
Factors Impacting the Effort Required to
Fix Security Vulnerabilities

An Industrial Case Study

Lotfi ben Othmane1, Golriz Chehrazi1, Eric Bodden1, Petar Tsalovski3,
Achim D. Brucker3, and Philip Miseldine3

1 Fraunhofer Institute for Secure Information Technology
Darmstadt, Germany

{lotfi.ben.othmane,golriz.chehrazi,eric.bodden}@sit.fraunhofer.de
2 SAP SE

Walldorf, Germany
{petar.tsalovski,achim.brucker,philip.miseldine}@sap.com

Abstract. To what extent do investments in secure software engineering
pay off? Right now, many development companies are trying to answer
this important question. A change to a secure development lifecycle can
pay off if it decreases significantly the time, and therefore the cost re-
quired to find, fix and address security vulnerabilities. But what are the
factors involved and what influence do they have? This paper reports
about a qualitative study conducted at SAP to identify the factors that
impact the vulnerability fix time. The study involves interviews with 12
security experts. Through these interviews, we identified 65 factors that
fall into classes which include, beside the vulnerabilities characteristics,
the structure of the software involved, the diversity of the used tech-
nologies, the smoothness of the communication and collaboration, the
availability and quality of information and documentation, the expertise
and knowledge of developers, and the quality of the code analysis tools.
These results will be an input to a planned quantitative study to evalu-
ate and predict how changes to the secure software development lifecycle
will likely impact the effort to fix security vulnerabilities.

Keywords: Human factors, secure software, vulnerability fix time

1 Introduction

Despite heavy investments into software security [1], security experts and attack-
ers continue to discover code vulnerabilities in software systems on a regular ba-
sis, including buffer overflows, SQL injections, and unauthorized procedure calls.
While some attack vectors relate to mis-designed software architectures, many
exploit code-level vulnerabilities in the application code [2]. Major software-
development companies, including SAP, embed in their development process
activities (e.g., dynamic and static security testing [3]) to identify vulnerabili-
ties early during the development of their software system. Nevertheless, their

2 Ben Othmane et al.

security development lifecycle (see, e.g., [4] for Microsoft’s security development
lifecycle) includes also a process for addressing vulnerabilities identified after the
software is released.

Analyzing and fixing security vulnerabilities is a costly undertaking. Surely
it impacts a software’s time to market and increases its overall development and
maintenance cost. But by how much? To answer this question directly, one would
need to trace all the effort of the different actions that the developers undertake
to address a security issue: initial triage, communication, implementation, verifi-
cation, porting, deployment and validation of a fix. Unfortunately, such a direct
accountability of the individual efforts associated with these action items is im-
possible to achieve, last but not least due to legal constraints that forbid any
monitoring of the workforce. One must therefore opt for indirect means to re-
late quantitative, measurable data, such as the vulnerability type, the channel
through which it was reported, or the component in which it resides, to soft hu-
man factors that correlate with the time it takes to fix the related vulnerabilities.
But, which factors impact this fixing effort positively or negatively?

This paper aims to identify the factors that impact the vulnerability fix
time in SAP software. (We use vulnerability fix time and vulnerability fix ef-
fort interchangeably.) For this work we interviewed 12 experts who contribute
to addressing security vulnerabilities at SAP, one of the largest software vendors
worldwide, and the largest in Germany. The study comprises teams located in
different countries, developing diversified products. The work led to the discov-
ery of 65 factors impacting the vulnerabilities fix time, which we classified into
8 categories. The factors could be used to estimate the required effort to fix
vulnerabilities and to improve the secure development activities.

This paper is organized as follows. First, we give an overview of related work
(Section 2) and discuss secure software development at SAP (Section 3). Next,
we describe the research approach that we use in this work (Section 4), report
about our findings (Section 5) and discuss the impact and the limitations of the
study (Section 6). Subsequently, we discuss some of the lessons we learned from
the study (Section 7) and conclude in Section 8.

2 Related work

Several pieces of research investigate the time it takes to fix software defects [5,6].
For instance, Hewett and Kijsanayothin applied machine-learning algorithms to
defect data collected from the development of a large medical-record system
to predict the duration between the time of identification of the defect and the
validation of the appropriate fix [6].3 Opposed to this previous work, we (1) focus
on security vulnerabilities, not functionality errors, and (2) include in our model
“human factors” such as organizational issues that cannot directly be derived
from automatically collected data. In this work, as a first step, we determine the
relevant factors.

3 Among other things, the duration includes the time the defect is in the repair queue
after being assigned to a developer.

Factors Impacting the Effort of Fixing Vulnerabilities 3

Table 1: Examples of time required for fixing vulnerabilities [7].

