
Codebase-Adaptive Detection of Security-Relevant Methods

Goran Piskachev
Fraunhofer IEM

Germany
goran.piskachev@iem.fraunhofer.de

Lisa Nguyen Quang Do
Paderborn University

Germany
lisa.nguyen@upb.de

Eric Bodden
Paderborn University and Fraunhofer

IEM
Germany

eric.bodden@upb.de

ABSTRACT

More and more companies use static analysis to perform regular

code reviews to detect security vulnerabilities in their code, config-

uring them to detect various types of bugs and vulnerabilities such

as the SANS top 25 or the OWASP top 10. For such analyses to be

as precise as possible, they must be adapted to the code base they

scan. The particular challenge we address in this paper is to provide

analyses with the correct security-relevant methods (Srm): sources,

sinks, etc. We present SWAN, a fully-automated machine-learning

approach to detect sources, sinks, validators, and authentication

methods for Java programs. SWAN further classifies the Srm into

specific vulnerability classes of the SANS top 25. To further adapt

the lists detected by SWAN to the code base and to improve its

precision, we also introduce SWANAssist, an extension to SWAN

that allows analysis users to refine the classifications. On twelve

popular Java frameworks, SWAN achieves an average precision of

0.826, which is better or comparable to existing approaches. Our

experiments show that SWANAssist requires a relatively low effort

from the developer to significantly improve its precision.

CCS CONCEPTS

· Security and privacy → Software security engineering; ·

Computing methodologies → Machine learning approaches; ·

Software and its engineering → Software verification and vali-

dation; ·Human-centered computing→ Interaction design pro-

cess and methods.

KEYWORDS

Program Analysis, Machine-learning, Java Security

ACM Reference Format:

Goran Piskachev, Lisa Nguyen Quang Do, and Eric Bodden. 2019. Codebase-

Adaptive Detection of Security-Relevant Methods. In Proceedings of the 28th

ACM SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA ’19), July 15ś19, 2019, Beijing, China. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3293882.3330556

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA ’19, July 15ś19, 2019, Beijing, China

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6224-5/19/07. . . $15.00
https://doi.org/10.1145/3293882.3330556

1 INTRODUCTION

Nearly two thirds of security vulnerabilities are caused by simple

repetitive programming errors [29]. To ensure the security of their

software, more and more companies enforce regular code reviews.

Because of the large scale of the code bases produced every day,

purely manual reviews are expensiveÐoften prohibitively so. To

assist in detecting vulnerabilities, more and more companies use

static analysis, a method of reasoning about a program’s runtime

behaviour from the source code, without running it [27, 43, 48]. A

large range of static analysis tools supports the detection of security

vulnerabilities such as the SANS top 25 [18] or the OWASP top

10 [42]. Taint analysis in particular, can detect code injections [21]

or privacy leaks [20]. Typestate analysis can be used to detect mis-

authentications [19], API misuses, etc.

In general, such analyses can find a vast array of security vulner-

abilities. But to do so effectively, the analysis tool must be correctly

configured. In particular, analysis users must configure the tools

with lists of security-relevant methods (Srm) that are relevant to

their development context. Srm are methods of the analyzed pro-

gram or from application interfaces (APIs) they use, that change the

state of the analysis. For example, a call to getParameter() of class

javax.ServletRequest notifies a taint analysis that a potentially

user-controlled piece of information enters the program. Likewise,

a call to the Java Spring AuthenticationProvider’s authenticate()

can signal a new authentication status to a typestate analysis.

Lists of Srm are generally created manually by the analysis

writers, and in larger companies, are often refined by dedicated

security teams through manual work. This is important, as even

lists used in commercial tools can be incomplete and thus, cause

the analyses to miss vulnerabilities or to signal false positives. For

instance, a previous study by Arzt et al. showed that, in the past,

static analysis tools have frequently missed a large majority of

relevant findings due to insufficient configurations [9]. In their

work, Arzt et al. presented Susi, an automated machine-learning

approach for the detection of two types of Srm (sources and sinks)

in the Android framework. While the resulting list allows taint

analyses to detect more privacy leaks more accurately, it can be

used in one case only: the detection of injections and privacy leaks

in Android applications. In later work, Sas et al. [44] extend Susi to

detect sources and sinks to general Java programs. Both approaches

are run ahead of time, before the analysis is deployed.

This paper presents SWAN (Security methods for WeAkNess

detection), an approach that directly aids analysis users in detect-

ing Srm in both their code and the libraries they use. Compared to

earlier work, SWAN detects two additional types of Srm: validators

and authentication methods. This allows analyses to detect more

types of vulnerabilities with a higher precision. In addition, SWAN

181

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3293882.3330556
https://doi.org/10.1145/3293882.3330556

ISSTA ’19, July 15ś19, 2019, Beijing, China Goran Piskachev, Lisa NguyenQuang Do, and Eric Bodden

provides more granularity in the Srm lists, as it is able to differ-

entiate between different vulnerability types in terms of CWEs

(Common Weakness Enumerations) [22].

We also extend SWAN to take user feedback into account, allow-

ing developers to adapt SWAN to the code base under analysis at

debug time. This allows developers to train the analysis on their

own code, thereby significantly improving the list of Srm, and

therefore, optimizing the signal-to-noise ratio of the analysis of

their code base. Our extension SWANAssist is implemented as an

IntelliJ plugin that allows code developers to mark Srm in their

own code.

We used SWAN to generate Srm lists for twelve popular Java

frameworks used for web and mobile development, and home au-

tomation. In a 10-fold cross-validation, SWAN achieves a median

precision of 0.826 over all frameworks when classifying Srm. Our

experiments show that the lists generated by SWAN are some-

times similarly and sometimes more precise than lists from current

approaches such as Susi [9], JoanAudit [49], and Sas et al’s [44].

Moreover, we show that SWANAssist can significantly improve

SWAN’s precision by asking the user to manually label only small

portion of the codebase’s methods.

The main contributions of this paper are:

• SWAN, an approach for the detection of Srm in Java projects:

sources, sinks, validators and authentication methods, and

their refinement in CWE classes.

• SWANAssist, an IntelliJ plugin that allows code developers

to customize the lists of Srm using SWAN.

• Srm lists generated for twelve popular Java frameworks.

• The manually refined training set used to detect Srm on

those frameworks.

• An evaluation of SWAN’s precision on the twelve Java frame-

works, and a comparison against existing approaches.

• An evaluation method for measuring the effort required by

the developer to use SWANAssist effectively.

Our implementation and datasets are available online [51] and

will be subjected to artifact evaluation. We next explain the require-

ments for building a machine-learning based detection approach for

Srm. Section 3 explains the design of our automated classification

approach SWAN, and Section 4 the developer-assisted extension

SWANAssist. We discuss our evaluation and its results in Section 5,

followed by a discussion of limitations and future work, related

work and our conclusions.

2 REQUIREMENTS FOR THE MACHINE-
LEARNING BASED DISCOVERY OF SRM

Table 1 presents the list of the SANS top 25 most dangerous and

widespread software errors that can lead to security vulnerabilities.

The detection of most of those issues can be done via static data-

flow analysis. For example, in Listing 1, the variable userId at

line 3 is assigned a user-controlled (and thus potentially attacker-

controlled) value and should therefore be marked as dangerous.

This value flows through the program and is used to execute an

SQL query (line 7), which can result in an SQL injection (CWE-

89). This same value is used to create a URL to which the user is

redirected (line 9), potentially causing an Open Redirect (CWE-601).

To avoid those two vulnerabilities, one possibility is to introduce a

1 protected void do’et(HttpServletRequest request ,

HttpServletResponse response) throws

ServletException , IOException {

2 try {

3 String userId = request.getParameter('userId ');

4 userId = ESAPI.encoder ().encodeForSQL(new

MySQLCodec (), userId);

5 Statement st = conn.createStatement ();

6 String query = "SELECT * FROM User WHERE

userId='" + userId + " ';";

7 ResultSet res = st.executeQuery(query);

8 String url = "https ://" +userId+ ".company.com";

9 response.sendRedirect(url);

10 } catch (Exception e) { ... }

11 }

Listing 1: Potential SQL injection (from l.3 to l.7) and open

redirect (from l.3 to l.9).

validator (line 4), which ensures that the input is valid and in the

correct format.

