
“Jumping Through Hoops”: Why do Java Developers
Struggle With Cryptography APIs?

Sarah Nadi

†

Stefan Krüger

†

Mira Mezini

†§

Eric Bodden

‡

Technische Universität Darmstadt

†

Universität Paderborn & Fraunhofer IEM

‡

Lancaster University

§

{nadi, mezini}@cs.tu-darmstadt.de, stefan.krueger@cased.de, eric.bodden@uni-paderborn.de

ABSTRACT
To protect sensitive data processed by current applications,
developers, whether security experts or not, have to rely on
cryptography. While cryptography algorithms have become
increasingly advanced, many data breaches occur because
developers do not correctly use the corresponding APIs. To
guide future research into practical solutions to this prob-
lem, we perform an empirical investigation into the obstacles
developers face while using the Java cryptography APIs, the
tasks they use the APIs for, and the kind of (tool) support
they desire. We triangulate data from four separate studies
that include the analysis of 100 StackOverflow posts, 100
GitHub repositories, and survey input from 48 developers.
We find that while developers find it di�cult to use cer-
tain cryptographic algorithms correctly, they feel surpris-
ingly confident in selecting the right cryptography concepts
(e.g., encryption vs. signatures). We also find that the APIs
are generally perceived to be too low-level and that devel-
opers prefer more task-based solutions.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Software libraries

Keywords
Cryptography, API misuse, empirical software engineering

1. INTRODUCTION
As software applications collect more and more sensitive

data, it is becoming increasingly essential for developers to
rely on cryptography to protect this data. However, this is
easier said than done. Application developers are not nec-
essarily cryptography experts and the o↵ered cryptography
Application Programming Interfaces (APIs) are often rather
complex and not easy to use.

For instance, consider the Java Cryptography Architec-
ture (JCA) [4], the o�cial framework for working with cryp-
tography in Java. The JCA is designed to allow Java appli-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16, May 14-22, 2016, Austin, TX, USA
c� 2016 ACM. ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884790

cation developers to easily use cryptography by separating
the APIs developers use from the underlying implementa-
tions that can be supplied by any provider (e.g., Java’s de-
fault implementation or BouncyCastle [2]). However, JCA
APIs o↵er a broad variety of di↵erent algorithms that in
turn support many modes and configuration options. While
any JCA provider must support a certain list of cryptogra-
phy algorithms, it may also support additional algorithms,
or even provide di↵erent default values for the same JCA
API call. As a result, the task to use and compose these
API components may be challenging.

In fact, the misuse of cryptography APIs has already been
established as a common cause of many security vulnerabil-
ities [14–16]. Solutions that e↵ectively support application
developers in correctly and easily incorporating cryptogra-
phy into their applications are thus urgently needed. To
provide such solutions, it is essential to understand the root
causes behind the phenomenon and the kind of support de-
velopers would perceive as useful. Eliciting these causes and
requirements in the specific context of Java-based software
development is the goal of this paper. Specifically, this paper
addresses the following research questions.

RQ1 What obstacles, if any, do developers face during the
use of Java cryptography APIs? While existing studies
established, after the fact, that APIs are misused [14–
16], they give no insights into the underlying reasons.
If developers do face obstacles while using the APIs,
understanding the nature of these obstacles is essential
for deriving guidance towards useful solutions.

RQ2 What are the common cryptography tasks developers
perform? Robillard [25] concluded that a main obsta-
cle to learning an API is the lack of information on
how to use this API to accomplish a specific task. To
the best of our knowledge, there is no data that iden-
tifies common cryptography tasks developers perform,
which would help in providing better support for them.

RQ3 What tools/methods would help developers use cryptog-
raphy more e↵ectively? To aid in developing solutions,
we elicit developers’ expectations and requirements.

To answer these research questions, we conduct an empir-
ical investigation consisting of four separate studies. Study 1
(S1) analyzes the top 100 Java cryptography questions asked
on the popular question/answer site StackOverflow. Study 2
(S2) is a pilot survey that gathers data from 11 developers
who asked Java cryptography-related questions on Stack-
Overflow. In Study 3 (S3), we analyze 100 randomly se-
lected public GitHub repositories that use Java’s cryptog-

2016 IEEE/ACM 38th IEEE International Conference on Software Engineering

 935

raphy APIs to identify the tasks developers usually need to
accomplish. Finally, Study 4 (S4) surveys 37 developers who
use Java’s cryptography APIs to confirm some of our find-
ings from the previous three studies. The material used in
all four studies is available on our online artifacts page [1].

We answer RQ1-3 by triangulating data from S1-S4. We
find that developers do indeed have di�culties in using the
Java cryptography APIs and that their main obstacle is the
API complexity and lack of a proper level of abstraction.
Our survey participants suggest several solutions and we
recommend a list of tool features for guiding future tool
builders in addressing the obstacles faced by developers.

2. S1: STACKOVERFLOW POSTS
We analyzed Java cryptography-related posts on Stack-

Overflow (SO) to check if developers face problems using
the APIs and to understand their obstacles (RQ1).

2.1 Study Design
To query SO, we used the online StackExchange Data

Explorer [9]. The query results were then downloaded as a
CSV file for further analysis. To search for relevant posts,
we used the tags java and cryptography and explicitly ex-
cluded javascript. On June 25 2015, such a query returned
1,232 posts. To be able to manually analyze each of these
posts, we selected only the top 100. To identify the top
questions, we sorted posts by view count followed by score
followed by favorite count. When faced with a problem, an
application developer would search the web or SO and click
on the relevant question link(s) from the search results to
view it. We believe that a high view count suggests that
more application developers face the same or a similar prob-
lem. Since only SO members are allowed to vote on ques-
tions and not everyone uses the voting system, we used the
score count as the second rather than first sorting criterion.
For completeness, we included the favorite count as the third
sorting metric. The selected 100 posts had 16,124 views on
average, while the 100th post already had only 5,291 views.

We manually analyzed all 100 questions, reading both the
question and answers, to identify two factors: (1) the ques-
tion topic and (2) the obstacle the poster is likely facing. To
reduce subjectivity, the first two authors independently an-
alyzed the questions and discussed any disagreements. The
combined analysis time of the posts was around 33hrs.

Since our study is of exploratory nature, we did not use
any pre-defined categories. Instead, we used open coding [12],
where we assigned a short description code to each post for
each of the two factors above, re-iterating and refining these
codes as necessary. At the end, we grouped the identified
topics and underlying obstacles into relevant categories. The
researcher agreement, measured by the kappa score [35], for
these two factors was 0.65 and 0.41 respectively.

2.2 Results
Question Topics. The fact that we found over 1,000 Java
cryptography-related questions on SO suggests that devel-
opers do indeed face di�culties using cryptography. To un-
derstand these di�culties, we look at the topics posters ask
about. We identify nine main topics shown in Table 1 and
divide four of these main topics into further sub-categories
(not shown in table for space limitations). The N/A cat-
egory contains questions that are not cryptography-related

Table 1: Question topics for the top 100 Java cryptography-
related posts (questions) on StackOverflow

Main Topic # Questions

Symmetric Encryption 37
Public-key Encryption 18
Provider 12
Signature 8
Hashing 7
Keystore 7
Random Numbers 4

N/A 7

Total 100

even though they matched our query tags (e.g., general random-
number generation or migrating code from Java to .NET).

