
Architectural Runtime Verification
Lars Stockmann

Software Engineering Group
Heinz Nixdorf Institute, Paderborn University

Paderborn, Germany
lars.stockmann@hni.uni-paderborn.de

Sven Laux
dSPACE GmbH

Paderborn, Germany
slaux@dspace.de

Eric Bodden
Software Engineering Group

Heinz Nixdorf Institute, Paderborn University
Paderborn, Germany

eric.bodden@uni-paderborn.de

Abstract—Analyzing runtime behavior is an important
part of developing and verifying software systems. This is
especially true for complex component-based systems used
in the vehicle industry. Here, locating the actual cause of
(mis-)behavior can be time-consuming, because the analysis
is usually not performed on the architecture level, where the
system has initially been designed. Instead, it often relies
on source code debugging or visualizing signals and events.
The results must then be correlated to what is expected
regarding the architecture. With an ever-growing complexity
of the systems, the advent of model-based development, code
generators and the distributed nature of the development
process, this becomes increasingly difficult.

This paper therefore presents Architectural Runtime Veri-
fication (ARV), a generic approach to analyze system behav-
ior on architecture level using the principles of Runtime
Verification. It relies on the architecture description and
on the runtime information that is collected in simulation-
based tests. This allows an analyst to easily verify or refute
hypotheses about system behavior regarding the interaction
of components, without the need to inspect the source code.

We have instantiated ARV as a framework that allows a
client to make queries about architectural elements using
a timed LTL-based constraint language. From this, ARV
generates a Runtime Verification monitor and applies it to
runtime data stored in a database.

We demonstrate the applicability of this approach with a
running example from the automotive industry.

Index Terms—Architecture, Runtime Verification, Database,
AUTOSAR.

I. Introduction

Verification of control devices is an important aspect
in many industries. Especially in the transportation in-
dustry, safety requirements and a highly distributed
development process command manufacturers and sup-
pliers to perform extensive testing (e.g., the ISO 26262
standard [1]). The software of such devices is usually
developed in a component-based fashion, where each
software component is first implemented and tested
individually before being integrated.

The verification of the integrated systems is difficult,
as both software architectures and hardware setups have
become more distributed and heterogeneous. Methods
such as model checking, which might be applicable to
individual components (or parts thereof), suffer from
the state-explosion problem and cannot be used on
integration level. Also, system specifications are often

informally stated [2] prohibiting formal methods. Thus,
the main verification method at integration level is
simulation-based testing.

Whenever a test fails, developers are tasked with
uncovering the actual cause for the misbehavior. Given
the complexity of an integrated system, this can be
difficult. The actual defect is often not found where a
violation or an undesired effect is observed. Thus, to
find the root cause efficiently, the system’s behavior as a
whole must be taken into account. A common systematic
approach is to induce hypotheses about a possible cause
from the observed behavior and to verify or refute these
hypotheses by testing predictions of the behavior. This
is commonly referred to as the scientific method [3].

Traditional ways of testing hypotheses about the be-
havior of an integrated system are signal plotting and
source code analysis, e.g., using step-by-step debugging.
However, a developer already must have some idea
about the problem to e.g., find a good spot for a break
point. In case of a real-time simulation, source code
debugging is often not even an option. Also, it is not
feasible to plot and analyze every individual signal.
Selecting a new signal that has not been recorded previ-
ously requires to rerun the test. This can make the whole
process time-consuming [4].

This paper therefore presents Architectural Runtime
Verification (ARV), which enables subsequent runtime
analysis on architecture level. This means, a user can
verify/refute hypotheses after the testing is over to find
the root cause for its failure. ARV uses the ideas of
Runtime Verification–a technique that in the past has
been used mostly to verify the behavior of software
components. ARV targets the integration rather than
the individual components. The goal is to give a better
understanding of the system behavior as a whole. Also,
it can serve as a starting point for the aforementioned
traditional approaches, because a developer can infer
from a verified hypothesis on architecture level, where
to set a break point in the code or which signals might
be worth analyzing. To summarize, this paper presents
the following original contributions:
1) a requirements analysis for ARV, i.e., a framework

that allows Runtime Verification to be applied on
the architecture level (Section IV)

77

2019 IEEE International Conference on Software Architecture Companion (ICSA-C)

978-1-7281-1876-5/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSA-C.2019.00021

2) a domain-independent model for ARV that aug-
ments the structure of a generic architecture with
runtime information (Section V-A and Section V-B)

3) a way to formally specify hypotheses about the
runtime that can be verified by ARV (Section V-C)

4) a way to verify the hypotheses using a Runtime
Verification monitor applied to a database, without
having to query every single event (Section V-D)

It is further structured as follows: The next section
first explains the main concepts of Runtime Verification.
Section III introduces an illustrating running example
that has also been used for the evaluation. After that,
Section IV presents a requirements analysis that forms
the basis for the actual approach presented in Section V.
Section VI describes how we evaluated ARV and Sec-
tion VII presents related work. The paper concludes with
a brief outlook in Section VIII.