To detect SANS 25 problems, data-flow analyses need to be aware

of critical points in the program that influence the computation of

the analysis: the Srm. In our case, those are sources, i.e., methods

which create the data that should be tracked (e.g., getParameter()

line 3), sinks, i.e., methods at which the analysis should raise an

alarm (e.g., executeQuery() at line 7 and sendRedirect() at

line 9), validators, i.e., methods at which the data becomes safe

and should no longer be tracked (e.g., encodeForSQL() at line 4).

In addition, authentication methods change the state of the pro-

gram from safe to unsafe or vice-versa (needed for CWE-306 and

CWE-862). Supporting the SANS top 25 thus yields the following

requirement for Srm lists.

R1 Srm should differentiate between sources, sinks, val-

idators and authentication methods.

When analyzing a program, the choice of Srm can heavily in-

fluence the outcomes of the analysis. For example, configuring an

analysis with executeQuery() as a sink would make it detect SQL

injections. Configuring the same analysis with sendRedirect()

would make it detect Open Redirects. This is further illustrated in

Table 1 where we detail the types of methods considered as sources,

sinks and validation methods for each of the CWEs. For example in

CWE-306 (Missing Authentication for Critical Function), methods

requiring prior authentication are considered sinks, since as soon

as they are reached without proper authentication, the analysis

should return an error. Authentication methods are thus considered

validators, unlike in CWE-89 (SQL Injection) where validators are

typically String sanitizers. This shows that Srm are vulnerability-

type specific. An analysis configured with the wrong sets of Srm

can easily cause false positives and negatives, yielding what practi-

tioners tend to call a łbad signalž. To improve the signal-to-noise

ratio, and to aid in the categorization of the analysis warnings, it is

therefore important to relate the Srm to each CWE.

R2 Srm lists should be specific to each CWE.

In past work, Srm have been extracted from particular libraries

and frameworks. Susi for example, lists all sources and sinks from

the Android framework. However, this overlooks Srm in other

182

Codebase-Adaptive Detection of Security-Relevant Methods ISSTA ’19, July 15ś19, 2019, Beijing, China

Table 1: List of the SANS top 25 CWE [18], and a description of the Srm required to detect them using data-flow analysis. CWE-

120 and CWE-131 cannot happen in Java: exceptions are triggered before the issues are exploitable. CWE-863 and CWE-307

happen on the conceptual level, and should be detected at design time instead.

CWE Description Source Validator Sink

CWE-89 SQL Injection External Code sanitization SQL execution

CWE-78 OS Command Injection External Code sanitization Execution

CWE-120 Classic Buffer Overflow N/A N/A N/A

CWE-79 Cross-site Scripting External Code sanitization Save / Execution / Print

CWE-306 Missing Authentication for Critical Function Entry point Authentication Critical function

CWE-862 Missing Authorization Entry point Authentication function Critical function

CWE-798 Use of Hard-coded Credentials New string Anonymization Send / Save / Execute

CWE-311 Missing Encryption of Sensitive Data External Encryption Execution

CWE-434 Unrestricted Upload of File with Dangerous Type External / New string Type check Load

CWE-807 Reliance on Untrusted Inputs in a Security Decision External Code sanitization / Sanity check Security function

CWE-250 Execution with Unnecessary Privileges External / New object Object sanitization Execution function

CWE-352 Cross-Site Request Forgery External Code sanitization Save / Execution / Print

CWE-22 Path Traversal External Path sanitization File operation

CWE-494 Download of Code Without Integrity Check External / New string Integrity check Load

CWE-863 Incorrect Authorization Entry point Incorrect authorization method Critical function

CWE-829 Inclusion of Functionality from Untrusted Control Sphere External / New string Input sanitization Load

CWE-732 Incorrect Permission Assignment for Critical Resource External / New object Object sanitization Execution function

CWE-676 Use of Potentially Dangerous Function External / New object Object sanitization Dangerous function

CWE-327 Use of a Broken or Risky Cryptographic Algorithm External / New object Object sanitization Cryptographic API

CWE-131 Incorrect Calculation of Buffer Size N/A N/A N/A

CWE-307 Improper Restriction of Excessive Authentication Attempts N/A N/A N/A

CWE-601 Open Redirect External URL sanitization URL access

CWE-134 Uncontrolled Format String External Execution with format Execution without format

CWE-190 Integer Overflow or Wraparound External / New integer Value test Operation on integer

CWE-759 Use of a One-Way Hash without a Salt Hashing function Hashing function with salt Hashing function

third-party libraries and in the source code itself. External Srm like

encodeForSQL() in Listing 1 or custom methods defined in the

source code will be overlooked by an off-the-shelf Srm list. When

analyzing a program, it is thus important to consider all libraries

and frameworks it uses, but also its methods as potential Srm.

R3 Srm lists should be specific to the code base.

The Java Spring framework contains more than 30 000 meth-

ods [45]. Considering that a reasonably-sized program uses multiple

such libraries, it is infeasible to create a complete list of Srm manu-

ally. Therefore, it is necessary to compute Srm automatically. Fig-

ure 1 presents a high-level workflow of SWAN, our automated Srm

detection approach, and SWANAssist, our extension that queries

the analysis user to increase the precision of the generated lists of

Srm. SWAN is a classical supervised machine-learning approach,

initialized with a training set of classified methods from general

Java libraries. Compared to Susi, SWAN supports Java libraries,

and therefore contains a broader set of features and initial training

inputs. We expand more on this choice in Section 3. To compensate

for the high number of Srm yielded by such a general approach,

SWAN additionally classifies the Srm into CWEs, and further al-

lows the analysis user to tune SWAN with SWANAssist (dashed

and dotted lines), in an active learning approach.

R4 The detection of Srm should be automated but R5 it

should also involve the code developer.

Of the five requirements, Susi and Sas et al.’s approach meet

R4 and part of R1. In the following sections, we extend Susi into

SWAN and SWANAssist, and answer all requirements.

3 SWAN: SECURITY METHODS FOR
WEAKNESS DETECTION

In this section, we present SWAN, a machine-learning classification

approach for detecting Srm in Java programs and their libraries.

3.1 General Architecture

SWAN runs the automated classification shown in the lower part

of Figure 1 twice: in the first iteration, it classifies all methods of

the analyzed program and libraries into general Srm classes (R1):

sources (So), sinks (Si), sanitizers (Sa), one of the three types of

authentication methods detailed below, or none of the above. In the

second iteration, it discards the methods marked with none, and

classifies the remaining Srm into the individual CWEs (R2). This is

done to avoid classifying non-Srm methods as CWE-relevant.

In the first iteration, SWAN runs a set of four classifications,

one for each type of Srm. Since those four sets are not disjoint

(e.g., getContent() can be both a source and a sink), the classifi-

cations are run independently. For sources, sinks, and sanitizers,

the classifications are binary, e.g., for the sources, each method is

classified in one of the two classes: source or not source. In the case

of authentication methods, Srm are typically distributed between

four disjoint classes: auth-safe-state (Ass), auth-unsafe-state (Aus),

183

ISSTA ’19, July 15ś19, 2019, Beijing, China Goran Piskachev, Lisa NguyenQuang Do, and Eric Bodden

Training

set

Features

Test set

Training

data

Test

data

Classifier Srm lists

train

classifier

classify

methods

most impactful methods

SWAN

SWANAssist

Figure 1: Machine-Learning Approach used in SWAN (solid

edges), including the developer’s feedback (angled dotted

edge - manual action), and the assisted detection of impact-

ful methods (straight dashed edge - automatic action).

auth-no-change (Anc), and none. The first one refers to authenti-

cation methods that elevate the privileges of the user, e.g., login

methods. The second contains methods that lower those privileges

(e.g., logout methods). The third category marks methods that do

not change the state of the program (e.g., isAuthenticated()).

Although exceptions are not rare, in most cases seen in our data

sets, Ass and Aus tend to be disjoint. In addition, the two types of

authentication methods are semantically very similar. As a result,

running three different binary classifications yields a significantly

lower precision and recall than a single classification with both

classes. Auc was thus introduced to reduce the number of such

methods being classified unto Ass and Aus.