Table 1 shows that 37% of the top 100 Java cryptogra-
phy questions on SO are related to symmetric encryption.
Symmetric algorithms use the same key for encrypting and
decrypting the data and are, on large data, more e�cient
than public-key algorithms. In terms of sub-categories, out
of these 37 questions, 41% are related to how to encrypt
data in general. However, we also find more specific ques-
tions such as handling padding during encryption (11%) or
dealing with keys and their lengths (14%).

The next most popular topic we found was public-key en-
cryption with 18 questions (18%). We find that half of the
posts dealing with public-key encryption ask about keys. It
seems that many developers have di�culty correctly setting
up and reading the required pairs of public and private keys.

We also found that 12% of the questions are about Java
cryptography providers, including how to set them up, the
default values of di↵erent providers, or whether some algo-
rithm is supported by a specific provider or not. Apart from
the seven N/A questions, the remaining identified categories
include some questions about signatures, hashing, keystores,
and random numbers for cryptographic applications.

S1-Obs.1: 37% of top 100 Java cryptography related
questions on SO are about symmetric encryption.

Obstacles. Table 2 shows the obstacles we identified for the
same top 100 questions, after excluding the seven questions
categorized as N/A. In 53 questions (57%), we find that the
problem is related to knowing how to use the API. For in-
stance, users are not sure what method calls are needed to
generate a key or why the sequence of method calls they use
to perform some task (e.g., encrypt certain data) is not work-
ing properly. One example is post number 11065063 . The
poster uses a symmetric cipher and calls the cipher.update()
method that encrypts part of the input data. However, she
ignores the returned encrypted byte array, which causes any
following decryption to be incorrect. Another example is
post number 1785555 that asks how to generate an initial-
ization vector (IV). From the answers, it seems that a devel-
oper can either use SecureRandom to generate the IV herself
or she can get it through the cipher parameters, using the
IvParameterSpec class, if the block mode requires an IV.
The obstacle in these two examples is a matter of under-
standing how the API works and which methods should be
used to achieve the given task.

In cases such as these two examples and the other 51 ques-
tions in this category, we realized that the question poster
had some domain knowledge (i.e., she at least knows which
algorithms to use) and knew the API to use, but the API

936

Table 2: Identified obstacles in the analyzed StackOverflow
questions from Table 1 (excluding the 7 N/A posts)

Obstacle # Questions

API use 53
Domain Knowledge 14
Provider & Setup Issues 14
Library Identification 6
Domain knowledge + API use 6

Total 93

complexity led to incorrect usage. This category also in-
cludes problems in understanding the underlying API imple-
mentation (e.g., knowing the encoding of the return value of
an API call or understanding an unclear API error message).

S1-Obs.2: 53 (57%) of question posters have some
domain knowledge, but the API complexity or unclear
underlying implementation prevents them from using
the correct sequence of method calls & parameters.

However, we also find 14 (15%) posts where lack of do-
main knowledge is the main obstacle. For example, we
find three di↵erent posts (7735474 , 9399400 , and 9316437)
where the question posters confuse encryption and hashing.
The third post 9316437 asked how to decrypt a SHA-256
encrypted string. By looking at the answers, we infer that
the poster lacks domain knowledge since SHA-256 is a hash
function and hash functions are one-way and irreversable
by definition. Similar issues include understanding the key
sizes supported by di↵erent algorithms or what a keystore
is. Such users cannot identify the correct algorithms to use
in the first place and cannot di↵erentiate between the vast
amount of options available. Note that in six additional
questions, the obstacle includes both API use and domain
knowledge. Additionally, we find six posts (7%) where the
user does not know which Java library to use.

S1-Obs.3: 26 (28%) of question posters lack domain
knowledge (do not know the correct cryptographic al-
gorithms to use) or cannot identify suitable libraries.

In 14 of the cases (15%) we looked at, the obstacle is set-
ting up the environment. The majority of these problems are
related to setting up and using the correct provider. For ex-
ample, in posts 285624 and 4895773 , the same code caused
exceptions only on certain machines, because the users did
not set up the providers correctly on all the machines they
tested on. Another common problem is that certain algo-
rithms only work with a special “unlimited-strength” setup
that needs an extra jar file to be installed [5].

S1-Obs.4: 15% of question posters have problems set-
ting up their environments and providers.

2.3 Intermediate Discussion
S1-Obs.1 and S1-Obs.2 suggest that developers face prob-

lems even for simple tasks such as symmetric encryption.
Even when they know the right algorithm to use, they may
still need guidance on how to use the APIs properly. On the
other hand, S1-Obs.3 suggests that there are also users who
lack the appropriate domain knowledge or are not even sure
which libraries to use. Such users require significant guid-
ance to accomplish their tasks. Finally, irrespective of the

user’s domain knowledge, S1-Obs.4 suggests that users still
run into setup issues frequently, and that JCA’s provider ar-
chitecture is sometimes confusing to developers. Such users
may need support with selecting the right provider and set-
ting up their environments correctly.

3. S2: PILOT SURVEY
S2 addresses RQ1-3 and also serves as a focused pilot

study in preparation for S4. We use the opportunity that
posters of Java cryptography-related questions on SO have
actually faced problems themselves. Our goal is to under-
stand the obstacles they faced, the kind of tasks they need
to perform, and the solutions they might find useful.

3.1 Study Design
Survey Design. We asked the following questions:

(Q1) What is your current occupation? undergraduate or
graduate student, academic or industrial researcher,
industrial or freelance developer, other.

(Q2) How many years of Java programming experience do
you have? <1 year, 1-2, 2-5, 6-10, 11+ years

(Q3) Rate your background/knowledge about cryptography
concepts such as encryption, digests, signatures, etc.
Not knowledgeable - I do not know anything about
cryptography, Somewhat knowledgeable - I have a vague
idea about various areas of cryptography and what
they are used for, Knowledgeable - I am familiar with
various areas of cryptography and what they are used
for, Very knowledgeable - I know all/most areas of
cryptography, the di↵erent available algorithms, and
what they are used for.

(Q4) How often do you need to use cryptography in your
software applications? Never, Rarely - I need cryptog-
raphy for less than 33% of the software applications
I develop, Occasionally - I use cryptography in more
than 33% but less than 66% of the software applica-
tions I develop, Frequently - I need cryptography for
more than 66% of the software applications I develop.
A similar scale was used by Moreno et al. [22].

(Q5) What kind of cryptography-related tasks do you usually
implement in your applications? Free-text.

(Q6) How much e↵ort did you go through before resorting to
posting your question? Didn’t spend much time to be
honest – Stackoverflow just seemed like a reasonable
place to start, I spent a few hours reading resources
and trying a few things here and there, I had a quick
look at some APIs, but didn’t really understand much,
and I spent nights trying to figure this thing out!

(Q7) Describe the steps you took to try to solve the problem
yourself before resorting to StackOverflow. Free-text.

(Q8) What obstacles made it di�cult for you to accomplish
your tasks? Free-text. We use the exact question for-
mat used by Robillard [25].