II. Runtime Verification and Linear Temporal Logic

Falcone et al. defined Runtime Verification (RV) as a
“dynamic analysis method aiming at checking whether
a run of the system under scrutiny satisfies a given
correctness property” [5]. This means that compared to
model checking, it focuses on a concrete execution of a
system rather than all possible execution paths. It typi-
cally works by first translating a given property into a
monitor (synthesis) that observes the system’s execution
in a second step called monitoring. Here, the monitor
consumes events produced by the system and outputs a
verdict reflecting the satisfaction of the property.

In many approaches, the monitoring is performed at
runtime, i.e., it becomes a part of the system. This allows
to employ finite automata for the actual verification,
which does not require storing runtime data. The prop-
erties are often specified using some variant of Linear
Temporal Logic (LTL) from which the automata-based
monitor is synthesized. LTL is a formalism presented by
Pnueli in [6] that treats time in a linear way, i.e., for every
state of the system there is exactly one next state.

A more comprehensive introduction of LTL can be
found in [2]. RV is well presented in the surveys by
Leucker et Schallhart [7] and Falcone et al. [5]

III. Running example

This section presents a simple example architecture of
an automotive indicator system that we use to explain
the approach. It can be found in the SystemDesk1 model-
ing tutorial [8] and is depicted in Fig. 1. It is particularly
useful to illustrate the main concepts of AUTOSAR2,
which offers a standardized component-based architec-
ture description that involves different layers [9]. For
simplicity reasons, it only includes the front left and
front right direction indicators. The general functionality

1SystemDesk: www.dspace.com/go/systemdesk
2AUTomotive Open System ARchitecture: www.autosar.org

of such a system should be familiar. The front left/right
indicator is triggered by an indicator switch that can
be pushed down or pulled up. A hazard warning light
switch triggers both direction indicators simultaneously.
Corresponding sensors measure the current status of the
switches and actuators are used to turn on/off the lights
of the direction indicators. Assume that there is a failed
test which involves the hazard warning light switch. The
following exemplary hypotheses could be interesting to
get a better understanding what goes wrong:
H1 The runnable of the IndicatorLogic component is invoked

(anytime).
H2 The warning light switch is activated (anytime).
H3 The indicators are always activated within 200ms after

the warning light switch has been pressed.

IV. Requirements Analysis

ARV’s concept is based on a requirements analysis that
we conducted in advance. This section gives an overview
of the main goals that we persued with ARV’s design.

A. The Architecture Model
One requirement is that ARV should be usable beyond

domain boundaries. This is because simulation systems
are often composed of components from different do-
mains, which themselves might be architectures. For
example, on the highest level, there are components
representing the controller (the system under test) and
some representing the environment. The latter is usu-
ally composed out of single-component models, e.g.,
Functional Mockup Units (FMUs [10]). In the automo-
tive industry, the controller can be an AUTOSAR-based,
which means that it forms an architecture on its own.
AUTOSAR features some unique architectural elements
like “Runnable Entities” that wrap the behavioral code
and are mapped to tasks of the operating system. Other
domains can have custom descriptions that are created
using, e.g., the Architecture Analysis & Design Language
(AADL) [11]. From this it follows that ARV’s underlying
architecture model must be very generic with the capa-
bility to represent hierarchies.

B. Recording Runtime Data
Another goal of an ARV framework is to allow testers

and integrators to verify/refute hypotheses about the
runtime of an architecture without having to repeat
a test. Therefore, the runtime information must be
recorded. This has been done since the beginning of
simulation-based testing of electronic control devices.
From an engineer’s view, runtime information mainly
comprises signal curves. Looking from the software
perspective, these signals are just observed changes in
variables over time. It is worth noting that at integration
level, this implies an event-discrete nature of the system
under scrutiny. Thus, every variable change can be seen
as an event. Every such event has a timestamp, which

78

Front left
indicator

Front right
indicator

Warning light switch

Indicator switch

Central Body
Control Unit

left
IndicatorComposition

IndicatorLogic
tss

wls

tss

wls

right

left

right

FrontLeftActuator

bulb io_bulb

FrontRightActuator

bulb io_bulb

TurnSwitchSensor

io_tss out_tss

WarnLightsSensor

io_wls out_wls

– sensor-actuator SWC

– sender-receiver port
– client-server port

– application SWC

Fig. 1. Simple AUTOSAR Indicator Example

implies a temporal relation to other events. However,
depending on the resolution of the measurement, a
timestamp is not necessarily unique. This means that the
order in which events are recorded must be preserved.

