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Abstract
Typestate analyses determine whether a program’s use of a
given API obeys this API’s usage constraints in the sense
that the right methods are called on the right objects in the
right order. Previously, we and others have described ap-
proaches that generate typestate analyses from textual finite-
state property definitions written in specialized domain-
specific languages. While such an approach is feasible, it
requires a heavyweight compiler, hindering an effective in-
tegration into the programmer’s development environment
and thus often also into her software-development practice.

Here we explain the design of a pure-Java interface facil-
itating both the definition and evaluation of typestate anal-
yses. The interface is fluent, a term coined by Eric Evans
and Martin Fowler. Fluent interfaces provide the user with
the possibility to write method-invocation chains that almost
read like natural-language text, in our case allowing for a
seemingly declarative style of typestate definitions. In all
previously described approaches, however, fluent APIs are
used to build configuration objects. In this work, for the first
time we show how to design a fluent API in such a way that it
also encapsulates actual computation, not just configuration.

We describe an implementation on top of Soot, Heros
and Eclipse, which we are currently evaluating together with
pilot customers in an industrial context at Fraunhofer SIT.

Categories and Subject Descriptors F.3.2 [Semantics of
Programming Languages]: Program Analysis

General Terms Algorithms, Design, Languages

Keywords Fluent interfaces, static analysis, dynamic anal-
ysis, typestate
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1. Introduction
A typestate property [17] describes which operations are
available on an object or a group of inter-related objects, de-
pending on this object’s or group’s internal state, the types-
tate. For instance, programmers must not write to a connec-
tion handle that is currently in its “closed” state. Also, a pro-
grammer must refrain from further using an iterator in cases
where the associated collection object was modified after
the iterator has been created [7]. In past research, we and
others [1, 5, 6, 8, 9] have described several domain-specific
languages (DSLs) for the declarative definition of typestate
properties. Listing 1 shows a definition of the pattern for
fail-safe iterators mentioned above, formulated in the syn-
tax of tracematches [1], a language extension to AspectJ [2].
The example defines three events create_iter, call_next

and update_source along with a regular expression (line 11)
that describes the set of event sequences after the tracematch
body (line 12) should execute. Crucially, the tracematch ex-
ecutes its body only if all the matched events occurred on
the same collection and iterator objects. While one could
also imagine a simple, for instance Java-based, application
interface (API) to define typestate properties, definitions in a
domain-specific language such as tracematches have the ad-
vantage that they are relatively easy to read and comprehend,
and are also fully declarative: the definition states what prop-
erty should be analyzed for a given program, but not how the
analysis must be performed. The user can thus abstract from
implementation details unimportant to her.

Nevertheless, domain-specific languages have a number
of problems on their own. First they require dedicated com-
piler support. A front-end must parse the typestate-property
definition and, to give useful user feedback in cases of
mis-specifications, it must also comprise a powerful type
checker. In addition, a compiler backend must use the infor-
mation of the property definition to parameterize a static or
dynamic analysis approach that actually evaluates the prop-
erty with respect to a given program. Building such a tool
chain is a non-trivial engineering task and can easily take
several person months. Another drawback is that, unless
additional tool support is provided, the domain-specific lan-



1 public aspect FailSafeIter {

2 pointcut collection_update(Collection c) :

3 ( call(* java.util.Collection.add*(..)) ||

4 call(* java.util.Collection.remove*(..)) ) &&

target(c);

5 tracematch(Collection c, Iterator i) {

6 sym create_iter after returning(i) :

7 call(* java.util.Collection.iterator()) &&

target(c);

8 sym call_next before:

9 call(* java.util.Iterator.next()) && target(i);

10 sym update_source after : collection_update(c);

11 create_iter call_next* update_source+ call_next {

12 throw new ConcurrentModificationException(c,i);

13 }

14 }

15 }

Listing 1: Tracematch definition for fail-safe iterators

guage will in all likelihood not integrate well with the soft-
ware engineer’s integrated development environment (IDE).
The language might lack support for syntax highlighting,
code completion and incremental compilation. For many de-
velopers this is a problem large enough to discourage them
from using typestate specifications (or DSLs in general) in
the first place.

