
where compatible means that β1 and β2 agree on their joint domains:

compatible(β1,β2) := ∀v ∈ (dom(β1) ∩ dom(β2)) : β1(v) = β2(v).

In this predicate, dom(βi) denotes the domain of βi, i.e., the set of variables
where βi is defined.

Parameterized and projected event trace. Any finite program run in-
duces a finite parameterized event trace t̂ = ê1 . . . ên ∈ Ê∗. For any variable
binding β we define a set of projected traces t̂ ↓ β ⊆ Σ∗ as follows. t̂ ↓ β is the
smallest subset of Σ∗ for which:

∀t = e1 . . . en ∈ Σ∗ : if ∀i ∈ N with 1 ≤ i ≤ n : ei ∈ êi ↓ β then t ∈ t̂ ↓ β

We call such traces t, which are elements of Σ∗, “ground” traces; parameterized
traces are instead elements of Ê∗.

A Dependency State Machine will reach its final state (and the related aspect
will have an observable effect, e.g., will issue an error message) whenever a prefix
of one of the ground traces of any variable binding is in the language described
by the state machine. This yields the following definition.

Set of non-empty ground traces of a run. Let t̂ ∈ Ê∗ be the parame-
terized event trace of a program run. Then we define the set groundTraces(t̂) of
non-empty ground traces of t̂ as:

groundTraces(t̂) :=




�

β∈B
t̂ ↓ β



 ∩Σ+

We intersect with Σ+ to exclude the empty trace, which contains no events and
hence cannot cause the monitoring aspect to have an observable effect.

The semantics of a Dependency State Machine. We define the seman-
tics of Dependency State Machines as a specialization of the AspectJ-inspired
predicate match(a, e), which models the decision of whether or not the depen-
dent advice a ∈ A matches at event e ∈ E , and if so, with which variable binding.
We call our specialization stateMatch and define it as follows:

stateMatch : A× Ê∗ × N → {β | β : V � O} ∪ {⊥}

stateMatch(a, t̂, i) :=
let β = match(a, e) in�

β if β �= ⊥ ∧ ∃t ∈ groundTraces(t̂) such that necessaryShadow(a, t, i)

⊥ otherwise

Note that stateMatch considers the entire parameterized event trace t̂, plus the
current position i in that event trace. In particular, the trace t̂ contains future
events. The function stateMatch is therefore under-determined. This is inten-
tional. Even though it is impossible to pass stateMatch all of its arguments,
static analyses can approximate all possible future traces.

We have left a parameter necessaryShadow in the definition of stateMatch.
This parameter may be freely chosen, as long as it meets the soundness condition
defined below. A static optimization for Dependency State Machines is sound if
it meets the soundness condition.


