
Verifying finite-state properties of
large-scale programs

Eric Bodden

Finite-state properties

“When disconnecting a connection c,
don’t write to c until c is reconnected.”

Finite-state properties

“When disconnecting a connection c,
don’t write to c until c is reconnected.”

connected disconnected errordisconnected

disconnect,
reconnect, write disconnect write

disconnect

reconnect

write

Runtime-verifying finite-state properties

Runtime-verifying finite-state properties

Runtime-verifying finite-state properties

Runtime-verifying finite-state properties

connected disconnected errordisconnected

disconnect,
reconnect, write disconnect write

disconnect

reconnect

write

Runtime-verifying finite-state properties

connected disconnected errordisconnected

disconnect,
reconnect, write disconnect write

disconnect

reconnect

write

Runtime-verifying finite-state properties

JavaMOP

S2A

J-LO

MOFScript M2Aspects

abc
Monitoring
Aspects

Runtime-verifying finite-state properties

JavaMOP

S2A

J-LO

MOFScript M2Aspects

abc
Monitoring
Aspects

various spec.
languages

Runtime-verifying finite-state properties

JavaMOP

S2A

J-LO

MOFScript M2Aspects

abc
Monitoring
Aspects

various spec.
languages

LTL

Runtime-verifying finite-state properties

JavaMOP

S2A

J-LO

MOFScript M2Aspects

abc
Monitoring
Aspects

various spec.
languages

LTL

LSCs

Runtime-verifying finite-state properties

JavaMOP

S2A

J-LO

MOFScript M2Aspects

abc
Monitoring
Aspects

various spec.
languages

LTL

LSCs

MSCs

Runtime-verifying finite-state properties

JavaMOP

S2A

J-LO

MOFScript M2Aspects

abc
Monitoring
Aspects

tracematches

various spec.
languages

LTL

LSCs

MSCsJava-STAIRS
aspects

Runtime-verifying finite-state properties

JavaMOP

S2A

J-LO

MOFScript M2Aspects

abc
Monitoring
Aspects

tracematches

relational aspects

various spec.
languages

LTL

LSCs

MSCsJava-STAIRS
aspects

Runtime-verifying finite-state properties

Runtime-verifying finite-state properties

No static guarantees

Runtime-verifying finite-state properties

Potentially large runtime overhead

Runtime-verifying finite-state properties

When to finish testing?

Static analysis: the solution?

Static analysis: the solution?

Static analysis: the solution?

The Clara Framework

The Clara Framework
“no write

after close”

The Clara Framework
“no write

after close”

The Clara Framework
“no write

after close”

JavaMOP, abc, ...

after(): call(...)

The Clara Framework
“no write

after close”

JavaMOP, abc, ...

after(): call(...)

The Clara Framework
“no write

after close”

JavaMOP, abc, ...

after(): call(...)

compile & weaveabc

The Clara Framework
“no write

after close”

JavaMOP, abc, ...

after(): call(...)

compile & weaveabc

The Clara Framework
“no write

after close”

JavaMOP, abc, ...

after(): call(...)

compile & weave

Quick Check

Orphan-Shadows Analysis

Nop-Shadows Analysis

Clara

abc

The Clara Framework
“no write

after close”

JavaMOP, abc, ...

after(): call(...)

compile & weave

Quick Check

Orphan-Shadows Analysis

Nop-Shadows Analysis

Clara

abc

The Clara Framework
“no write

after close”

JavaMOP, abc, ...

after(): call(...)

compile & weave

Quick Check

Orphan-Shadows Analysis

Nop-Shadows Analysis

Clara

abc

The Clara Framework
“no write

after close”

JavaMOP, abc, ...

after(): call(...)

compile & weave

Quick Check

Orphan-Shadows Analysis

Nop-Shadows Analysis

Clara

abc

Houston, we have a problem...

Need:

Need: Have:

The Solution...

“no write
after close”

JavaMOP, abc, ...

 after(): call(...)

compile & weave

Quick Check

Orphan-Shadows Analysis

Nop-Shadows Analysis

Clara

abc

“no write
after close”

JavaMOP, abc, ...

 after(): call(...)

compile & weave

Quick Check

Orphan-Shadows Analysis

Nop-Shadows Analysis

Clara

abc

Dependency State Machines

	 Set closed = new WeakIdentityHashSet();
	
	 after(Connection c) returning:
	 	 call(* Connection.close()) && target(c) {
	 	 closed.add(c);
	 }

	 after(Connection c) returning:
	 	 call(* Connection.reconnect()) && target(c) {
	 	 closed.remove(c);
	 }

	 after(Connection c) returning:
	 	 call(* Connection.write(..)) && target(c) {
	 	 if(closed.contains(c))
	 	 	 error("May not write to "+c+", as it is closed!");
	 }