(Q9) Rank the following obstacles to using cryptography in
your applications where 1 is the biggest obstacle. Rank
from 1 to 3 for three obstacles we believe might be rele-
vant: Identifying which concepts and algorithms to use,
Identifying which Java libraries to use, and Identifying
how to use the APIs of the identified library. Question
is provided on a separate page from previous question.

(Q10) What do you think would be a useful tool/technology/idea
that can help you complete your cryptographic tasks

937

Table 3: Background of Survey 1 participants (SO users). We assign a code to each participant.

Participant Current Java Exp. Cryptography Cryptography
Code Occupation (in years) Knowledge Use

S2-P1 Industrial developer 2 - 5 Somewhat knowledgeable Frequently
S2-P2 Industrial developer 11+ Very knowledgeable Rarely
S2-P3 Industrial developer 2 - 5 Knowledgeable Frequently
S2-P4 Industrial developer 6 - 10 Knowledgeable Rarely
S2-P5 Undergrad. student 1 - 2 Somewhat knowledgeable Rarely
S2-P6 Freelance developer 1 - 2 Somewhat knowledgeable Rarely
S2-P7 Grad. student 2 - 5 Knowledgeable Rarely
S2-P8 Other: Senior SW Eng.& Team Lead 6 - 10 Knowledgeable Rarely
S2-P9 Freelance developer 6 - 10 Knowledgeable Occasionally
S2-P10 Freelance developer 1 - 2 Somewhat knowledgeable Rarely
S2-P11 Industrial developer 6 - 10 Knowledgeable Frequently

more correctly, e�ciently, etc.? Free-text.

Participant Recruitment. We identified 1,066 SO users who
asked Java cryptography-related questions1. As SO provides
no means to directly contact users, we identified email ad-
dresses of only 46 users by visiting their listed websites. We
contacted these users, explaining the goal of our project and
asking them to fill the survey. Out of these 46 users, eight
responded to the survey. To increase the number of partic-
ipants, we additionally identified users who asked questions
with tags Java and Encryption since a quick analysis of
such questions suggests that not all users tag their ques-
tions explicitly with cryptography. This allowed us to send
invitations to 15 additional users, three of whom answered
our survey. This resulted in a total of 11 participants.

3.2 Results
Participant Profiles. Table 3 shows the background of the
11 SO posters that participated in this survey. We can see
that with the exception of two students (S1-P5 and S1-P7),
most of the participants can be considered as professional de-
velopers. This provides us some reassurance that the ques-
tions they have asked on SO are related to real application
development rather than student assignments. The level of
Java experience varies between participants though, but is
more skewed towards experienced developers. Eight partic-
ipants have at least two years of Java development experi-
ence, with five having at least six years. Most of the par-
ticipants (seven) say that they rarely need cryptography in
the various software they develop. This suggests that they
are typical application developers who only sometimes need
to use cryptography in their applications. In terms of cryp-
tography knowledge, all participants rated themselves as at
least somewhat knowledgeable.

Cryptographic Tasks. We grouped similar free-text an-
swers provided by participants, resulting in nine categories:
encrypt data, encrypt files, secure connections & communi-
cation, store/authenticate user login, encrypt cookies, gener-
ate/store secret keys, derive keys, transfer files securely, and
protect sensitive data in a database. Participants were able
to provide more than one task. However, with the exception
of three tasks, each task was only mentioned by one partic-
ipant. The three tasks mentioned by more than one par-
ticipant are store/authenticate user login (7 participants –
64%), secure connections & communication (4 participants
– 34%), and encrypt files (3 participants – 27%).

1Tags java and cryptography (excluding javascript).

S2-Obs.1: The most common task needed by 64% of
participants is storing and authenticating user login.

Effort. In terms of e↵ort, ten (91%) participants said that
they spent a few hours reading resources and trying out so-
lutions on their own. The remaining participant points out
that her problem was simply a typo that she kept overlook-
ing. Only six participants described the steps they took be-
fore resorting to SO (this was an optional question). Most
of these participants mentioned reading lots of API docu-
mentation, tutorials, and blogs. One participant even men-
tioned taking a Coursera cryptography course and reading
two cryptography books. This points out the problem that
application developers spend valuable time trying to under-
stand the cryptography domain as well as its specific APIs.

S2-Obs.2: To accomplish their cryptography tasks,
participants spend at least several hours reading
through online resources.

Obstacles. Only six participants answered optional (Q8).
We grouped similar answers together, resulting in three main
obstacle categories: (1) documentation (S2- P1, P2, P8, P9,
P10), (2) API design (S2- P2, P8, P9, P10), and lack of cryp-
tography knowledge (S2-P4). As expected, the most men-
tioned obstacle was lack of documentation, which has been
previously noted as a general API usability problem [25].
Participants complained that there is no specific place to
find answers (S2-P1), as well as about the lack of Java cryp-
tography tutorials (S2-P8) and up-to-date API documenta-
tion (S2- P2, P8, P9, P10). In terms of API design, S2-P6
mentioned that it is generally di�cult to implement key gen-
eration and secure transfer of public/private keys using the
API. S2- P1, P4, and P8 discussed problems due to dif-
ferences between API versions and unclear error messages.
S2-P2 also mentioned the need to understand underlying im-
plementation details due to the layer of indirection between
the JCA APIs and the algorithm implementations (JCA is
designed as a set of abstract classes/interfaces that are im-
plemented by the specific providers). Since only three par-
ticipants explicitly ranked their free-text obstacles, we could
not infer any meaningful conclusions from the rankings.

S2-Obs.3: As obstacles, participants mention lack of
documentation, di�culty in API use, and indirection
between the APIs and the underlying implementation.

On the other hand, ten participants ranked our three pre-
defined obstacles. With the exception of one participant
who did not view identifying the cryptography concepts to
use as an obstacle (i.e., did not provide a ranking for it), the

938

two other obstacles were ranked by all participants. Since
the majority of participants ranked all three factors, this
suggests that they are indeed obstacles developers face. We
considered the one unranked choice as having a rank of ten
since higher-ranks are reflected in smaller values. On aver-
age, the highest ranked obstacle was identifying how to use
the APIs (avg. rank 2.1). This was followed by identifying
which Java libraries to use (avg. rank 2.4), and identifying
which concepts and algorithms to use (avg. rank 2.7).

S2-Obs.4: Participants consider how to correctly use
the APIs as their biggest obstacle.

Developer Support. We received comments from five par-
ticipants. Three participants asked for better documenta-
tion and/or examples while two ask for more high-level APIs
that solve common tasks. It seems that developers find it
hard to deal with intricate details and knowledge about the
APIs and may prefer an input-based black-box kind of API.

S2-Obs.5: Participants ask for better API documen-
tation and/or higher-level abstraction of APIs in the
form of common tasks.

3.3 Intermediate Discussion
All our participants considered themselves as at least some-

what knowledgeable about cryptography and yet they all
faced problems using cryptography. This suggests that even
developers who have some cryptographic knowledge still face
problems accomplishing cryptography-related tasks. The
obstacles we observe here (S2-Obs.3 and S2-Obs.4) match
those identified in S1. Participants’ desire for better doc-
umentation (S2-Obs.5) along with the valuable time they
spend reading online resources (S2-Obs.2) suggest that im-
proved documentation technology is needed.

