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Abstract. The increased sharing of computational resources elevates
the risk of side channels and covert channels, where an entity’s security
is affected by the entities with which it is co-located. This introduces
a strong demand for mechanisms that can effectively isolate individual
computations. Such mechanisms should be efficient, allowing resource
utilisation to be maximised despite isolation.
In this work, we develop a model for uniformly describing isolation, co-
location and containment relationships between entities at multiple levels
of a computer’s architecture and at different granularities. In particular,
we examine the formulation of constraints on co-location and placement
using partial specifications, as well as the cost of maintaining isolation
guarantees on dynamic systems. We apply the model to a number of
established attacks and mitigations.

1 Introduction

Side and covert channels (collectively, illicit channels) are fundamentally the
result of imperfect isolation, where information regarding an entity’s internal and
potentially secret state leaks to an observer through an unregulated interface.

The position of two entities relative to each other determines the type of illicit
channel that can be formed between them. For example, two processes sharing a
physical core may form a channel over the memory subsystem, whereas processes
on separate machines may form a network-based illicit channel. This leads to the
notion of co-location, where entities are said to be co-located within a medium
if they can leverage it to form illicit channels.

Co-location is often considered at the virtual-machine level in the context of
cloud computing, yet the notion of co-location as a precursor to illicit channels
extends to multiple levels of a computer’s architecture. Isolation at the virtual-
isation level is limited in that it is coarse-grained, whereas one often only has
to isolate parts of a virtual machine. In addition, the mechanisms used to build
illicit channels can operate at a fine granularity, and their effects may not be
correctly or precisely encompassed by a coarse-grained model.
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In this work, we develop a holistic model of locality that considers multiple
levels of an architecture at varying granularities. This offers numerous advan-
tages over a single-level model. Finer granularity can lead to an improvement
in hardware utilisation, as fewer resources are committed to providing isolation
guarantees. The ability to compare the cost of maintaining different isolation lev-
els also allows resource allocation to be optimised dynamically, further improving
utilisation. Apart from being quantifiable, the cost of maintaining isolations must
be attributable, particularly in the case of cloud computing.

As scheduling and placement play a central role in co-location, the locality
model must also be able to describe both temporal as well as spatial aspects
of a system. Another aspect addressed by the model is the notion of partial
specification, where entities within a system (such as tenants on a cloud) only
have a partial view of their environment, and must be able to delegate their
isolation requirements to external entities.

In summary, this work:

– reconciles different aspects of isolation and co-location into a unified model
that can describe both temporal and spatial properties of a system at mul-
tiple architectural levels,

– examines the different levels and confinement types, and their use in defining
partial specifications and isolation requirements,

– provides an operational model for migration and cost estimation, allowing
different system configurations and real-world architectures to be compared
and optimised, and

– demonstrates various applications of the model in analysing illicit channels.

2 Confinements

A modern computer architecture consists of a multitude of isolated environ-
ments, which are themselves contained within isolations, forming a hierarchy.
The following section introduces the notions of confinement and containment.

2.1 Isolation and Containment

A computer architecture comprises a number of logical and physical confine-
ments. For example, processes execute within the confines of a CPU. Confine-
ments must themselves exist within an environment, which leads to a notion of
hierarchical containment. Extending the previous example, multiple CPUs may
be confined by a single machine, which can itself form part of a network.

Definition 1 (Confinement). A confinement (equivalently, isolation or lo-
cality) denotes a boundary within which a number of sub-confinements exist. A
confinement of type Γ with a name N and capability set C containing a set of
sub-confinements Sb is denoted as Γ :N(C) [Sb].
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A confinement’s name is typically dictated by its type, and serves to identify it
from amongst its siblings. Capabilities are used to limit how confinements can
interact and modify each other, as will be seen in Section 3. The capability set
can be omitted when it is empty.

Illicit channels exploit the fact that certain confinements are imperfect, and
do not keep their sub-confinements completely isolated from each other. Thus,
confinements can be seen as introducing locality, where confinements that should
theoretically be disjoint are connected through a channel exploiting some char-
acteristic of their parent confinement.

Definition 2 (Containment and Co-Location). A confinement X is con-
tained within a confinement Γ :D(C) [Sb] if X ∈ Sb. This is denoted as X∈D. X

is said to be co-located with Y through D, written as X
D←→ Y, if X∈D∧Y∈D.

The state leaked within a confinement can potentially be observed both by its
direct sub-confinements as well as their members. This gives rise to the notion

of nested containment, where X∈+ D
def
= X∈D∨∃D′ ∈D. X∈+ D′, and nested

co-location, where X
D⇐⇒ Y

def
= X∈+ D ∧Y∈+ D.

Example 1 (Parallel Execution). Consider a CPU package with two cores (C)
sharing an L3 cache, each of which employs simultaneous multithreading (SMT)
to expose two hardware threads sharing an L1 and L2 cache. This can be mod-
elled as:

CPU
def
= L3:0 [L2:0 [L1:0 [C:0 [] ,C:1 []]] ,L2:1 [L1:0 [C:2 [] ,C:3 []]]]

Two processes X and Y can be susceptible to an attack via L1 cache [28] if

∃L1:L∈+ CPU. X
L⇐⇒ Y, or via L3 cache [36] if ∃L3:L∈+ CPU. X

L⇐⇒ Y. The
latter will hold whenever the processes execute simultaneously. ut

Note that proximity, or the depth at which two processes are co-located
within the model, does not necessarily correlate with an illicit channel’s band-
width. That is, while processes that are closer to each other can generally com-
municate at a faster rate or perform more events per unit time than others
that are further away (for example, processes sharing a cache interact with their
shared resource at a higher frequency than if they were co-located through a
network), not every interaction carries information relevant to the channel.