Dependency State Machines

	 Set closed = new WeakIdentityHashSet();
	
	 dependent after disconnect(Connection c) returning:
	 	 call(* Connection.close()) && target(c) {
	 	 closed.add(c);
	 }

	 dependent after reconnect(Connection c) returning:
	 	 call(* Connection.reconnect()) && target(c) {
	 	 closed.remove(c);
	 }

	 dependent after write(Connection c) returning:
	 	 call(* Connection.write(..)) && target(c) {
	 	 if(closed.contains(c))
	 	 	 error("May not write to "+c+", as it is closed!");
	 }

Dependency State Machines

	 Set closed = new WeakIdentityHashSet();
	
	 dependent after disconnect(Connection c) returning:
	 	 call(* Connection.close()) && target(c) {
	 	 closed.add(c);
	 }

	 dependent after reconnect(Connection c) returning:
	 	 call(* Connection.reconnect()) && target(c) {
	 	 closed.remove(c);
	 }

	 dependent after write(Connection c) returning:
	 	 call(* Connection.write(..)) && target(c) {
	 	 if(closed.contains(c))
	 	 	 error("May not write to "+c+", as it is closed!");
	 }

abstract

concrete

	 Set closed = new WeakIdentityHashSet();
	
	 dependent after disconnect(Connection c) returning:
	 	 call(* Connection.close()) && target(c) {
	 	 closed.add(c);
	 }

	 dependent after reconnect(Connection c) returning:
	 	 call(* Connection.reconnect()) && target(c) {
	 	 closed.remove(c);
	 }

	 dependent after write(Connection c) returning:
	 	 call(* Connection.write(..)) && target(c) {
	 	 if(closed.contains(c))
	 	 	 error("May not write to "+c+", as it is closed!");
	 }

dependency{
	 disconnect, write, reconnect;
	 initial	 connected: disconnect -> connected,
	 	 	 	 write -> connected,
	 	 	 	 reconnect -> connected,
	 	 	 	 disconnect -> disconnected;
	 	 	 disconnect: disconnect -> disconnected,
	 	 	 	 write -> error;
	 final error: write -> error;
}

“no write
after close”

JavaMOP, abc, ...

 after(): call(...)

compile & weave

Quick Check

Orphan-Shadows Analysis

Nop-Shadows Analysis

Clara

abc

Quick Check

Orphan-Shadows Analysis

Nop-Shadows Analysis

Quick Check

Orphan-Shadows Analysis

Nop-Shadows Analysis

Nop-Shadows Analysis

Idea:

For every joinpoint shadow s:

Identify states that are equivalent at s.
If s may transition only between
equivalent states then disable s.

connected disconnected error

disconnect,
reconnect, write disconnect write

disconnect

reconnect

write

connected disconnected error

reconnect, write
disconnect write

disconnect

reconnect

write

disconnect

reconnect

connected disconnected error

reconnect, write
disconnect write

disconnect

reconnect

write

disconnect

reconnect

connected disconnected error

reconnect, write
disconnect write

disconnect

reconnect

write

disconnect

reconnect

0 1 2

connected disconnected error

reconnect, write
disconnect write

disconnect

reconnect

write

disconnect

reconnect

0 1 2

c1.close();

c1.reconnect();	

c1.close();

c1.close();	

c1.write(..);	

c1.close();

c1.reconnect();	

c1.write(..);

0

1

0

1

1

2

1

0

0

connected disconnected error

reconnect, write
disconnect write

disconnect

reconnect

write

disconnect

reconnect

0 1 2

c1.close();

c1.reconnect();	

c1.close();

c1.close();	

c1.write(..);	

c1.close();

c1.reconnect();	

c1.write(..);

0

1

0

1

1

2

1

0

0

connected disconnected error

reconnect, write
disconnect write

disconnect

reconnect

write

disconnect

reconnect

0 1 2

c1.close();

c1.reconnect();	

c1.close();

c1.close();	

c1.write(..);	

c1.close();

c1.reconnect();	

c1.write(..);

0

1

0

1

1

2

1

0

0

connected disconnected error

reconnect, write
disconnect write

disconnect

reconnect

write

disconnect

reconnect

0 1 2

c1.close();

c1.reconnect();	

c1.close();

c1.close();	

c1.write(..);	

c1.close();

c1.reconnect();	

c1.write(..);

0

1

0

1

1

2

1

0

0

connected disconnected error

reconnect, write
disconnect write

disconnect

reconnect

write

disconnect

reconnect

0 1 2

c1.close();

c1.reconnect();	

c1.close();

c1.close();	

c1.write(..);	

c1.close();

c1.reconnect();	

c1.write(..);

0

1

0

1

1

2

1

0

0

?
?