4. S3: TASKS IN OPEN-SOURCE SOFTWARE
This study addresses RQ2 by identifying cryptography-

related tasks implemented in 100 public GitHub repositories.

4.1 Study Design
To determine common cryptography tasks performed by

application developers, we inspected the actual code they
write. We used the GitHub Search APIs [3] through a
Python wrapper library [8] to find open-source projects that
use the Java cryptography APIs provided by JCA. We lim-
ited our search to recent Java projects created within the
last five years that have more than 100 stars and use the
package javax.crypto in the code. By filtering out reposi-
tories with less than 100 stars, we sought to ensure that the
study only considers popular projects that are actually used
by people, rather than small projects that nobody uses. In
the end, we obtained a list of all repositories that contain
matching code files and the links to these files. This resulted
in 257 unique projects with 1,452 code files (a project may
contain multiple matching code files).

Our goal was to understand what cryptographic tasks are
performed in the identified code. Unfortunately, this is a
manual task since any topic analysis techniques would not
give us an accurate description. To make this task more
feasible, we randomly selected 100 projects and split them
between the first two authors. We then used open-coding to

Table 4: Tasks identified from analyzing 100 GitHub
projects (a project may implement more than one task).

Task # Projects

Symmetric encryption 64
Sign & verify 42
Generate secret key 23
Asymmetric encryption 13
Key storage 12
User authentication 10
Secure connection 6
Other 5
Hashing 3
Generate key pair 2

analyze the identified tasks. In total, we analyzed 301 Java
files over 50hrs. While we did not intentionally select reposi-
tories based on their domain, our randomly chosen reposito-
ries included di↵erent types of projects such as web services,
Android libraries and apps, content management systems,
and web applications. We could identify 41 di↵erent types
of projects, which shows that the random selection was not
focused on a specific domain. The top three categories cov-
ered by the selection were Android apps (ten repositories),
database or data-storage related projects (ten repositories),
and communication projects (nine repositories).

4.2 Results
Table 4 shows the distribution of tasks we identified. We

found that most projects (64%) perform some form of sym-
metric encryption. The type of data being encrypted in-
cludes messages, keys, server tokens/response, cookies, doc-
uments, PIN codes, and session IDs. We even found pass-
words being encrypted, a practice that is often discouraged
and should be replaced by hashing [10, Chapter 2.5.4].

The next most-popular task that occurs in 42% of the
projects is signing data and later verifying this signature.
Similar to symmetric encryption, we found signatures for
a variety of input types including URIs, messages, requests,
files, and session IDs. Generating secret keys was also a very
common task (23%). This is not surprising since generating
a secret key is often a prerequisite to symmetric encryption.

S3-Obs.1: The most common tasks found in the analyzed
repositories are symmetric encryption (64%), signing and
verifying data (42%), and generating secret keys (23%).

Other tasks we identified include asymmetric encryption,
key storage, and user authentication, all occurring in at least
10% of the analyzed projects. The remaining tasks such
as hashing, securing connections, or generating key pairs
occurred in less than 10% of the projects we analyze. We also
included an “Other” category that groups very infrequent
tasks in our dataset, such as the checking of certificates.

4.3 Intermediate Discussion
In S2, we observed that storing and authenticating user

login is the most common task needed by participants (S2-
Obs.1). On the other hand, we found that only 10% of the
analyzed GitHub projects implement some form of user au-
thentication. This discrepancy could be due to the domain
of the projects analyzed. Additionally, it is hard to general-
ize based on the 11 participants from S2, which is why we
use the survey in S4 for further investigation. On the other
hand, the fact that 64% of the analyzed projects need some

939

11% 30%
54%

5%
Student Researcher Professional

Developer
Other

(a) Occupation

11% 16% 35% 38%

< 1 year 1 − 2
years

2 − 5
years

6 − 10
years

11+ years

(b) Years of Java experience

14%
49% 38%

Not
Knowledgeable

Somewhat
Knowledgeable

Knowledgeable Very
Knowledgeable

(c) Cryptography knowledge

57%
32%

11%

Never Rarely Occasionally Frequently

(d) Frequency of cryptography use

Figure 1: Background of Study 4 participants

form of symmetric encryption (S3-Obs.1) matches S1-Obs.1
that 37% of the SO questions are about symmetric encryp-
tion. Since developers often need this task, it is likely they
will have questions about how to accomplish it.

5. S4: GENERAL SURVEY
In our final study, we surveyed Java application developers

who use cryptography APIs. This survey addresses all three
research questions posed in the introduction and validates
some of of our observations from the previous three studies.

5.1 Study Design
Survey Design. The following is the list of questions posed
in the survey (all mandatory). During its design, we used
our experience with the pilot survey from S2.

(Q1�3) Same as Section 3.1(Q1) – (Q3)
(Q4) Same as Section 3.1(Q4), but using percentage of de-

velopment tasks instead of percentage of projects to
avoid corner situations where the participant only worked
on one project. Answering never here ends the survey.

(Q5) What are the most common cryptography-related tasks
you need in your applications? Rank the tasks ... Tasks
identified from S2: Store/ authenticate user login, En-
crypt files, Secure connections and communications,
and Transfer files securely. Additional tasks can be
added through “Other” fields. Note that the timeline
of S3 and S4 overlapped, which is why S3 tasks are not
included here.

(Q6) Did you use Java Cryptography APIs before? Yes/No.
Answering No ends the survey.

(Q7) Please rank the Java cryptographic libraries/APIs be-
low according to your frequency of use where 1 is most
used. This question examines if most developers actu-
ally use the JCA APIs. Choices include Java Cryptog-
raphy Architecture (JCA) APIs (irrespective of provider)
and Lightweight Bouncy Castle APIs [2]. Additional
APIs can be added through “Other”.

(Q8) Thinking of your most-used API, <(Q7) rank#1 choice>,
how would you rate its ease of use in terms of accom-
plishing your tasks correctly and securely? very hard
to use, hard to use, easy to use, and very easy to use.

(Q9) What [obstacles make it hard for you to learn and
use|features make it easy to use] <(Q7) rank#1 choice>?
Free-text.

(Q10) Thinking of when you have a new cryptography-related
task to implement in your software (e.g., ...) do you
ever have di�culties with the following? Short-form of
obstacle choices is shown in Fig. 3, each with choices
never, rarely, occasionally, frequently, and don’t know.
Note that we divide the obstacle previously used in
S2, “Identifying which concepts and algorithms to use”,
into two obstacles “Identify the correct algorithm (e.g.,
AES vs DES) to use” and “Identify which concepts
(e.g., encryption vs hashing) to use”.

(Q11) Same as Section 3.1(Q10)

Participant Recruitment. Since there is no way of deter-
mining the whole population of developers who use Java
cryptography APIs, we used non-probabilistic sampling [19].
We advertised the survey on our Social Media accounts and
also asked colleagues to forward to any relevant Java devel-
opers they know (snowball sampling [17]). Additionally, we
emailed developers who have committed to Java files that
use cryptography APIs on GitHub. However, we made sure
that these developers do not belong to the 100 projects we
analyzed in Study 3.

