
The Clara framework
for partially evaluating

runtime monitors ahead of time
Eric Bodden

with Patrick Lam, Laurie Hendren

Eric Bodden

“After closing a connection c,
don’t write to c until c is reconnected.”

2

Eric Bodden

“After closing a connection c,
don’t write to c until c is reconnected.”

2

connected disconnected error

reconnect, write
close write

close

reconnect

write

close

reconnect

Eric Bodden

Runtime Monitoring with AspectJ

	 Set closed = new HashSet();
	
	 after(Connection c) returning:
	 	 call(* Connection.close()) && target(c) {
	 	 closed.add(c);
	 }

	 after(Connection c) returning:
	 	 call(* Connection.reconnect()) && target(c) {
	 	 closed.remove(c);
	 }

	 after(Connection c) returning:
	 	 call(* Connection.write(..)) && target(c) {
	 	 if(closed.contains(c))
	 	 	 error("May not write to "+c+", as it is closed!");
	 }

3

Eric Bodden

Runtime Monitoring with AspectJ

	 Set closed = new HashSet();
	
	 after(Connection c) returning:
	 	 call(* Connection.close()) && target(c) {
	 	 closed.add(c);
	 }

	 after(Connection c) returning:
	 	 call(* Connection.reconnect()) && target(c) {
	 	 closed.remove(c);
	 }

	 after(Connection c) returning:
	 	 call(* Connection.write(..)) && target(c) {
	 	 if(closed.contains(c))
	 	 	 error("May not write to "+c+", as it is closed!");
	 }

3

Eric Bodden

Runtime Monitoring with AspectJ

	 Set closed = new HashSet();
	
	 after(Connection c) returning:
	 	 call(* Connection.close()) && target(c) {
	 	 closed.add(c);
	 }

	 after(Connection c) returning:
	 	 call(* Connection.reconnect()) && target(c) {
	 	 closed.remove(c);
	 }

	 after(Connection c) returning:
	 	 call(* Connection.write(..)) && target(c) {
	 	 if(closed.contains(c))
	 	 	 error("May not write to "+c+", as it is closed!");
	 }

3

Eric Bodden

Runtime Monitoring with AspectJ

	 Set closed = new HashSet();
	
	 after(Connection c) returning:
	 	 call(* Connection.close()) && target(c) {
	 	 closed.add(c);
	 }

	 after(Connection c) returning:
	 	 call(* Connection.reconnect()) && target(c) {
	 	 closed.remove(c);
	 }

	 after(Connection c) returning:
	 	 call(* Connection.write(..)) && target(c) {
	 	 if(closed.contains(c))
	 	 	 error("May not write to "+c+", as it is closed!");
	 }

3

Eric Bodden

Runtime Monitoring with AspectJ

	 Set closed = new HashSet();
	
	 after(Connection c) returning:
	 	 call(* Connection.close()) && target(c) {
	 	 closed.add(c);
	 }

	 after(Connection c) returning:
	 	 call(* Connection.reconnect()) && target(c) {
	 	 closed.remove(c);
	 }

	 after(Connection c) returning:
	 	 call(* Connection.write(..)) && target(c) {
	 	 if(closed.contains(c))
	 	 	 error("May not write to "+c+", as it is closed!");
	 }

3

Eric Bodden

Existing Runtime Monitoring Tools

JavaMOP

S2A

J-LO

MOFScript M2Aspects

abc
Monitoring
Aspects

tracematches

relational aspects

various spec.
languages

LTL

LSCs

MSCsJava-STAIRS
aspects

4

Eric Bodden

Runtime-verifying finite-state properties

“no write
after close”

5

Eric Bodden

Runtime-verifying finite-state properties

“no write
after close”

JavaMOP, S2A, ...

after(): call(...)

5

Eric Bodden

Runtime-verifying finite-state properties

“no write
after close”

JavaMOP, S2A, ...

after(): call(...)

compile & weaveAspectJ
compiler

5

Eric Bodden

Runtime-verifying finite-state properties

“no write
after close”

JavaMOP, S2A, ...

after(): call(...)

compile & weaveAspectJ
compiler

5

Eric Bodden

Runtime-verifying finite-state properties

Eric Bodden

Runtime-verifying finite-state properties

No static guarantees

Eric Bodden

Runtime-verifying finite-state properties

Potentially large runtime overhead

Eric Bodden

Runtime-verifying finite-state properties

When to finish testing?