?
?

connected disconnected error

reconnect, write
disconnect write

disconnect

reconnect

write

disconnect

reconnect

0 1 2

connected disconnected error

reconnect, write
disconnect write

disconnect

reconnect

write

disconnect

reconnect

0 1 2

write disconnect

write reconnect, write
disconnect

{2} {1,2} {0,1,2}

c1.close();

c1.reconnect();	

c1.close();

c1.close();	

c1.write(..);	

c1.close();

c1.reconnect();	

c1.write(..);

0

1

0

1

1

2

1

0

0

{}

{}

{}

{}

{}

{}

{}

{1,2}

{2}

{0,1,2}

{0,1,2}

{0,1,2}

{0,1,2}

{1,2}

{2}

c1.close();

c1.reconnect();	

c1.close();

c1.close();	

c1.write(..);	

c1.close();

c1.reconnect();	

c1.write(..);

0

1

0

1

1

2

1

0

0

{}

{}

{}

{}

{}

{}

{}

{1,2}

{2}

{0,1,2}

{0,1,2}

{0,1,2}

{0,1,2}

{1,2}

{2}

c1.close();

c1.reconnect();	

c1.close();

c1.close();	

c1.write(..);	

c1.close();

c1.reconnect();	

c1.write(..);

0

1

0

1

1

2

1

0

0

{}

{}

{}

{}

{}

{}

{}

{1,2}

{2}

{0,1,2}

{0,1,2}

{0,1,2}

{0,1,2}

{1,2}

{2}

c1.close();

c1.reconnect();	

c1.close();

c1.close();	

c1.write(..);	

c1.close();

c1.reconnect();	

c1.write(..);

0

1

0

1

1

2

1

0

0

{}

{}

{}

{}

{}

{}

{}

{1,2}

{2}

{0,1,2}

{0,1,2}

{0,1,2}

{0,1,2}

{1,2}

{2}

c1.close();

c1.reconnect();	

c1.close();

c1.close();	

c1.write(..);	

c1.close();

c1.reconnect();	

c1.write(..);

0

1

0

1

1

2

1

0

0

{}

{}

{}

{}

{}

{}

{}

{1,2}

{2}

{0,1,2}

{0,1,2}

{0,1,2}

{0,1,2}

{1,2}

{2}

?

?

c1.close();

c1.reconnect();	

c1.close();

c1.close();	

c1.write(..);	

c1.close();

c1.reconnect();	

c1.write(..);

0

1

0

1

1

2

1

0

0

{}

{}

{}

{}

{}

{}

{}

{1,2}

{2}

{0,1,2}

{0,1,2}

{0,1,2}

{0,1,2}

{1,2}

{2}

c1.close();

c1.reconnect();	

c1.close();

	

c1.write(..);	

c1.close();

c1.reconnect();	

c1.write(..);

0

1

0

1

2

1

0

0

{}

{}

{}

{}

{}

{}

{1,2}

{2}

{0,1,2}

{0,1,2}

{0,1,2}

{1,2}

{2}

c1.close();

c1.reconnect();	

c1.close();

	

c1.write(..);	

c1.close();

c1.reconnect();	

c1.write(..);

0

1

0

1

2

1

0

0

{}

{}

{}

{}

{}

{}

{1,2}

{2}

{0,1,2}

{0,1,2}

{0,1,2}

{1,2}

{2}

c1.close();

c1.reconnect();	

c1.close();

	

c1.write(..);	

c1.close();

c1.reconnect();	

c1.write(..);

0

1

0

1

2

1

0

0

{}

{}

{}

{}

{}

{}

{1,2}

{2}

{0,1,2}

{0,1,2}

{0,1,2}

{1,2}

{2}

c1.close();

c1.reconnect();	

c1.close();

	

c1.write(..);	

c1.close();

c1.reconnect();	

c1.write(..);

0

1

0

1

2

1

0

0

{}

{}

{}

{}

{}

{}

{1,2}

{2}

{0,1,2}

{0,1,2}

{0,1,2}

{1,2}

{2}

c1.close();

c1.reconnect();	

c1.close();

	

c1.write(..);	

c1.close();

c1.reconnect();

0

1

0

1

2

1

0

{0,1,2}

{0,1,2}

{0,1,2}

{1,2}

{2}

{}

{}

c1.close();

c1.reconnect();	

c1.close();

	

c1.write(..);	

c1.close();

c1.reconnect();

0

1

0

1

2

1

0

{0,1,2}

{0,1,2}

{0,1,2}

{1,2}

{2}

{}

{}

c1.close();

c1.reconnect();	

c1.close();

	

c1.write(..);	

c1.close();

c1.reconnect();

0

1

0

1

2

1

0

{0,1,2}

{0,1,2}

{0,1,2}

{1,2}

{2}

{}

{}

	

c1.close();

	

c1.write(..);	

	

0

1

2

{0,1,2}

{1,2}

{2}

public	 void	 foo()	 {

}

x.foo();

y.bar();

public	 void	 foo()	 {

}

x.foo();

y.bar();

public	 void	 foo()	 {

}

x.foo();

y.bar();

public	 void	 foo()	 {

}

x.foo();

y.bar();

c.close();

conn.write();

public	 void	 foo()	 {

}

x.foo();

y.bar();

c.close();

conn.write();

