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Abstract

Static program analyses and transformations for Java face
many problems when analyzing programs that use reflection
or custom class loaders: How can a static analysis know
which reflective calls the program will execute? How can
the analysis get hold of a class that the program may load
from a remote location or even generate on the fly? And
if its results are used to transform classes offline, how can
it ensure that the transformed classes are re-inserted into a
running program that uses custom class loaders?

In this paper we present TAMIFLEX, a tool set for taming
reflection. TAMIFLEX consists of two novel instrumentation
agents. The Play-out Agent logs reflective calls into a log
file and gathers all loaded classes, including generated ones.
The Play-in Agent re-inserts offline-transformed classes into
a running program. To show how researchers can use TAMI-
FLEX, we modified the Soot framework for static analysis,
and in particular it’s points-to-analysis component Spark, so
that it uses the log file to construct a sound call graph and
points-to sets even for programs that use reflection, custom
class loaders, and dynamic class generation.

We prove our approach feasible by applying TAMIFLEX
to the 9.12-bach release of the DaCapo benchmark suite,
which uses all the aforementioned dynamic features. For the
first time, TAMIFLEX enables researchers to conduct static
whole-program analyses on this version of DaCapo. Our ex-
periments show that our combination of Soot and TAMI-
FLEX produces sound call graphs, that TAMIFLEX usually
produces less than 10% runtime overhead and that the re-
flection log files do not depend much on program input.

Categories and Subject Descriptors F.3.2 [Semantics of
Programming Languages]: Program Analysis
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General Terms Algorithms, Reliability

Keywords Reflection, static analysis, dynamic class load-
ing, dynamic class loaders, native code, tracing

1. Introduction

Researchers have developed many useful static program an-
alyses, ranging from analyses that compute a variable’s pos-
sible runtime types [17], may- and must-aliasing informa-
tion [8] and call graphs [29] to analyses that determine the
shape of custom data structures [21, 34], track an object’s
typestate [9, 16, 18, 32], or try to enforce restrictions on
the program’s information flow [30]. Many of these analyses
are coupled with program transformations, for instance static
optimizations. As one example, in previous work [9, 16, 32]
we and others have used static typestate-analysis informa-
tion to restrict the updates to the internal state of runtime
monitors for typestate properties [37].

Virtually all of these analyses are whole-program analy-
ses, i.e., the analyses must analyze the entire program to de-
liver sound results. This is because most analyses operate
under a closed-world assumption: for instance, the analyses
frequently assume that a call graph is complete, in the sense
that if a call graph contains no edge from a method m to a
method n then it can never be the case that m calls n.

Obtaining a “whole program” yields many challenges
when analyzing Java programs that use reflection, or load
classes using custom class loaders:

1. Industrial Java applications frequently use custom class
loaders that may load classes from obscure locations, or
even generate classes on the fly. A static analysis needs
to get hold of these classes even if it has no knowledge of
or access to these custom class loaders.

2. The same programs also frequently use reflection to in-
voke methods or instantiate objects of types that pro-
grammers cannot fully determine at compile time. To
construct a complete call graph, a static analysis needs
to be aware of these calls.

3. Even if a static analysis is aware of reflective calls and
has access to all classes that are loaded at runtime, re-



searchers need to modify the analysis to handle the re-
flective calls and all the program’s classes correctly.

4. The fourth problem concerns program transformations. If
programmers use static-analysis results to transform (e.g.
optimize or instrument) an application, then one needs
to transparently re-insert the transformed classes into the
application’s class-loading process, even if this process
relies on custom class loaders.

In this paper we present TAMIFLEX, a tool suite for “tam-
ing reflection”, that can solve all of these problems. TAMI-
FLEX consists of two novel instrumentation agents, a Play-
out Agent and a Play-in Agent. The Play-out Agent agent
logs reflective calls into a reflection log file, and gathers all
classes that the program loads, even when the program loads
these classes through custom class loaders or generates them
on the fly. This effectively solves Problems 1 and 2.