Data Analysis. Fourty-three developers completed the sur-
vey. However, during data analysis, we removed six partici-
pants who indicated that they do not need cryptography in
any of their development tasks (Q4) or have not used Java
cryptography APIs before (Q6). We base our findings be-
low on the remaining 37 participants. We used quantitative
analysis for multiple choice and rating questions and qual-
itative analysis (mainly open coding) for free-text answers.
Each participant is assigned a code, S4-P#.

5.2 Results
Participant background. Fig. 1 shows participants’ back-
grounds. For simplicity, we group undergraduate and gradu-
ate students as Student, academic and industry researchers
as Researcher, and freelance developer and industrial de-
veloper as Professional Developer. Most participants are
professional developers (54%) and only 11% are students.
The majority of participants have at least 6 years of Java
development experience (73%). Additionally, the majority
of participants rated themselves as at least knowledgeable
about cryptography (86%). However, most participants
(57%) rarely need cryptography in their development tasks.

Common cryptography tasks. Fig. 2 shows the most com-
mon cryptography tasks as ranked by participants. Fig-
ures 2a–2d show the four tasks we provide while Fig. 2e
shows the only free-text task (through the “Other” fields)
that is mentioned by multiple participants. Note that per-
centages do not add up to 100% since participants can leave
a task without a rank if they do not encounter it in their
development tasks. However, they have to mark at least one
task (i.e., rank 1).

Fig. 2 shows that securing connections and communica-
tions was the highest-ranked task (49% of participants ranked
it as #1, Fig. 2c). This is followed by authenticating users
that is ranked #1 by 30% (Fig. 2a). We also determined the
average rank per task, again assigning rank 10 to any un-

940

30% 24% 14% 8%

1 2 3 4 5

(a) Store/authenticate usernames & passwords

8% 11%
30% 22%

1 2 3 4 5

(b) Encrypt file

49%
30%

5% 11%

1 2 3 4 5

(c) Secure connections & communications

14%
30%

14% 3%
1 2 3 4 5

(d) Transfer files securely

11% 11% 3% 5%

1 2 3 4 5

(e) Other: Signing & verifying data

Figure 2: Task ranking by Study 4 participants (Q5)

ranked tasks. This also gives preference to tasks that were
ranked by more participants. This results in the following
ordered task ranking: securing connections and communica-
tions (avg. rank 2.22, 35 participants), authenticating users
(avg. rank 3.95, 28 participants), encrypting files (avg. rank
5.03, 26 participants), transferring files (avg. rank 5.89, 22
participants), and signing & verifyinig data (avg. rank 7.70,
11 participants).

S4-Obs.1: The top three tasks needed by participants
are securing connections and communications, authen-
ticating user logins, and encrypting files.

Additional tasks mentioned by participants in the“Other”
fields include checking licenses, hashing, generating and man-
aging keys, and handling OpenPGP emails. However, each
of these tasks was mentioned only by one participant.

Used Java APIs. When ranking their most-used Java APIs
(Q7), 57% of participants ranked JCA as #1 while 35%
ranked BouncyCastle as #1. Apart from SpongyCastle that
was mentioned by two participants in the“Other”field (rank
#1 and rank #2), additional APIs listed by participants in-
clude J2ME Crypto APIs (ranked #1), FlexiProvider (ranked
#3), Keyczar (ranked #3), BCMail (ranked #2), and BCOpenPGP

(ranked #3) – each mentioned only once.

S4-Obs.2: JCA is the most used API (rated #1 by
57%), but developers also use other APIs.

To analyze the ease of use ratings (Q8), we aggregated very
hard and hard as hard and very easy and easy as easy. We
found that 65% of participants rate their commonly used li-
brary as hard to use, including those who provided their own
API at rank #1. We could not detect any statistically sig-
nificant relationship between the most-used library and the
ease of use rating (Chi-squared test p-value=0.479). We also
did not find a correlation between participants’ backgrounds

and their ease of use ratings. The occupation and level of
cryptography knowledge of the participants who found the
APIs hard to use was very diverse. There were 8 researchers,
14 professional developers, 1 CEO, and 1 technical evange-
list. Three of them were somewhat knowledgeable, 12 knowl-
edgeable, and 9 very knowledgeable about cryptography.

S4-Obs.3: Irrespective of the library used and back-
ground, 65% of participants find the APIs hard to use.

Obstacles in hard-to-use APIs. We elicited obstacles from
21 participants who find their most-used library hard to use
(three participants put ‘none’ or ‘.’). Since we could not find
a relationship between the library being used and the ease
of use rating, we collectively analyzed all listed obstacles.

Out of the 21 participants who provided feedback, ten
(48%) participants said that the API is not high-level enough
(S4- P8, P12, P16, P19-20, P24-25, P27, P33-34), eight
(38%) of which list it as their #1 obstacle. Participants
mentioned that the APIs are too complex even for basic
tasks. For example, S4-P24 says, “It’s way too low level
and modular. Most developers need simple high-level ab-
stractions, not the complete toolbox with a wide variety of
implementation.”

Nine (43%) participants mention poor documentation as
one of their obstacles (S4- P3, P7, P10, P16, P19-20, P23,
P25, P31), with four (19%) rating it as #1. Most of these
participants mentioned the lack of useful examples.

Seven participants (33%) mentioned specific API design
obstacles, with three (14%) as their #1 obstacle. Three
of those complained that debugging client code using the
API and understanding the API error messages is di�cult
(S4- P11, P23, P31). The others complained about not
knowing which methods and parameters to use (S4-P1),
especially since there are “misleading default values for al-
gorithms/methods (e.g., [insecure] ECB mode as default)”
(S4-P3) as well as the lack of proper constants for algorithm
names (S4-P12). As one participant pointed out, such things
make it“easy to [create] dangerous errors” (S4-P8). To illus-
trate these points, consider how a symmetric encryption ci-
pher is created: Cipher cipher = Cipher.getInstance("AES").
Note that the algorithm name (i.e., the cipher algorithm in
this case) is a string instead of a proper Java constant, as
pointed out by S4-P12. Also note that an encryption cipher
needs both a mode and a padding scheme to function prop-
erly. When no mode is provided as in the code above, the
standard provider defaults to the insecure ECB mode [14]
as discussed by S4-P3. Finally, as S4-P1 pointed out, devel-
opers must understand which modes and padding schemes
are secure in order to correctly pass them as parameters to
the algorithm. This is actually a mix of an API use problem
as well as domain knowledge. Developers must know the
state of the art in proper security (domain knowledge) and
must know how to pass these parameters to the appropriate
method calls (API use).

The remaining participants (S4- P28, P35, P36) men-
tioned class-loading issues, missing functionality in the API
which means resorting to additional libraries, and the fact
that it is very time consuming to understand the API.

S4-Obs.4: Participants’ main obstacles are lack of
high-level APIs, poor documentation, and bad API de-
sign (e.g., misleading defaults & di�cult debugging).