In the second iteration of the classification, the training set is kept

the same, but the methods that were not classified in any of the Srm

classes are removed from the test set. A binary classification is run

for each CWE. Currently, SWAN supports seven CWEs: CWE-78,

CWE-79, CWE-89, CWE-306, CWE-601, CWE-862, and CWE-863.

After running SWAN on the code shown in Listing 1,

getParameter() is classified as a source for injection vul-

nerabilities (CWE-78 and CWE-89) and open redirect (CWE-

601), executeQuery() is classified as a sink for CWE-89,

sendRedirect() is classified as a sink for CWE-601, and

encodeForSQL() is found to be a sanitizer for CWE-89.

3.2 Features and Training Data

To help the machine-learning algorithm classify the methods into

the different classes, SWAN uses a set of binary features that eval-

uate certain properties of the methods. For example, the feature

instance methodClassContainsOAuth is more likely to indicate an

authentication method than any other type of Srm. As a first phase

to the learning, SWAN constructs a feature matrix by computing a

true/false result for each feature instance on each method of the

training set. This matrix is then used to learn which combination

of features best characterizes the classes, and uses this knowledge

to classify the methods of the testing set, after creating the feature

matrix for that set.

We have identified 25 feature types, instantiated as 206 concrete

features, to be relevant for SWAN. We call feature types generic fea-

tures such as methodClassContains and feature instance their con-

crete instances (e.g., methodClassContainsOAuth). Table 2 shows

the list of feature types in SWAN and their number of concrete

instances. Overall, 15 feature types, and only 18 feature instances

of SWAN, are derived from Susi, where 10 feature types and 188

feature instances have been added to complete the approach, and

make it compliant with R1śR5. To ensure a good selection of the

new feature instances, we manually selected Srm methods from

the Spring framework and created feature instances that comply

the methods’ characteristics.

Compared to Susi, SWAN contains more general features. For

instance, SWAN does not contain Android-specific features such

as Required Permission. On the other hand, SWAN contains

more features based on method and class names such as F03, F04,

F10, F14, F15, or F16. This is due to the Java naming conventions

followed in major libraries, which make functionalities explanatory

through naming. Those features are particularly useful for the

classification in CWEs, as both method/class names and CWEs

are human-defined concepts and match in their descriptions. For

example, a call to a database library is made, or when the method

is called "query", this can likely denote an SQL injection (CWE-89).

SWAN features also support access control to methods: Srm are

more likely to be publicly accessible, so whether the method is

public, private, protected, contained in an anonymous class, or

an inner class are covered in F01, F02, and F08, and are used to

differentiate between potential Srm and other methods. SWAN

also dedicates features to parameter and return types like F21, F23,

or F25, which can help differentiate between different types of

Srm (e.g., void methods are less likely to be sources), and between

different types of CWE (e.g., Open redirects (CWE-601) most likely

take Strings or URLs as inputs.

Other features in SWAN aim at removing false positives, e.g., F11

which helps distinguish constructors from sources, since they both

return potentially sensitive data. Data-flow specific features (e.g.,

F19, F20, F24) also serve this purpose, refining the classifications

with more information such as whether a parameter flows to the

return value (potentially indicating a sanitizer), or if a parameter

flows to a method call (denoting a potential sink).

SWAN’s features further aim to recognize sanitizers and

authentication methods. For example, some instances of F14

are dedicated to sanitizer detection: MethodNameContainsSanit,

or MethodNameContainsReplac. Similarly, F19 finds meth-

ods that transform a parameter into a return value. In

combination with the instance of F18 applied to Strings

(ParameterContainsTypeString), this covers the most typical

type of sanitizer which replaces sensitive data, or strips dangerous

characters in a String. Feature instances have also been created with

the three types of authentication methods in mind. Authentication

methods are mainly determined through their names or the names

of their declaring classes, so they are targeted through instances

of F03 and F10, and F14 such as methodNameContainsLogin, or

methodClassContainsOAuth.

The training set in SWAN contains 235 Java methods collected

from 10 popular Java frameworks: Spring [45], jsoup [34], Google

Auth [25], Pebble [47], jguard [33], WebGoat [41], and four Apache

184

Codebase-Adaptive Detection of Security-Relevant Methods ISSTA ’19, July 15ś19, 2019, Beijing, China

Table 2: Feature types of SWAN, and their total number of

instances (#I) used within all classifications in SWAN.

Feature #I Feature #I

F01 IsImplicitMethod 1 F14 MethodNameStartsWith 9

F02 AnonymousClass 1 F15 MethodNameEquals 3

F03 ClassContainsName 36 F16 MethodNameContains 46

F04 ClassEndsWithName 3 F17 ReturnsConstant 1

F05 ClassModifier 3 F18 ParamContainsTypeOrName 11

F06 HasParameters 1 F19 ParaFlowsToReturn 1

F07 HasReturnType 1 F20 ParamToSink 13

F08 InnerClass 1 F21 ParamTypeMatchesReturnType 1

F09 InvocationClassName 10 F22 ReturnTypeContainsName 6

F10 InvocationName 39 F23 ReturnType 5

F11 IsConstructor 1 F24 SourceToReturn 7

F12 IsRealSetter 1 F25 VoidOnMethod 1

F13MethodModifier 4

Total 206

frameworks [1, 2, 7, 8]. We put particular care in ensuring that the

methods were chosen so that each of the 206 feature instances of

SWAN had at least a positive and a negative example, making each

example relevant for the learning algorithm.

3.3 Classifiers

To obtain the feature matrix, SWAN uses the Soot [10, 35, 52] pro-

gram analysis framework. As its machine-learning module, it uses

the SVM learner from the WEKA [53] library. The training set is

defined as a JSON file that contains the 235 Java methods men-

tioned above, annotated with Srm types and CWEs. SWAN accepts

a Java program or library as its test set, and runs the two-phase

classification, yielding lists of classified test Srm.

WEKA contains different types of classifiers: linear, probabilistic,

tree-based, rule-based, etc. We have evaluated seven of them to

determine which one would be most appropriate to use in SWAN:

Support Vector Machine (SVM), Bayes Net, Naive Bayes, Logistic

Regression, C4.5, Decision Stump, and Ripper. We have run a set of

ten 10-cross fold validations [46] for each of the classifiers on the

training set. The median precision and recall are shown in Table 3.

We see that SVM yields the best precision and recall in all cases,

classifying on average with 90% of the methods correctly. Naive

Bayes also yield good results, and Decision Stump has the lowest

precision, with 62,5% for the CWE-79. As a result, we chose SVM

as the default classifier for SWAN.

4 SWANAssist: INTEGRATING USER
FEEDBACK

We introduce SWANAssist, an extension of SWAN for integrating

developer feedback in the training set to improve the precision of

the Srm detection by adapting SWAN to the codebase.

4.1 Active Learning

Because SWAN is designed for general Java applications, when

run on one particular program, it may not be precise enough to

correctly classify all methods in the code base. In order to improve

its precision, we have extended SWAN to query the code developer

for their knowledge of the code base (R3).

User IntelliJ

user feedback

classification quality

classified methods

Figure 2: Active learning in SWANAssist

SWAN is extended with the component SWANAssist (as shown

in the upper part of Figure 1) that allows developers to edit SWAN’

training set directly in their Integrated Development Environment

(IDE). The developer can add or remove methods of the training set,

or change the classification of amethod. The new training set is then

fed to SWAN for another classification iteration. To continuously

refine the list of Srm, SWANAssist uses an active learning approach,

integrating the user1 feedback 2.

In this particular instance of active learning, SWANAssist in-

tegrates the developer in the loop. It runs the machine learning

at each iteration, by changing the training set.This system allows

developers to further adapt the classification of the methods in

their code base after the original run of SWAN, by improving the

training set. Since the user is involved in the process, SWANAssist

is a semi-automatic approach.

To help the developer identify methods that are most useful to

the classification, SWANAssist generates a list of methods thatÐif

classified differentlyÐwould yield the most impact on the next run

of SWAN, based on the feature matrix generated for the training

set. This is detailed in Section 4.3. Overall, SWANAssist uses the

automated mechanism of SWAN (R4) to detect Srm, and enhances

it with developer-based information to improve the precision of

the Srm detection (R5).