2.2 Types of Isolation

Illicit channels occur either at the software or hardware level [24], the former
being a product of the algorithms used, while the latter emerge from the charac-
teristics of a system’s hardware. When considering hardware-based channels, an
additional distinction between soft and hard isolation can be made [32]. Hard
isolation implies that co-locations are broken by using distinct physical hard-
ware locations, whereas soft isolation simulates distinct hardware locations by
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Hard Isolation Soft Isolation

Type Description Can Contain Type Description Can Contain

Net Network Net, M VM Virtual machine VC, OS
M Machine L3, OS VC Virtual CPU VC, PE, Con, VM
L3 L3 Cache L2 Con Container P
L2 L2 Cache L1 PE Control group Con, P
L1 L1 Cache C P Process -
C Physical core VC, PE, Con, VM OS Operating Sys. PE, Con, VM

Table 1: Types of soft and hard isolation, and their typical containments.

arbitrating access to resources, hiding their characteristics. Soft isolation is guar-
anteed with respect to a defined attribute. For example, a timing channel can
be closed by masking the timing characteristics of caches [28], yet such a mitiga-
tion may not effectively address other potential illicit cache-level channels. Hard
isolation is comprehensive, but is limited by capacity [27].

Table 1 lists the soft and hard isolation types with which this work is pri-
marily concerned. Other granularities and isolation types can also be modelled.
For example, as will be seen in Section 5.2, monolithic caches can be decom-
posed into cache sets. The confinement model places no restrictions on the types
of sub-confinements, which allows the description of partial specifications and
incomplete system hierarchies. In practice, it follows that certain containment
patterns do not occur, and that the presence of certain confinements imply the
existence of a parent of a specific type. For example, a virtual CPU (VC) con-
finement would imply the existence of a VM to which it belongs.

Hard isolations are passive elements of a system. Conversely, certain soft
isolations must be upheld through an active and ongoing process, or through a
change in policy. For example, early implementations of x86 virtualisation in-
curred a constant overhead through dynamic binary rewriting [3], which has
nowadays been significantly reduced via hardware-assisted virtualisation. Sim-
ilarly, software-based approaches to securing AES added overheads [28] that
were eliminated through their implementation as a special hardware-level con-
finement [23].

3 Managing Isolations

The core operations for modifying a containment hierarchy are confinement cre-
ation, destruction and migration. The latter is modelled as moving an isolation
from one containment to another. The implementation of these operations varies
based on the isolations involved, and may require a series of compound actions
that incur multiple changes at different parts of the hierarchy. Changes to the
hierarchy are effected by agent processes.

Definition 3 (Agent). An agent is a confinement A:N(CAg)→T [Q], where A
denotes an agent type, N is the agent’s name, CAg is its capability set, T is a
set of confinements visible to the agent, → ⊆ T×T is a mapping defining legal
containments, and Q is a queue of idle confinements.
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L-Sc

A:Ag(CAg)→T [Q ∪ {X}]
Γ :N(C) [Sb] Ag ≡ X y N.Ag’ C

Ag e C C
Ag e cap(X) (X,N) ∈→

A:Ag’(CAg)→T [Q] Γ :N(C) [Sb ∪ {X}]

L-Ds

A:Ag(CAg)→T [Q]

Γ :N(C) [Sb ∪ {X}] Ag ≡ X y Ag.Ag’ C
Ag e C C

Ag e cap(X)

A:Ag’(CAg)→T [Q ∪ {X}] Γ :N(C) [Sb]

Fig. 1: Local migration rules.

Agents represent scheduling components that manage confinements. For exam-
ple, an operating system’s process scheduler can be modelled as an agent confine-
ment that regulates movements between an idle queue and core confinements.
Agents can be embedded at any part of the hierarchy. For example, a network
domain controller can be modelled as an agent embedded within the network’s
hardware layer. Agents can move (or migrate) confinements using local and global
scheduling operations, described in the following sections.

3.1 Local Scheduling

Local scheduling moves a confinement between an agent’s idle queue and a target
confinement via the local-schedule (L-Sc) and local-deschedule (L-Ds) rules, the
general forms of which are defined in Figure 1, where cap(Γ :N(C) [Sb]) → C,

and A eB
def
= A ∩B 6= ∅. For a local-schedule operation, the agent process Ag

issues a migration operation (X y N) that moves X from its idle queue to the
target locality N, provided that the allocation is permitted (as defined by →),
and that the agent holds the appropriate capabilities. Descheduling is similar,
but returns the locality from a target confinement to the agent’s idle queue.

An agent must share a capability with the target confinement, as well as
the confinement being moved. Capability checking is modelled as an abstract
operation (an intersection between capability sets), as the concrete implemen-
tation varies by confinement. For example, destroying a process requires the
agent to have the process owner’s user rights. Similarly, virtual machines can
only be modified by agents holding the appropriate rights, which can be granted
through a number of authorisation mechanisms, such as user groups, passwords,
or polkit [2] policies.

Mutability is not modelled as an intrinsic property of a confinement, rather
it is determined by the availability of its capability to agents. While hardware
confinements such as caches are not typically disabled at runtime, an agent may
want to delete their representation from the model if it is certain that the threat
of a channel through that confinement has been neutralised.

Example 2 (Round Robin Scheduler). Consider the CPU hierarchy defined in
Example 1. An agent implementing a simple round-robin scheduler with a shared
run queue can be defined as A:rr(CAg)→T [Q], where Q contains an ordered

5



list of processes, and → defines the allowed mapping of processes to physical
cores. The default behaviour is to map all processes to all available cores, giv-

ing → def
= {(X,Y) | X ∈ Q,Y = C:N(C) [Sb] ,Y∈+ CPU}. Given that ↑(X)

def
=

{Y | (X,Y) ∈→}, the scheduler can be defined as a CSP-like process as follows:

rrQ([P | Ps] ,CA,CF) ≡
C:X∈↑(P)∩CF

u P y X.rrQ(Ps,CA,CF \ {X}) u
P:P’∈C:Y∈CAu P’ y rr.rrQ(Ps | [P’] ,CA,CF ∪ {Y})

where CA is the set of all cores being managed by the scheduler, [P | Ps] is an
ordered list of processes with P as its head and Ps as its tail, and CF is the
set of idle cores. The process would thus be initialised as rrQ(Q,Cs,Cs), where
Cs = {X | C:X∈+ CPU}.