In the past, only signals that were deemed significant
for later analysis were recorded—often in a limited time
frame to reduce the amount of generated data. A com-
plete analysis requires all runtime data. It can be argued
that even with today’s high capacity storage solutions,
it would be infeasible to log every instruction and all
changes in every local variable for hundreds of different
configurations and tests. Fortunately, ARV only requires
runtime information related to the architecture, which
reduces the amount of data significantly.

C. Formulating Hypotheses

In order to verify/refute hypotheses, the integrator
has to formulate them first based on the architectural
elements. According to the RV mechanism, the hypothe-
ses must then be translated into formal correctness
properties, which can be evaluated automatically using
the RV monitor. Two main aspects must be considered
here: First, it must be possible to specify simple state-
ments/assertions about the current state (e.g., as in H2 of
the running example that the WarnLightsSensor’s input
value is 1) or events that evaluate to either true or
false (e.g., as in H1 that a runnable is invoked). These
atomic propositions form the building blocks for more
complex queries, where they are combined using logical
operators. However, it is insufficient to just consider
values of ports. The integrator wants to know, when a
component was active, i.e., when its code was executed.
This is because in the integration phase a component not
executing when anticipated, or doing so unexpectedly is

a common problem. Even though the actual component
behavior is not formally specified in the architecture, its
execution can be inferred from the runtime information.
Second, it must be possible to specify temporal relations
between states or events, i.e., if a proposition is true a
certain number of milliseconds before or after another
proposition. This is very important, because many be-
havioral anomalies on integration level are due to an
unexpected order in which components execute. In RV,
it is common to use LTL (or a timed variant) for the
specification [12], [13].

D. Accessing the Data

The framework must ensure efficient queries, i.e.,
verifying a hypothesis should not require a client to
download and process all runtime data. Engineers in-
creasingly expect to be able to work with tablets or
even smartphones and use browser-based applications.
At the same time, databases are usually backed by high
performance servers in a data center. Hence, the query
and data processing must be separable so that the latter
can be offloaded to those servers and kept away from
the client. Fortunately, separation is already ensured by
the RV monitor synthesis. However, as mentioned in
Section II traditional RV approaches feed the events
through a finite state machine (FSM), which means that a
framework would have to download and process every
single event in a linear fashion. One approach that does
this is called LARVA [14]. It could be argued that this
does not use the full potential of a database management
system (DBMS). Therefore, a goal of ARV is to synthesize
the monitor that can be efficiently executed by a DBMS,
i.e., using composed queries that returns only data that
is relevant for the verdict and ideally can be parallelized.

79

V. Architectural Runtime Verification Concept

The fundamental idea of ARV is to utilize the runtime-
verification-monitor paradigm for queries on architec-
ture elements. Consider hypothesis H3 from Section III,
which states that whenever the value of port ‘io_wls’ (see
the lower left of Fig. 1) is set to enabled (i.e., the hazard
warning light switch has been pressed), the ‘io_bulb’
ports of both actuators change to enabled within 100ms.
ARV lets a user formulate this query, synthesizes a
RV monitor and applies it to the runtime data. For
this to work, architectural elements have to be asso-
ciated with ’their’ runtime data. Section IV-A requires
that ARV supports different architectural models with
different runtime information. ARV accomplishes this
through a generic domain-independent model, which
can represent structure and runtime of any domain-
specific component-based architecture. This way, the
same monitor can be applied to all data sets. It re-
quires a Domain Adapter that transforms the domain-
specific structure and runtime data into ARV’s domain-
independent model. The translated data is stored in a
database. This implies that the monitor must be domain-
agnostic as well. However, a user might still want to for-
mulate hypotheses in a domain-specific way. Therefore,
the properties must also be translated by the Domain
Adapter. Fig. 2 shows an overview of the interaction
between data acquisition (Logging) in the lower and
Monitoring in the upper part.