4.2 The IntelliJ Plugin

We have implemented SWANAssist as a plug-in component for

the IntelliJ IDEA IDE [32]. SWANAssist provides an interface for

editing the Srm lists and for executing SWAN, updating the Srm

classification on demand. Figure 3 presents SWANAssist’s Graphical

User Interface (GUI), which we detail below.

SWAN’s training set is shown on the rightmost view of the GUI,

called the SWAN_Assist view. Methods in this view can be filtered

by classification class or by file. The pop-up dialog in the center

allows the developer to edit the training set. It is accessible through

the SWAN_Assist view or through the context menuwhen amethod

in the code editor is selected. With this dialog, the developer can

add or remove classes for the method. Methods can be added to the

training set through the context menu, and removed through the

context menu or using the SWAN_Assist view.

SWANAssist also allows the developer to re-run the classifica-

tion by clicking on the icon in the toolbar of the SWAN_Assist

view. This update configures the inputs for SWAN, runs it in the

background, and updates the list of Srm. This is shown as the dot-

ted edge in the upper part of Figure 1. The methods that were just

removed are displayed in gray, at the bottom of the list, and can

1In this context, typical users would be software developers that seek to configure a
static analyzer.

185

ISSTA ’19, July 15ś19, 2019, Beijing, China Goran Piskachev, Lisa NguyenQuang Do, and Eric Bodden

Table 3: Precision (P) and recall (R) of the 10-cross fold validation for all classifiers averaged over 10 iterations in %.

So Si Sa Auth CWE-78 CWE-79 CWE-89 CWE-306 CWE-601 CWE-862 CWE-863 Average

P R P R P R P R P R P R P R P R P R P R P R P R

SVM 93.8 94 87.8 87.9 97.9 97.9 94.7 94.8 86.5 89.6 77.9 79.9 86.3 90.2 93.4 93.1 85.3 86.3 85.4 85.7 88.8 90 90 90

BayesNet 94.5 94.6 87.8 88 97.5 97.2 92.9 92.4 89.2 90.4 78.2 78.5 89.4 91 93.6 93.2 82.4 85.3 87.1 87.3 88 88.3 89 90

NaiveBayes 94.5 93.5 86.9 86.8 96.6 96.4 89.4 90.5 88.1 89.9 78 78.6 88.5 90.6 93.1 92.6 82.5 85.5 86.9 87.1 89.1 89 88.5 89.1

LogReg 94.3 94.1 78 78.3 95.2 95.3 94.4 94.2 87.7 89.9 63 79.1 86.5 89.6 93.6 93.4 84 86.2 84.4 85.4 88 88.2 87.5 88.5

C4.5 94.5 94.6 82.4 83 97.4 97.5 93.4 93.8 85.3 89.1 81.6 80.3 86.9 90.2 93.6 93.2 85.6 86.1 86.5 86.6 87.5 87.7 88.6 89.3

Stump 90.4 89.8 66.4 71.5 88.9 89.6 78 86.8 87.2 90.2 62.5 77 82.6 90.3 87.5 84.7 86.3 85.7 84.6 80.4 86.6 83.8 81.9 84.5

Ripper 92.8 93 82.9 83.3 97.4 97.5 89.2 90 86.7 90 70 76.4 85.4 90.4 92.3 91.6 77.5 85 84.5 84.2 87 86.8 86 88

Figure 3: Graphical User Interface (GUI) of SWANAssist. Its components are detailed in Section 4.2

be returned into the training set by using the restore functionality

from the context menu. Otherwise, they are removed from the list

on the next run. We have made the re-running of SWAN manual

because of its running times. In general, re-computing the Srm

for smaller libraries containing about a thousand methods (e.g.,

Eclipse Smarthome) takes under one minute. Larger libraries with

thousands of methods (e.g., Android) can take up to a few minutes.

4.3 Detecting Impactful Methods

To help developers classify methods more efficiently, the Sug-

gestSWAN module provides them with suggestions of methods

from the codebase that are likely to have the most impact on the

classification (dashed edge in Figure 1). Algorithm 1 presents the

suggestion strategy: it computes the method pair that will be the

most impactful in the next classification round. This is calculated

by iterating over all method pairs. For all features of SWAN, if the

method pairs have different values in the feature matrix (i.e., they

are a pair of example/counter-example for that feature), the weight

of that pair increases. In the end, the pair with the best weight

is returned for evaluation. This is repeated until all features are

covered, which is monitored by the global f eatures set. When this

point is reached, f eatures is emptied and the loop starts again until

all methods are classified or until the developer decides to stop.

The weight added to a pair for a particular feature depends on the

feature: some features in SWAN are more likely to be impactful than

others. We have determined this by evaluating the impact of the

individual SWAN features through a One-At-a-Time (OAT) analysis.

Algorithm 1 Choosing the most impactful pair of methods

1: alreadySuддested ← ∅

2: f eatures ← ∅ ◃ Keep covered features globally.

3: function suggest(Boolean[Methods][Features] testSet)

4: if f eatures = swanFeatures () then

5: f eatures ← ∅ ◃ Reinitialize coverage.

6: (Method m1, Method m2)← ∅ ◃ Most impactful pair.

7: forMethod m1’ in methods do

8: for Method m2’ in methods do

9: if alreadySuддested .contains (m1
′
,m2

′) then

10: continue

11: for Feature f in swanFeatures() do ◃ Add to the

pair’s impact if they have opposite evaluations.

12: if testSet[m1’][f] , testSet[m2’][f] then

13: updateFeaturesAndWeiдht (m1
′
,m2

′)

14: (m1,m2) ←max ((m1,m2), (m1
′
,m2

′))

15: f eatures ← f eatures \ (m1,m2). f eatures

16: alreadySuддested = alreadySuддested ∪ {m1,m2}

return (m1, m2)

In this analysis, we ran ten 10-fold cross validations on SWAN’s

training set per class (four Srm and seven CWE classes), disabling

one feature instance at a time. For each run of the SVM classifier,

we marked the F-measure (harmonic mean of precision and recall)

averaged over all repetitions with randomly distributed folds. We

186

Codebase-Adaptive Detection of Security-Relevant Methods ISSTA ’19, July 15ś19, 2019, Beijing, China

used the F-measure to rank the offsets to obtain the feature weights

with which we initialize SuggestSWAN.

SuggestSWAN has a quadratic complexity. More complex strate-

gies could be used to suggest methods with a better impact, taking

into account several iterations at once. The ideal solution can be

reduced to a knapsack problem over all combinations of features,

running in an exponential complexity. Since SWANAssist is de-

signed to run in the IDE, we privileged the faster running method

to satisfy the need for responsiveness.

5 EVALUATION

We answer the following research questions:

• RQ1What is SWAN’s precision on real-world Java libraries?

• RQ2 How does SWAN compare to existing approaches?

• RQ3 How much manual training does SWANAssist require

to obtain optimal precision?

5.1 RQ1: Precision on Real-World Applications

We ran SWAN on a benchmark of twelve popular Java libraries.

The benchmark applications were selected to be real-world, open-

source Java programs that contain at least 500 methods, and that

have evidence ofmaintenance and development over a recent period

of time (i.e., at least 2 years and 5 contributors). They are composed

of two frameworks from the mobile domain (Android v4.2 [24]

and Apache Cordova v2.4 [3]), eight web frameworks (Apache

Lucene v6.6.5 [4], Apache Stratos v4.0 [5], Apache Struts v1.2.4 [6],

Dropwizard v1.3 [13], Eclipse Jetty v9.2 [15], GWT v2.8.2 [26], Spark

v2.7.2 [31], and Spring v4.3.9 [45]), one framework from the home

automation domain (Eclipse SmartHome v0.9 [16]), and one utility

framework (Apache Commons2 v19 [2]).

Table 4 presents the number of Srm detected by SWAN in each

Java library. Over the 290,791 methods of the twelve frameworks,

SWAN classified 74,603 of them as Srm. We see that a large num-

ber of methods are classified as sources and sinks. This is due to

the broad definition of sources and sinks, as they should allow an

analysis to detect any type of SANS top 25 sources and sinks. How-

ever, restricting the Srm to particular CWEs significantly reduces

the number of methods to consider (e.g., from 20.39% source Srm

to under 1% source/sink/validator/authentication methods for all

CWE-specific Srm), and therefore decreases the complexity of the

analyses that use them.