0

public	 void	 foo()	 {

}

x.foo();

y.bar();

c.close();

conn.write();

0

1

public	 void	 foo()	 {

}

x.foo();

y.bar();

c.close();

conn.write();

0

1 1

public	 void	 foo()	 {

}

x.foo();

y.bar();

c.close();

conn.write();

0

1 1

2

Tested Properties

ASyncContainsAll FailSafeIterMap

ASyncIterC HasNextElem

ASyncIterM HasNext

FailSafeEnum LeakingSync

FailSafeEnumHT Reader

FailSafeIter Writer

Benchmark programs

antlr jython

bloat luindex

chart lusearch

fop pmd

hsqldb xalan

(whole DaCapo benchmark suite, except eclipse)

Overall success

property name description
ASyncContainsAll synchronize on d when calling c.containsAll(d)) for synchronized collections c and d
ASyncIterC only iterate a synchronized collection c when owning a lock on c
ASyncIterM only iterate a synchronized map m when owning a lock on m
FailSafeEnum do not update a vector while iterating over it
FailSafeEnumHT do not update a hash table while iterating over its elements or keys
FailSafeIter do not update a collection while iterating over it
FailSafeIterMap do not update a map while iterating over its keys or values
HasNextElem always call hasMoreElements before calling nextElement on an Enumeration
HasNext always call hasNext before calling next on an Iterator
LeakingSync only access a synchronized collection using its synchronized wrapper
Reader do not use a Reader after its InputStream was closed
Writer do not use a Writer after its OutputStream was closed

Table 1: Relevant typestate properties and their names

antlr bloat chart fop hsqldb jython luindex lusearch pmd xalan

FailSafeEnum 0
3

6
7

44
47

0
5

0
10

FailSafeEnumHT 26
30

3
3

61
76

0
15

0
5

FailSafeIter 830
922

149
160

112
116

0
27

16
36

287
302

FailSafeIterMap 444
446

49
49 OOME

133
151

204
314

HasNextElem 0
86

0
8

0
6

34
47

0
16

0
6

0
6

1
3

HasNext 452
565

48
82

0
8

24
31

0
12

0
22

184
250

Reader 0
14

3
3

4
4

0
24

Writer 35
44

15
19

10
10

0
7

(a) Potentially relevant shadows as fraction of shadows that remain after first two analysis stages

antlr bloat chart fop hsqldb jython luindex lusearch pmd xalan

ASyncContainsAll 0
71

0
6

0
31

0
18

0
18

0
10

ASyncIterC 0
1621

0
498

0
146

0
33

0
128

0
149

0
149

0
671

ASyncIterM 0
1684

0
507

0
176

0
39

0
138

0
152

0
152

0
718

FailSafeEnum 0
76

0
3

0
1

6
18

0
120

44
110

0
61

0
61

0
21

0
222

FailSafeEnumHT 26
133

0
102

0
44

0
205

3
114

61
153

0
37

0
37

0
100

0
319

FailSafeIter 0
23

830
1394

149
510

0
288

0
112

112
253

0
217

16
217

287
546

0
158

FailSafeIterMap 0
130

444
1180

49
374 OOME

0
252

133
250

0
136

0
136

204
583

0
540

HasNextElem 0
117

0
4

0
12

0
53

34
64

0
22

0
22

0
11

1
63

HasNext 452
849

48
248

0
72

0
16

24
63

0
74

0
74

184
346

LeakingSync 0
170

0
1994

0
920

0
2347

0
528

0
1082

0
629

0
629

0
986

0
1005

Reader 0
50

0
7

0
65

0
102

3
1216

4
139

0
226

0
226

0
102

0
106

Writer 35
171

15
563

0
70

0
429

10
1378

0
462

0
146

0
146

0
62

0
751

(b) Potentially relevant shadows as fraction of total shadows after weaving

Table 2: Irrelevant vs. potentially relevant shadows. White slices represent shadows that the Nop-shadows Analysis identified
as irrelevant. Black slices represent shadows that we fail to identify as irrelevant, due to analysis imprecision or because the
shadows are relevant. Gray slices represent shadows that we confirmed to be relevant, through manual inspection. The outer
rings represent the aspect’s runtime overhead after optimizing the advice dispatch. Solid: overhead ≥ 15%, dashed: overhead
< 15%, dotted: no overhead. OOME = OutOfMemoryException during static analysis