The Domain Adapter must be supplied by a domain
expert who knows both, the domain-specific architec-
tural model and ARV’s domain-independent model. To
support a new architecture description it is sufficient
to create a suitable domain adapter. Afterwards, the
heterogeneous system that consists of different kinds

Traces

Logs

ϕ
Properties

Logging
M

onitoring

Monitoring
Service

Domain-independent

Monitor
Evaluation

false tru
e

Database

Monitor
Synthesis

Log
Import

contains

Domain-
specific

D
om

ain
A
dapter

Fig. 2. Overview of the main approach

of architectures and runtime-data can be transparently
processed by the monitor. Users that are not familiar
with the domain specifics of one part of the system can
still use the domain-independent model to query it. In
the context of RV of component-based systems, this is a
novel idea that none of the investigated approaches [12]–
[23] has considered so far.

The next sections provide some details regarding the
concrete model and how the RV monitor is synthesized.

A. Representing Structure

The domain-independent model that ARV uses to
represent structure can be seen in Fig. 3. It has been
designed to resemble what can be considered a com-
mon ground for any component-based architecture in a
simulation-based test environment. We could not find an
existing model that was better suited and comparably
simple. However, it should be regarded as a first step.

The ‘root’ element is the Configuration that forms the
container of one instantiated system. It may be com-
posed of one or more components. A Component may
contain other components (children), which makes them
composite components. A Port is an interaction point
between components. Components (and their ports) are
actually instances of component types. This is in line
with many component-based architectures and allows to
reuse the component types. Also, verifying propositions
regarding a component type has a much wider scope
than regarding a specific instance of that type.

If the architecture in question has other element types
that are relevant for runtime analysis, they will have to
be mapped on those three just described. However, each
of ARV’s domain-independent model elements retains
references to its domain-specific counterpart, so that no
information gets lost. This is required for two reasons:
(1) to translate domain-specific properties into domain-
independent ones that can be processed by the monitor

Port
(Instance)

Configuration

Component
(Instance)

1..*
1

components

ports
0..*1 1

Context
children

0...*

0..1

1

0..*
contexts

Data Element
(Instance)

0..*
children

0...*

0..1

dataElements

Fig. 3. The structural model

80

and (2) to translate the domain-independent results back
into domain-specific ones for the user to inspect.

Finally, ARV adds another class named Context to this
model. It cannot be found in common architectures. Its
sole purpose is to form a bridge between structure and
runtime. The name relates to the programming domain,
where every function or statement is executed in a
designated context (e.g., scope, stack frame, thread, task).
Similarly, every component can have several (execution)
contexts. A prominent example is, again, AUTOSAR,
where the component’s code may be executed in the
context of different AUTOSAR Runnable Entities, which
in turn are executed by different tasks. Using a desig-
nated class, there is no need to add runtime information
directly to components or ports keeping the domain-
independent structural model clean and separated from
the runtime aspects.

B. Representing Runtime Behavior

A monitor in RV processes runtime events, i.e., every
new event induces a new runtime state, which a monitor
checks for certain conditions. ARV is no different in that
regard, with the exception that it solely relies on a history
of recorded events (Trace). Every event relates to a struc-
tural element of the architecture. This relation is realized
through the Context, which has been introduced in the
previous section. There are two event classes: (1) events
that relate to a simple signal transmission from one port
to another, which result in a value change at a port.
(2) events that relate to the execution of the component’s
code. Here, the Context holds the relevant information
about the execution state of a component. ARV uses the
state machine depicted in Fig. 4 to represent those states.

In its simplest form, a component (i.e., its Context)
can either be running or suspended, meaning its code
gets executed or not. Thus, a component is expected to
start in the suspended state provided that the recorded
runtime data starts at the beginning. A change of the
execution state relates to either a start or terminate event.
Conceptually, the start event occurs when the code
is called and the terminate event when it returns. Of
course, such events and states can only be tracked if
the architecture supports it and if there is some kind
of instrumentation that generates the required logs (see

running

suspendedwaiting

wait

resume

terminate

start

sample

Fig. 4. The state machine of Context

bottom half of Fig. 2). However, ARV will still be usable
if this information is not available.

For complex architectures like AUTOSAR that include
a multitasking capable operating system, two states are
insufficient. In real-time operating systems like OSEK,
a task has a more complex state machine. Basic tasks
have a further state ready and extended tasks have
an additional state waiting. More details regarding task
scheduling of real-time systems can be found in the
OSEK/VDX standard [24]. ARV must consider the waiting
state and its transitions wait and resume, because it can be
a good indicator of resource deadlocks. The ready state
on the other hand, is not considered by ARV. The ready
state means that a task is prepared to run by the OS,
but cannot, e.g., due to a task with a higher priority.
On architecture level, i.e., from the perspective of the
component, this state is not visible, because it is not a
state of its execution context, but a state internal to the
OS. This is also why on architecture level, this state is
negligible. For this reason, ARV uses a state machine that
contains only the states running, suspended and waiting as
can be seen in Fig. 4.