Next, consider the scenario where a security-sensitive process S is added to
Q. If the process is susceptible to a cache-level synchronous attack [28], then
one must avoid co-locating S with other processes during its execution. As for-
mulated, the scheduler will execute processes in the order specified by the idle
queue, but processes can be descheduled pre-emptively at will, meaning that
every other process can potentially execute in parallel with S. Forcing processes
to execute for an equal and fixed time-slice will cause S to potentially be co-
scheduled with the |Cs| − 1 processes that appear before and after it in the idle
queue. Finally, changing → to ensure that S always executes by itself will pre-
vent spatial co-location, at the cost of underutilised hardware. As a compromise,
→ can be varied dynamically, with the number of processes that can share cores
growing proportionately to the time elapsed since the last scheduling of S. ut

Configurations Reasoning about temporal locality requires the ability to de-
scribe how a model evolves from one configuration to the next, where a config-
uration is defined as a set of confinements. The evolution of a configuration is
determined by the agents it contains. The presence of multiple agent and vary-
ing scheduling policies mean that, in general, there is more than one legal next
configuration. This leads to the notion of a next(C) function, which returns the
set of possible configurations that can be reached from a configuration C through
a single application of a local schedule or deschedule operation (Figure 1). This
is extended to the iterated next configuration function nextn(C), which returns
the set of configurations reachable from C in n steps, defined as follows:

next0(C) def
= {C}

nextn(C) def
=
{
nextn−1(C′) | C′ ∈ next(C)

}
Finally, the configuration combination operator nextn∪(C) is defined as:

nextn∪(C)
def
=
{
Γ :N(C) [Sb] | Γ :N(C)

[
Sb′
]
∈+ Cfs

}
where Sb

def
=
⋃{

Sb′′ | Γ :N(C)
[
Sb′′

]
∈+ Cfs

}
and Cfs

def
=
⋃ ⋃

0≤i≤n

nexti(C)
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L3:0

L2:1

L1:1

C:3C:2

P:SC

L2:0

L1:0

C:1

P:S

C:0

(a) No isolation at L1

L3:0

L2:1

L1:1

C:3C:2

L2:0

L1:0

C:1

P:SC

L1S:MitC

P:Clean

C:0

P:S

L1S:Mit

(b) Creation of L1S via soft isolation

Fig. 2: Cache-level co-location and mitigation via soft isolation, with arrows de-
noting containment.

This effectively performs a union of every possible configuration reachable within
n local scheduling operations, including intermediate configurations. The result is
a graph that shows every containment combination attainable in a set sequence
of steps. This can be used to represent a system’s temporal behaviour as a
static spatial graph. A related graph can be achieved by combining each agent’s
containment mapping, giving a graph of potential containments, yet this would
over-approximate containments, as a scheduling policy may opt to only use a
subset of mappings available to it. To simplify the operation, it is assumed that
confinements can be uniquely identified by their name. Otherwise, an additional
preprocessing step can be introduced.

Example 3 (Round Robin Scheduler, revisited). In Example 2, co-location with a
security-sensitive process S was only considered with respect to a single moment
in time, yet an access-based cache-level side channel’s effects persist beyond
a process’ execution [28] until the security-sensitive memory blocks have been
flushed. Thus, simply disabling co-scheduling during S’s execution would not be
sufficient to break the channel reliably.

The duration of the residual effects of caches is independent of real time,
and is determined by cache evictions. For the pre-emptive round robin scheduler
described earlier, the position of S in the idle queue relative to an attacker
process will generally affect the illicit channel’s quality, as the probability that S’s
sensitive cache blocks become clobbered increases with the number of processes
that execute in the interim. If cache eviction patterns and process quanta are
irregular, or if a fully pre-emptive scheduling policy is used, then each core in
next∞∪ ({CPU}) will contain Q.

Residual effects can be explicitly removed through a cache-cleaning pro-
cess [37] that invalidates cache blocks, masking their timing variations. The
process (henceforth referred to as Clean) must execute after each de-scheduling
of S. Any process using the same cache that executes concurrently with S can
potentially infer the timing state up to the point of Clean’s completion. Thus,
one must place an additional restriction on concurrent execution. If these two
conditions can be guaranteed as invariants, then the cache has effectively been
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partitioned into two sub-confinements of type L1S (a soft-isolated L1), trans-
forming the hierarchy described in Figure 2a to that illustrated by Figure 2b
(for simplicity, S is pinned to C:0). The partitioning serves to isolate the process
S from the other processes SC (the latter being the complement of S). Note
that the processes remain co-located within L1:0, as they are still ultimately
sharing hardware locality. If the soft isolation is deemed perfect, then the L1
confinement can be destroyed. Removing Clean would lead to the partitions
being destroyed, and the L1:0 confinement being recreated. ut

3.2 Global Scheduling

Local scheduling limits an agent in its procurement of isolation, as it can only
make use of confinements under its direct control. An agent can be supported
by additional agents external to its scope in two ways. First, an external agent
can provide isolation guarantees on the parents of confinements that are being
managed by an agent. For example, if an agent running within a virtual machine
requires a hard isolation guarantee that a process executes alone on a core, then it
must query an agent in the underlying hypervisor’s scope to ensure that the VC
confinement is placed in a dedicated C confinement. Secondly, an external agent
serves to extend the pool of available confinements, allowing confinements to be
migrated to a different scope. Building on the previous example, the hypervisor
agent can migrate VC confinements amongst cores until an isolated core is
provisioned. If the agent finds that all of its resources are committed, it can
query additional external agents for isolations on different machines.