Because of the high number of reported Srm, we did not man-

ually verify the complete classification. For each framework, we

randomly selected 50 methods from each category of Srm and CWE

(or fewer, if the number of methods detected by SWAN was lower),

and manually verified their classification. The verification was done

be two of the authors and one external researcher. Each person

verified one third of the selected methods. The resulting precision

of SWAN for each category is presented in Table 5.

Over the different classes, SWAN yields a precision of 0.826 for

the Srm classes and of 0.677 for the CWE classes. SWAN is most

precise (0.91) when detecting sources. Misclassifications for this

category are mostly due to the presence of getter methods in plain

old Java objects, which share similarities with source methods (e.g.,

2This also includes Apache XML-Xalan, XML-Xerces, XMl-Rcp, HttpComponents, and
Oltu-OAuth2

returning a String). This can be improved by training the model

with more counter-examples in the training set. SWAN is least

precise for CWE-862 (0.574), in particular on Spark (0), which is

based only on three methods detected making the value an outlier

to the dataset. Even though CWE-862 and CWE-863 are similar,

making their Srm overlapping, the precision of CWE-863 is better

as there are more examples available, and it is more specific. Any

authorization information available such as credentials and tokens,

are considered in CWE-863, but not in CWE-862 and the frameworks

have generally more methods that are related to this.

Other misclassifications cannot be improved by mod-

ifying the training set. For example, the Spring method

Connection.getConnection() has a different behaviour when

overwritten in its subclasses: in SingleConnectionFactory, it is

an authentication method of type Ass, and in ConnectionHolder,

it does not perform an authentication behavior. This information

cannot be inferred from the source code, as those two methods are

too similar. The differentiation information can be found from the

API documentation of the methods. We conclude that SWAN could

be improved by adding features that go beyond the code.

Over the twelve libraries, SWAN yields a precision of 0.76. While

it is naturally lower than the 0.9 found with the 10-fold cross vali-

dation (Table 3), it shows that the generalization of the approach to

Java projects is still able to classify Srm with a good precision. The

low standard deviation (σ = 0.075) denotes the stability of SWAN’

precision over the different Java projects.

SWAN is most precise on Eclipse Smarthome, which is explained

by the fact that the library is aimed at home automation, and does

not contain the web CWEs that SWAN currently supports. There-

fore, SWAN could only detect sources and sinks, for which it is

strongest. One of the libraries for which SWAN performs the weak-

est is Android, with low precision for authentication methods and

methods for CWE-306, CWE-862, and CWE-863. This is due to the

keywords used in SWAN’ features (e.g., dis/connect), which overlap

with domain-specific methods (e.g., connection to Wifi, Bluetooth,

or NFC adapter). On our training set, such methods are typically

used for authentication, which is not the case for Android. We can

conclude that despite its good precision, SWAN still needs more

domain-specific information, motivating the need for user input

and of SWANAssist.

Over 12 Java libraries, SWAN yields a precision of 0.76.

It is more precise for detecting Srm types (0.826) than

for CWEs (0.677). SWAN can be improved by adding non

source code-specific features, a more complete training

set, and domain-specific information. The latter two can

be provided by the code developer, using SWANAssist.

5.2 RQ2: Comparison to Existing Approaches

We know of the following three approaches to have open-sourced

their Srm: Susi [9], Sas et al.’s approach [44], and JoanAudit [49].

Susi and Sas et al.We compare the lists of sources and sinks from

Susi [9] and its extension by Sas et al. [44] to the lists of sources and

sinks generated by SWAN on the Android framework (version 4.2).

The number of sources and sinks detected by the three approaches

is shown in Figure 4. SWAN reports a total of 25,085 sources and

13,798 sinks, Susi 18,044 sources and 8,278 sinks, and the tool by

187

ISSTA ’19, July 15ś19, 2019, Beijing, China Goran Piskachev, Lisa NguyenQuang Do, and Eric Bodden

Table 4: Total number of methods (#M), and number of Srm detected by SWAN per category.

#M #Srm So Si Sa Ass Aus Anc CWE-78 CWE-79 CWE-89 CWE-306 CWE-601 CWE-862 CWE-863

Android 128,783 39,165 25,085 13,798 503 503 136 288 188 158 334 1,151 229 1,016 109

Apache Commons 24,654 9,129 6,200 2,905 39 81 24 22 126 557 9 110 72 104 35

Apache Cordova 717 273 147 123 3 9 0 1 7 2 0 10 0 2 0

Apache Lucene 3,240 717 491 221 5 0 0 0 0 0 0 0 0 0 0

Apache Stratos 50,724 19,596 12,774 6,602 214 191 44 92 145 26 24 327 107 334 131

Apache Struts 2,670 1,315 752 560 6 0 0 0 360 4 0 0 3 0 0

Dropwizard 659 280 139 137 0 5 0 2 0 0 0 7 0 6 5

Eclipse Jetty 1,157 650 371 255 4 22 4 25 0 20 24 49 27 45 28

Eclipse SmartHome 934 261 185 76 0 0 0 0 0 0 0 0 0 0 0

GWT 44,970 8,093 5,785 2,255 117 7 1 2 41 268 5 10 57 0 0

Spark 884 142 96 22 1 24 0 0 0 0 0 24 6 3 4

Spring 31,369 12,622 7,275 5,138 72 339 36 134 125 301 785 504 233 441 157

Median % 100 31.72 20.39 11.04 0.33 0.41 0.08 0.19 0.34 0.46 0.41 0.75 0.25 0.67 0.16

Table 5: Number of manually verified methods (#MV), and precision of SWAN for each category on twelve Java libraries. N/A

marks categories for which SWAN detected no methods.

#MV So Si Sa Ass Aus Anc CWE-78 CWE-79 CWE-89 CWE-306 CWE-601 CWE-862 CWE-863 Median

Android 650 0.98 0.9 0.98 0.62 0.8 0.66 0.96 0.78 0.62 0.52 0.5 0.52 0.62 0.727

Apache Commons 529 0.88 0.78 0.9 0.74 0.792 0.727 0.9 0.54 0.694 0.75 0.56 0.7 0.743 0.747

Apache Cordova 134 0.88 0.9 1 0.556 N/A 1 1 1 N/A 0.52 N/A 1 N/A 0.888

Apache Lucene 105 0.94 0.68 0.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.81

Apache Stratos 594 0.9 0.82 0.78 0.64 1 0.64 0.68 0.769 0.792 0.68 0.56 0.5 0.7 0.721

Apache Struts 163 0.94 0.88 1 N/A N/A N/A 1 0.54 N/A N/A 1 N/A N/A 0.804

Dropwizard 125 0.88 0.66 N/A 0.8 N/A 0.5 N/A N/A N/A 0.8 N/A 0.667 0.8 0.76

Eclipse Jetty 348 0.88 0.68 1 0.773 0.75 0.8 N/A 0.75 0.708 0.714 0.704 0.533 0.714 0.724

Eclipse Smarthome 100 0.96 0.96 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.96

GWT 367 0.92 0.8 0.82 0.857 0 1 0.439 0.6 1 0.8 0.72 N/A N/A 0.734

Spark 134 0.82 0.955 1 0.875 N/A N/A N/A N/A N/A 0.917 0.833 0 0.75 0.851

Spring 636 0.9 0.82 0.82 0.68 0.861 0.8 0.9 0.66 0.889 0.82 0.6 0.62 0.8 0.785

Median 0.91 0.82 0.864 0.7 0.862 0.718 0.798 0.648 0.71 0.723 0.608 0.574 0.716

Sas et al., 3,035 sources and 7,311 sinks. SWAN reports more Srm

than the other two approaches, which after a manual investigation

we attribute to two reasons. First, SWAN’s features target a broader

range of vulnerabilities compared to Susi’s and Sas et al’s data pri-

vacy focus. Second, Susi reports methods from abstract classes and

interfaces, SWAN reports their concrete implementations, which

allows for a better precision. Sas et al. are stricter and only report

warnings belonging to certain classes: database, gui, file, web, xml,

and io. Unlike to SWAN and Susi, Sas et al. reports more sinks

than sources. This is due to the larger number of sink features than

source features contained in their approach. Both SWAN and Susi

contain enough features and training instances to overcome this.