ARV’s runtime model (see Fig. 5) supports contexts
that are executed in parent contexts forming a (Con-
textStack). This reproduces causal relations between the
execution of components.

C. Verifying Properties
Following the requirements from Section IV-C, ARV

distinguishes two types of atomic propositions. First,
state propositions can refer either to one of the previ-
ously defined states of a component’s context (see Fig. 5)
or to the current value of a data element at a port. Values
can be compared to other values for (in-)equality. In a
formal language, this can be expressed using standard
operators =, �, <, ≤, >, and ≥. The second type of
atomic proposition is the event proposition. It incorpo-
rates information about the current event in a specific
context, i.e., start, terminate, wait, resume, or sample.

To specify temporal and logical relations between
those atomic propositions (cf. Section IV-C), they must be
combined using, e.g., a property specification language.
There are different languages available that each has

Event

Trace

Context Stack
1..*

1

contexts

next
0...*

0..1

Value

events
2..*1

0..*

1 values

Fig. 5. The behavioral model

81

their own benefits and drawbacks. However, many RV
approaches use LTL to specify properties. Furthermore,
LTL has the advantage that several timed extensions
exist that take real-time properties into account. Because
of this and its familiarity, we have chosen LTL as base
for the specification language in ARV. Thus, it supports
the standard LTL operators finally, until, and globally.
We added the bounded interval syntax and semantics
found in the Metric Interval Temporal Logic (MITL) [25].
This allows a user to specify real-time constraints. Fur-
thermore, the language supports the common logical
operators not, and, or and implies.

D. Monitor synthesis

RV requires formal properties as input [5], [7]. A
property ϕ is first automatically translated into a monitor
(monitor synthesis) that afterwards observes the system’s
execution (monitoring). More specifically, it consumes
events produced by the system and outputs a verdict
that reflects the satisfaction of the property Sat(ϕ). In
contrast to other approaches, where the monitoring is
performed at runtime, ARV applies it to traces that
were gathered in preceding simulation-based tests. These
traces are stored in a database that implements the model
presented in Section V-A and Section V-B.

ARV performs a bottom-up monitor synthesis, where
the formal properties are processed by a visitor that
traverses the parse tree. This is similar to the approach
by Maler et Nickovic [26], except that ARV processes
discrete events instead of continuous signals. The result
is a database query that returns the events in Sat(ϕ).
Compared to approaches like LARVA [14] ARV synthe-
sizes complex queries that return only those events that
are relevant, i.e., satisfy ϕ or none if no such events exist.
This fulfills the requirement of Section IV-D.

Mapping the language operators presented in the
previous section to the corresponding database query is
straight forward for the logical operators, but requires
some effort for the temporal operators. The former can
be realized using set operators such as union or intersect.
For the latter, we briefly explain the general approach
exemplarily for the finally operator, which is just a
special case of the until operator, but easier to illustrate.

Let Sat(�[x,y]ϕ) = Sat(finally [x, y] ϕ) describe the
set of events that satisfy the property ϕ at least once
within the interval [x, y]. To find this set, we have to go
back in time from where ϕ holds. Consider our example
hypothesis H3 (Section III). It could be formulated as
�(T =⇒ �[0,200]Υ), where T is the activation of the warn
light switch and Υ the activation of both indicators. In
words: It is always (globally) the case that an activation
of the warn light switch implies that both indicators are
finally active within 200ms. To find the relevant event set
of the finally part we have to first get the events where
both indicators are in fact active. Then, the earliest events
satisfying �[0,200]Υ would be those 200ms before. The

latest events would be those right before the indicators
are deactivated again.

In general, ϕ is not a single event, but can span
multiple regions [ai, bi]. The set of events satisfying �[x,y]
are therefore found in [ai−y, bi−x] as illustrated in Fig. 6.

A naive approach is to query for each event in Sat(ϕ)
with timestamp tj the corresponding events within the
interval [tj−y, tj−x]. The union of all these sets then
results in Sat(�[x,y]ϕ). However, querying all of these
overlapping intervals requires many database opera-
tions yielding a bad performance. Therefore, ARV treats
subsequent events as a union and only considers its
boundaries (cf. timestamps a1, b1 and a2, b2 in Fig. 6).