In this paper we thus present the design of TS4J, a pure-
Java API that supports typestate definitions in a seemingly
declarative manner. In the scientific community, such APIs
are frequently referred to as internal DSLs, i.e., DSLs that go
without extensions to the syntax and semantics of the host
language, Java in our case. Listing 3 shows the definition of
a static analysis for the fail-safe iterator typestate property,
written using TS4J. (We will explain the semantics later.)
Because TS4J is based on pure Java, it supports syntax
highlighting and Java’s type checks. As we explain in more
detail later, though, by following the design rules of so-
called fluent interfaces, our architecture also allows a certain
level of typechecks on the semantic level of the typestate
definitions. The term “fluent interfaces” was coined by Eric
Evans and Martin Fowler [10]. It describes a certain style of
API design which allows users of the API to form method-
call chains that almost read like natural-language sentences.
By making clever use of Java interfaces, one can restrict the
vocabulary and grammar of these sentences to the subset that
has a well-defined semantics in the DSL.

Previous approaches to internal DSLs with fluent inter-
faces, however, restrict themselves to pure configuration.
One of the most popular fluent interfaces, for instance,
the jOOQ interface for defining type-safe SQL queries in
Java [13], allows for queries such as the one shown in List-
ing 2. Here the calls to the methods from, join, . . . , orderBy
modify an internal configuration object which the API suc-
cessfully hides from the user. The final call to fetch then

1 Result<Record> result =

2 create.select()

3 .from(AUTHOR.as("a"))

4 .join(BOOK.as("b")).on(a.ID.equal(b.AUTHOR_ID))

5 .where(a.YEAR_OF_BIRTH.greaterThan(1920)

6 .and(a.FIRST_NAME.equal("Paulo")))

7 .orderBy(b.TITLE)

8 .fetch();

Listing 2: Internal DSL for jOOQ

passes this configuration object to an SQL query evaluator
that actually computes the query result. In result, the fluent
interface is used for configuration but not for computation.
With TS4J we show that it is possible to use a fluent inter-
face also to define computation if that computation is written
in the same host language and executes in the same process.
The crucial ingredient that makes this possible is the in-
jection of context into the objects managed by the fluent
interface.

In summary, this paper describes the first fluent interface
for the definition of typestate properties and, to the best of
our knowledge, the first incarnation of a fluent interfaces that
is used not just to implement the configuration but the actual
implementation of the APIs behavior.

Section 2 further describes the concrete design and se-
mantics of our fluent interface. Section 3 explains how we
manage to have the interface implement behavior, not just
configuration. We discuss related work in Section 5 and con-
clude in Section 6.

2. Fluent interface
Fluent interfaces are a generic way to produce internal DSLs
in object-oriented programming languages such as Java. The
developers of the jOOQ library mentioned above describe a
generic conversion from a context-free grammar to a set of
Java APIs forming an appropriate fluent interface for that
grammar. The grammar is assumed to be described by a
railroad diagram such as the one shown in Figure 1.

As they write [12], to generate an appropriate fluent-
interface definition for any grammar given in this format one
just needs to obey a set of simple rules:

• Every DSL keyword becomes a Java method.
• Every connection out of a keyword becomes an interface

whose type the respective Java method returns.
• For a mandatory choice, where one cannot skip the next

keyword, every keyword of that choice is a method in
the given connection’s interface. If only one keyword
is possible, then there is only one method. In case of
an “optional” keyword, the current interface extends the
next one (with all its keywords / methods).



Figure 1: Railroad diagram, from [12]

• On a repetition of keywords (caused by loops in the di-
agram), the method representing the repeatable keyword
returns the interface itself instead of the next interface.

We effectively follow this methodology to turn into Java
interfaces and method declarations the grammar for TS4J,
shown in Figure 2. For our first prototype we followed these
conversion steps manually. We quickly realized, however,
that over time one might want to adjust the DSL’s grammar,
which then results in the necessity to rearrange the related
Java interfaces and their type hierarchy. This type of code
evolution is not trivial, such that it might actually be benefi-
cial to have the interface definitions generated automatically.
The jOOQ project, in fact, does contain a code generator
along those lines. However, it is specialized to SQL, using
database schemas and not grammars as an input.

In addition to the generated or hand-written interface
definitions, TS4J comprises a single class that implements
all of the respective interfaces. Invoking a method such as
ifValueBoundTo invokes an operation on an object of this
class, and then returns the very same object, possibly then
viewed through an interface different from the interface
which the method was invoked on.