Migrating from one agent’s scope to the next leads to the notion of global
scheduling. Broadly, global scheduling involves two steps, namely (a) identifying
a target agent which can procure the required level of isolation, and (b) migrating
the confinements required to achieve isolation. The following section details how
these tasks are performed.

Scopes and Renaming In general, an agent will only have a partial view of a
system. Consider the containment hierarchy illustrated in Figure 3, which rep-
resents a minimal model next∞∪ ({Machine}) of a two-core compute node over
which two tenant virtual machines are executing. In this model, each VM has an
agent Ta0 and Ta1 running within it, whereas the infrastructure provider has an
agent Hyp running on the base system. The virtualisation confinement prevents
a tenant’s agents from enumerating the parent’s confinements through standard
operating-system interfaces. In addition, even if the details of the parent’s con-
finements can somehow be inferred (for instance, through illicit channels), the
tenant’s agents would not have the necessary capabilities to alter them. For in-
stance, mere knowledge of the existence of additional co-located tenants would
not automatically grant a tenant’s agent control over them.

While a tenant agent may be unaware of its parent environment’s confine-
ments, the converse does not hold. Containment relationships crossing a bound-
ary still require that the sub-confinement be exposed to its parent. For example,
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VM:1

VC:v1

A:Ta1

M:Machine

C:C1

VC:v0A:Hyp

C:C0

VC:v1

VM:0

VC:v0

A:Ta0

Fig. 3: Partial model showing agent scopes and boundaries.

while tenants in Figure 3 might not be aware of the number of physical cores on
the machine, the hypervisor must have a handle to the tenants’ VC structures
in order to manage their core pinnings1.

The agent’s position within a hierarchy also determines its view of a con-
finement. For example, VC confinements managed by Hyp are seen as Cs by
processes within the tenants’ VMs. Thus, isolation requests across scopes must
be accompanied by a mechanism to rename confinements. Confinement renam-
ing is not always straightforward, such as in the case of processes, which have a
significant amount of state dispersed within their parent OS confinement that
has to be translated on migration. For instance, a process’ PID may have to be
changed on migrating to a new OS environment [1], which would alter its inter-
nal system view. A common workaround is to employ namespace mechanisms,
commonly in conjunction with containers [2], to encapsulate structures such as
PIDs and network interfaces and separate them from the common namespace of
the base OS. This ensures that a migrated process’ structures remain internally
consistent.

Isolation Constraints A consequence of agent scoping is that changes to exter-
nal confinements need to be delegated to an agent. In addition, changes cannot
refer to specific external confinements, both due to scoping and security reasons.

Consider a simple isolation condition isolP(), which checks whether a pro-
cess exists by itself in a C environment, defined as follows:

isolP(P:X,C:D)
def
= ¬∃P:Y∈+ D. X 6= Y

The evaluation of isolP() varies based on the underlying system assumptions.
Figure 4a illustrates a partial next∞∪ () graph of the CPU hierarchy from the
perspective of an agent running within a virtualised environment (or equiva-
lently, a non-virtualised, bare-metal environment). In this case, for D quantified
over all visible confinements, isolP(S,D) will fail (return false) due to processes
sharing a process control group all. To comply with the isolation requirement,

1 Introspection [19] can be used to characterise sub-confinements of a VM.
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OS:base

C:1 C:2C:0 C:3

PE:all

P:S A:AT P:SC

(a) Bare metal

OS:base

C:1 C:2C:0 C:3

PE:all VM:vm

VC:0 VC:1

P:ps A:Hyp

OS:guest

PE:allPE:sec

P:S A:AT P:SC

(b) Virtualisation

OS:base

C:1 C:2C:0 C:3

PE:all VM:vm

VC:0 VC:1

VC:0 VC:1

P:ps A:Base

OS:guest

VM:vmgPE:all

A:HypP:ps

OS:guest

PE:sec PE:all

P:S A:AT P:SC

(c) Nested virtualisation

Fig. 4: Environment nesting and indirection.

processes must be partitioned into two process groups contained in disjoint sets
of cores.

Subsequently adding a virtualisation layer produces the containment tree
shown in Figure 4b. If multiple VMs execute in parallel, then the isolP()
predicate may fail. Thus, the hypervisor agent Hyp must be queried to ensure
that cores are allocated exclusively to the VC containing S. Given that X 7→ X’
renames a confinement X into a locally-scoped confinement X’, a second isolation
condition isolVC() is defined and sent to Hyp, where:

isolVC(C:X,C:D)
def
= X 7→ VC:X’ ∧ ¬∃VC:Y∈D. X’ 6= Y ∧X’

D⇐⇒ Y

In this case, D is a free variable which must be bound by Hyp. As described
in the previous section, the C confinement must be renamed to a structure
visible to Hyp, namely X’. As virtualisation and containments can potentially
be nested to an arbitrary depth (Figure 4c), the isolVC() isolation request must
be pushed upwards in the hierarchy, until the base confinement is reached. This
ensures that the intermediate levels of indirection do not lead to co-locations.
While the use of nested virtual machines might not currently be widespread, the
growing adoption of containers will increase the occurrence of such topologies.