VI. Implementation and Evaluation

We have evaluated the implementability of our ap-
proach based on the example presented in Section III.
The first step to instantiate ARV was to create the
necessary AUTOSAR-Domain Adapter as presented in the
previous section. It consists of three parts: (1) a configu-
ration adapter to insert concrete system configurations,
(2) a log adapter to insert corresponding traces, and (3)
a property adapter that allows the systems integrator to
specify AUTOSAR-specific properties. Unfortunately, a
detailed discussion of this cannot be given here, as this
would require an in-depth discussion of the AUTOSAR
standard. However, the inclined reader may examine
the mapping of AUTOSAR elements to the domain-
independent structural model in Table I and the map-
ping of AUTOSAR-specific runtime data (trace events)
to the domain-independent events in Table II.

We obtained the runtime data using a dedicated
logging mechanism that was added to the simulation
platform3. It utilizes a feature of the AUTOSAR Runtime
Environment (RTE) that allows to hook in callbacks.
By applying the respective adapters, the AUTOSAR-
specific runtime data has been translated into its domain-
independent form and stored into a database.

The final step of the evaluation was to verify the actual
hypotheses. Listing 1 exemplarily shows how H3 can be
formulated using ARV’s timed LTL grammar. It can be
seen that the current language has its shortcomings. The
value change from 0 to 1 must be formulated using an

3VEOS: www.dspace.com/go/veos

ϕ

a1 b1 a2 b2

finally [x, y] ϕ

a1−y b1−x a2−y b2−x time

Fig. 6. Finally operator applied to a set of events.

82

TABLE I
Mapping of AUTOSAR elements to ARV’s structural model

ARV Components ARV port(s) ARV context(s)
System - -
ECU Com Task(s)

SWC RPort(s), PPort(s),
PRPort(s), IRV Runnable(s)

TABLE II
Mapping of AUTOSAR trace events to ARV’s events

Category AUTOSAR Trace Event ARV Event

RTE API Trace Evs. RTE API Start
RTE API Return

set (only call)
set/get

COM Trace Events

Signal Transmission
Signal Reception
Signal Invalidation
Signal Grp. Invalid.
Com Callback

set
get
sample
sample
sample

OS Trace Events

Task Activate
Task Dispatch
Task Termination
Set OS Event
Wait OS Event
Received OS Event

sample
start
terminate
sample
wait
resume

Runnable Trace Evts. Runnable Invocation
Runnable Termination

start
terminate

expression that involves finally with a one cycle interval.
This is cumbersome and a dedicated operator would be
preferable, which is considered future work.

globally (
(DATA_ELEMENT@"WarnLightsSensor/out_wls/value" == 0 and
finally[0, 10]
DATA_ELEMENT@"WarnLightsSensor/out_wls/value" == 1)
implies finally[0, 200] (
DATA_ELEMENT@"FrontLeftActuator/bulb/value" == 1 and
DATA_ELEMENT@"FrontRightActuator/bulb/value" == 1));

Listing 1. ARV timed LTL grammar example

We have used ANTLR4 (ANother Tool for Language
Recognition) to define the concrete grammar for the
language and to generate a corresponding parser. For
each node it creates the database query. Instead of
generating SQL, ARV’s implementation uses Microsoft’s
Entity Framework5 (EF) to abstract the concrete DBMS.
This allowed us to test the framework with MariaDB6,
Microsoft SQL Server7 and the Azure SQL Database8.
Furthermore, EF provides a LINQ9 interface. LINQ al-
lows one to compose queries and to defer the actual
database access until a concrete event is requested (e.g.,
by querying the first or last element of a selected set).
This way, the whole, or at least big parts of the parse
tree can be composed into one single query. Also this is

4ANTLR: www.antlr.org
5Entity Framework: www.asp.net/entity-framework
6MariaDB: mariadb.org/about
7Microsoft SQL Server: www.microsoft.com/sql-server
8Azure SQL Database: azure.microsoft.com/services/sql-database
9LINQ: https://msdn.microsoft.com/en-us/library/bb308959

in line with the RV paradigm that a monitor can be syn-
thesized once and then applied on multiple traces that
have runtime data for the involved structural elements.

We implemented a graphical front-end that helps to
configure the query and provides autocomplete for the
property input. Furthermore, the user can select the
desired domain adapter, so elements can be referred to in
a familiar way. For example, in the domain of AUTOSAR
it is common to reference elements by their path. Once
a valid property has been entered, the RV monitor is
synthesized. The user can then select a trace and have the
verification performed. The results (if any) are presented
as a table of runtime events that support the hypothesis,
i.e., satisfy the property.