2.1 Interface semantics
After having shown the syntax of our fluent interface and
how we construct its Java interfaces from the syntactic defi-
nition, we next describe the syntax and also its semantics in
more detail. As the Grammar in Figure 2 shows, TS4J allows
for the definition of a set of rules.

Location filters Each rule is inspected upon the analysis
encountering a method call or return and, according to the
set of defined location filters (Loc) will or won’t apply at this
call/return. In our current design, the parameters to atCallTo

and atReturnFrom are method signatures in Soot’s internal
format (Lst. 3 lines 1–6). For the future, we envision using
pointcut-like patterns [18] that would allow for a more con-
cise selection of sets of method signatures. The special loca-
tion filter atReturnFromMethodOfStmt will be explained later.

Start ::= Rule | Rule Start

Rule ::= Locs [Conds] Actions

Locs ::= Loc | Loc or Locs

Loc ::= atCallTo(String methodSig) |

atReturnFrom(String methodSig) |

atReturnFromMethodOfStmt(StmtId stmt)

Conds ::= Cond | Cond and Conds

Cond ::= ifValueBoundTo(Var var) Equals |

ifInState(State state)

Equals ::= equalsThis | equalsReturnValue |

equalsParameter(int index)

Actions ::= Action | Action and Actions

Action ::= SwitchState | TrackValue | StoreStmt | ReportError

SwitchState ::= toState(State targetState)

TrackValue ::= TrackWhat as(Var var)

TrackWhat ::= trackThis | trackReturnValue |

trackParameter(int index)

StoreStmt ::= storeAsStmt(StmtId stmt)

ReportError ::= reportError ErrorLoc

ErrorLoc ::= here | atStmt(StmtId stmt)

Figure 2: Grammar for the proposed DSL

Condition filters When a rule applies because the signa-
ture matches, the system next evaluates its condition filters
(Cond). Analysis configurations comprise three types of in-
ternal state:

a set of abstract values indexed by abstract variables,

an abstract state and

a set of statements indexed by a set of statement IDs.

Abstract variables and statement IDs both range over a user-
defined enum. While this restricts analysis configurations to
binding only a finite set of abstract values and statements,
it (1) allows for a time and memory-efficient implemen-
tation using arrays, and (2) ensures termination of the in-
duced static analysis because it guarantees a finite config-
uration space. The filter ifValueBoundTo checks whether a
value previously bound to a given abstract variable equals
the current call’s receiver (this), return value or n-th pa-
rameter. In our implementation, equality is resolved using a
generic taint analysis that follows assignment chains through
the program and uses points-to information to resolve alias-
ing, but other implementations (including dynamic ones!)
are possible. The filter ifInState retains only such config-
urations that are in the given abstract state.

Actions When all filters match, one or more actions are
applied. The possible actions are:

switching the abstract state to a given target state,

tracking a value at the current statement by assigning it to
a given abstract variable,

storing a statement for future reference, and

reporting an error condition to the user.



Tracking values and internal state is important to enable
the condition filtering mentioned above. Storing statements
is important for two reasons. First, when reporting an er-
ror, the developer can specify an error location (ErrorLoc),
indexed by a statement identifier. This assumes that a state-
ment reference has been previously stored under this iden-
tifier. (The internal state and conditions on this state can be
used to assure that this is indeed the case.) Second, the user
can use the special location filter atReturnFromMethodOfStmt
which also accepts a statement identifier as an input. This
mechanism is useful for being able to check bounded live-
ness properties. Assume that we wish to check that every
object that implements the interface java.io.Closeable is
closed eventually. Assuring this property globally would re-
quire a whole-program analysis, which is both inefficient
and in most cases also too liberal for what the developer ac-
tually desires. In most situations, the developer would want
to have the object closed within the scope of the execution
of the method in which the object was created. In such situ-
ations the developer can use one rule to match on appropri-
ate constructor calls, binding the call to a statement identi-
fier such as NEW_CLOSEABLE and can then use a location filter
atReturnFromMethodOfStmt(NEW_CLOSEABLE) to report an error
if the respective object is still in its “open” state when the lo-
cation filter matches (at the method return).

Our rigorous usage of Java interfaces and the design prin-
ciples of fluent interfaces ensure that, at every given point
in time, the software developer defining the rules can in-
voke only those methods that make sense in the current con-
text. For instance, a rule definition cannot start with a call to
toState, and equalsThis can only be called right after calls
to ifValueBoundTo(..). In that sense, fluent interfaces, to a
certain extent, enforce typestate properties on their own.