Vulnerability type Average fix time (min)

Dead Code (unused methods) 2.6

Lack of authorization check 6.9

Unsafe threading 8.5

XSS (stored) 9.6

SQL injection 97.5

Software defects have been found to be correlated with software complex-
ity [8], which is measured, e.g., using the size of the code and the density of its
control instructions. There is a general hypothesis that software complexity is
also correlated with the existence of vulnerabilities e.g., [2]. This hypothesis is
often false. For example, Shin et al. [9] and Chowdhury et al. [10] found that the
complexity metrics of open-source software such as Firefox only weakly corre-
late with the existence of vulnerabilities in those systems. Thus, the factors (e.g.,
code complexity) that apply to software-defects based models do not necessarily
apply to vulnerabilities based models.

The only work we know that evaluates vulnerability fix time was performed
by Cornell, who measured the time the developers spent fixing security vulner-
abilities in 14 applications [7]. Table 1 shows the average time the developers
take to fix vulnerabilities for several vulnerability types. The measured time
comprises only the fix-execution phase, which includes the environment setup,
implementation, validation, and deployment of the fix. Cornell found that the
percentage of this time spent on the implementation of the fix is only between
29% and 37% of the time spent in the execution phase. The author was unable to
measure the time spent on the inception (including risk assessment) and planning
phases because the collected data were too inconclusive. Cornell found also that
there are vulnerability types that are easy to fix, such as dead code, vulnerabil-
ity types that require applying prepared solutions, such as lack of authorization,
and vulnerability types that, although simple conceptually, may require a long
time to fix for complex cases, such as SQL injection.

The vulnerability type is thus one of the factors that indicate the vulner-
ability fix time but is certainly not the only one. This paper aims to identify
as many factors as possible that will likely impact the vulnerability fix time,
factors that could be collected automatically but also factors that can only be
inferred indirectly by observing how human analysts and developers go about
fixing vulnerabilities.

3 Secure Software Development at SAP

SAP has a very diverse product portfolio: for example, a SAP product might
be a small mobile application or an enterprise resource planning (ERP) system.
Similarly, a large number of different programming languages and frameworks

4 Ben Othmane et al.

Preparation Development Utilization Transition

Training
Risk

Identification
Plan Security

Measures
Secure

development
Security
testing

Security
Validation

Security
Response

Fig. 1: High-level Overview of the SAP Security Development Lifecycle (S2DL)

are used during their development and many different environments (e.g., web
browsers, operating systems) are supported. Moreover, SAP develops also frame-
works, such as SAP Netweaver, that are both offered to customers and used
to build other SAP products. Finally, SAP product portfolio ranges from on-
premise products to cloud offerings (including private clouds, public clouds, and
hybrid clouds).

To ensure a secure software development, SAP follows the SAP Security De-
velopment Lifecycle (S2DL). Figure 1 illustrates the main steps in this process
which is split into four phases: preparation, development, transition, and utiliza-
tion. For our work, the second half of the S2DL is important:

– during the actual software development (in the steps secure development
and security testing) vulnerabilities are detected, e.g., by using static and
dynamic application security testing tools [11,3];

– security validation is an independent quality control that acts as “first cus-
tomer” during the transition from software development to release , i.e., se-
curity validation finds vulnerabilities after the code freeze, (called correction
close) and the actual release;

– security response handles vulnerabilities reported after the release of the
product, e.g., by external security researchers or customers.

To allow the necessary flexibility to adapt this process to the various application
types developed by SAP as well as the different software development styles
and cultural differences in a worldwide distributed organisation, SAP follows a
two-staged security expert model:

1. a central security team defines the security global processes (such as the
S2DL, provides security trainings, risk identification methods, offers security
testing tools, or defines and implements the security response process;

2. local security experts in each development area/team are supporting the
developers, architects, and product owners in implementing the S2DL and
its supporting processes.

If a vulnerability is detected, developers and their local security experts follow
a four step process: (1) analyze the vulnerability, (2) design or select a recom-
mended solution, (3) implement and test a fix, and (4) validate and release this
fix. In the security testing process, a security expert is expected to inspect the
analysis results of any utilized testing tool and determine for each of the re-
ported findings whether it is exploitable, and consequently requires fixing. The
vulnerability then gets assigned to a developer who implements the suggested
solution. The fix is verified by a retest of the code with the same testing rules.
The fix is considered to be successful when the test passes.

Factors Impacting the Effort of Fixing Vulnerabilities 5

While this process is the same, regardless if the vulnerability is in released
code or current development code, certain administrative steps exist prior to
the first step but the steps necessary to release a fix and the involved parties
differ. For vulnerabilities in not yet released code, the process is locally defined
by the development team and, usually, very lightweight. For vulnerabilities in
released software, the security response team, developers and security experts
are mainly involved in the first three fixing phases and the maintenance team
(called IMS) is mainly involved in the last phase. Fixes of released code are
reviewed and validated by the central security team. These fixes are shipped in
security notes or support packages for customers to download. Security notes are
patches included in support packages. Support packages are functional updates
that also contain the latest security notes.