941

11%

24%

38%

27%

14%

41%

43%

3%

27%

32%

27%

11%
3%

22%

27%

32%

16%

3%

35%

46%

11%

8%

32%

43%

19%

5%

22%

41%

30%

5%
3%

32%

30%

19%

8%

11%

19%

54%

22%

5%

0

10

20

30

40

Identify
Correct
Algm

Identify
crypto

concepts

Identify
Java API

Setup
environment

Idenitify
sequence of

API calls

Identify
parameters

Indentify
provider

Understand
API

implementation

Understand
error msgs

Nu
m

be
r o

f P
ar

tic
ip

an
ts

Frequently Occasionally Rarely Never Don't know

Figure 3: Obstacles rated by Study 4 participants

Features of easy-to-use APIs. Similar to Robillard and
DeLine [26], we did not find the feedback on positive API
features helpful. Since many participants only provided generic
answers such as “Good API” or put periods as answers, we
could only meaningfully evaluate seven answers. Surpris-
ingly, six of these participants mentioned completeness, level
of abstraction, documentation, and clean API endpoints as
positive features (S4-P9, P13, P17-18, P21, P37). The sev-
enth participant, S4-P29, mentioned that it is a matter of a
steep learning curve rather than being generally hard.

Rated obstacles. We first checked if there is any correla-
tion between the ratings of di↵erent obstacles using a Spear-
man correlation test. We found statistically significant strong
correlations (⇢ < �0.5 or⇢ > 0.5 and p-value < 0.01) be-
tween the ratings of four pairs of obstacles: (1) identifying
the API to use and setting up the environment (⇢ = 0.66),
(2) identifying the API to use and identifying the provider
to use (⇢ = 0.59), (3) setting up the environment and un-
derstanding the underlying implementation (⇢ = 0.53), and
(4) identifying sequence of method calls and identifying pa-
rameters (⇢ = 0.54). We interpret these strong correlations
as follows. For the first and second pair, identifying the API
to use is usually followed by setting up the environment and
determining which provider to use. Thus, the three obstacles
can be seen as part of the startup process. The fourth cor-
relation suggests that it may be the case that developers do
not distinguish between troubles with method call sequences
and those with the parameters to provide. We cannot find a
reasonable explanation for the third correlation, but we note
that the correlation coe�cient is not that much higher than
the threshold. All other obstacles were weakly correlated,
suggesting that participants view them as distinct obstacles.
Despite the correlations mentioned above, we still looked

at all the rated obstacles since they present potential fea-
tures that future solutions should include. Fig. 3 shows how
often participants face the obstacles we asked them about.
Darker colors show more frequently faced obstacles. The fig-
ure shows that identifying the correct sequence of method
calls is the most frequent obstacle (35%). This is followed
by understanding the underlying API implementation (32%)
and identifying the parameters to use (32%).

S4-Obs.5: The most frequently faced obstacle is identi-
fying the correct sequence of method calls (frequently
faced by 35%) followed by understanding the under-
lying API implementation and identifying the param-
eters to use (both frequently faced by 32%) .

None of the participants, including those with limited
cryptography knowledge, marked identifying which concepts
to use as a frequent obstacle (second column of Fig. 3). In
fact, 43% of the participants said they never face such an
obstacle. However, the first column also shows that 35% of
participants cannot, at least occasionally, identify the cor-
rect algorithm to use. This suggests that most participants
know which area of cryptography to use but may not always
be sure about the trade-o↵s between various algorithms.

S4-Obs.6: 43% of participants never have problems iden-
tifying relevant cryptography concepts, but 35% cannot,
at least occasionally, identify the correct algorithm to use.

Note that a Chi-squared test of independence showed no
statistically significant relationship between participants’ back-
grounds, or their most used API, and their obstacle ratings.

Desired support. Twenty-seven participants provide sug-
gestions for how to improve cryptography use in Java. We
identified three general categories for the suggestions: dif-
ferent API design (14 participants), better documentation
(10 participants), and tool support (6 participants). We also
categorized parts of the feedback we got from three partic-
ipants as other since the suggestions were specific feature
requests such as improving certificate creation.

In terms of API design, nine participants mentioned words
such as use cases, task-based, or high-level design. S4-P24
comments that “cryptographic libraries should be reserved to
people who implement protocols. The average software de-
veloper writing an application needs something much higher
level.”. Along the same lines, S4-P6 asked for libraries that
“[provide] simple API calls (one or two methods and simple
parameters) for di↵erent use cases”. S4-P27 echoed that by
suggesting having“higher level task-oriented APIs for things
like public key crypto, key exchanges, secure local storage,
[..., etc.]”. S4-P10 commented that “the ability to [perform]

942

simple cryptographic tasks in Java without jumping through
hoops would be brilliant.”

Participants also said that the API documentation can
generally improve with more examples. Finally, some par-
ticipants provided tool-based suggestions such as having a
CryptoDebugger (S4-P11), cryptography-aware testing tools
(S4-P13, S4-P17), analysis tools that identify where cryptog-
raphy protection is needed and find configuration mistakes
and weak algorithms (S4-P17), and code templates or fac-
tories for common tasks (S4-P7, S4-P9) through code gen-
eration IDE plugins (S4-P6).

S4-Obs.7: Participants suggest task-based solutions
whether in the form of better API design, examples in
documentation, or analysis and code generation tools.

6. DISCUSSION

6.1 Putting it All Together
RQ1: What obstacles, if any, do developers face during the

use of Java cryptography APIs? Our results confirm that de-
velopers face obstacles while using the APIs. First, 65% of
S4 participants found the APIs hard to use (S4-Obs.3) and
S2 participants also spend a considerable amount of time
reading resources (S2-Obs.2). Specifically, developers have
problems determining the correct sequence of method
calls, because APIs are too complex to use (S1-Obs.2,
S2-Obs.3, S2-Obs.4 and S4-Obs.4). S1 showed that another
obstacle faced by developers is lack of domain knowledge
(S1-Obs.3). However, based on S4-Obs.6, we speculate that
the problem here often lies in determining the right algo-
rithm to use rather than which general area of cryptography
is needed. Another obstacle that appeared in both S1 and
S4 is understanding the underlying API implementa-
tion (S1-Obs.2, S4-Obs.5). Finally, developers seem to have
problems in correctly setting up their environments to
use the APIs, supported by both S1-Obs.4 and the fact that
22% of S4 participants frequently face this obstacle (Fig. 3).
RQ2: What are the common cryptography tasks devel-

opers need? The three most common cryptographic tasks
(those highly-rated or mentioned frequently in more than
one study) are storing and authenticating user login
(S2-Obs.1, S4-Obs.1), securing connections and com-
munications (S4-Obs.1), and di↵erent forms of sym-
metric encryption (S1-Obs.1, S3-Obs.1, S4-Obs.1).
RQ3: What tools or ideas would help developers use cryp-

tography more e↵ectively? Participants of both surveys ad-
vocated for more task-based solutions whether in the form
of better example-based/task-based API documen-
tation (S2-Obs.5, S4-Obs.7), higher-level abstractions
of APIs (S2-Obs.5, S4-Obs.7), or tools that catch com-
mon mistakes or generate code templates (S4-Obs.7).

6.2 Moving Forward
Based on our findings, we see three directions for mov-

ing forward. The first is, naturally, to improve API doc-
umentation. Since this relies on the API creators them-
selves, we do not currently see a way to enforce this. Other
documentation-related solutions include those that synthe-
size code examples for specific APIs [26] or those that try to
present the existing documentation and online resources in
ways more useful to developers (e.g., [24, 30,33]).