2.2 Explanation of initial example
We next explain the effect of our initial example of the fail-
safe iterator under the semantics stated above. The exam-
ple rule shown in Listing 3 comprises three rules, one for
the creation of new iterators (line 12), one for the modifica-
tion of collections (line 16) and one for the usage of iterators
(line 20). To create a rule, the user must invoke methods on
a context object (here called c in line 11), which at the same
time gives access to the fluent interface and encapsulates
context information. Section 3 will explain why the latter
is important. The first rule, upon encountering the creation
of a new iterator through a call to Collection.iterator()

(defined in lines 3–4), binds the receiver to COLL and the
return value to ITERATOR, and also initializes the configu-
ration’s internal state to INIT. The second rule, at calls to
Collection.add(), changes this state to MODIFIED, but only
if the receiver object equals the value previously bound to
COLL. Also it stores the current statement for future refer-
ence, under the identifier MODIFICATION. The last rule even-
tually applies at calls to Iterator.next(). It reports an error
if the respective iterator object is in state MODIFIED, but only

1 String COLLECTION_ADD =

2 "<java.util.Collection: boolean add(java.lang.Object)>";

3 String NEW_ITERATOR =

4 "<java.util.Collection: java.util.Iterator iterator()>";

5 String ITERATOR_NEXT =

6 "<java.util.Iterator: java.lang.Object next()>";

7 enum Var { COLLECTION, ITERATOR };

8 enum State { INIT, MODIFIED };

9 enum StatementId { MODIFICATION };

10 ...

11 return c.

12 atCallTo(NEW_ITERATOR).

13 trackThis().as(COLL).

14 trackReturnValue().as(ITERATOR).

15 toState(INIT).

16 atCallTo(COLLECTION_ADD).

17 ifValueBoundTo(COLL).equalsThis().

18 toState(MODIFIED).

19 storeStmtAs(MODIFICATION).

20 atCallTo(ITERATOR_NEXT).

21 ifValueBoundTo(ITERATOR).equalsThis().and().

22 ifInState(MODIFIED).

23 reportError("Collection modified!").

24 atStmt(MODIFICATION);

Listing 3: The internal DSL proposed

if the iterator is the one previously bound to ITERATOR. The
error is defined to be reported at the statement that modified
the collection, i.e., the one previously stored under the iden-
tifier MODIFICATION. As an alternative, the developer could
also simply have stated here() to report the error at the cur-
rent location.

In this example, it is important to note that any change of
the internal state of a configuration is reflected in all objects
currently bound to that configuration. This is because states
are associated with abstract configurations, not with the in-
dividual objects that they bind. In particular, note that the
second rule changes the state for all configurations referring
to the collection being modified. There can be many such
configurations, for instance because any collection can have
many live iterators at the same time, but also because any
such iterators can have many static aliases, each of which
will yield a separate configuration in our implementation.
Changing the internal state of any of those configurations
implicitly changes the state for the related iterator(s) as well,
giving sense to the third rule: this rule refers only to the in-
ternal state of configurations related to iterators, abstracting
from the collections they are bound to. For further reading on
such multi-object properties, we refer the interested reader to
related work [1, 4, 7, 15].

3. Implementing behavior
As we explained earlier, one particularity that sets our ap-
proach apart from previous approaches to fluent interfaces,
is that the fluent interface is not just used for defining a con-
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Figure 3: Workflow of the analysis implementation

figuration object, but instead is used to also implement the
actual behavior of the rules that the developer defines.

As explained in the previous section, the definition of
each analysis rule induces the creation of a single object
that implements all possible Java interfaces constituting the
fluent interface. All methods invoked on this object return
the object itself, i.e., this, but with a declared interface type
reflecting the methods that can be called next on this object,
according to the grammar of the fluent interface. Figure 3
shows this object as “config”, in Listing 3 it is called c.