Finally, an isolation request may place additional constraints on co-location.
For example, tenants may request that VMs can only be co-located on a machine
if they are all owned by the same tenant. Given that X is the tenant’s machine
from its scope, and D is the base machine, this can be expressed as:

isolVM(M:X,M:D)
def
= X 7→ VM:X’∧¬∃VM:Y∈D. X’

D⇐⇒ Y∧
tenant(X’) 6= tenant(Y)
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G-Sc

A:Src(CSrc)→Src
TS [QSrc ∪ {X}] A:Dst(CDst)→Dst

TD [QDst]

Dst∈TS Src ≡ X
isol()
y Dst.Src’ D∈+ {D’ | D’ ∈ TD}

C
Src e C

Dst
C
Src e cap(X) C

Dst e cap(D) isol(X,D)

A:Src’(CSrc)
→Src′
TS\{X} [QSrc] →Src′≡→Src \ {(X,Y) | (X,Y) ∈→Src}

A:Dst(CDst)
→Dst′
TD∪{X} [QDst ∪ {X}] →Dst′≡→Dst ∪{(X,D)}

Fig. 5: Global migration rule.

Global Migration Global migration changes a confinement’s place within a
hierarchy by placing it under another agent’s control and modifying its map-
ping rules. Consequently, migration changes a system’s infinite configuration
next∞∪ ().

Figure 5 defines the general rule for migrating a confinement X globally. The
source agent Src initiates a migration request to a destination agent Dst with
an isolation criterion isol(), which Dst attempts to match against its known
and controllable confinements. Following the migration, each agent updates its
containment mapping rules, with Src removing the associated mappings, and
Dst adding a rule for X’s allowed containments. The source and destination
agents can be the same, allowing confinements to be created, destroyed, or sim-
ply remapped. The rule can be modified so that X is assigned multiple parent
confinements at its destination. This allows a confinement to maintain the same
number of allocated resources across migrations.

A target agent must be within the source agent’s scope. Logics such as the
cloud calculus [25] make use of a parent() operator, which returns a handle to a
confinement’s parent. Agent discovery varies depending on the confinement level
being considered, but it generally involves mapping an agent’s identifier to its
actual address. Discovery mechanisms include broadcasts, distributed keystores
and centralised repositories. Each method has its own drawbacks in query time
and consistency. Depending on the frequency of agent discovery operations and
actual migrations, one may also consider propagating notifications of topology
changes down a hierarchy following a migration, with lower-level agents sub-
scribing to their parent agents and receiving notifications whenever their scopes
have been altered.

4 Cost Functions and Metrics

Different configurations vary in the degree of isolation that they offer and the cost
required to maintain them. The ability to quantify these factors is essential to
the process of provisioning isolation, as it allows configurations to be compared,
and enables allocations to be optimised. When comparing system hierarchies
containing long-lived processes, one must consider the cost of maintaining a
configuration over time, rather than simply comparing a system’s instantaneous
configuration. Thus, metrics and costs should be evaluated over the next∞∪ () of
a given hierarchy.
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4.1 Metrics

Several metrics and notions of cost can be defined, including, but not limited to:

Utilisation measures the aggregate usage of a system’s capacity. Certain con-
finements can only contain a number of sub-confinements before the system’s
overall performance begins to drop. For example, consider the scenario of a
process scheduler allocating processes to cores evenly. Given that load(Y)

returns the average CPU utilisation of a process Y expressed as a fraction,
one can measure CPU utilisation for a hierarchy C as a dimensionless unit
as follows:

util(C) =
∑

C:X∈+ C

min

( ∑
P:Y∈X

load(Y)

| {D | C:D∈+ C ∧Y∈D} |
, 1.0

)

≈
∑

C:X∈+ C

min

(
k
∑

P:Y∈X

|↑(Y)|−1 , 1.0

)

The second formula is an approximation that can be computed statically
given an average processor usage k and the P-to-C mapping defined by an
agent’s → structure (↑() is defined in Example 2). The min function caps
each C’s usage value.

Capacity is the number of confinements of a given type in a configuration,
while total capacity is the total number of confinements in the hierarchy.

Consolidation factor is defined as capacity/utilisation, and represents the
ratio between the system’s utilisation and the number of confinements of a
given type within a hierarchy.

Pairwise co-locations counts the total number of pairs of co-located confine-
ments in a given hierarchy, and is defined as:

pairs(C) =
1

2
|
{
〈X,D,Y〉 | X,Y,D∈+ C,X 6= Y,X

D←→ Y
}
|

Containment hierarchies can be topologically sorted, and metrics can be com-
puted by performing a breadth-first search and evaluating each sub-graph, pro-
vided that costs are compositional. The evaluation of metrics is complicated by
agents’ partial system specifications. For example, a tenant can compute pairs()
within its own VM, yet this will only serve as a lower-bound, and would have
to be combined with additional information from the parent confinement.

In a cloud scenario, tenants and the cloud provider may attempt to optimise
their configurations with respect to different metrics. For example, a tenant
will want to compromise between pairwise co-locations and total capacity. Con-
versely, while a cloud provider will attempt to maximise consolidation so as to
maintain a smaller deployment, it has a lower incentive to minimise a tenant’s
total capacity if it bills its clients on the basis of committed resources.

Example 4 (Comparing architectures). A system’s containments can vary across
vendors. To illustrate, we examine two different CPUs, namely an Intel i7-4790
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(Intel) with 8 hardware threads using SMT, and a hex-core AMD Phenom
II X6 (AMD). Apart from cache exclusivity, the architectures vary in that the
former has two hardware threads to each L1 containment, whereas the latter
has per-core L1 and L2 caches. This results in the following models:

Intel
def
= L3:0 [{L2:i [L1:i [C:i [] ,C:i+4 []]] | 0 ≤ i ≤ 3}]

AMD
def
= L3:0 [{L2:i [L1:i [C:i []]] | 0 ≤ i ≤ 5}]

Consider the case where processes must never be co-located through L1 or
L2. For the Intel hierarchy, this effectively halves the C capacity2. Assum-
ing that each system divides P processes amongst its Cs equally, util(AMD) =
min (kAMDP/6, 6.0) , and util(Intel) = min (kIntelP/4, 4.0). Thus, Intel’s pro-
cess execution time kIntel must be two thirds of kAMD in order to have equal
utilisation rates. ut

4.2 Ongoing and Migration Costs

Configurations offer different security guarantees at different costs. Evaluating
costs and metrics on a configuration’s next∞∪ () is a tradeoff between perfor-
mance and precision, as it avoids recomputing costs after each local migration
operation.