To compare the precision of the three approaches, we randomly

selected 50 sources and 50 sinks in the lists produced by the three

tools, and manually classified them. The selected methods of each

tool were labeled by different researcher, two of the authors and one

external researcher. SWAN shows a precision of 0.99 for sources

and 0.92 for sinks (confirming our findings of RQ1), whereas Susi

yields respective precisions of 0.96 and 0.88, and Sas et al.’s tool has

0.88 and 0.88 respectively.

JoanAudit. The authors of JoanAudit have manually created lists

of 177 Srm classified in five injection vulnerabilities for taint analy-

sis, including sources, sinks, and validators. JoanAudit’s Srm are

taken from various Java applications, two of which are in common

with SWAN: Spring and Apache Commons. Applied to the Spring

framework, SWAN is able to detect two of the three methods listed

in JoanAudit, the third one being an interface method of which

SWAN reports the concrete implementations. On Apache, SWAN

detects seven of the ten JoanAudit methods. Two of the missing

three are related to the XML injection vulnerability which is not yet

included in the classification of SWAN. This indicates that SWAN

can be used to create lists of Srm whose quality is comparable to

hand-crafted lists such as JoanAudit’s.

For sources and sinks, SWAN yields a higher precision

than Susi and Sas et al.’s approach. It can detect Srm with

a quality comparable to hand-crafted lists.

5.3 RQ3: Manual Training

We next seek to evaluate how well SWANAssist helps improve the

classifiers precision, and in particular how much manual training

these improvements require. To evaluate the precision of the active

learning approach, we selected a (1) well-maintained, (2) open-

source project that contains (3) a high number of Srm, and (4) fewer

than 2,000 methods, so that we could classify all of them manually.

We used the GitHub mining tool BOA [14] and selected the Gene

188

Codebase-Adaptive Detection of Security-Relevant Methods ISSTA ’19, July 15ś19, 2019, Beijing, China

Figure 4: Number of sources (left) and sinks (right).

Expression Atlas (GXA) [30] application, a popular tool in the do-

main of bioinformatics maintained by the European Bioinformatics

Institute (EMBL-EBI) [17]. We chose GXA since it showed lower

precision with the base SWAN. This allows us to showcase the po-

tential of the active learning approach in the worst case compared

to an application that already has a good precision to begin with.

We manually classified and labeled the 1,663 methods of GXA

with one or more of the following classes: sources, sinks, CWE-89,

none. 286 methods were identified as sources, 183 methods as sinks,

and 29 as relevant to CWE-89, and consider this our ground truth.

The labeling of the methods was done twice, first by one of the

authors, and then by one external researcher. The Cohen’s Kappa

value for sources is 0.605, 0.725 for sinks, and 0.919 for CWE089,

which are all above the significant agreement threshold of 0.6 [36].

To evaluate how SWANAssist’s suggester algorithm (Section 4.3)

helps improve the results of SWAN, we compare the resulting Srm

lists when feeding SWANAssist randomly selected method pairs,

and when using SuggestSWAN to select those pairs. We first run

SWAN with its initial training set and GXA as a testing set. Then,

add a new method pair to the training set and continue until we

run out of methods. For each of the 819 iterations, we report the

classification’s precision it in Figure 5. The precision shown for the

random suggester is averaged over 10 runs.

We see that for sources and sinks, the evolution of the precision

for the random suggester is linear. This shows that the suggester

does not help the classification: the precision increases naturally as

a new pair is added to the training set. On the other hand, SWAN

shows a quick increase in precision at the beginning, showing that

the suggester is efficient in selecting the methods with the most

impact first. This maximizes the impact of the classification and

minimizes the developer work to tune SWAN to their code base. In

the case of sources, the precision reaches 0.8 at iteration 31 (from

0.75 at iteration 1), making 60 methods labeled (4% of the total

number of methods in the application). Afterwards, the growth

slows down, reaching a precision of 0.9 after 91 iterations. In the

random case, the growth is much slower, reaching a precision of

0.8 at iteration 166 and 0.9 at iteration 414. For sinks, the precision

using reaches 0.9 at iteration 20 (from 0.61 at iteration 1) with

SuggestSWAN, requiring the developer to only label 1% of the total

number ofmethods in the application. This precision is only reached

at iteration 358 with the random suggester.

P
re
c
is
io
n

0,70

0,78

0,85

0,93

1,00

Iteration

1 101 201 301 401 501 601 701 801

Suggester
Random

P
re
c
is
io
n

0,5

0,625

0,75

0,875

1

Iteration

1 101 201 301 401 501 601 701 801

P
re
c
is
io
n

0,4

0,55

0,7

0,85

1

Iteration

1 101 201 301 401 501 601 701 801

Figure 5: Precision of the sources (top), sinks (middle), and

CWE-89 (bottom) over 819 iterations of SWAN by adding

methods with SuggestSWAN and with random selection

Although less visible, we see a similar trend for the case of

CWE-89 where the precision in the early iterations is better when

using SuggestSWAN. The growth is less pronounced, only reaching

a precision of 0.8 at the 130th iteration (from 0.67 at iteration 1),

requiring 16% of the methods to be labeled. We attribute this to the

lower number of SWAN instances targeting this class compared to

the Srm classes, and to the low number of CWE-89-related methods

in the test set, making the classifier less efficient in targeting it.

In all three cases, we note regular drops in the precision. Fur-

ther investigation reveals that those drops occur when a prob-

lematic method is added to the training set. For example, method

void uk.ac.ebi.gxa.utils.EfvTree.put(uk.ac.ebi.gxa.utils.EfvTree) is ex-

pected by the classifier to be a sink method, since it does not return

anything, contains łputž in its name, and accepts an argument.

However, the method is a simple accessor method, and does not

constitute a sink. Such methods pollute the training set, and make

the classification less precise until enough methods are added to

compensate for the uncertainty. This issue can be mitigated by

improving SWAN’s features, or through a smarter handling of the

problematic methods and when to add them to the training set to

minimize pollution. The presence of such methods also shows one

more reason for why a user-guided approach such as SWANAssist

is useful, particularly in the presence of imperfect training sets.

Using SuggestSWAN on GXA yields high precision signif-

icantly faster than with a random selection of methods.

189

ISSTA ’19, July 15ś19, 2019, Beijing, China Goran Piskachev, Lisa NguyenQuang Do, and Eric Bodden

6 LIMITATIONS AND THREATS TO VALIDITY

SWANAssist’s main usability issue lies in the manual trigger of the

re-classification. This design choice was made because of SWAN’s

running time. While it takes a few seconds on small libraries with

few hundred methods, it can take up to a few minutes for larger

libraries with more than 100,000 methods such as Android. As a

result, we reduce the number of times SWAN is run. In addition,

on re-run, the tool starts a new background process for SWAN that

does not block the GUI and let users continue working in the IDE.

For each RQ in Section 5 a manual classification of methods was

performed which is difficult task that requires expertize in static

analysis and security. In each case, the work was done by two or

three persons. Some methods can be considered Srm in one context

of use, but not in other, making the classification more difficult.

In order to reduce any bias in RQ2, we did not reveal the names

of the tools to each person. For RQ3, we reported the inter-rated

reliability (Subsection 5.3).

7 RELATED WORK

7.1 Learning Srm

Many static analyses use Srm to configure their analyses. For ex-

ample, in the domain of Android applications, the Srm are typ-

ically computed using Susi-like approaches. This makes those

analyses [11, 12, 39, 40] susceptible to Susi’s weaknesses. For in-

stance, those approaches do not consider sanitizers. SWAN and

SWANAssist support sanitizers, and include user feedback in order

to refine the list and reduce the number of false positives.