At each call statement, TS4J instantiates a new config ob-
ject, comprising (1) the current analysis configurations that
reached this statement, and (2) an analysis context giving
access to the current statement as well as context informa-
tion including pointers to may-alias and must-alias analyses.
The framework then passes this object to the rule definition
provided by the user, for instance the rule shown in List-
ing 3. The self-calls that make up the rule-definitions cause
the config object to filter and/or modify the abstraction that
it holds. If all filters fail to match, then the config object re-
turns itself with an unmodified abstraction, further setting an
internal flag causing subsequent calls on the same config ob-
ject to have no further effect. If a filter does match then the
config object may modify its abstraction, depending on the
semantics of the rule definitions. As shown in the figure, in
the general case, a rule may cause the config to produce not
just a single successor abstractions but multiple ones. In par-
ticular, this is the case when binding values to variables: in
this case the config object produces a new abstraction with
the value being bound, but also retains the old abstraction
with the unbound value. This is necessary, for instance, in
situations where a configuration referencing a collection is
also bound to a specific iterator. Since the same collection
can have other iterators in the future, a config with the itera-
tor being unbound needs to be retained.

After the execution of the rule has finished, the config ob-
ject is erased again, and only the resulting abstraction objects
are retained. Those are then passed to a general IFDS [16]
solver which takes care of propagating the abstractions fur-
ther. Because our whole approach is based on IFDS, which

requires separable flow functions anyway, it is known that
individual abstractions can be processed separately. Hence,
when multiple abstractions reach the same call statement,
our implementation can simply wrap them individually into
config objects one by one.

It is interesting to note that the processing of rules is
really only necessary at method calls and returns, and it only
needs to handle the abstract semantics of the given rules. In
particular, all handling of aliasing and of the passing of call
parameters and return values is performed transparently and
does not need to be considered when writing or evaluating
rules. In our implementation this manifests itself through the
fact that only call-to-return-flow and return-flow functions
trigger rule computations. In contrast, normal-flow functions
handle assignments only, as do call-flow functions, which
assign actual parameter names to formal parameter names.

4. Implementation
Figure 4 shows a screenshot of an example program within
our current prototype, running with the analysis rule for fail-
safe iterators. As explained before, the error is shown at the
statement that modifies the collection. Note how the analysis
handles inter-procedural flows and aliasing.

Figure 4: Screenshot of analysis implementation



The current prototype is implemented in the form of
an Eclipse plugin, which itself exports an extension point
for defining and plugging in novel analysis rules. To in-
sert a new rule, the user simply extends this extension point
within a separate Eclipse plugin and then implements a class
with a single callback method atCallToReturn(config) or
atReturn(config) respectively. The declared interface type
of the parameter config is chosen such that it reflects exactly
the methods defined through the first terminals reachable
from the Start non-terminal of the grammar from Figure 2.
Both methods have an interface return type implemented by
all interfaces returned by all methods with which a valid rule
can end. This assures that the user can only return config
objects which have indeed received an appropriate set of
self-calls, according to the grammar. In particular, the call-
back cannot simply return config without defining any rule
at all, as config has a type incompatible with the return type.

5. Related Work
While fluent interfaces have found some attention in the
practice of software engineering, their properties and design
principles have not yet been the subject of academic study.

Existing commercial or successful open-source program-
analysis tools typically follow one of two paths. Either they
allow users to define rules through a graphical user interface
or through a regular application interface. Both approaches
have their problems. Definitions based on a user interface re-
quire good UI design to be helpful. Designing a good UI is
costly. With new additions to the expressive power of rules,
the UI support must be expanded as well. Further, such “vi-
sual” rule definitions cannot easily be processed with text-
editing and version-control tools. Nevertheless, some exist-
ing tools such as IBM AppScan Source or the information-
analysis tool Joana [11] follow this path. Definitions using
regular APIs have the problem that they often lead to rule
definitions that are both cumbersome to read and write. It is
challenging to have the rule-definitions API stick to the es-
sentials, such that the user is not overburdened by the size
of the API. Fluent interfaces as we use them in our work al-
low for good ease of use because at any time they permit the
user only those method invocations that make sense in the
current context. Existing tools that allow rule-definitions or
analysis-definitions using regular APIs include FindBugs [3]
and Jlint [14].

6. Conclusion
We have shown a fluent Java interface for the definition and
evaluation of typestate-analysis rules. While our implemen-
tation uses the rules for executing a static inter-procedural
program analysis, we believe that also a use for dynamic
analysis should be possible. The fluent interface hides all
necessary implementation details from the user, and through
the clever use of interface types, prevents the ill-formed def-
initions of rules.
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