Given a static model, a configuration can be progressively modified until it
reaches an optimal state with respect to a property of the system. For example,
tenants within a cloud have an incentive to use resources efficiently, and cloud
providers generally attempt to provide resources to tenants with a minimum
of overhead. Thus, if no confinements are created or destroyed by the tenants’
agents, a cloud provider can alter the system’s configuration incrementally until
it reaches its lowest cost state.

The fluidity of cloud architectures necessitate a dynamic model, which limits
the time allowed for a system to converge to an optimum. More generally, as-
suming that a system will remain in configuration C for a duration τ , one should
temporarily move to C′ if the cost of τC is greater than that of migrating to and
from C′ combined with the cost of maintaining τC′. An accurate characterisation
of τ enables configurations to be optimised with a minimum of migrations, yet
a system in constant flux or with very small values of τ can potentially negate
gains in migrating. Cheap migration operations can help offset the effects of τ .

Example 5. Figure 6 models migrations between various next∞∪ () states of a
system’s L1 caches with three processes, where one of the caches has deployed
the soft isolation strategy described in Example 3. Utilisation rates are given in
brackets, assuming that (a) each L1 confinement is shared between two cores
and has a total capacity of 2, (b) each process has a utilisation factor of 1, (c) L1
confinements have zero cost, as they are built into the architecture, and (d) non-
empty L1S confinements reduce their core’s capacity to α (overhead values can

2 Disabling hyperthreading was once common amongst cloud providers [33], although
Amazon EC2 has recently foregone this practice [5].
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(2)L1:l0 [L1S:s0 [] ,L1S:s1 []] | L1:l1 [P0,P1,P2]

(2 + α)L1:l0 [L1S:s0 [] ,L1S:s1 [P1]] | L1:l1 [P0,P2] (2 + α)L1:l0 [L1S:s0 [P0] ,L1S:s1 []] | L1:l1 [P1,P2]

(1 + 2α)L1:l0 [L1S:s0 [P0] ,L1S:s1 [P1]] | L1:l1 [P2]

(1 + 2α)L1:l0 [L1S:s0 [] ,L1S:s1 [P0,P1]] | L1:l1 [P2] (1 + 2α)L1:l0 [L1S:s0 [P0,P1] ,L1S:s1 []] | L1:l1 [P2]

(2α)L1:l0 [L1S:s0 [P0] ,L1S:s1 [P1,P2]] | L1:l1 [] (2α)L1:l0 [L1S:s0 [P0,P2] ,L1S:s1 [P1]] | L1:l1 []

(2α)L1:l0 [L1S:s0 [] ,L1S:s1 [P0,P1,P2]] | L1:l1 [] (2α)L1:l0 [L1S:s0 [P0,P1,P2] ,L1S:s1 []] | L1:l1 []

Fig. 6: A subset of possible global migrations between configurations.

reach up to 7% [37]). Disabling co-scheduling on the partitioned core will cause
its capacity to be halved. Utilisation is highest (2 + α) when the unmitigated
cache is at full capacity, with additional processes running within soft isolations.
The configurations with the lowest pairs() are obtained for 1 + 2α. ut

Metrics can also be extended to encompass special purpose confinements [9]
and heterogeneous deployments, with certain configurations being cheaper or
more secure to maintain on machines with dedicated hardware.

4.3 Automatically Generating Migration Sequences

The allocation of isolations to locations within a computational hierarchy is
ultimately an exercise in scheduling. In its most general form, determining where
confinements should be placed within a system is equivalent to bin-packing, thus
eluding an efficient solution. The problem of placement is further complicated by
the addition of quality of service predicates, which would typically include limits
on capacity and utilisation. Finally, the hierarchical nature of the systems being
investigated introduces its own nuances. For example, migrating an intermediate
node within a containment graph will have a cascading effect on the constraints
of its constituents.

The task is thus to determine a sequence of migration operations that will
move a system from a configuration C to a new configuration C′ that satisfies the
isolation and quality of service criteria that are being requested. If C′ is known,
then one can compute a sequence of migration operations leading to it using a
minimum edit distance algorithm for graphs, with migrations corresponding to
edit operations that are weighted according to the migration mechanisms’ costs.
One drawback of such an approach is that the minimum graph edit distance
cannot always be calculated efficiently [22]. More crucially, this approach requires
that C′ be identified beforehand, whereas one typically has to compute both the
migration sequence as well as the final configuration.

Figure 7a provides a general outline of the steps required to break the co-
location of X and Y via a common ancestor CA within a partially-specified
hierarchy described in Figure 7b. In the absence of efficient and exact oracles,
several steps must be approximated by heuristics, as will be discussed in the
remainder of this section. Note that the process of releasing or removing isolation
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To break condition X
CA⇐⇒ Y:

1. find D∈+ CA.
X∈+ D ∨X = D ∨Y∈+ D ∨Y = D

2. find/create CA’. ¬CA’∈+ CA
3. replicate path from CA to D in CA’
4. check isolation constraints and mi-

grate D to new parent in CA’

(a) Migration procedure outline

. . .

root

CA’

CA’1

CA’0

CA

CA1

CA0

. . .

Y

. . .

X

fully-isolating

relative locality
preserving

non-isolating

Global
Scheduling

(b) Migration effects by graph height

Fig. 7: Computing migration paths for breaking X
CA⇐⇒ Y.

constraints is similar to this procedure, with a greater focus on consolidating
previously-isolated confinements back into existing confinements so as to lead to
a cheaper configuration.