Susi [9] is a machine-learning approach for sources and sinks

in the Android framework. It uses 26 feature types and runs two

iterations of maching-learning to first classify methods as sources,

sinks, or neither, and then, in different Android-specific classes

such as bluetooth, browser, etc. SWAN extends Susi to detect sani-

tizers and authentication methods, on top of sources and sinks. It

also allows for classifications into CWE sub-classes. Unlike Susi,

which is specific to Android, SWAN generalizes Susi to Java appli-

cations. It thus loses in precision but makes up for it by introducing

SWANAssist, which interleaves the code developer with the Srm

detection task. This allows SWAN to generate Srm that are more

specific to the analyzed code base.

Sas et al. [44] introduce the need for generalizing the detection of

Srm for general Java libraries, and the classification in CWE classes.

They extend Susi, modifying its features to achieve the former

goal. But unlike SWAN, they do not address the latter. Similarly to

Susi, Sas et al.’s approach detects sources and sinks offline. SWAN

can additionally recognize sanitizers and authentication methods,

and classify Srm by CWEs. In conjunction with SWANAssist, our

approach provides more adapted functionalities to support code

developers using static analysis in practice.

Like SWAN, Merlin [37] also detects Srm automatically. It uses

probabilistic inference to detect specifications for taint-style anal-

yses of string-based vulnerabilities. It models information flow

paths in a propagation graph using probabilistic constraints. How-

ever, the resulting Srm are specific to the application of Merlin, i.e.

string-based vulnerabilities, and Merlin does not provide support

to classify them in sub-types such as CWEs.

7.2 Machine Learning and Developer Feedback
in Static Analysis

Past approaches have included machine-learning and require de-

velopers’ feedback to refine static analysis results. For example, Fry

et al. [23] use machine learning to cluster analysis warnings into

similarly actionable warning groups. Heckman et al. [28] apply the

method to determine which warnings are more likely to be false

positives. In such cases, machine-learning is used offline, after the

analysis is run, and before the results are shown to the developer.

They do not include developer feedback.

Other approaches include developer feedback. For example,

Aletheia [50] filters the results that it displays by learning the needs

of developers. Similarly to SWAN, Aletheia shows the developer

a portion of the warnings and asks the developer to classify them,

thus instantiating features for the machine learning algorithms.

This classification is then used as a filter in the UI. The classifi-

cation phase takes place earlier with SWAN, before the analysis

runs. This reduces the analysis time and makes it usable in the IDE,

similarly to Lucia et al.’s approach [38], which uses incremental ma-

chine learning to detect false positives in real time. SWAN achieves

the same results, applied to the problem of Srm discovery.

8 CONCLUSION AND FUTUREWORK

Configuring static analyses with the correct set of Srm is an im-

portant factor in the precision of those analyses. In this paper, we

presented SWAN, an automated approach for detection of Srm

and their sub-classification in CWEs, and SWANAssist, an active

learning approach that allows the adaption of the Srm lists to a

particular codebase using feedback from the user. SWAN is able

to detect sources, sinks, validators, and authentication methods

with a high precision, and perform better or with a comparable

precision to existing approaches. The sub-classification of those

Srm into different CWE filters a large number of methods that can

cause false warnings in the CWE detection. As a tool integrated

in the developer’s IDE, SWANAssist requires little user feedback to

significantly improve the Srm lists.

It is possible to improve the precision of static analyses by pro-

viding more granular Srm information. Not only the methods them-

selves are important, which objects they affect can also be important

(i.e., which parameter, static variable, return variable, or base ob-

ject). We leave the detection of such affected objects to future work.

Additionally, we plan to extend SWAN and SWANAssist to support

a larger number of CWEs. We also plan to improve SWAN’ training

set in a more systematic manner, to ensure a better precision of

the approach, and develop a better strategy to handle potentially

problematic methods in SuggestSWAN.

ACKNOWLEDGMENTS

We thank Oshando Johnson for the work on the implementation of

SWANAssist and Parviz Nasiry for the work on the OAT analysis.

This research was supported by a Fraunhofer Attract grant, the

Heinz Nixdorf Foundation, the Software Campus Program of the

German Ministry of Education and Research as well as the NRW

Research Training Group on Human Centered Systems Security

(nerd.nrw). It was partially funded by the DFG project RUNSECURE.

190

Codebase-Adaptive Detection of Security-Relevant Methods ISSTA ’19, July 15ś19, 2019, Beijing, China

REFERENCES
[1] Apache. [n. d.]. Abdera. https://abdera.apache.org/.
[2] Apache. [n. d.]. Apache Commons. https://commons.apache.org/.
[3] Apache. [n. d.]. Apache Cordova. https://cordova.apache.org/.
[4] Apache. [n. d.]. Apache Lucene. http://lucene.apache.org/.
[5] Apache. [n. d.]. Apache Stratos. http://stratos.apache.org/.
[6] Apache. [n. d.]. Apache Struts. https://struts.apache.org/.
[7] Apache. [n. d.]. Roller. http://roller.apache.org/.
[8] Apache. [n. d.]. Tomcat. http://tomcat.apache.org/.
[9] S. Arzt, S. Rasthofer, and E. Bodden. 2013. SuSi: A Tool for the Fully Automated

Classification and Categorization of Android Sources and Sinks (NDSS’13).
[10] S. Arzt, S. Rasthofer, and E. Bodden. 2017. The Soot-based Toolchain for Analyzing

Android Apps. In Proceedings of the 4th International Conference onMobile Software
Engineering and Systems (MOBILESoft ’17). IEEE Press, Piscataway, NJ, USA, 13ś
24. https://doi.org/10.1109/MOBILESoft.2017.2

[11] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,
and P. McDaniel. 2014. FlowDroid: Precise Context, Flow, Field, Object-sensitive
and Lifecycle-aware Taint Analysis for Android Apps. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’14). ACM, New York, NY, USA, 259ś269. https://doi.org/10.1145/2594291.
2594299

[12] L. Nguyen Quang Do, K. Ali, B. Livshits, E. Bodden, J. Smith, and E. Murphy-Hill.
2017. Cheetah: Just-in-time Taint Analysis for Android Apps. In Proceedings of
the 39th International Conference on Software Engineering Companion (ICSE-C ’17).
IEEE Press, Piscataway, NJ, USA, 39ś42. https://doi.org/10.1109/ICSE-C.2017.20

[13] Dropwizard. [n. d.]. Dropwizard. https://www.dropwizard.io/.
[14] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. 2013. Boa: A Language

and Infrastructure for Analyzing Ultra-Large-Scale Software Repositories. In
Proceedings of the 35th International Conference on Software Engineering (ICSE’13).
422ś431.

[15] Eclipse. [n. d.]. Jetty. https://www.eclipse.org/jetty/.
[16] Eclipse. [n. d.]. Smarthome. https://www.eclipse.org/smarthome/.
[17] European Bioinformatics Institute (EMBL-EBI). [n. d.]. EMBL-EBI home page.

https://www.ebi.ac.uk/. Online; accessed 10 December 2018.
[18] Common Weakness Enumeration. [n. d.]. 2011 CWE/SANS Top 25 Most Danger-

ous Software Errors. http://cwe.mitre.org/top25/.
[19] Common Weakness Enumeration. [n. d.]. CWE-287: Improper Authentication.

http://cwe.mitre.org/data/definitions/287.html.
[20] Common Weakness Enumeration. [n. d.]. CWE-359: Exposure of Private Infor-

mation (’Privacy Violation’). https://cwe.mitre.org/data/definitions/359.html.
[21] Common Weakness Enumeration. [n. d.]. CWE CATEGORY: OWASP Top Ten

2017 Category A1 - Injection. https://cwe.mitre.org/data/definitions/1027.html.
[22] CommonWeakness Enumeration. [n. d.]. CWE home page. http://cwe.mitre.org/.

Online; accessed 27 September 2018.
[23] Z. P. Fry and Westley. 2013. Clustering static analysis defect reports to re-

duce maintenance costs. In 2013 20th Working Conference on Reverse Engineering
(WCRE). 282ś291. https://doi.org/10.1109/WCRE.2013.6671303

[24] Google. [n. d.]. Android API 4.2. https://developer.android.com/about/versions/
android-4.2.

[25] Google. [n. d.]. Google Auth Java. https://github.com/googleapis/google-auth-
library-java.