4 Research approach

We conducted a qualitative case study to identify the factors that impact the
vulnerability fix time for vulnerabilities reported to or within SAP. A case study
is an empirical inquiry that investigates a phenomenon in its real-life context [12].
This study uses expert interviews as data source; that is, interview of security ex-
perts, coordinators, and developers who contribute to fixing vulnerabilities. The
aim of the interviews is to use the experiences of the interviewees to identify the
factors that impact the time they spend in contributing to fixing vulnerabilities.

(2) Select the

participants

(1) Prepare the

questions

(3) Conduct of the

Interviews

(4) Transcribe the

interviews

(5) Code the

interviews

(6) Consolidate

the data

(7) Analyze the

results

Preparation of

 the study

Data collection

Data analysis

Fig. 2: The steps of the case study.

6 Ben Othmane et al.

Figure 2 depicts the study process. It has three phases: study preparation,
data collection, and data analysis. The description of the three phases follows.

Preparation of the study. Initially we reviewed a set of documents that de-
scribe the processes of fixing vulnerabilities and discussed these processes with
SAP security experts. We used the knowledge to develop a set of interview ques-
tions. Then, we met three security experts in pre-interviews to learn the fixing
process further and to check the questions that we developed. We summarized
the questions (Step 1 of Figure 2) in an interview protocol. An interview pro-
tocol describes the procedural and the main questions that should be used in
the interviews [13]. We choose semi-structured questions, which allowed us to
capture similar type of data (e.g., roles, pinpoints, and recommendations) across
all the interviews while being flexible to explore reported content.

Fixing vulnerabilities at SAP requires collaboration of people having differ-
ent roles, who could be located in different cities and countries. We considered
this contextual factor and invited representatives (Step 2 of Figure 2) of the
different roles located in several offices to participate in the study. Twelve par-
ticipants accepted: nine were from Germany and three were from India. The
participants were NetWeaver experts, application-layer experts, and experts in
developing customer specific applications. Their roles were security experts, de-
velopers, coordinators, and project leads. This method of selecting participants
complies with the maximum-variation-sampling approach [14]–a preferred par-
ticipants sampling method.

We scheduled one hour for each interview. We sent the participants the in-
terview protocol so they could prepare for the interview; e.g., prepare examples.

Table 2: Interview questions.

Question Targeted information

1. What is your role in fixing vulnera-
bilities?

The role of the participant

2. How do you get the informa-
tion about security vulnerabilities? And
what do you do with the information?

The source of information about vulnerabil-
ities, the steps performed by the interviewee
in fixing vulnerabilities, and the tools used
by the interviewee to fix the vulnerabilities

3. What are the worst and best cases of
vulnerabilities you worked on? And how
did do you address them?

The factors that impact the vulnerability
fix time

4. How much time did you spend on [..]?
Why did [it] take that long?

The factors that impact the vulnerability-
fix time

:q5. How would we improve the way you
work?

The factors that impact the vulnerability-
fix time

Data collection. We conducted the 11 interviews (Step 3 of Figure 2) within
one week (One of the interviews was conducted for 2 hours with 2 interviewees

Factors Impacting the Effort of Fixing Vulnerabilities 7

Table 3: Used coding schema.

Code class Description

Meta The role of the interviewee and their experience with SAP products
and with fixing vulnerabilities

Used tools The tools used in fixing the security vulnerabilities.

Process
participants

The roles and teams that the interviewee collaborated with in fixing
the vulnerabilities they worked on.

Process activities The activities that the interviewee performs when fixing security
vulnerabilities, which are classified into pre-analysis or risk assess-
ment, analysis, design, implementation, test, release activities.

Information for
activities

The information used for analysis including risk assessment analy-
sis, design, implementation, test, and release activities.

Factors The factors affecting vulnerability fix time for the case of generic
solutions (a generic solution is a way to address all the instances
of a specific vulnerability type, e.g., XML code injection) and also
the case of specific solutions.

Complementary
information

This includes generic comments, comments related to vulnerability
fix time, pain points (issues), and improvement recommendations.

as they requested.) and initially used the questions that we prepared in the
interview protocol. We let the interviewee lead and we probe issues in depth,
when needed, using questions such as “Could you provide an example?” Nev-
ertheless, we realized shortly that it was difficult for the interviewee to provide
us with the maximum information related to our research goal. We adapted the
questions of the interview protocol to the ones provided in Table 2. The adap-
tation is discussed in Section 7. Also, some interviewees provided us with tool
demonstrations since they were aware about the interview protocol.