Finding a source The impact that the migration of a confinement D will have
on a graph’s isolation constraints will vary based on the position of D within
that graph. For instance, migrating a process from one CPU core to the next
will break locality at the core level, but not at the machine level.

When attempting to reconfigure the configuration illustrated by Figure 7b

to comply with the constraint ¬(X
CA⇐⇒ Y), one finds that individual migration

operations moving confinements outside of CA can take one of three forms,
namely: (a) fully isolating, where X and Y share no common ancestor up to
the depth of CA, (b) relative locality preserving, whereby co-location through
CA is broken, yet the confinements are still co-located within an intermediate
common confinement, and (c) non-isolating, where the structures producing co-
location through CA are preserved by the migration. Hence, the depth within the
graph at which the confinement being migrated exists determines how many co-
locations will survive migration. Consequently, for isolation to be achieved, one
must migrate a confinement on the containment path leading from CA to X or
Y. Note that in the case of multiple separate routes for co-location through CA,
one may have to migrate more than one confinement to fulfil a single isolation
constraint.

Migrations that preserve relative locality may be insecure and must be per-
formed with caution, as attacks on the locality type of CA may still be viable
were one to migrate to a location of the same type (such as the sibling CA’). Con-
versely, one cannot rely entirely on fully-isolating migrations due to the finiteness
of physical infrastructures. In the case of migrations at the same depth, such as
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when migrating either X or Y, one should ideally choose a migration that results
in the lowest cost.

Finding a target Given that an appropriate confinement D∈+ CA has been
marked for migration, the next step is to determine a suitable destination. Triv-
ially, this must exist outside of CA. Referring to Figure 7b, the earliest depth
within the graph to which the localities can be migrated is CA’, a confinement
directly co-located with CA.

Provided that it is of the correct type, any confinement CA’. ¬(CA’∈+ CA)
can serve as a destination confinement, yet a heuristic may find it reasonable
to attempt to keep migrations as local as possible. In broad terms, migration
amongst smaller localities (VC to C, or P to C) can be performed in millisec-
onds, as opposed to the migration of larger structures (P to OS, or VM to M),
which can be a thousand times slower, principally due to the involvement of the
network layers and shared storage [21].

Creating an equivalent environment When migrating a confinement to a
new parent, one would generally have to create a containment graph at the des-
tination that matches the source’s nesting structure. In certain cases, it may not
be necessary to duplicate the full environment at the destination. For example,
when migrating a VM that is running within a second VM, one may opt to
migrate the former directly to bare metal.

Satisfying constraints When executing a sequence of migration operations,
one must ensure that both the end state as well as the intermediate configu-
rations do not violate any constraints that have previously been placed on the
system. Ideally, constraints are checked before any migrations are performed,
and migrations are only carried out once it has been established that they re-
spect all isolation constraints. Failing this, transaction semantics must be added
to migration sequences, giving the ability to dynamically roll back migration
operations and attempt to identify an alternative path.

Backtracking will introduce delays in the servicing of isolation requests, which
may not always be tolerable. If the workloads are well characterised, one may
determine that certain constraints can be temporarily relaxed. For example, a
tenant may tolerate a short-lived dip in performance, which would in turn allow
a machine to be temporarily over-provisioned whilst performing a sequence of
reconfiguration operations.

5 Applications

The following section investigates various contexts in which the model can be ap-
plied, including runtime enforcement, as well as in the modelling and analysis of
an access-based side-channel and a replication-based timing channel mitigation.
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5.1 Runtime Isolation

While co-location properties can be verified for specific scopes, the guarantees
may no longer hold after a system has been reconfigured. Runtime monitoring
serves to dynamically resolve isolation predicates that depend on confinements
at the edges of a configuration’s scope. The model can be used to define policies
within a runtime monitoring framework, where declarative restrictions on co-
locations are used to define invalid configurations. Once a bad state is detected
(such as on detecting suspicious memory access patterns [34]), the system can be
reconfigured to a correct state using migration, leading to a reactive architecture.
Alternatively, the framework can be driven by a system of leases, with isolation
being procured before a security-sensitive process executes.

5.2 Pre-emption Rate Limiting

The presented model can be used to reason about attacks at different granulari-
ties, which we demonstrate by modelling an access-driven cross-VM side-channel
attack developed by Zhang et al. [35], and its scheduler-based mitigation [32].
The attack relies on a Prime-Probe cache access pattern, similar to the attack
described in Example 2.

Consider a hypervisor managing two virtual machines, namely a victim vmv

and attacker vma. Both machines (collectively referred to as
−→
V) share a core c0.

The hypervisor agent Hyp is defined as:

A:Hyp({Cvmv , Cvma , Cc0}){(vmv,c0),(vma,c0)}
{vmv,vma,c0}

[−→
V
]

and implemented as a process HypI defined as:

HypI ≡
VM:X∈

−→
V

u X y c0.X y Hyp.HypI

The next∞∪ () graph of the system at this coarse level of granularity would
reveal that the virtual machines are co-located through c0, yet the mechanism by
which they interfere with each other is not immediately apparent. The hierarchy
can be defined at a finer granularity by modelling L1 as a confinement of N
cache-line sets (CLS), giving L1:CLS0 [{CLS:csi [] | 0 ≤ i < N}]. Cache-lines
are invalidated as processes execute within a VC. In a fine-grained model, the
agent process is modified to map VCs to CLS confinements, signifying that
an operation running within that VC has disturbed the cache set in question
(more precise models of cache eviction policies may also be defined, yet this is
unnecessary for the purposes of this exposition). A process carried out by an
agent Ag which schedules a VC to a C, models the VM’s interactions with
CLS for R times, and then yields control of the scheduler is defined as:

run(A:Ag,L1:L,C:c,VC:vc, R) ≡ vc y c.(
CLS:cs∈L
u vc y cs)R.vc y Ag

The attack is access-based, where the attacker attempts to determine the
pattern of a victim’s memory accesses. The attacker achieves this by priming
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the cache and checking its access times after the victim executes, placing its VC
vca within a cache set previously occupied by vcv, leading to the sequence:

run(Ag,CLS0,c0,vca, N).run(Ag,CLS0,c0,vcv, R)