An in-depth performance analysis is pending. In this
first step, it was not our main focus. However, there
are some qualitative results. First, we found that the
querying performance varied quite a bit between differ-
ent DBMS, which was expected. Furthermore, we found
that the complexity of the property and the implemen-
tation of the temporal operators have a big influence on
performance. Some queries cannot be easily combined.
In this case, the framework must download many events
that form the base of the next query. This mostly happens
when the proposition of a temporal expression yields
many small sets of events that all need to be processed
further. This not only degrades performance but also in-
creases bandwidth requirements. Furthermore, we found
that while Entity Framework is convenient w.r.t. the
substitution of the underlying DBMS, it needs to be
handled carefully to get a decent performance.

VII. Related work

We have investigated different RV approaches [12]–
[23] w.r.t. their applicability to our requirements. It is
remarkable that the need for RV at the level of software
architecture has already been identified in 2001 by Mike
Barnett and Wolfram Schulte at Microsoft Research [15].
They proposed a dedicated architecture description lan-
guage named ASML. However, it only supports very
specific client-server architectures and like many other
approaches (e.g., MOP [18] or MOPBox [17]) has no
built-in support for real-time properties. Approaches like
RV-BIP by Falcone et al. [21] or the Runtime Reflec-
tion Framework (RRF) presented by Bauer et al. [12]
inspired ARV. However, RV-BIP only works with BIP
architectures and both require a dedicated monitoring
component, which ARV does not.

Regarding the relational databases, LARVA [19] was
our main inspiration. The authors argue that logging is
performed in many systems anyhow and the idea to use
SQL select statements helps to filter the events that need
to be monitored. However, the original LARVA [14] has
been designed for Java programs, not for architectures.

83

VIII. Conclusion and FutureWork

This paper contributes ARV—a new way of using RV
on architecture level. It consists of a methodology and
framework that enables a user to verify/refute hypothe-
ses of system behavior using a language based on timed
LTL. Hypotheses can be formulated ‘beyond model
boundary’, because the underlying model is domain-
independent. New architecture models can be integrated
with the help of the Domain Adapter concept. Another
advantage is that properties are translated into com-
pendious database queries. Thus, in contrast to other
RV approaches, where the client needs to process every
individual runtime event, ARV allows to offload the
processing to a standard database. We evaluated ARV
using an AUTOSAR system. A graphical interface en-
ables us to verify arbitrary hypotheses concerning the
runtime behavior of its architectural elements. Finally,
the framework supports multiple DBMS.

We consider the current state of ARV a starting point.
In the future, many aspects have to be examined further.
The evaluation is still at an early stage, especially re-
garding performance. It would be interesting to compare
ARV’s combined queries with the traditional approach
to feed every single into a state machine w.r.t. execution
times and the amount of downloaded data. Here, the
parallelization of the queries can have an impact.

Furthermore, the underlying technologies (e.g., Entity
Framework, relational databases) have to be further
evaluated. It might be a better approach to use other
database technologies and paradigms that are more
suited to runtime data and its relation to the architecture
(e.g., graph and time-series databases). Also, the domain-
independent model can be optimized w.r.t. query perfor-
mance. For example, verifying a hypothesis that involves
several configurations or even traces with the current
model requires many joins at the database level, which
can be very expensive.

Another aspect is the query language. Even with
the autocomplete feature, our LTL variant is still quite
cumbersome to use in a productive environment. Other
Languages, e.g., those used to query graphs might be
more suitable to express typical hypotheses w.r.t. run-
time analysis of integrated architectures.

Finally, we want to further evaluate the universality
of ARV and its capabilities. Therefore, we want to apply
the approach to an actual heterogeneous system in the
aerospace domain.

References

[1] ISO, “Road vehicles – Functional safety,” 2011.
[2] C. Baier, J.-P. Katoen, and K. G. Larsen, Principles of model checking.

MIT press, 2008.
[3] A. Zeller, Why Programs Fail, Second Edition: A Guide to Systematic

Debugging, 2nd ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2009.

[4] L. Stockmann, “Debugging models in the context of automotive
software development,” in Proceedings of the Doctoral Symposium
of the ACM/IEEE 18th International Conference on Model Driven
Engineering Languages and Systems, M. Chechik and D. Kolovos,
Eds., 29 Sep. 2015.