Next, we transcribed the interviews (Step 4 of Figure 2) using the tool F4.4

Data analysis. Subsequently, we proceeded to coding the interviews (Step 5
of Figure 2); that is, identifying from each transcript the codes, i.e., themes
and abstract concepts (e.g., code the text “I have been fixing these issues for 5
years” as “experience in fixing vulnerabilities”).5 In this step, two of the authors
coded successively 3 sample interviews using the Atlas.ti tool,6 discussed the
code patterns they found, and agreed on a coding schema for the study, which is
shown in Table 3. (The coding schema allows grouping the codes extracted from
the interview in classes that together answer the main research question [14].)
Both researchers coded each of the 11 interviews using the selected coding schema
and merged their reports in summary reports.7 Then, we sent to each interviewee

4 https://www.audiotranskription.de/english/f4.htm
5 A code is a short phrase that assigns a summative, essence-capturing, and/or evoca-

tive attribute for a portion of text [15].
6 http://atlasti.com/
7 The merge involves also discussing coding mismatches related to the difference in

understanding the interviewee.

https://www.audiotranskription.de/english/f4.htm
http://atlasti.com/

8 Ben Othmane et al.

the summary report of their interview and asked them to verify the report and
answer some clarification questions. The validation helps in obtaining objective
results but was also important to allow the interviewee to remove any information
they did not want to be processed. We ensured the anonymity of the interviewees
to promote free and open discussions.

Afterwards, we merged the codes of the verified coded reports (Step 6 of
Figure 2) considering the semantic similarities between the codes extracted from
different transcripts. In addition, we computed the frequency of each code in the
class “Factors,” that is, the number of interviewees mentioning the code. We
were reluctant to generalize the factors because we did not want to bias the
results with the researcher’ opinions.

Thereafter, we presented the findings to the experts and the interviewees in
a public meeting (Step 7 of Figure 2). We used the frequencies of the codes as
indicators (but not assertive) of the factors’ importance.8

5 Study results

This section presents the results of the interviews. It discusses the vulnerability-
fixing process identified at SAP and the factors that impact vulnerability-fixing
time along with their classification.

5.1 Vulnerability-fixing process

Each interviewee described a set of activities that they perform to fix vulner-
abilities. The activities described by the different interviewees were sometimes
incoherent–Section 7 discusses the challenges. However, in many ways the in-
terviewees follow a high-level vulnerability-fixing process, which is depicted by
Figure 3. The process starts when a security expert gets notified about vulner-
abilities, e.g., from customers and researchers, or when a developer identifies a
vulnerability using, e.g., a code-analysis tool. The vulnerability is initially pre-
analyzed, e.g., to assess its exploitability, its risk and the availability of knowledge
and information to fix it. This results in three cases.

Case 1. If the type of the vulnerability is known and documented, the devel-
oper proceeds to analyze the code related to the vulnerability, to design and
implement a solution, and then to test it—using the technique that was used to
identify it.

Case 2. If the vulnerability type is known and documented by the central secu-
rity team but the development teams (e.g., cloud applications, mobile applica-
tions, etc.) did not encounter such vulnerability before, this team collaborates
with the central security team to analyze the identified vulnerability and design
a solution that applies to the product area as such.

8 Recall that data extracted from interviews could not be used to derive statistical
assurance of the conclusions since the collected information is descriptive.

Factors Impacting the Effort of Fixing Vulnerabilities 9

Pre-analysis

Analysis and

design of a

generic solution

Analysis and

design of a team

solution

Analysis and

design of a

specific solution

Test

Release

Test

Release

Implemen-

tation

Implemen-

tation

C
as

e
1

C

as
e

2

C
as

e
3

Fig. 3: High-level vulnerability-fixing process (simplified).

Case 3. If the vulnerability type is not known before, the central security team
collaborates with the experts and developers from the different areas to develop
a generic solution for the vulnerability. A generic solution considers the differ-
ent product areas, the different used technologies, and the different applicable
programming languages. In addition, the security experts collaborate with the
framework experts to implement libraries that the developers can use to avoid
the vulnerability in the future, e.g., by using data-validation methods to avoid
SQL injections; and also develop guidelines that the developers can use to ad-
dress vulnerabilities of such type.

5.2 Factors that impact the vulnerability-fix time

We identified 65 factors that impact the vulnerability-fix time, each was reported
by at least one interviewee. We categorized the factors based on common themes,
and those that did not belong to these themes into the category “other.” These
categories may be generalized or consolidated further, however, we expect that
such activity may be influenced by the researchers’ opinions. Table 4 lists the
categories, along with the number of factors that belong to each category and
the number of interviewees who mentioned one or many of these factors. Table 6
of Appendix A provides the complete list of the factors that we identified.

10 Ben Othmane et al.

Table 4: Classification of the factors that impact the vulnerability fix time.

Factor Categories Number
of factors

Frequency

Vulnerabilities characteristics 6 9

Software structure 19 10

Technology diversification 3 5

Communication and collaboration 7 8

Availability and quality of information and documentation 9 9

Experience and knowledge 12 11

Code analysis tool 4 4

Other 4 4

We next discuss the categories in details. To preserve the anonymity of the
interviewees we identify them using identifiers, without descriptive information.

Vulnerabilities characteristics. This category includes 6 factors that are ex-
clusively related to the type of vulnerability. These factors are reported in 9
(about 82% of the) interviews. For example, P01 believes that vulnerability types
do not indicate the fixing time but later in the interview they find that “code
injection” vulnerabilities are difficult to fix. Thus, vulnerability characteristics
are commonly considered when discussing vulnerability fix time (e.g.,in [7]) and
our results enforce the position.

