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Runtime Monitoring with AspectJ

	 Set closed = new HashSet(); 
	
	 after(Connection c) returning: 
	 	 call(* Connection.close()) && target(c) {
	 	 closed.add(c);
	 }

	 after(Connection c) returning:
	 	 call(* Connection.reconnect()) && target(c) {
	 	 closed.remove(c);
	 }

	 after(Connection c) returning: 
	 	 call(* Connection.write(..)) && target(c) {
	 	 if(closed.contains(c))
	 	 	 error("May not write to "+c+", as it is closed!");
	 }    
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Existing Runtime Monitoring Tools

JavaMOP

S2A

J-LO

MOFScript M2Aspects

abc
Monitoring
Aspects

tracematches

relational aspects

various spec. 
languages

LTL

LSCs

MSCsJava-STAIRS 
aspects
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Runtime-verifying finite-state properties

No static guarantees
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Runtime-verifying finite-state properties

Potentially large runtime overhead
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Runtime-verifying finite-state properties

When to finish testing?
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Integrate results of three communities
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[RV2010] http://bodden.de/clara/
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Integrate results of three communities

Runtime Verification

AOP /
AspectJ

Static
Analysis

generate monitors

define events
 & weave
monitors

statically
optimize
monitors
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	 Set closed = new HashSet(); 
	
	 dependent after disconnect(Connection c) returning: 
	 	 call(* Connection.close()) && target(c) {
	 	 closed.add(c);
	 }

	 dependent after reconnect(Connection c) returning:
	 	 call(* Connection.reconnect()) && target(c) {
	 	 closed.remove(c);
	 }

	 dependent after write(Connection c) returning: 
	 	 call(* Connection.write(..)) && target(c) {
	 	 if(closed.contains(c))
	 	 	 error("May not write to "+c+", as it is closed!");
	 }    

finite-state property

dependency{ 
	 disconnect, write, reconnect;
	 initial	 connected:  write -> connected,
	 	 	 	             reconnect -> connected,
	 	 	 	             disconnect -> disconnected;
	 	 	    disconnected: disconnect -> disconnected,
	 	 	 	               write -> error;
	 final     error: write -> error;
}
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concrete
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Annotation language comes with formal semantics
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Interface definition through
annotated AspectJ aspects
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Annotation language comes with formal semantics
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Interface definition through
annotated AspectJ aspects

Are the annotations
I generated correct?

Is my partial ahead-of-time 
evaluation correct?
(no false warnings, no missed violations)
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General solution

15

On top of AspectBench Compiler / Soot

Full Java support

recursion

exceptions

multi-object properties

reflection*

*[Program Surfing I, tomorrow 4pm]
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  10 Programs (DaCapo suite, 1.5MLOC)
x  12 Properties
=  120 Test cases
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trivially safe
proven safe
“just” optimized
violations found

  10 Programs (DaCapo suite, 1.5MLOC)
x  12 Properties
=  120 Test cases

[ICSE2010]

✓
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dependency{ 
	 disconnect, write, reconnect;
	 initial	 connected: disconnect -> connected,
	 	 	 	   write -> connected,
	 	 	 	   reconnect -> connected,
	 	 	 	   disconnect -> disconnected;
	 	 	    disconnect: disconnect -> disconnected,
	 	 	 	   write -> error;
	 final     error: write -> error;
}
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