McGill University | Eric Bodden

Feng Chen

University of lllinois at Urbana Champaign

Grigore Rosu

Dependent Advice

A General Approach to
Optimizing History-based Aspects

Aspectd as an intermediate language

Various speC|f|cat|on lLlLlsshec.
JavaMOP S C
~

History-based AJ aspect

tracematches M2Aspects

t MOFScrlpt VISC

relational aspects Java-STAIRS Aspects

Example concern

Do not write to a
disconnected connection.

aspect ConnectionClosed ({

Set closed = new WeakIdentityHashSet() ;

after /+disconn:/ (Connection c) returning:
call (#+ Connection.disconnect()) && target(c) {
closed.add (c) ;

after /i reconn:/ (Connection c) returning:
call (+ Connection.reconnect()) && target(c) {

closed. remove (c) ;

before /'write:/ (Connection c)
call (+ Connection.write (..)) && target(c) {
i1f (closed.contains(c))

error (c+” is closed !'") ;

History-based
aspect

return false;
return true;

AspectJ

compiler

return ralse;

}
return true;

Problem:

Potentially
large
runtime
overhead

aspect ConnectionClosed ({

Set closed = new WeakIdentityHashSet() ;

after /+disconn:/ (Connection c) returning:
call (#+ Connection.disconnect()) && target(c) {
closed.add(c) ;

after /ireconn:/f (Connection returning:

call (+ Connelction.reconnect(\) && target(c)

before /+write+/
call (+ Connection.wriNe && target(c)
1f (closed.contains (c)

error (c+” 1s closed ') ;

Now: general case

History-based
AJ aspects

Static
program analysis

Optimized
Runtime

Analyzing history-based aspects?

/" Monitor aspect for HasNext+"/
import java.util.”:

import org.apache.commons.collections.map.":
class HasNextMonitorPM {
Vector monitorList = new Vector():
synchronized public void hasNext(lter

I[terator it = monitorList.iterator()
while (it.hasNext()){
HasNextMonitor monito
monitor.hasNext(i):
if (monitorSet.contains(moni
it.remove():
else {
monitorSet.add(monitor):;
if (monitor.suceeded()){

... about 10 more pages
10

Static
program analysis

+HDeéependeney
alhetatiens

11

Contributions and Outline

Syntax of dep. advice Semantics of dep. advice

aspect ConnectionClosed {
Set closed = new WeakldentityHashSet(); gtrong
> L0 @G
after discoph (WYnnection c) returning: ‘
call (¥ Connectlwn.disconnect()) && target(c) {
closfid.add(e) ;
}

before wride (Connection a)
call (* Coimpction.wrife (..)) && target(c) {
if (closed.cohiains/c))
error {c+” is closed !7);

}

dependency{ strong disconn,write; }

}

) (
= -~
‘ wed &

Generating dep. advice Experimental results

= Quick-Chock, 24 * Orphan-shadows Shadows
analyais, 12 remaining, 38

reduoed to

<=10%, 8 Same reduatien, No reduction, 10

Dependent advice

aspect ConnectionClosed {
new WeakIdentityHashSet() ;

Set closed

after disco
call (j

closgd.add (c)

before wri

call (:

1f (closed.co in

(
Co

error (c+

Connect

Connection c¢)

ection.wri (..))

7

.disconnect ())

nnection c¢) returning:

&& target(c)

is closed !'7);

dependency{ strong disconn,write; }

&& target(c)

{

{

13

Dependent advice

aspect ConnectionClosed {

Set closed = new WeakIdentityHashSet () ;

after disconn (Connection c¢) returning:

call (+ Connection.disconnect
closed.add (c) ;

&& target(c) {

after reconn (Connection c¢) returnj
call (+ Connection.reconnect())

closed.remove (c) ;

before write (Connection c) :

dependency{ strong disconn,write; wyeak reconn;

}

14

“strongly connected”

“weakly connected”

h_[reconn]

U UL SRS IR U RO U U U ———

dependency{ strong disconn,write; weak reconn; }

15

Verbose syntax

dependency {
strong disconn,write;

weak reconn;

}

... Is a shorth

after reconn (Connection c)

dependency {
strong disconn (g

weak reconn(c) ;

16

When is a dependency fulfilled?

dependency {
strong disconn(c) ,write(c) ;

weak reconn(c) ;

}

Dependency is fulfilled for Connection c
If both disconn(c) and write (c)
do execute on c at some point in time.

17

Connection cl = new Connection|() ;

Connection cZ new Connection() ;
cl.disconnect () ;
cZ2.write (“"foo”) ;
cl.reconnect() ;

cl.write("bar”) ;

- dependency fulfilled for c1,
but not fulfilled for c2

18

When does a Dep. Adv. execute?

Dependent advice a must execute at a
joinpoint j on objects o if there exists a
dependency d that references a
and is fulfilled for objects o.