Software structure. This category includes 19 factors that are related to the
code associated with the given vulnerability. These factors are reported in 10
(about 91% of the) interviews. For example, P02 finds that “if the function
module is the same in all these 12 or 20 releases then [..] I just have to do one
correction.” Generally, the interviewees find that software structure impacts the
easiness to address vulnerabilities. This can also be observed from Table 1, where
SQL injection vulnerability takes the most time to fix while it is conceptually
easy to fix. The reason is that the complexity of the code that generates the
query makes it difficult to identify the cause of the vulnerability and to fix the
issue while not breaking the functional tests.

Technology diversification. This category includes 3 factors that are related
to the technologies and libraries supported by the components associated with
the given vulnerability. These factors are reported in 5 (about 45% of the) in-
terviews. For example, P03 had to develop several solutions for a vulnerability
related to random-number generation, “one for Java, one for ABAP, one for C,
C++.” Thus, since SAP products support different browsers, languages, and use
diverse libraries, such as XML parsers, vulnerability fixes need to support these
technologies as well, increasing the overall time and effort required.

Communication and collaboration. This category includes 7 factors that
are related to the communication and collaboration in fixing vulnerabilities.
These factors are reported in 8 (about 73% of the) interviews. For example,

Factors Impacting the Effort of Fixing Vulnerabilities 11

P04 finds that “even for one team there are multiple locations and multiple
responsibilities and the team at [..] is not aware” and finds that “the local teams
are very smooth.” Developing software at SAP involves teams located in different
locations. Thus, the smoothness of the communication and collaboration between
the stakeholders impacts the time spent to fix the vulnerabilities.

Availability and quality of information and documentation. This cat-
egory includes 9 factors that are related to the availability and the quality of
information (e.g., contact information of the security experts, and uses of com-
ponents) and guidelines to address vulnerabilities. These factors are reported in
9 (in 82% of the) interviews. For example, P05 claims that a lot of time is spent
on collecting information. They state:“it was taking a long time because we need
to find out what are the different frameworks, what are the different applications
[..] and once we had this information, we were able to use it.”

Experience and knowledge. This category includes 12 factors that are related
to the experience and knowledge about the given vulnerability and the related
code. It is reported in all the interviews. For example, P01 finds that “colleagues
who have some background in security are able to fix them faster than the
developer who is fixing the security issues for maybe the first or second time.”
This category of factors is often ignored in existing studies because those studies
rely on data archives which do not include such human factors.

Code analysis tool. This category includes 4 factors that are related to the
use of code analysis tools. This category of factors is reported in 4 (36% of the)
interviews. P13 for example says “what you are doing is to find out if the tool
was not able to find out where is the source, where is the data coming from so
find out if there is external input in this where clause or in parts of external
inputs.” This implies that developers spend less time to fix a given vulnerability
if the tool is accurate in providing the information related to the causes of
the vulnerabilities. This category of factors is often neglected because it is not
common that organizations use several code-analysis tools, so their impact on
the fixing time cannot be compared.

Other. This category includes 4 factors that we were not able to classify in the
above 7 categories and which do not belong to a common theme. These factors
are reported in 4 (36% of the) interviews.

We note that the number of factors that belong to a given category does not
assert the importance of this category but could be informative. The reason is
that the descriptive nature of the interviews does not support such assertion.

5.3 Discussion

When developing the factor categories, we did not differentiate the factors based
on whether the given vulnerability is generic or specific. It is true that generic
vulnerabilities, i.e., vulnerabilities that are identified for the first time but ap-
ply to several products, are often addressed with generic solutions designed by
the central security team. Vulnerability analysis, solution design, documenta-
tions and the provisioning of guidelines are time consuming and addressing such

12 Ben Othmane et al.

vulnerabilities may take years. In contrast, specific vulnerabilities, i.e., vulner-
abilities that are known and apply to one product, are mostly addressed by
developers in collaboration with the development team’s security expert. The
reason for not considering this is that most of the factors apply to both generic
and specific vulnerabilities—with some exceptions.

As a second note, the positive or negative influence of each of the identified 65
factors that impact the vulnerability-fix time were not identified in the interviews
and may depend, e.g., on the product. In fact, the developers gave contradicting
perceptions on the influence of some factors, such as the factor risk exposure
level. Also, the number of interviewees who mentioned each of the factors does
not indicate the influence of the factor. We will evaluate the concrete influence
of each factor in the next stage of the project.

6 Impacts and limitations of the study

This section discusses the impacts of the study w.r.t the state of the art and the
study validity; that is, to what extent the results are objective and sound [16].

6.1 Impacts of the study

Previous work used the attributes of collected data as factors for analyzing facts
about vulnerabilities. The results of this work show that in practice there are nu-
merous factors that impact the vulnerability fix time that should be considered.
A comprehensive model for predicting the vulnerability-fix time should consider
these potential factors and not only rely on the ones that are readily available
in mass-collected data.