NSA over QC and OSA

property name description
ASyncContainsAll synchronize on d when calling c.containsAll(d)) for synchronized collections c and d
ASyncIterC only iterate a synchronized collection c when owning a lock on c
ASyncIterM only iterate a synchronized map m when owning a lock on m
FailSafeEnum do not update a vector while iterating over it
FailSafeEnumHT do not update a hash table while iterating over its elements or keys
FailSafeIter do not update a collection while iterating over it
FailSafeIterMap do not update a map while iterating over its keys or values
HasNextElem always call hasMoreElements before calling nextElement on an Enumeration
HasNext always call hasNext before calling next on an Iterator
LeakingSync only access a synchronized collection using its synchronized wrapper
Reader do not use a Reader after its InputStream was closed
Writer do not use a Writer after its OutputStream was closed

Table 1: Relevant typestate properties and their names

antlr bloat chart fop hsqldb jython luindex lusearch pmd xalan

FailSafeEnum 0
3

6
7

44
47

0
5

0
10

FailSafeEnumHT 26
30

3
3

61
76

0
15

0
5

FailSafeIter 830
922

149
160

112
116

0
27

16
36

287
302

FailSafeIterMap 444
446

49
49 OOME

133
151

204
314

HasNextElem 0
86

0
8

0
6

34
47

0
16

0
6

0
6

1
3

HasNext 452
565

48
82

0
8

24
31

0
12

0
22

184
250

Reader 0
14

3
3

4
4

0
24

Writer 35
44

15
19

10
10

0
7

(a) Potentially relevant shadows as fraction of shadows that remain after first two analysis stages

antlr bloat chart fop hsqldb jython luindex lusearch pmd xalan

ASyncContainsAll 0
71

0
6

0
31

0
18

0
18

0
10

ASyncIterC 0
1621

0
498

0
146

0
33

0
128

0
149

0
149

0
671

ASyncIterM 0
1684

0
507

0
176

0
39

0
138

0
152

0
152

0
718

FailSafeEnum 0
76

0
3

0
1

6
18

0
120

44
110

0
61

0
61

0
21

0
222

FailSafeEnumHT 26
133

0
102

0
44

0
205

3
114

61
153

0
37

0
37

0
100

0
319

FailSafeIter 0
23

830
1394

149
510

0
288

0
112

112
253

0
217

16
217

287
546

0
158

FailSafeIterMap 0
130

444
1180

49
374 OOME

0
252

133
250

0
136

0
136

204
583

0
540

HasNextElem 0
117

0
4

0
12

0
53

34
64

0
22

0
22

0
11

1
63

HasNext 452
849

48
248

0
72

0
16

24
63

0
74

0
74

184
346

LeakingSync 0
170

0
1994

0
920

0
2347

0
528

0
1082

0
629

0
629

0
986

0
1005

Reader 0
50

0
7

0
65

0
102

3
1216

4
139

0
226

0
226

0
102

0
106

Writer 35
171

15
563

0
70

0
429

10
1378

0
462

0
146

0
146

0
62

0
751

(b) Potentially relevant shadows as fraction of total shadows after weaving

Table 2: Irrelevant vs. potentially relevant shadows. White slices represent shadows that the Nop-shadows Analysis identified
as irrelevant. Black slices represent shadows that we fail to identify as irrelevant, due to analysis imprecision or because the
shadows are relevant. Gray slices represent shadows that we confirmed to be relevant, through manual inspection. The outer
rings represent the aspect’s runtime overhead after optimizing the advice dispatch. Solid: overhead ≥ 15%, dashed: overhead
< 15%, dotted: no overhead. OOME = OutOfMemoryException during static analysis

“Final” shadows only

antlr bloat chart fop hsqldb jython luindex lusearch pmd xalan

FailSafeEnum 0

1

1

1

2

2

0

1

0

2

FailSafeEnumHT 6

6

1

1

9

24

0

4

0

2

FailSafeIter 259

259

38

38

4

4

0

6

5

10

90

90

FailSafeIterMap 258

258

38

38

4

4

32

32

HasNextElem 0

41

0

4

0

3

14

26

0

8

0

3

0

3

1

2

HasNext 163

266

4

38

0

3

9

14

0

6

0

10

51

98

Reader 0

4

1

1

1

1

0

5

Writer 1

3

1

1

1

1

0

2

Table 2: Final shadows that may violate a property. White slices represent shadows that the Nop-shadows Analysis identified
as irrelevant. Black slices represent shadows that we fail to identify as irrelevant, due to analysis imprecision or an actual
violation. Gray slices represent actual property violations that we found through manual inspection. The outer rings represent
the residual monitor’s runtime overhead. Solid: overhead ≥ 15%, dashed: overhead < 15%, dotted: no overhead.

itself took under 50 seconds on average. This time includes
all re-iterations of the Orphan-shadows Analysis and Nop-
shadows Analysis that Clara performs. In 90% of the cases,
the analysis finished in under one minute. By far the worst
case was bloat-FailSafeIter, for which this analysis stage took
19 minutes. bloat is notoriously hard to analyze [8, 9, 19].

Limitations and threats to validity.
We identified the following limitations of our approach.