Eric Bodden

Integrate results of three communities

7

[RV2010] http://bodden.de/clara/

Eric Bodden

Integrate results of three communities

Runtime Verification

AOP /
AspectJ

Static
Analysis

generate monitors

define events
 & weave
monitors

statically
optimize
monitors

7

[RV2010] http://bodden.de/clara/

Eric Bodden

“no write
after close”

JavaMOP, abc, ...

after(): call(...)

compile & weaveabc

8

Eric Bodden

“no write
after close”

JavaMOP, abc, ...

after(): call(...)

compile & weave

Quick Check

Orphan-Shadows Analysis

Nop-Shadows Analysis

abc

8

Eric Bodden

“no write
after close”

JavaMOP, abc, ...

after(): call(...)

compile & weave

Quick Check

Orphan-Shadows Analysis

Nop-Shadows Analysis

abc

8

Eric Bodden

“no write
after close”

JavaMOP, abc, ...

after(): call(...)

compile & weave

Quick Check

Orphan-Shadows Analysis

Nop-Shadows Analysis

abc

8

✓

Eric Bodden

“no write
after close”

JavaMOP, abc, ...

after(): call(...)

compile & weave

Quick Check

Orphan-Shadows Analysis

Nop-Shadows Analysis

abc

8

Eric Bodden

“no write
after close”

JavaMOP, abc, ...

after(): call(...)

compile & weave

Quick Check

Orphan-Shadows Analysis

Nop-Shadows Analysis

abc

8

Eric Bodden

	 Set closed = new HashSet();
	
	 dependent after disconnect(Connection c) returning:
	 	 call(* Connection.close()) && target(c) {
	 	 closed.add(c);
	 }

	 dependent after reconnect(Connection c) returning:
	 	 call(* Connection.reconnect()) && target(c) {
	 	 closed.remove(c);
	 }

	 dependent after write(Connection c) returning:
	 	 call(* Connection.write(..)) && target(c) {
	 	 if(closed.contains(c))
	 	 	 error("May not write to "+c+", as it is closed!");
	 }

finite-state property

dependency{
	 disconnect, write, reconnect;
	 initial	 connected: write -> connected,
	 	 	 	 reconnect -> connected,
	 	 	 	 disconnect -> disconnected;
	 	 	 disconnected: disconnect -> disconnected,
	 	 	 	 write -> error;
	 final error: write -> error;
}

9

abstract

concrete

Eric Bodden

Annotation language comes with formal semantics

10

Interface definition through
annotated AspectJ aspects

Eric Bodden

Annotation language comes with formal semantics

10

Interface definition through
annotated AspectJ aspects

Are the annotations
I generated correct?

Is my partial ahead-of-time
evaluation correct?
(no false warnings, no missed violations)

Eric Bodden

“no write
after close”

JavaMOP, abc, ...

after(): call(...)

compile & weave

Quick Check

Orphan-Shadows Analysis

Nop-Shadows Analysis

abc

11

Eric Bodden

Quick Check

Orphan-Shadows Analysis

Nop-Shadows Analysis

12

30%

50%

20%

syntactic

pointers

pointers & control flow

relative
effectiveness

Eric Bodden

Quick Check

Orphan-Shadows Analysis

Nop-Shadows Analysis

12

30%

50%

20%

syntactic

pointers

pointers & control flow

relative
effectiveness

Eric Bodden
13

c.close()

c.reconnect()

c.write()

connected disconnected error

reconnect, write close write

close

reconnect

write

close
reconnect

1st Iteration [ICSE2010]

Eric Bodden
13

c.close()

c.reconnect()

c.write()

connected disconnected error

reconnect, write close write

close

reconnect

write

close
reconnect

hot cold1st Iteration [ICSE2010]

Eric Bodden
13

c.close()

c.reconnect()

c.write()

connected disconnected error

reconnect, write close write

close

reconnect

write

close
reconnect

hot cold1st Iteration [ICSE2010]