The identified vulnerabilities fixing process (Figure 3) and the 8 factor cat-
egories may be “expected,” especially from a big company like SAP. The study
confirms this expectation; it makes these expectations facts that could be used
for further work. The 8 factor categories indicate areas for improvement to re-
duce the vulnerability fix time. For example, the software structure (e.g., the
dynamic construction of code and data, the cross-stack interdependency) and
the use of external technologies, could be partly monitored and controlled to
predict and/or reduce the vulnerability fix time, and thus, the cost of fixing vul-
nerabilities. In addition, experience and knowledge can be addressed with specific
trainings; effectiveness of code analysis tools could be improved by enhancing
the vulnerability checks, in particular their precision, and by enhancing the tool’
functionalities; issues related to the availability and quality of information and
documentation can also be improved by using easily accessible documentation.

In addition, we found in this study that the developers cannot identify the
vulnerability fixing factors by themselves easily, except e.g., vulnerability type,
which we discuss in Section 7. Though, they recognize the factors if extracted
from their interviews. Thus, the results are not “explicit” knowledge to develop-
ers. This paper makes the information common knowledge.

Factors Impacting the Effort of Fixing Vulnerabilities 13

6.2 Limitations of the study

We discuss now the limitations of the study according to the commonly used
validity aspects [16].

Construct validity. We took several measures to ensure a valid relation be-
tween the performed study and the goal of the study. First, we performed three
interview tests to test the interview questions. In addition, we adjusted the in-
terview questions after the initial interviews to be more efficient in getting infor-
mation. Second, we collected the information from twelve interviewees, who are
located in different cities/countries and have different roles. Third, we avoided
to use the researcher’ opinions in working with the data, e.g., we avoided gener-
alizing the factors extracted from the interviews.

The study has two limitations w.r.t. construct validity. First, we provided
the participants with the main interview questions so they could prepare for
their interviews. Thus, some participants may have prepared replies that may
influence the study results. (We believe that the advantages of the measure are
higher than the risk it created to the study.) Second, we used only one method
to collect the data, that is, interview domain experts. Other methods that could
be used to cross-validate the results include to use of data collected from the
development process. Nevertheless, we observed that the attributes of collected
data are among the identified factors.

Internal validity. We took two measures to ensure a causal relationship be-
tween the study and the results of the analysis. First, we tell the interviewees at
the opening of the interviews that the goal is to identify the factors that impact
the vulnerability fix time.9 Second, we did not offer any compensation to the
participants, which, if done, may affect the results.

The study has two limitations w.r.t. internal validity. First, we were able
to only interview two developers who currently fix vulnerabilities. The other
participants have other roles in fixing vulnerabilities but most of them have
developed vulnerability fixes previously.10 Second, we did not take measures to
prevent the participants from imitating each others in the response, though we
believe that the participants did not talk to each other about the interviews.

Conclusion validity. We took several measures to ensure the ability to draw
correct conclusions about the relationship between the study and the results of
the analysis. First, we sent each interviewee a short report about the data we
extracted from the interview we conducted with them to ensure that we have
a common understanding; that is, we performed member checking [17]. Second,
two researchers coded each interview and we merged the collected data [14]. The
measure should reduce the subjectivity of the results.

External validity. This validity concerns the conditions to the generalization
of the results. The study was conducted in the same company and was related
to one vulnerability fixing process. However, given the diversity of the products

9 this mitigates the threat ambiguity of the direction of the causality relationship.
10 The limitation is related to the selection of participants.

14 Ben Othmane et al.

Table 5: Summary of the interview protocol.
Opening Thank the interviewee for accepting to participate and request for

permission to record the interview.

Questions. 1. What are the steps that, in general, you follow to fix security vul-
nerabilities?

2. What is the distribution of your time among planning, meeting, and
implementing vulnerability fixes for the last week? Did you have any
other major activity in fixing vulnerabilities?

3. What are the major characteristics of complex vulnerabilities that
you fixed last week? Are there other challenges that make simple
vulnerabilities time consuming?

4. What are the factors that quantify these characteristics?
5. How can we improve and ease the fixing process?

Closing. Thank the interviewee for sharing his/her experience and knowledge
and inform him/her about the next steps for the study.

(and their respective domains, e.g., mobile, cloud.) being developed at SAP and
the diversity of the developers’ cultures and countries of residences, we believe
that the results of the study could be generalized, especially within SAP, without
high risk.

7 Lessons learned

This section describes the lessons we learned from the case study with respect to
formulating interview questions, conducting interviews, and analyzing software
development processes of a big software organization.

Interview protocol and questions. We produced an interview protocol, sum-
marized in Table 5. The first interviews showed that the interviewees had, in
general, difficulties in answering questions 3 and 4, initially developed as main
questions to achieve the study goal. This was due to the “what” type of asked
questions (i.e., “what are the factors?”) that require enumeration of elements
while we should be limited to “how” and “why” type of questions.11 To enhance
the communication we transformed the questions accordingly (see question 3 and
4 of Table 2) and encouraged the participants to tell us their own stories [13]
about complicated and easy vulnerabilities they addressed and the challenges
they faced. Thus, with indirect questions we derive the factors that impact the
fix development time from the reasons that make fixing a given vulnerability
complicated, the challenges that the interviewees faced herein, and their im-
provement recommendations (question 5 in both tables).