All DaCapo benchmarks load classes using reflection. Static
analyses like ours have to be aware of these classes so that
they can construct a sound call graph. We wrote an As-
pectJ aspect that would print at every call to forName and
a few other reflective calls the name of the class that this
call loads and the location from which it is loaded. We fur-
ther double-checked with Ondřej Lhoták, who compiled such
lists of dynamic classes earlier. We then provided Soot [?]
(which is part of Clara) with this information. The result-
ing call graph is sound for the program runs that DaCapo
performs. Obtaining a call graph that is sound for all runs
may be challenging for programs that use reflection.

For eclipse we were unable to determine where dynamic
classes are loaded from. eclipse loads classes not from JAR
files but from “resource URLs”, which eclipse resolves inter-
nally, usually to JAR files within other JAR files. Soot cur-
rently cannot load classes from such URLs and that is why
we omit eclipse in our experiments. The jython benchmark
generates code at runtime, which it then loads. We did not
analyze this code and so made the unsafe assumption that
this code would not cause any typestate changes.

Otherwise, the internal validity of our experiments is high
because we directly measure the number of final shadows be-
fore and after the analysis. The final shadows are exactly the
points that programmers would first inspect when checking
possible property violations. Hence, reducing the number
of final shadows will reduce the burden on the programmer.
This is especially true when eliminating all final shadows,
thus proving that the program cannot violate the property.

To measure the runtime overheads precisely, we extended
the DaCapo harness with a custom driver class. With this
driver class, DaCapo first executes a warm-up run and then
re-runs the benchmark multiple times until the relative stan-

dard deviation of the determined runtimes drops below 3%
(but at least 5 times and at most 20 times). Then we re-
port the arithmetic mean of these runs. DaCapo’s stan-
dard driver only measures a single benchmark run, which
has caused misleading results for us in the past.

The external validity is limited by our choice of bench-
marks. However, the DaCapo benchmarks are a realistic,
representative set of medium-sized to large-scale applica-
tions. The suite contains both “well-behaved” benchmarks
that are free of reflection and benchmarks that are harder to
analyze due to reflection. Our analysis excels on the former,
however, further work is required to handle the latter more
effectively. We plan to address these problems by simulating
reflection in a more fine-grained manner.

6. RELATED WORK
Strom and Yemini [21] were the first to suggest the concept

of typestate analysis. In the last few years, researchers have
presented several new approaches with varying cost/preci-
sion trade-offs. In the following we describe the approaches
that are most relevant to our work. We distinguish type-
system based approaches, static verification approaches and
hybrid verification approaches.

Type-system based approaches.
Type-system based approaches define a type system and

implement a type checker. This is to prevent programmers
from compiling a potentially property-violating program in
the first place and gives the advantage of strong static guar-
antees. On the other hand, the type checker may reject
useful programs that statically appear to violate the stated
property but will not actually violate the property at run-
time. Our approach allows the programmer to define a pro-
gram that may violate the given safety property. Our analy-
sis then tries to verify that the program is correct, and when
this verification fails it delays further checks until runtime.

Bierhoff and Aldrich [5] present an intra-procedural type-
system based approach that enables the checking of type-
state properties in the presence of aliasing. The author’s ap-
proach aims at being modular, and therefore abstains from
potentially expensive whole-program analyses like ours. To

Related Work

Typestates: Static typing

Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased objects. In
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming
Systems and Applications (Montreal, Quebec, Canada, October 21 - 25, 2007). OOPSLA '07.
ACM, New York, NY, 301-320.

Related Work

Robert DeLine and Manuel Fähndrich. Typestates for objects. In ECOOP 2004, volume 3086 of
Lecture Notes in Computer Science (LNCS), pages 465–490. Springer, June 2004.

Typestates: Static typing

Related Work

Stephen Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanual Geay. Effective typestate
verification in the presence of aliasing. In ISSTA 2006, pages 133–144. ACM Press, July 2006.

Typestate analysis
(just single objects)

Related Work

Nomair A. Naeem and Ondrej Lhotak. Typestate-like analysis of multiple interacting objects. In
OOPSLA 2008, pages 347–366. ACM Press, October 2008.

Typestate analysis
based on tracematches, supports multiple objects,

unfortunately unsound (sort of my fault)

Related Work

Matthew B. Dwyer and Rahul Purandare. Residual dynamic typestate analysis: Exploiting static
analysis results to reformulate and reduce the cost of dynamic analysis. In ASE 2007, pages
124–133. ACM Press, May 2007.

Residual Typestate analysis
(just single objects)

?

Related Work: Conclusion

Clara: First open framework for typestate analysis

Novel spec. language: Dependency State Machines

One of few approaches to support combinations of
multiple objects

Apart from Dwyer/Purandare only approach to
hybrid typestate analysis

NSA: New notion of continuation-equivalent states

Thanks!