The second is to encourage API designers to hide some of
the unnecessary details and provide their clients with more
high-level or task-based method calls. This was something
suggested by more than one participant. There are sev-
eral libraries—some non-Java—trying to achieve this (e.g.,
NaCl [7], Keyczar [6]). We also do not see this as some-
thing that can be enforced, but at least guidelines can be
developed to help API designers achieve this.

The third solution removes the dependency on the API
designers by building automated support tools on top of
the APIs. Based on the suggestions we got, (task-based)
code-generation tools are one example of such tools. Other
examples are analysis or debugger tools that warn users or
help them debug cryptography vulnerabilities. Based on our
findings, we suggest the following list of (task-based) tool
features that we encourage future tool or solution designers
to consider. However, we do not currently know the relative
importance of these features.

• Support at least the following tasks: storing and authen-
ticating user login, securing connections and communica-
tions, and symmetric encryption.

• Given a particular cryptography task:

– Identify the relevant library to use.
– Setup the identified library correctly (including providers).
– Identify the correct algorithm to use.
– Identify the correct algorithm settings to use.
– Identify the correct sequence of API method calls and

their appropriate parameters.

• Given a piece of code that uses cryptographic APIs, iden-
tify any potential vulnerabilities.

• Given a piece of code, identify where cryptographic pro-
tection might be needed.

6.3 Threats to Validity
S1 and S3 relied on manual analysis of posts and code.

The observations we make are, of course, subjective. In S1,
we mitigated this risk by having two of the authors analyze
the posts and discuss any discrepancies. In S3, due to the
higher analysis time-cost, the projects were equally divided
among two of the authors, providing us a mix of di↵erent
interpretations. We also published our coded dataset on our
artifacts page [1] to facilitate replication or further analysis.

The number of participants of S2 is fairly limited. Even
though the results of the study provide interesting insights,
we do not base any conclusions on S2 alone unless confirmed
by at least one other study. The participants of S4 may not
be completely representative of the whole population due to
the non-probabilistic sampling we follow, which subjects the
study to non-response bias. However, since our population is
very specific (developers who use Java cryptography APIs)
and our participants have a diverse background in both Java
and cryptography experience, we believe our observations
are still relevant to the larger population. Since our findings
only accurately reflect the opinions of our participants, we
encourage other researchers to conduct similar surveys on an
even larger scale. Additionally, our survey did not include
anyone without any cryptography knowledge. We did not
intentionally filter such participants during recruitment or
during analysis. However, since we were recruiting develop-
ers who already used the Java cryptography APIs, it is very
unlikely that any of them would still have no cryptography
knowledge. The list of libraries presented to participants in

943

S4-(Q7) is not comprehensive. However, our experience an-
alyzing posts in S1 suggests that the two libraries we listed
there are the most popular ones. We also allowed partic-
ipants to add their own libraries. This additional list of
libraries identified can be used to guide future studies.

Our findings may su↵er from confirmation bias. In our
previous work [11], we presented a possible solution to help
developers use Java APIs more securely. It may be the case
that we, subconsciously, tried to confirm our prior beliefs.
However, we argue that this is not the case since many of
our prior beliefs are not confirmed by our studies (e.g., dif-
ficulties in di↵erentiating between cryptography concepts).
Additionally, we found several new tasks (e.g., securing con-
nections) and tool requirements (e.g., setting up the envi-
ronment and identifying missing cryptography protection in
code) that we did not previously consider.

7. RELATED WORK
Misuse of cryptographic APIs. Researchers have al-

ready established many security vulnerabilities due to incor-
rect usage of cryptography APIs. Lazar et al. [20] manually
investigated 269 published security vulnerabilities and found
that 83% of them are caused by misuse of cryptographic li-
braries. Egele et al. [14] statically analyzed 11,748 Android
apps for API misuse and found that 88% of these apps do
in fact violate at least one of six basic cryptography rules.
Similarly, Fahl et al. [15] also found that SSL API misuse
causes many Android apps to be vulnerable to Man-in-the-
Middle attacks. Georgiev et al. [16] show that even major
web applications misuse SSL certificate validation libraries,
allowing the authors to extract sensitive information such
as credit card numbers. Most of the solutions suggested
by these papers focused on preventing consequences rather
than addressing the underlying problem of API misuse. An
exception is our previous work [11] that proposed a tool to
address API cryptography misuse. However, the tool does
not include all features identified in Section 6.2, and we did
not empirically validate the claims on which we design it—a
gap that is filled by the studies in this paper where we exam-
ine the actual causes of misuse from a developer perspective.

Assessing General API Usability. Robillard and De-
Line [28] surveyed and interviewed Microsoft developers to
understand their API learning obstacles. They found that
poor documentation is a major learning obstacle. Our work
here is di↵erent in that we only focus on one API category,
namely Java cryptography APIs, with the goal of finding
ideas and requirements for solutions, not necessarily in the
form of better documentation, that may help application de-
velopers use cryptography more easily and securely. More-
over, we are not limited to views from one company.

The work by Zibran et al. [37] also tried to identify API
usability factors. They manually analyzed bug reports of
four projects to identify feedback given by its API users.
Hou and Li [18] also used some manual analysis similar to the
one we use in S1. However, they focused on the newsgroup
forum of a particular API, namely Swing. While we use SO
in S1 and use a di↵erent classification scheme that emerged
during open-coding, some of the obstacles we find are similar
to theirs (e.g., wrong environment configurations). Roover
et al. [13] also explored how certain APIs are used in a large
project corpus with the goal of providing insights to both
API designers and API users.

A main advantage of our work is that we do not rely on
one source of information, but rather combine three di↵erent
sources (SO, GitHub projects, and developer surveys).

API Documentation. Researchers also looked at how
to assess and improve API documentation since it was often
identified as a usability obstacle. This included identifying
documentation issues through surveying industrial develop-
ers [34], identifying relevant documentation parts given a
particular API element [27], and developing a taxonomy of
API documentation knowledge patterns that can be used by
practitioners to evaluate their own API documentation [21].
It has also been established that crowd-sourcing sites such
as SO provide a rich documentation for many APIs [23].

API Usage Protocols. Sunshine et al. [31] focused on
API usage protocols (restrictions on the order of API calls).
Similar to our S1, they also relied on SO, but looked for ques-
tions that are specifically related to usage protocol restric-
tions. Similarly, Saied et al. [29] observed how four types of
API usage constraints are exhibited in several APIs. While
such usage restrictions are not our main focus, such studies
complement ours and understanding API usage restrictions
can alleviate developers’ di�culties in identifying the correct
sequence of method calls to use.

Proposed Solutions There have also been other solu-
tions to help both API users and designers, such as inform-
ing API designers of common problems with their API [36]
or recommending the relevant libraries to use for applica-
tion developers [32]. Treude et al. [33] also recently propose
the idea of task-based documentation navigation. They ex-
tract tasks from documentation as well as their related code
elements. Our findings support that tasks are e↵ective in
helping developers use an API. We also empirically identi-
fied the cryptographic tasks relevant to developers. Finally,
many solutions are based on synthesizing relevant API usage
examples. We point the reader to the survey by Robillard
et al. [26] that summarizes the techniques used in this area.