[26] GWT. [n. d.]. GWT. http://www.gwtproject.org/.
[27] M. Harman and P. O’Hearn. 2018. From Start-ups to Scale-ups: Opportunities

and Open Problems for Static and Dynamic Program Analysis. In Proceedings
of the 2018 IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM) (SCAM ’18). IEEE.

[28] S. Heckman and L. Williams. 2009. A Model Building Process for Identifying
Actionable Static Analysis Alerts. In 2009 International Conference on Software
Testing Verification and Validation. 161ś170. https://doi.org/10.1109/ICST.2009.45

[29] J. Heffley and P. Meunier. 2004. Can source code auditing software identify
common vulnerabilities and be used to evaluate software security?. In 37th
Annual Hawaii International Conference on System Sciences, 2004. Proceedings of
the. 10 pp.ś. https://doi.org/10.1109/HICSS.2004.1265654

[30] European Bioinformatics Institute. [n. d.]. Gene Expression Atlas. https://github.
com/gxa/gxa.

[31] Spark Java. [n. d.]. Spark. http://sparkjava.com/.
[32] JetBrains. [n. d.]. IntelliJ home page. https://www.jetbrains.com/idea/. Online;

accessed 17 October 2018.
[33] JGuard. [n. d.]. JGuard. http://jguard.net/.
[34] jsoup. [n. d.]. jsoup. https://jsoup.org/.
[35] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. 2011. The Soot framework for

Java program analysis: a retrospective. In Cetus Users and Compiler Infrastructure
Workshop (CETUS 2011).

[36] J. R. Landis and G. G. Koch. 1977. The Measurement of Observer Agreement for
Categorical Data. Biometrics 33, 1 (1977), 159ś174. http://www.jstor.org/stable/
2529310

[37] B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee. 2009. Merlin: Specification
Inference for Explicit Information Flow Problems. SIGPLAN Not. 44, 6 (June 2009),
75ś86. https://doi.org/10.1145/1543135.1542485

[38] Lucia, D. Lo, L. Jiang, and A. Budi. 2012. Active refinement of clone anomaly
reports. In 2012 34th International Conference on Software Engineering (ICSE).
397ś407. https://doi.org/10.1109/ICSE.2012.6227175

[39] B. Mathis, V. Avdiienko, E. O. Soremekun, M. Böhme, and A. Zeller. 2017. De-
tecting Information Flow by Mutating Input Data. In Proceedings of the 32Nd
IEEE/ACM International Conference on Automated Software Engineering (ASE
2017). IEEE Press, Piscataway, NJ, USA, 263ś273. http://dl.acm.org/citation.cfm?
id=3155562.3155598

[40] A. Mendoza and G. Gu. 2018. Mobile Application Web API Reconnaissance:
Web-to-Mobile Inconsistencies amp; Vulnerabilities. In 2018 IEEE Symposium on
Security and Privacy (SP). 756ś769. https://doi.org/10.1109/SP.2018.00039

[41] OWASP. [n. d.]. WebGoat. https://github.com/WebGoat/WebGoat.
[42] Open Web Application Security Project. [n. d.]. OWASP Top 10 Most Critical

Web Application Security Risks. https://www.owasp.org/index.php/Category:
OWASP_Top_Ten_Project.

[43] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and C. Jaspan. 2018.
Lessons from Building Static Analysis Tools at Google. Commun. ACM 61, 4
(March 2018), 58ś66. https://doi.org/10.1145/3188720

[44] D. Sas, M. Bessi, and F. A. Fontana. 2018. [Research Paper] Automatic Detection
of Sources and Sinks in Arbitrary Java Libraries. In 2018 IEEE 18th International
Working Conference on Source Code Analysis and Manipulation (SCAM). 103ś112.
https://doi.org/10.1109/SCAM.2018.00019

[45] Java Spring. [n. d.]. Java Spring. https://spring.io/.
[46] M. Stone. 1974. Cross-validatory choice and assessment of statistical predictions.

Journal of the royal statistical society. Series B (Methodological) (1974), 111ś147.
[47] Pebble Templates. [n. d.]. Pebble. https://pebbletemplates.io/.
[48] T. W. Thomas, M. Tabassum, B. Chu, and H. Lipford. 2018. Security Dur-

ing Application Development: An Application Security Expert Perspective.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems (CHI ’18). ACM, New York, NY, USA, Article 262, 12 pages. https:
//doi.org/10.1145/3173574.3173836

[49] J. Thomé, L. K. Shar, D. Bianculli, and L. C. Briand. 2017. JoanAudit: A Tool for
Auditing Common Injection Vulnerabilities. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE 2017). ACM, New York,
NY, USA, 1004ś1008. https://doi.org/10.1145/3106237.3122822

[50] O. Tripp, S. Guarnieri, M. Pistoia, and A. Aravkin. 2014. ALETHEIA: Improving
the Usability of Static Security Analysis. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’14). ACM, New York,
NY, USA, 762ś774. https://doi.org/10.1145/2660267.2660339

[51] Paderborn University and Fraunhofer IEM. [n. d.]. SWAN and SWANAssist github
repository. https://github.com/secure-software-engineering/swan. Online;
published 03 November 2018.

[52] R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, and V. Sundaresan.
2000. Optimizing Java Bytecode Using the Soot Framework: Is It Feasible?. In CC.
18ś34. https://doi.org/10.1007/3-540-46423-9_2

[53] Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal. 2016. Data
Mining, Fourth Edition: Practical Machine Learning Tools and Techniques (4th ed.).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

191

https://abdera.apache.org/
https://commons.apache.org/
https://cordova.apache.org/
http://lucene.apache.org/
http://stratos.apache.org/
https://struts.apache.org/
http://roller.apache.org/
http://tomcat.apache.org/
https://doi.org/10.1109/MOBILESoft.2017.2
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1109/ICSE-C.2017.20
https://www.dropwizard.io/
https://www.eclipse.org/jetty/
https://www.eclipse.org/smarthome/
https://www.ebi.ac.uk/
http://cwe.mitre.org/top25/
http://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/359.html
https://cwe.mitre.org/data/definitions/1027.html
http://cwe.mitre.org/
https://doi.org/10.1109/WCRE.2013.6671303
https://developer.android.com/about/versions/android-4.2
https://developer.android.com/about/versions/android-4.2
https://github.com/googleapis/google-auth-library-java
https://github.com/googleapis/google-auth-library-java
http://www.gwtproject.org/
https://doi.org/10.1109/ICST.2009.45
https://doi.org/10.1109/HICSS.2004.1265654
https://github.com/gxa/gxa
https://github.com/gxa/gxa
http://sparkjava.com/
https://www.jetbrains.com/idea/
http://jguard.net/
https://jsoup.org/
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
https://doi.org/10.1145/1543135.1542485
https://doi.org/10.1109/ICSE.2012.6227175
http://dl.acm.org/citation.cfm?id=3155562.3155598
http://dl.acm.org/citation.cfm?id=3155562.3155598
https://doi.org/10.1109/SP.2018.00039
https://github.com/WebGoat/WebGoat
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://doi.org/10.1145/3188720
https://doi.org/10.1109/SCAM.2018.00019
https://spring.io/
https://pebbletemplates.io/
https://doi.org/10.1145/3173574.3173836
https://doi.org/10.1145/3173574.3173836
https://doi.org/10.1145/3106237.3122822
https://doi.org/10.1145/2660267.2660339
https://github.com/secure-software-engineering/swan
https://doi.org/10.1007/3-540-46423-9_2

	Abstract
	1 Introduction
	2 Requirements for the Machine-learning based Discovery of Srm
	3 SWAN: Security methods for WeAkNess detection
	3.1 General Architecture
	3.2 Features and Training Data
	3.3 Classifiers

	4 SWANAssist: Integrating User Feedback
	4.1 Active Learning
	4.2 The IntelliJ Plugin
	4.3 Detecting Impactful Methods

	5 Evaluation
	5.1 RQ1: Precision on Real-World Applications
	5.2 RQ2: Comparison to Existing Approaches
	5.3 RQ3: Manual Training

	6 Limitations and Threats to Validity
	7 Related Work
	7.1 Learning Srm
	7.2 Machine Learning and Developer Feedback in Static Analysis

	8 Conclusion and Future Work
	Acknowledgments
	References