19

lisconn(c) ,write (c) ;

onn (c) ;

Connection cl = new Connection|() ;
Connection c¢Z = new Connection|() ;
cl.disconnect () ;
c?2.write(“"foo”) ;
cl.reconnect() ;

cl.write(“"bar”) ;

- disconn/writelreconn will execute on c1,

do not have to execute (but may) on c2

20

Optimizing Dependent Advice

Motivated by tracematch-based analysis,
Bodden, Hendren & Lhotak (ECOOP 2007)

Two analysis stages:
® Quick check
* syntactic

® Flow-insensitive Orphan-shadows
analysis
* uses context-sensitive points-to information

21

Auto-generating dependent advice

Various speC|f|cat|on LS pec,.
JavaMOP mSC
~
History-based AJ aspect

tracematches

|

M2Aspects

MOFScrlpt VISC

relational aspects Java-STAIRS Aspects

abc compiler JavaMOP
tracematch ERE spec.
FTLTL spec.
PTLTL spec.
Finite-state machine Finite-state machine
Generic Algorithm Generic Algorithm

\ /

Dependency Declarations

FSM - dependency declarations

2
/ Represents Represents
: program start |
\ - Name of
N - b, dependent

dependency{ strong aEf]' Wi advice

dependency{ strong a d; weak b; }

Proven: Algorithm is "stable™

Equivalent automata yield
equivalent dependency declarations

26

Benchmarks - Properties

ASynclter FailSatelteriM

ASynclterM HasNext

FallSateEnum LeakingSyne
FailSafeEnumHT Reader

FallSatelter Wiriter

28

Benchmarks - Properties

For each of the ten properties:
® Hand-coded Aspectd aspect & annotations
@ Tracematch

Where possible:
® JavaMOP specification in ERE

For three specifications also:
® JavaMOP specification in FTLTL
® JavaMOP specification in PTLTL

29

Benchmark programs

DaCapo benchmark suite:

antlr hsqladb

o][eF:11 jython
chart lucene

eclipse pmd

fop xalamn

30

Runtime overhead

m <=10%, 308

380 woven programs

31

Elimination of all shadows

Quick-Check, 24 ™ Orphan-shasas Shadows
analysi remaining, 36

zelio overhead
fteroptimizatiol

72 programs with overhead >10%

32

Reduction of runtime overhead

® reduced to

B Some reduction,)
18 No reduction, 10

average reduction:
by 37%

36 programs with overhead >10%
and shadows remaining

33

Limitations

Law-of-Demeter Checker (Lieberherr et al.)

after () returning(Object o) :IgnoreTargets () {

ignoredTargets.put (o, 0) ;

after (Object thiz,Object targt):
Any .MethodCall (thiz, targt) && " IgnoreCalls() {

1f ('ignoredTargets.containsKey (targt) &&
'Pertarget.aspectOf (thiz) .contains (targt)) {

objectVolations.put (tjSP, tjSP);

34

Related work

Various specliication LTL spe.
~ languages ey

Y :
»

History=-based A.J aspect

racematches .

7 P)i o)
relational aspects Java-STAIRS Aspects

Y 7 g "
] 5 "
— L) o~
— 3 - -, ~

Related work

Already mentioned:

@ S2A (Maoz & Harel, FSE 2006)

@ M2Aspects (Kruger et al., SCESM 2006)

@ Java-STAIRS Aspects (Oldevik & Haugen, 5pm)
@ J-LO (Bodden, Diploma Thesis)

Other possible clients of dependent advice:
@ Association aspects (Sakurai et al., AOSD 2004)
@ LogicAJ (Kniesel et al., RAM-SE 2004)

@ Dataflow pointcuts (Masuhara & Kawauchi, APLAS
2003; and tomorrow, 14:30)

@ Conditional compilation (Adams et al., Friday)

37

Related work

Optimizations for tracematches:

® Bodden, Hendren & Lhotak, ECOOP 2007
® Bodden, Lam & Hendren, FSE 2008

® Naeem & Lhotak, OOPSLA 2008

Optimizations of the Runtime Monitor:
@ Avgustinov et al., OOPSLA 2007
® Chen & Rosu, TACAS 2009

38

Important conclusion

Approach hard to formalize without AOP

@ History-based aspect modularizes
Instrumentation

® Hence can use modular dependency
annotation

39

Acknowledgements

co-workers:
@ Laurie Hendren
@ Patrick Lam

developer of S2A:
® Shahar Maoz

abc/tracematch maintainers:
@ Pavel Avgustinov
@ Julian Tibble

40

dependency

dependency

[
1

{

strong a,d; weak c;

strong a,c,d; weak b;

}

= Quick-Check, 24 ® Orphan-shadows
analysis, 12

H reduced to .
<=109%, Some r1eguct|on,

Shadows
remaining, 38

No reduction, 10

Static analysis
dependency {

strong disconn(c) ,write(c) ;

weak reconn(c) ;
}

Connection cl

Connection cZ?

cl .disconnect

cZ2.write (“foo”)
cl .reconnect () ;
c3 = cl;

c3.write (“bar”) ; 45

Results — Static-analysis time

53%

® compilation
H points-to analysis
our analyses

Average total: 12 minutes
Max total: 58 minutes

46