[5] Y. Falcone, K. Havelund, and G. Reger, “A tutorial on runtime
verification.” Engineering Dependable Software Systems, vol. 34, pp.
141–175, 2013.

[6] A. Pnueli, “The temporal logic of programs,” in Foundations of
Computer Science, 1977., 18th Annual Symposium on. IEEE, 1977,
pp. 46–57.

[7] M. Leucker and C. Schallhart, “A brief account of runtime verifi-
cation,” Journal of Logic and Algebraic Programming, vol. 78, no. 5,
pp. 293–303, May/June 2009.

[8] “System Desk Guide,” dSPACE GmbH, 2016.
[9] F. Kirschke-Biller et al., “AUTOSAR – a worldwide standard

current developments, roll-out and outlook,” in 5th VDI Congress
Baden-Baden Spezial 2012, Baden-Baden, 10 2011.

[10] T. Blochwitz et al., “The functional mockup interface for tool
independent exchange of simulation models,” in In Proceedings
of the 8th International Modelica Conference, 2011.

[11] SAE International, “AS5506 - Architecture Analysis & Design
Language (AADL),” 2017.

[12] A. Bauer, M. Leucker, and C. Schallhart, “Model-based runtime
analysis of distributed reactive systems,” in Software Engineering
Conference, 2006. Australian. IEEE, 2006, pp. 10–pp.

[13] S. Cotard, S. Faucou, J.-L. Béchennec, A. Queudet, and Y. Trinquet,
“A data flow monitoring service based on runtime verification
for autosar,” in High Performance Computing and Communication &
2012 IEEE 9th International Conference on Embedded Software and
Systems (HPCC-ICESS), 2012 IEEE 14th International Conference on.
IEEE, 2012, pp. 1508–1515.

[14] C. Colombo, G. J. Pace, and G. Schneider, “Dynamic event-based
runtime monitoring of real-time and contextual properties,” in
International Workshop on Formal Methods for Industrial Critical
Systems. Springer, 2008, pp. 135–149.

[15] M. Barnett and W. Schulte, “Spying on components: A runtime
verification technique,” in Workshop on Specification and Verification
of Component-Based Systems. Citeseer, 2001, pp. 7–13.

[16] H. Barringer, A. Groce, K. Havelund, and M. Smith, “Formal
analysis of log files,” Journal of aerospace computing, information,
and communication, vol. 7, no. 11, pp. 365–390, 2010.

[17] E. Bodden, “Mopbox: A library approach to runtime verification,”
in International Conference on Runtime Verification. Springer, 2011,
pp. 365–369.

[18] F. Chen and G. Roşu, “Towards monitoring-oriented program-
ming: A paradigm combining specification and implementation,”
Electronic Notes in Theoretical Computer Science, vol. 89, no. 2, pp.
108–127, 2003.

[19] C. Colombo, G. J. Pace, and P. Abela, “Offline runtime verification
with real-time properties: A case study,” Proceedings of WICT, vol.
2009, 2009.

[20] M. d’Amorim and K. Havelund, “Event-based runtime verifica-
tion of java programs,” in ACM SIGSOFT Software Engineering
Notes, vol. 30. ACM, 2005, pp. 1–7.

[21] Y. Falcone, M. Jaber, T.-H. Nguyen, M. Bozga, and S. Bensalem,
“Runtime verification of component-based systems,” in Inter-
national Conference on Software Engineering and Formal Methods.
Springer, 2011, pp. 204–220.

[22] L. Pike, A. Goodloe, R. Morisset, and S. Niller, “Copilot: a hard
real-time runtime monitor,” in International Conference on Runtime
Verification. Springer, 2010, pp. 345–359.

[23] Y. Vandewoude, P. Rigole, D. Urting, and Y. Berbers, “Draco:
An adaptive runtime environment for components,” Appendix of
the EMPRESS deliverable for Run-time Evolution and Dynamic (Re)
configuration of Components, 2003.

[24] “Operating System Specification,” OSEK/VDX Version 2.2.3, 2005.
[25] R. Alur, T. Feder, and T. A. Henzinger, “The benefits of relaxing

punctuality,” J. ACM, vol. 43, no. 1, pp. 116–146, Jan. 1996.
[Online]. Available: http://doi.acm.org/10.1145/227595.227602

[26] O. Maler and D. Nickovic, “Monitoring temporal properties of
continuous signals,” in Formal Techniques, Modelling and Analysis
of Timed and Fault-Tolerant Systems. Springer, 2004, pp. 152–166.

84