Interview conduct. We learned that some participants in interviews conducted
in organizations mainly participate to deliver a message or impact the study

11 “What” type of questions are easy to answer when the purpose is to describe a
concept/object.

Factors Impacting the Effort of Fixing Vulnerabilities 15

results. We learned to encourage the participants to talk freely for some time to
build up a trust relationship, since the information they provide when getting
into a flow may be important. The risk herein was the limited interview time and
thereby the challenge to change the discussion smoothly such that they answer
the interview questions and do not use the interview to talk about subjects not
related to the research goal.

Analysis of the software development processes. The intuitive approach
to identify the vulnerability fix time is to define the fixing process and its phases.
Following this approach, our initial attempt was to identify the different roles
of the participants in the process, the activities performed in the phases and
the information created and consumed by each role. We derived inconsistent
models with a big variety of cases. This is due to the different perspectives of
the interviewees; they work with different programming languages and tooling,
have different (and multiple) roles, have expertise in different product areas,
and are members of different teams, and use their own internal social network
to simplify the work. In addition, there were process improvements and each of
the interviewees reported about the process versions that they worked with. The
open structure of the interviews and the participation of long time employees
made it difficult to identify a consistent fixing process. Therefore, we focused on
the identification of the factors independent of the phases.

8 Conclusions

This paper reports about a case study we conducted at SAP SE to identify
the factors that impact the vulnerability fix time. The study found that, for
big development organizations such as SAP, there are numerous factors that
impact the vulnerability fix time. We identified 65 factors, which we grouped
into 8 categories: vulnerabilities characteristics, software structure, diversity of
the used technology, communication and collaboration smoothness, availability
and quality of the information and documentation, expertise and knowledge of
developers, efficiency of the static analysis tool, and other.

The study was conducted at one organization, SAP SE, which may limit the
generalization of the results. We believe that the limitation is weak because SAP
development groups simulate different organizations, each has independence and
specificities such as location, used programming language, and products area.

The common approach in investigating vulnerability fix time (and other facts
related to vulnerabilities) is to apply machine-learning techniques on historical
data related to open-source software. This work shows the limitation of this
approach since it is constrained by a limited number of data attributes while the
factors that potentially influence these facts are numerous.

The results of this work are being used to improve the vulnerability fixing
process and to develop a model for predicting the cost of fixing vulnerabilities.

16 Ben Othmane et al.

Acknowledgments

This work was supported by SAP SE, the BMBF within EC SPRIDE, and a
Fraunhofer Attract grant. The authors thank the participants in the study.

References

1. Katzeff, P.: Hacking epidemic spurs security software stocks.
http://news.investors.com/investing-mutual-funds/021915-740082-revenues-
are-up-for-security-software-firms.htm (Feb. 2015) Investor’s business daily of
02/19/2015.

2. McGraw, G.: Software Security: Building Security In. Addison-Wesley Software
Security Series. Pearson Education Inc, Boston, MA, USA (2006)

3. Bachmann, R., Brucker, A.D.: Developing secure software: A holistic approach to
security testing. Datenschutz und Datensicherheit (DuD) 38(4) (apr 2014) 257–261

4. Howard, M., Lipner, S.: The Security Development Lifecycle: SDL: A Process for
Developing Demonstrably More Secure Software. Microsoft Press (2006)

5. Hamill, M., Goseva-Popstojanova, K.: Software faults fixing effort: Analysis and
prediction. Technical Report 20150001332, NASA Goddard Space Flight Center,
Greenbelt, MD United States (Jan. 2014)

6. Hewett, R., Kijsanayothin, P.: On modeling software defect repair time. Empirical
Software Engineering 14(2) (2009) 165–186

7. Cornell, D.: Remediation statistics: What does fixing application vulnerabilities
cost? In: RSAConference, San Fransisco, CA, USA (Feb. 2012)

8. Khoshgoftaar, T.M., Allen, E.B., Kalaichelvan, K.S., Goel, N.: Early quality pre-
diction: A case study in telecommunications. IEEE Softw. 13(1) (January 1996)
65–71

9. Shin, Y., Williams, L.: Is complexity really the enemy of software security? In:
Proc. of the 4th ACM Workshop on Quality of Protection. QoP ’08, Alexandria,
VA, USA (Oct. 2008) 47–50

10. Chowdhury, I., Zulkernine, M.: Using complexity, coupling, and cohesion metrics
as early indicators of vulnerabilities. Journal of Systems Architecture 57(3) (2011)
294 – 313 Special Issue on Security and Dependability Assurance of Software Ar-
chitectures.