Eric Bodden
13

c.close()

c.reconnect()

c.write()

connected disconnected error

reconnect, write close write

close

reconnect

write

close
reconnect

hot cold1st Iteration [ICSE2010]

Eric Bodden
13

c.close()

c.reconnect()

c.write()

connected disconnected error

reconnect, write close write

close

reconnect

write

close
reconnect

hot cold1st Iteration [ICSE2010]

Eric Bodden
13

c.close()

c.reconnect()

c.write()

connected disconnected error

reconnect, write close write

close

reconnect

write

close
reconnect

hot cold

equivalent

not equivalent

equivalent

1st Iteration [ICSE2010]

Eric Bodden
13

c.close()

c.reconnect()

c.write()

connected disconnected error

reconnect, write close write

close

reconnect

write

close
reconnect

hot cold

equivalent

not equivalent

equivalent

1st Iteration [ICSE2010]

Eric Bodden
14

c.close()

c.reconnect()

c.write()

connected disconnected error

reconnect, write close write

close

reconnect

write

close
reconnect

hot cold

equivalent

2nd Iteration [ICSE2010]

Eric Bodden
14

c.close()

c.reconnect()

c.write()

connected disconnected error

reconnect, write close write

close

reconnect

write

close
reconnect

hot cold

equivalent

2nd Iteration [ICSE2010]

Eric Bodden

General solution

15

On top of AspectBench Compiler / Soot

Full Java support

recursion

exceptions

multi-object properties

reflection*

*[Program Surfing I, tomorrow 4pm]

Eric Bodden 16

 10 Programs (DaCapo suite, 1.5MLOC)
x 12 Properties
= 120 Test cases

Eric Bodden 16

6

19

85

10

trivially safe
proven safe
“just” optimized
violations found

 10 Programs (DaCapo suite, 1.5MLOC)
x 12 Properties
= 120 Test cases

[ICSE2010]

✓

Eric Bodden

http://bodden.de/clara/

Runtime Verification

AOP /
AspectJ

Static
Analysis

generate monitors

define events
 & weave
monitors

statically
optimize
monitors

http://www.bodden.de/clara/
http://www.bodden.de/clara/

Eric Bodden

dependency{
	 disconnect, write, reconnect;
	 initial	 connected: disconnect -> connected,
	 	 	 	 write -> connected,
	 	 	 	 reconnect -> connected,
	 	 	 	 disconnect -> disconnected;
	 	 	 disconnect: disconnect -> disconnected,
	 	 	 	 write -> error;
	 final error: write -> error;
}

http://bodden.de/clara/

Runtime Verification

AOP /
AspectJ

Static
Analysis

generate monitors

define events
 & weave
monitors

statically
optimize
monitors

http://www.bodden.de/clara/
http://www.bodden.de/clara/

Eric Bodden

dependency{
	 disconnect, write, reconnect;
	 initial	 connected: disconnect -> connected,
	 	 	 	 write -> connected,
	 	 	 	 reconnect -> connected,
	 	 	 	 disconnect -> disconnected;
	 	 	 disconnect: disconnect -> disconnected,
	 	 	 	 write -> error;
	 final error: write -> error;
}

http://bodden.de/clara/

Runtime Verification

AOP /
AspectJ

Static
Analysis

generate monitors

define events
 & weave
monitors

statically
optimize
monitors

hot cold

http://www.bodden.de/clara/
http://www.bodden.de/clara/

Eric Bodden

dependency{
	 disconnect, write, reconnect;
	 initial	 connected: disconnect -> connected,
	 	 	 	 write -> connected,
	 	 	 	 reconnect -> connected,
	 	 	 	 disconnect -> disconnected;
	 	 	 disconnect: disconnect -> disconnected,
	 	 	 	 write -> error;
	 final error: write -> error;
}

http://bodden.de/clara/

Runtime Verification

AOP /
AspectJ

Static
Analysis

generate monitors

define events
 & weave
monitors

statically
optimize
monitors

hot cold
6

19

85

10

http://www.bodden.de/clara/
http://www.bodden.de/clara/