Laurie Hendren Patrick Lam

Pavel Avgustinov Julian Tibble

McGill

Oxford

Conclusion

Conclusion
dependency{
	 disconnect, write, reconnect;
	 initial	 connected: disconnect -> connected,
	 	 	 	 write -> connected,
	 	 	 	 reconnect -> connected,
	 	 	 	 disconnect -> disconnected;
	 	 	 disconnect: disconnect -> disconnected,
	 	 	 	 write -> error;
	 final error: write -> error;
}

Conclusion
dependency{
	 disconnect, write, reconnect;
	 initial	 connected: disconnect -> connected,
	 	 	 	 write -> connected,
	 	 	 	 reconnect -> connected,
	 	 	 	 disconnect -> disconnected;
	 	 	 disconnect: disconnect -> disconnected,
	 	 	 	 write -> error;
	 final error: write -> error;
}

c1.close();

c1.reconnec
t();	

c1.close();

	

c1.write
(..);	

c1.close();

c1.reconnec
t();

0

1

0

1

2

1

0

{0,1,2}

{0,1,2}

{0,1,2}

{1,2}

{2}

{}

{}

Conclusion
dependency{
	 disconnect, write, reconnect;
	 initial	 connected: disconnect -> connected,
	 	 	 	 write -> connected,
	 	 	 	 reconnect -> connected,
	 	 	 	 disconnect -> disconnected;
	 	 	 disconnect: disconnect -> disconnected,
	 	 	 	 write -> error;
	 final error: write -> error;
}

c1.close();

c1.reconnec
t();	

c1.close();

	

c1.write
(..);	

c1.close();

c1.reconnec
t();

0

1

0

1

2

1

0

{0,1,2}

{0,1,2}

{0,1,2}

{1,2}

{2}

{}

{}

property name description
ASyncContainsAll synchronize on d when calling c.containsAll(d)) for synchronized collections c and d
ASyncIterC only iterate a synchronized collection c when owning a lock on c
ASyncIterM only iterate a synchronized map m when owning a lock on m
FailSafeEnum do not update a vector while iterating over it
FailSafeEnumHT do not update a hash table while iterating over its elements or keys
FailSafeIter do not update a collection while iterating over it
FailSafeIterMap do not update a map while iterating over its keys or values
HasNextElem always call hasMoreElements before calling nextElement on an Enumeration
HasNext always call hasNext before calling next on an Iterator
LeakingSync only access a synchronized collection using its synchronized wrapper
Reader do not use a Reader after its InputStream was closed
Writer do not use a Writer after its OutputStream was closed

Table 1: Relevant typestate properties and their names

antlr bloat chart fop hsqldb jython luindex lusearch pmd xalan

FailSafeEnum 0
3

6
7

44
47

0
5

0
10

FailSafeEnumHT 26
30

3
3

61
76

0
15

0
5

FailSafeIter 830
922

149
160

112
116

0
27

16
36

287
302

FailSafeIterMap 444
446

49
49 OOME

133
151

204
314

HasNextElem 0
86

0
8

0
6

34
47

0
16

0
6

0
6

1
3

HasNext 452
565

48
82

0
8

24
31

0
12

0
22

184
250

Reader 0
14

3
3

4
4

0
24

Writer 35
44

15
19

10
10

0
7

(a) Potentially relevant shadows as fraction of shadows that remain after first two analysis stages

antlr bloat chart fop hsqldb jython luindex lusearch pmd xalan

ASyncContainsAll 0
71

0
6

0
31

0
18

0
18

0
10

ASyncIterC 0
1621

0
498

0
146

0
33

0
128

0
149

0
149

0
671

ASyncIterM 0
1684

0
507

0
176

0
39

0
138

0
152

0
152

0
718

FailSafeEnum 0
76

0
3

0
1

6
18

0
120

44
110

0
61

0
61

0
21

0
222

FailSafeEnumHT 26
133

0
102

0
44

0
205

3
114

61
153

0
37

0
37

0
100

0
319

FailSafeIter 0
23

830
1394

149
510

0
288

0
112

112
253

0
217

16
217

287
546

0
158

FailSafeIterMap 0
130

444
1180

49
374 OOME

0
252

133
250

0
136

0
136

204
583

0
540

HasNextElem 0
117

0
4

0
12

0
53

34
64

0
22

0
22

0
11

1
63

HasNext 452
849

48
248

0
72

0
16

24
63

0
74

0
74

184
346

LeakingSync 0
170

0
1994

0
920

0
2347

0
528

0
1082

0
629

0
629

0
986

0
1005

Reader 0
50

0
7

0
65

0
102

3
1216

4
139

0
226

0
226

0
102

0
106

Writer 35
171

15
563

0
70

0
429

10
1378

0
462

0
146

0
146

0
62

0
751

(b) Potentially relevant shadows as fraction of total shadows after weaving

Table 2: Irrelevant vs. potentially relevant shadows. White slices represent shadows that the Nop-shadows Analysis identified
as irrelevant. Black slices represent shadows that we fail to identify as irrelevant, due to analysis imprecision or because the
shadows are relevant. Gray slices represent shadows that we confirmed to be relevant, through manual inspection. The outer
rings represent the aspect’s runtime overhead after optimizing the advice dispatch. Solid: overhead ≥ 15%, dashed: overhead
< 15%, dotted: no overhead. OOME = OutOfMemoryException during static analysis