11. Brucker, A.D., Sodan, U.: Deploying static application security testing on a large
scale. In: GI Sicherheit 2014. Volume 228 of Lecture Notes in Informatics. (mar
2014) 91–101

12. Yin, R.K.: Case Study Research: Design and Methods. Sage Publications, Beverly
Hills, CA (1984)

13. Jacob, S.A., Furgerson, S.P.: Writing interview protocols and conducting inter-
views: Tips for students new to the field of qualitative research. The Qualitative
Report 17(42) (Oct. 2012) Art. 6, 1–10

14. Brikci, N., Green, J.: A guide to using qualitative research methodology.
http://www.alnap.org/resource/13024 (Feb. 2007)

15. Saldana, J.: The Coding Manual for Qualitative Researchers. SAGE Publications
Ltd, London, UK (2009)

16. Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B., Wesslen, A.: Exper-
imentation in Software Engineering. Springer-Verlag, Berlin Heidelberg (2012)

17. Seaman, C.: Qualitative methods in empirical studies of software engineering.
IEEE Transactions on Software Engineering 25(4) (1999) 557–572

Factors Impacting the Effort of Fixing Vulnerabilities 17

Appendix A: Factors that impact the vulnerability fix time

Table 6: Factors that impact the vulnerability fix time. (The column “Freq.” in-
dicates the number of interviews–out of 11–where the given factor is mentioned.)

Factors Freq.

Vulnerabilities characteristics
Vulnerability type 5
Risk exposure level (CVSS) 3
Priority of the vulnerability fix 2
Availability of a generic solution 2
Simplicity of the solution type, e.g., exception catching 2
Source of the vulnerability, e.g., input and remote function call 1

Software structure
Number of affected applications and framework releases 7
Need of the solution to change the framework, e.g., as an API 5
Number of software layers that should be analyzed 5
Number of the code changes and the distribution of their locations 4
Dependency on external software and/or technology 3
Code related to the vulnerability includes generated code 3
Complexity of the related code and reliance on configurations 2
Level of code smells (e.g., high, low) 2
The issue is related to the dynamic generation of queries 2
Dynamic generation of the input data that cause the vulnerability 2
The code related to the vulnerability involves dynamic function calls 2
Existence of the issue in shipped products 1
Need for customer intervention to apply the fix 1
Need to divide the fix in several support packages 1
Similarity of code related to the issue in the releases of the software 1
Code related to the vulnerability is in new development 1
Components related to the issue 1
Length of the data field related to the issue (for SQL injection) 1
The vulnerability is in an unused code 1

Technology diversification
Diversity and complexity of supported technologies, e.g., browsers 5
Number of supported programming languages 2
Number of customers that have specific functionalities that should be
preserved but may be affected by the vulnerability fix

1

Communication and collaboration
Number of people involved in the fixing process 5
Dispersion of the locations of the communicating parties 4
Availability of the responsible developer 1
The software is developed by an external developer 1

Continued on next page

18 Ben Othmane et al.

Table 6 – Continued from previous page
IDFactors Freq.
Existence of concurrent changes to code of dependent components 1
Easiness to convince the developers to apply vulnerability fixes 1
The code related to the issue is owned by other teams 1

Availability and quality of information and documentation
Availability of information about the developer responsible for the fix 5
Availability and usability of the guidelines explaining the vulnerability 5
Availability of information about contact persons for support 2
Availability of information about the framework changes that cause the
vulnerability in the applications

1

Quality of the documentation for technology types (e.g., Hana) 1
Availability of information about the work progress on the issue 1
Availability of information about contacts in other development areas 1
Difficulty to get the information about affected software 1
Difficulty to identify the use of affected code by other components 1

Experience and knowledge
Developer expertise with fixing security vulnerabilities 7
Developer knowledge and experience about the code 7
Experience with SAP software, processes and tools 2
Developer knowledge about the vulnerability 2
Security expert knowledge of the language and affected technologies 1
Experience with the application technology 1
Knowledge about the software architecture 1
Knowledge about the development setup of affected software 1
Knowledge about the development processes for NetWeaver products 1
Availability of security expert in the area responsible for the issue 1
The coding and testing strategy of developers 1
Experience in the impacts of changes on the related products 1

Code analysis tool
The issue is among a set of issues of the same vulnerability type and in
the same code component

2

Lack of motivation due to high rate of false positives 2
The issue is for projects addressing results identified by external tools 1
The failure of the security checks to identify true positives 1

Other
Commitment of the stakeholders 1
Source of the notification about the vulnerability, e.g., customer 1
Number of externally reported incidents 1
The issue is a false positive that does not require fixing 1

	Factors Impacting the Effort of Fixing Vulnerabilities–An Industry Case Study
	Introduction
	Related work
	Secure Software Development at SAP
	Research approach
	Study results
	Vulnerability-fixing process
	Factors that impact the vulnerability-fix time
	Discussion

	Impacts and limitations of the study
	Impacts of the study
	Limitations of the study

	Lessons learned
	Conclusions