8. CONCLUSION
Many security vulnerabilities are caused by developers’ in-

correct use of cryptography APIs. However, it is not clear
what obstacles such developers face when using cryptogra-
phy in their applications. We reported on an empirical study
to investigate such obstacles, in the context of Java, through
examining questions on StackOverflow, GitHub repositories,
and two surveys of a total of 48 developers. Our findings
showed that developers do indeed face di�culties in using
the Java cryptography APIs. We found that developers com-
monly need to authenticate users and store login data, to
establish secure connections, and to encrypt di↵erent forms
of data. In our surveys, developers indicated that the exist-
ing APIs are too low-level and asked for task-based solutions,
whether in the API design, documentation, or through assis-
tance tools. Based on these observations, we recommended
a list of features that such solutions should include. This
list can guide future tool and solution designs.

9. ACKNOWLEDGMENTS
This work is funded by the DFG, project E1 in CRC 1119

CROSSING. At the time this research was conducted, Eric
Bodden was at Fraunhofer SIT and TU Darmstadt.

944

10. REFERENCES
[1] Accompanying online artifact page.

http://www.st.informatik.tu-darmstadt.de/artifacts/
crypto-api-misuse.

[2] Bouncy Castle. www.bouncycastle.org.
[3] GitHub search APIs.

https://developer.github.com/v3/search/.
[4] Java Cryptography Architecture (JCA).

http://docs.oracle.com/javase/6/docs/technotes/
guides/security/crypto/CryptoSpec.html.

[5] JCE unlimited strength setup.
http://www.oracle.com/technetwork/java/javase/
downloads/jce8-download-2133166.html.

[6] Keyczar. https://github.com/google/keyczar.
[7] NaCI: Networking and crytptography library.

http://nacl.cr.yp.to/.
[8] Python wrapper for GitHub APIs.

https://github.com/sigmavirus24/github3.py.
[9] Stackexchange data explorer.

http://data.stackexchange.com/stackoverflow/queries.
[10] R. J. Anderson. Security engineering. Wiley, 2008.
[11] S. Arzt, S. Nadi, K. Ali, E. Bodden, S. Erdweg, and

M. Mezini. Towards secure integration of
cryptographic software. In Proc. of the SIGPLAN
Symposium on New Ideas in Programming and
Reflections on Software at SPLASH (Onward!), 2015.
Accepted to appear. https://www.informatik.
tu-darmstadt.de/fileadmin/user upload/Group
EC-Spride/Publikationen/Onward2015.pdf.

[12] J. W. Creswell. Qualitative inquiry and research
design: Choosing among five approaches. Sage, 2012.

[13] C. De Roover, R. Lammel, and E. Pek.
Multi-dimensional exploration of API usage. In Proc.
of the International Conference on Program
Comprehension (ICPC), pages 152–161, 2013.

[14] M. Egele, D. Brumley, Y. Fratantonio, and
C. Kruegel. An empirical study of cryptographic
misuse in Android applications. In Proc. of the
Conference on Computer and Communications
Security (CCS), pages 73–84, 2013.

[15] S. Fahl, M. Harbach, T. Muders, M. Smith,
L. Baumgärtner, and B. Freisleben. Why Eve and
Mallory love Android: An analysis of android SSL
(in)security. In Proc. of the Conference on Computer
and Communications Security (CCS), pages 50–61,
2012.

[16] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai,
D. Boneh, and V. Shmatikov. The most dangerous
code in the world: Validating SSL certificates in
non-browser software. In Proc. of the Conference on
Computer and Communications Security (CCS), pages
38–49, 2012.

[17] L. A. Goodman. Snowball sampling. The annals of
mathematical statistics, pages 148–170, 1961.

[18] D. Hou and L. Li. Obstacles in using frameworks and
APIs: An exploratory study of programmers’
newsgroup discussions. In Proc. of the International
Conference on Program Comprehension (ICPC), pages
91–100, 2011.

[19] M. Kasunic. Designing an e↵ective survey. Technical
Report CMUSEI-2005-HB-004, Software Engineering

Institute, Carnegie Mellon University, 2005.
[20] D. Lazar, H. Chen, X. Wang, and N. Zeldovich. Why

does cryptographic software fail? A case study and
open problems. In Proc. of the ACM Asia-Pacific
Workshop on Systems (APSys), pages 7:1–7:7, 2014.

[21] W. Maalej and M. Robillard. Patterns of knowledge in
API reference documentation. IEEE Transactions on
Software Engineering (TSE), 39(9):1264–1282, 2013.

[22] L. Moreno, G. Bavota, M. D. Penta, R. Oliveto, and
A. Marcus. How can I use this method? In Proc. of
the International Conference Software Engineering
(ICSE), 2015.

[23] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey.
Crowd documentation: Exploring the coverage and
the dynamics of API discussions on Stack Overflow.
Georgia Institute of Technology, Tech. Rep, 2012.

[24] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto,
and M. Lanza. Mining stackoverflow to turn the IDE
into a self-confident programming prompter. In Proc.
of the Working conference on Mining Software
Repositories (MSR), pages 102–111, 2014.

[25] M. Robillard. What makes APIs hard to learn?
Answers from developers. IEEE Software, 26(6):27–34,
2009.

[26] M. Robillard, E. Bodden, D. Kawrykow, M. Mezini,
and T. Ratchford. Automated API property inference
techniques. IEEE Transactions on Software
Engineering (TSE), 39(5):613–637, 2013.

[27] M. P. Robillard and Y. B. Chhetri. Recommending
reference API documentation. Empirical Software
Engineering, pages 1–29, 2014.

[28] M. P. Robillard and R. DeLine. A field study of API
learning obstacles. Empirical Software Engineering,
16(6):703–732, 2011.

[29] M. Saied, H. Sahraoui, and B. Dufour. An
observational study on API usage constraints and
their documentation. In Proc. of the International
Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 33–42, 2015.

[30] S. Subramanian, L. Inozemtseva, and R. Holmes. Live
API documentation. In Proc. of the International
Conference Software Engineering (ICSE), pages
643–652, 2014.

[31] J. Sunshine, J. Herbsleb, and J. Aldrich. Searching the
state space: A qualitative study of API protocol
usability. In Proc. of the International Conference on
Program Comprehension (ICPC), 2015.

[32] F. Thung, D. Lo, and J. Lawall. Automated library
recommendation. In Proc. of the Working conference
on Reverse Engineering (WCRE), pages 182–191,
2013.

[33] C. Treude, M. Robillard, and B. Dagenais. Extracting
development tasks to navigate software
documentation. IEEE Transactions on Software
Engineering (TSE), 41(6):565–581, 2015.

[34] G. Uddin and M. Robillard. How API documentation
fails. IEEE Software, 32(4):68–75, 2015.

[35] A. J. Viera, J. M. Garrett, et al. Understanding
interobserver agreement: The kappa statistic. Fam
Med, 37(5):360–363, 2005.

[36] W. Wang, H. Malik, and M. Godfrey. Recommending

945

posts concerning API issues in developer Q&A sites.
In Proc. of the Working conference on Mining
Software Repositories (MSR), 2015.

[37] M. Zibran, F. Eishita, and C. Roy. Useful, but usable?

factors a↵ecting the usability of APIs. In Proc. of the
Working conference on Reverse Engineering (WCRE),
pages 151–155, 2011.

946