Conclusion
dependency{
	 disconnect, write, reconnect;
	 initial	 connected: disconnect -> connected,
	 	 	 	 write -> connected,
	 	 	 	 reconnect -> connected,
	 	 	 	 disconnect -> disconnected;
	 	 	 disconnect: disconnect -> disconnected,
	 	 	 	 write -> error;
	 final error: write -> error;
}

c1.close();

c1.reconnec
t();	

c1.close();

	

c1.write
(..);	

c1.close();

c1.reconnec
t();

0

1

0

1

2

1

0

{0,1,2}

{0,1,2}

{0,1,2}

{1,2}

{2}

{}

{}

property name description
ASyncContainsAll synchronize on d when calling c.containsAll(d)) for synchronized collections c and d
ASyncIterC only iterate a synchronized collection c when owning a lock on c
ASyncIterM only iterate a synchronized map m when owning a lock on m
FailSafeEnum do not update a vector while iterating over it
FailSafeEnumHT do not update a hash table while iterating over its elements or keys
FailSafeIter do not update a collection while iterating over it
FailSafeIterMap do not update a map while iterating over its keys or values
HasNextElem always call hasMoreElements before calling nextElement on an Enumeration
HasNext always call hasNext before calling next on an Iterator
LeakingSync only access a synchronized collection using its synchronized wrapper
Reader do not use a Reader after its InputStream was closed
Writer do not use a Writer after its OutputStream was closed

Table 1: Relevant typestate properties and their names

antlr bloat chart fop hsqldb jython luindex lusearch pmd xalan

FailSafeEnum 0
3

6
7

44
47

0
5

0
10

FailSafeEnumHT 26
30

3
3

61
76

0
15

0
5

FailSafeIter 830
922

149
160

112
116

0
27

16
36

287
302

FailSafeIterMap 444
446

49
49 OOME

133
151

204
314

HasNextElem 0
86

0
8

0
6

34
47

0
16

0
6

0
6

1
3

HasNext 452
565

48
82

0
8

24
31

0
12

0
22

184
250

Reader 0
14

3
3

4
4

0
24

Writer 35
44

15
19

10
10

0
7

(a) Potentially relevant shadows as fraction of shadows that remain after first two analysis stages

antlr bloat chart fop hsqldb jython luindex lusearch pmd xalan

ASyncContainsAll 0
71

0
6

0
31

0
18

0
18

0
10

ASyncIterC 0
1621

0
498

0
146

0
33

0
128

0
149

0
149

0
671

ASyncIterM 0
1684

0
507

0
176

0
39

0
138

0
152

0
152

0
718

FailSafeEnum 0
76

0
3

0
1

6
18

0
120

44
110

0
61

0
61

0
21

0
222

FailSafeEnumHT 26
133

0
102

0
44

0
205

3
114

61
153

0
37

0
37

0
100

0
319

FailSafeIter 0
23

830
1394

149
510

0
288

0
112

112
253

0
217

16
217

287
546

0
158

FailSafeIterMap 0
130

444
1180

49
374 OOME

0
252

133
250

0
136

0
136

204
583

0
540

HasNextElem 0
117

0
4

0
12

0
53

34
64

0
22

0
22

0
11

1
63

HasNext 452
849

48
248

0
72

0
16

24
63

0
74

0
74

184
346

LeakingSync 0
170

0
1994

0
920

0
2347

0
528

0
1082

0
629

0
629

0
986

0
1005

Reader 0
50

0
7

0
65

0
102

3
1216

4
139

0
226

0
226

0
102

0
106

Writer 35
171

15
563

0
70

0
429

10
1378

0
462

0
146

0
146

0
62

0
751

(b) Potentially relevant shadows as fraction of total shadows after weaving

Table 2: Irrelevant vs. potentially relevant shadows. White slices represent shadows that the Nop-shadows Analysis identified
as irrelevant. Black slices represent shadows that we fail to identify as irrelevant, due to analysis imprecision or because the
shadows are relevant. Gray slices represent shadows that we confirmed to be relevant, through manual inspection. The outer
rings represent the aspect’s runtime overhead after optimizing the advice dispatch. Solid: overhead ≥ 15%, dashed: overhead
< 15%, dotted: no overhead. OOME = OutOfMemoryException during static analysis

www.bodden.de/clara/

http://www.bodden.de/clara/
http://www.bodden.de/clara/