The attacker’s resolution of the victim’s intermediate cache states is greatly
influenced by R. If a victim can be pre-empted frequently, then the attacker
can build a more precise memory access model. Conversely, large values of R
will increase the probability that other cache regions unrelated to the security-
sensitive computation under attack will have been accessed, leading to noise.
Thus, the victim vmv attempts to choose a value of R such that it maximises
the value of pairs() formed over an execution.

A mitigation against this attack [32] places a minimum running time on
virtual machines, which stops an attacker from forcing deschedules and limiting
its ability to profile a victim. By knowing the number of cache invalidations
required to achieve the desired level of isolation and the cost of performing cache
operations, one can determine a minimum VM scheduling quantum length.

A similar fine-grained cache analysis can be performed for cache colour-
ing [26], where scheduling must guarantee disjoint cache sets. An additional
related mitigation is that of the cache cleaning process (Example 3), which is
effectively a solution for the same problem using a different scheduling level.

5.3 Timing Channel Elimination

StopWatch [27] is a collection of mitigations designed to reduce the information
content of timing channels in the cloud. The approach’s mitigation centres on
the use of replication to create R copies of each virtual machine (R ≥ 3), each
of which is placed on a different machine containing other tenants’ replicated
VMs. Clock sources on a VM are then modified to report time as a median of
its local time and that of the replicas. This ensures that a co-located attacker
will observe the same timing behaviour. Several aspects of the mitigation can
be modelled, including event synchronisation and OS-level soft isolations. This
section will focus on the VM replication and placement aspects of StopWatch.

Given a network Net of machines, the VM placement requirements of Stop-
Watch can be modelled as three invariant conditions, namely:

∀VM:v∈+ Net. |
{
v’ | VM:v’∈+ Net, is replica(v’,v)

}
| = R (1)

∀VM:v,M:M∈+ Net. | {v’ | VM:v’∈M, tenant(v’) = tenant(v)} | ≤ 1
(2)

∀VM:v1,VM:v2,M:M∈+ Net. v1 6= v2 ∧ v1
M←→ v2 →

¬∃VM:v3,VM:v4,M:M’∈+ Net. v3 6= v4 ∧ v3
M’←→ v4 ∧M 6= M’∧

tenant(v1) = tenant(v3) ∧ tenant(v2) = tenant(v4) (3)

The first invariant ensures that there are R replica machines within the network.
The second invariant checks that each machine has at most one virtual machine
belonging to the same tenant. The final invariant checks that any given pair of
tenants can be co-located in at most one machine.
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6 Related Work

Ambient Models. A seminal work in modelling hierarchical architectures was the
calculus of mobile ambients [17], which extended process calculi with the ambi-
ent process construct. Ambients specify boundaries within which other ambients
exist and migrate. Several extensions to the original calculus were subsequently
defined, including the ability to define security zones to detect confidentiality
breaches [15], as well as to model resource allocation through a system of mark-
ers [8]. An additional extension is the cloud calculus [25].

Graph Models. Graphs allow the definition of many-to-many relationships be-
tween a system’s entities. Graph models for VM networks can be generated
automatically [11, 16]. These can then be checked statically [14] to detect viola-
tions in operational correctness, failure resilience and isolation. Additional work
focuses on making the analysis of dynamic systems more efficient through in-
cremental analysis [13]. The creation and application of deltas is event-driven,
triggered using hooks to a hypervisor. Challenges in dynamic monitoring include
asynchronous updates, non-atomic actions, unordered events and blocking be-
haviour introduced by instrumentation [12]. Other approaches group resources
into colours within which data can be shared, and employ a system of roles that
can modify colour groupings and conflict rules [10].

Scheduler-based mitigations. Scheduling policies can be exploited to form illicit
channels [32] or steal computational resources [31]. Setting a minimum time
between deschedules can undermine a side-channel by obscuring residual cache
effects [32]. Global scheduling can be used to reduce contention [31]. Efficiently
choosing migration targets is non-trivial, as placement can be constrained by
several factors in addition to isolation requirements [30]. The problem can thus
be formulated as one of constraint satisfaction. Other approaches address place-
ment as a bin-packing problem to guarantee different degrees of isolation whilst
upholding a system’s functional constraints [6]. The approach is evaluated in
terms of a competitive ratio, comparing the cost of configurations produced by
on-line scheduling against optimal placement, where cost is the number of bins
used. Heuristics can aid migration and placement [18]. Another approach uses
leases and deadlines to reserve resources and prioritise migrations [4].

Detection and generation. One challenge of policy-based defences is to cre-
ate policies. Methods have been developed for detecting certain types of leaks
through various techniques, including information flow analysis [7], abstract in-
terpretation [20], and data tagging and tracking [29].

7 Conclusions and Future Work

This work has investigated the modelling of temporal and spatial co-location
within the context of illicit channels, examining the issues of cost, scoping and
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migration. It considered the creation of a model that can consistently reason
about a variety of heterogeneous systems through a uniform notion of contain-
ment. It also examined the challenges in allocating resources within a hierarchi-
cal architecture. These concepts were applied to the modelling and analysis of
several established attacks and defences, giving insight into their inner workings.

Future work will focus on the automated synthesis of runtime enforcement
monitors, and the integration of the model into simulation frameworks.
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