If users of TAMIFLEX simply wish to analyze a program
statically, without transforming the program, they only need
to use the Play-out Agent, not the Play-in Agent. Users can
simply feed the class files and reflection log that the Play-out
Agent generates to their favorite static-analysis tool. In many
cases, however, users may want to use static-analysis results
to transform classes, e.g., to optimize or instrument them. In
this case, one faces the problem of re-packaging the trans-
formed classes in such a way that the original program finds
the classes where it expects them. Without special tool sup-
port, this can be either hard, for instance if the program loads
the classes from a remote location, or even impossible, if the
program generates the classes on the fly. The Play-in Agent
solves this problem, Problem 4 from above, by re-inserting
offline-transformed classes into a running program, i.e., on-
line. The agent can even replace classes that an application
generates at runtime.

To show how one can solve Problem 3 using TAMIFLEX,
we modified the static-analysis framework Soot [39], and
in particular its points-to-analysis component Spark [27], so
that it uses the reflection log file and the class files produced
by the Play-out Agent to construct a sound call graph and
points-to sets even for programs that use reflection, custom
class loaders and load runtime-generated classes. Support-
ing reflection required modifications to the construction al-
gorithms for call graphs and points-to graphs. We did not,
however, need to modify Soot to support custom class load-
ers: TAMIFLEX s Play-out Agent provides to Soot all classes
that the program loads at runtime in the form of simple class
files on disk.

We prove the feasibility of our approach by applying
TAMIFLEX to the 9.12-bach release [13] of the DaCapo
benchmark suite [7], which uses all the dynamic features
we mentioned. For the first time, our tool suite enables re-
searchers to conduct static whole-program analysis on this
version of DaCapo. We further give experimental evidence
that the call graphs that Spark produces in combination with
TAMIFLEX are sound: For evaluation purposes, we imple-

mented a JVMTI agent [25] that produces highly accurate
dynamic call graphs without modifications to the underly-
ing virtual machine. In particular, the dynamic call graphs
thus produced contain calls from native code back into Java
bytecode. We then used Lhotdk’s call-graph differencing
tool PROBE [26] to compare the dynamic call graphs to
the static call graphs that we compute with Soot and TAMI-
FLEX. The results show that our call graphs are complete,
even for runtime-generated code. We further show that both
our agents induce a runtime overhead of usually below 10%.
The Play-in Agent in particular induces no overhead after all
classes have been loaded. This shows that researchers can ef-
fectively use TAMIFLEX to run statically optimized versions
of DaCapo: when set to run a benchmark with multiple iter-
ations, the Play-in Agent will only cause a runtime overhead
during the first iteration. Our initial results further suggest
that the reflection log files, and thus also the static-analysis
information, are largely input independent.

To summarize, this paper presents the following original
contributions:

e The design and implementation of two Java instrumen-
tation agents that can emit all loaded classes into a local
class repository, log reflective method calls, and re-insert
offline-transformed classes into a program, even if that
program uses custom class loaders.

¢ An updated version of Soot and Spark that properly takes
reflective calls into account.

e In combination, the first automated solution that allows
researchers to conduct static whole-program analysis and
transformation on the 9.12-bach release of DaCapo.

e A set of experiments that prove that our tool chain is ef-
ficient, yields sound call graphs for all DaCapo bench-
marks, and is largely input independent.

We organized the remainder of this paper as follows: In
Section 2 we briefly discuss the DaCapo benchmark suite
and how its use of reflection and custom class loaders influ-
enced our design decisions. In Section 3 we give an overview
of the architecture of TAMIFLEX. Section 4 explains the
Play-out Agent and the Play-in Agent in detail, while Sec-
tion 5 discusses our modifications to Soot and Spark. We
report on our experiments in Section 6, discuss related work
in Section 7, and conclude in Section 8.

2. DaCapo Benchmark Suite

The premier goal of the DaCapo benchmark suite [7] is to of-
fer “a set of open source, real world [Java] applications with
non-trivial memory loads” to “the programming language,
memory management and computer architecture communi-
ties” [13]. The designers of DaCapo originally implemented
the suite primarily with runtime techniques like just-in-time
compilation and garbage collection in mind. Nevertheless,
in recent years DaCapo also appears to have become one of



the most widely used benchmark suites in the static-analysis
community [5, 22, 31, 36, 42]. We expect that the second
incarnation of the benchmark suite (version 9.12-bach), re-
leased after three years of development, will achieve a simi-
lar status, as it provides a broad, up-to-date selection of Java
programs. Table 1 gives an overview of the benchmarks in
the “bach” release.

