
in which the monitoring aspect “matches”, i.e., produces an externally visible
side effect like the error message in our example (line 13, Figure 2).

The first author’s dissertation [2, page 134] gives the complete syntax for De-
pendency State Machines and also explains sanity checks for these annotations;
e.g., each state machine must have initial and final states. Note that these checks
are minimal and support a large variety of state machines so that Clara can
support many different runtime verification tools. For instance, we allow multiple
initial and final states and we allow the state machine to be non-deterministic.

3.2 Semantics

The semantics of a Dependency State Machine refine the usual advice-matching
semantics of AspectJ [15]. In AspectJ, pieces of advice execute at “joinpoints”,
or intervals of program execution. Programmers use “pointcuts”, predicates over
joinpoints, to specify the joinpoints where advice should apply. In Figure 2, the
expression call(∗ Connection.disconnect()) && target(c) is a pointcut that picks
out all method calls to the disconnect method of class Connection. When the
pointcut applies, it binds the target object of the call to variable c.

Let A be the set of all pieces of advice and J be the set of all joinpoints that
occur on a given program run. We model advice matching in AspectJ as follows:

match : A× J → {β | β : V � O} ∪ {⊥}.

Given advice a ∈ A and a joinpoint j ∈ J , match(a, j) is ⊥ when a does not
execute at j. If a does execute, then match(a, j) yields a variable binding β,
which maps a’s formal parameters to objects.

Our formal semantics for Dependency State Machines will provide a replace-
ment for match, called stateMatch, that determines the cases in which a depen-
dent piece of advice needs to execute: informally, a dependent advice a must
execute when (1) AspectJ would execute a and (2) when not executing a at
j would change the set of joinpoints for which the Dependency State Machine
reaches its final state for a binding compatible with β. (We define “compatible”
later.) An optimal implementation, which determines exactly all cases in which a
dependent advice does not need to execute, is un-computable, as it would have to
anticipate the future behaviour (and inputs) of the program. The trick is there-
fore to implement statically computable approximations to stateMatch. At the
end of this section, we will present a soundness condition for stateMatch. This
condition uses the set of possible future behaviours to describe the permissible
(sound) implementations of stateMatch.

Semantics by example. Figure 4 contains a small example program that helps ex-
plain the intuition behind our semantics. The program triggers joinpoints which
the ConnectionClosed aspect monitors. AspectJ calls a program point that trig-
gers a joinpoint j the “joinpoint shadow” of j, or just “shadow” [16] for short.


