chris Allan, Pavel Avgustinov, Aske Simon

Christensen, Laurie Hendren, Sascha Kuzins, Ondřej
Lhoták, Oege de Moor, Damien Sereni, Ganesh
Sittampalam, and Julian Tibble. Adding Trace
Matching with Free Variables to AspectJ. In
International Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), pages 345–364. ACM Press, October 2005.

[2] The AspectJ home page, 2003.

[3] Pavel Avgustinov, Julian Tibble, and Oege de Moor.
Making trace monitors feasible. In International
Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA),
pages 589–608. ACM Press, October 2007.

[4] Feng Chen and Grigore Roşu. MOP: an efficient and
generic runtime verification framework. In
International Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), pages 569–588. ACM Press, October 2007.

[5] Feng Chen and Grigore Roşu. Parametric trace slicing
and monitoring. In International Conference on Tools
and Algorithms for the Construction and Analysis of
Systems (TACAS), volume 5505 of Lecture Notes in
Computer Science (LNCS), pages 246–261. Springer,
March 2009.

[6] Rick Chern and Kris De Volder. Debugging with
control-flow breakpoints. In Proceedings of the 6th
international conference on Aspect-oriented software
development, AOSD ’07, pages 96–106, New York, NY,
USA, 2007. ACM.

[7] Eclipse IDE. http://www.eclipse.org/.

[8] MOPBox, runtime monitoring in a box.
http://mopbox.googlecode.com/.

[9] Amir Pnueli. The temporal logic of programs. In IEEE
Symposium on the Foundations of Computer Science
(FOCS), pages 46–57. IEEE Computer Society,
October 1977.

[10] Workshop and conference series on Runtime
Verification. http://www.runtime-verification.org/.

[11] Cheng Zhang, Dacong Yan, Jianjun Zhao, Yuting
Chen, and Shengqian Yang. Bpgen: an automated
breakpoint generator for debugging. In Proceedings of
the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 2, ICSE ’10, pages
271–274, New York, NY, USA, 2010. ACM.

http://www.eclipse.org/
http://mopbox.googlecode.com/
http://www.runtime-verification.org/

	New Idea: Defining Runtime Monitors with Breakpoints
	State of the art: textual monitor definition paired with code generation
	Proposed solution: Runtime monitors as stateful breakpoints
	Benefits over traditional breakpoints
	Benefits over traditional runtime verification tools

	Novelty of the idea
	Related Work
	Expected Feedback
	Conclusion
	References