Analyzing realistic Java programs, such as the ones con-
tained in the DaCapo suite, poses many technical challenges.
In the following, we discuss the major challenges that moti-
vated TAMIFLEX and its design.

References through dormant code The first major release
of DaCapo, release 2006-10, consists of a single JAR file
containing the combined classes of 11 different benchmarks.
Unfortunately, when trying to analyze DaCapo statically,
we found this JAR file to be incomplete: classes within
the JAR file statically reference other classes that the JAR
file does not contain and which are also not part of the
Java Runtime Library. This problem went initially unnoticed
because DaCapo’s particular benchmark runs never cause
the Java runtime to load these “missing” classes. A static
analysis, however, cannot easily tell apart live code that a
particular run executes from dormant code that the run does
not execute. After all, which pieces of code are live likely
depends on input data. A static-analysis tool that takes all
possible inputs into account will therefore usually require
the missing classes to be present or will cease working.
In 2006, for DaCapo’s 2006-10 release, the first author of
this paper spent more than two weeks modifying DaCapo’s
build scripts so that they would include all missing classes.
As we recently discovered, these modifications broke with
the transition to the new DaCapo release. The prospect of
spending another two weeks modifying build scripts greatly
motivated us to search for a more maintainable, long-term
solution. We present one such solution in Section 5, namely
modifications to Soot (a widely used static-analysis tool for
Java) that allow Soot to properly handle “missing classes.”

Reflective method calls The second problem that we faced
was the one of reflective method calls. In DaCapo, one
uses a command-line parameter to the suite’s main class,
dacapo.Harness, to specify which benchmark to run. This
harness class then executes the benchmark itself: it extracts
the name of the benchmark’s driver class from a configura-
tion file, uses reflection to instantiate the class, and invokes a
particular method on the resulting class object. The design-
ers of DaCapo probably opted to use reflection for extensi-
bility: to add a benchmark, one would only need to add the
benchmark’s classes and a particular configuration file, but
one would not have to re-compile dacapo.Harness itself.
But reflection poses a major obstacle to any static analysis:
How should the analysis be aware of the particular bench-
mark name that the user chooses to provide, and how should
the analysis be able to infer the name of a main class from a
configuration file in a format that it is not aware of? Back in

2006, we chose to provide benchmark-specific driver classes
that call the same methods directly that dacapo.Harness
would call reflectively. While this is not a general solution, it
seemed sufficient at the time. However, later on we found out
that not only the harness uses reflection but also the bench-
marks themselves. This caused the call graphs produced by
our static analyses to be largely unsound. One important fea-
ture of TAMIFLEX is therefore its ability to produce a re-
flection log file. Static analyses can then use this log file to
discover which reflective calls can occur at runtime. In Sec-
tion 5 we will explain modifications to Soot that allow the
static-analysis tool to compute sound call graphs using the
log files that TAMIFLEX produces.

In December 2009, the DaCapo suite saw its second ma-
jor release: 9.12-bach. While this release retains the chal-
lenges for static analysis posed by its predecessor, we dis-
covered that this new DaCapo release introduced another
challenge for static program analyses and especially for pro-
gram transformations: custom class loaders.

Custom class loaders 'While DaCapo’s earlier release was
packaged as a single JAR file, the new release is packaged
as a JAR file containing other JAR files, roughly one JAR
file per benchmark'. When starting the suite, the Harness
extracts the JAR files for the chosen benchmark from the
main JAR file and then loads the benchmark’s classes us-
ing a custom class loader. This design is not accidental: dif-
ferent benchmarks in DaCapo sometimes use the same li-
braries, but in different versions. Providing these different
versions in different JAR files avoids name-space collisions.
However, this design decision poses yet another challenge
for analyzing DaCapo statically: How can we get access to
these classes without knowing this class loader’s internals?
And how can we re-insert statically transformed classes into
these internal JAR files without having to convert our static-
analysis tool into a sophisticated build tool? In Section 3
we explain how TAMIFLEX solves this problem by using
a pair of instrumentation agents, the Play-out Agent and
the Play-in Agent, to obtain classes for static analysis, no
matter where they are loaded from, and to re-insert offline-
transformed classed into a running system, respectively.
Although our experience with DaCapo motivated our
work, we wish to note that the problems that we describe are
by no means specific to the DaCapo benchmark suite. In-
stead, the problems are simply a consequence of using real-
world Java applications. When analyzing such programs,
these problems will naturally arise sooner or later. One ma-
jor point of this paper is to show that static-analysis tools
can cope with such awkward but realistic features instead
of either abandoning soundness by ignoring them or forcing
programmers to write programs that avoid such features.

INote that the input data to a few benchmarks (eclipse, tomcat, trade-
beans, tradesoap) encompasses further JAR files (plug-ins, web applica-
tions, web services).



Benchmark Description

avrora a set of simulation and analysis tools in a framework for AVR micro-controllers

batik a Scalable Vector Graphics (SVG) toolkit that renders a number of SVG files

eclipse executes some of the (non-gui) JDT performance tests for the Eclipse IDE

fop* takes an XSL-FO file, parses it and formats it, generating a PS or PDF file

h2 executes a TPC-C like benchmark written by Apache as part of the Apache Derby database, the
application models: customers, districts, warehouses, purchases and deliveries

jython executes (interprets) the pybench benchmark or a small Python program

luindex* uses lucene to index a set of documents; the works of Shakespeare and the King James Bible

lusearch uses lucene to do a text search of keywords over a corpus of data comprising the works of Shakespeare
and the King James Bible

pmd analyzes a set of Java classes for a range of source code problems

sunflow renders a classic Cornell box; a simple scene comprising two teapots and two glass spheres within an
illuminated box

tomcat runs the tomcat sample web applications

tradebeans  a EJB-container version of the Daytrader benchmark from Apache

tradesoap a SOAP version of the Daytrader benchmark from Apache

xalan transforms XML documents into HTML

*=only available in sizes small and default, not large

Table 1: The DaCapo benchmarks in the new “bach” release; information taken from DaCapo’s release notes

Similarly, we note that TAMIFLEX is by no means limited
to DaCapo. Researchers can use TAMIFLEX in combination
with any Java program. The same holds for our modified
versions of Soot and Spark.

3. TamiFlex

Figure 1 gives an overview of the architecture of TAMIFLEX.
On the top left, we show a program that potentially uses cus-
tom class loaders to load classes from arbitrary locations (the
cloud), or even to generate classes on the fly. The pro-
gram may further call methods such as Class.forName (),
Constructor.newInstance() or Method.invoke() to
construct objects or invoke methods through reflection.

Let us now assume that the program executes with our
first instrumentation agent installed: the Play-out Agent (de-
tails in Section 4.2), which Figure 1 shows below the pro-
gram. In this agent, the Tracer, a class-file transformer, in-
struments the classes Class, Method and Constructor so
that calls to methods such as Class.forName() generate
entries in a log file (shown on the bottom left). The agent
further comprises a Dumper component, which writes all
classes loaded by the program, including classes that the pro-
gram’s class loaders may have generated on the fly, to a local
repository, i.e., a flat directory. Certain class loaders assign
randomized names to such classes. To be able to re-identify
these classes across multiple runs, the Dumper renames the
classes using a hash code over the contents of each class.
The Dumper communicates with a Hasher component (Sec-
tion 4.4) to obtain these hash codes.

Executing a program with the Play-out Agent enabled
will result in a repository that contains a reflection log file
and all classes that the program loaded during the observed

run. To obtain a reasonably complete log file and set of
classes, users can run the program multiple times. The agent
will then update the log, appending information about re-
flective calls that were not previously observed, and dump
additional classes that had not been loaded on previous runs.
One can repeat this process until reaching a fixed point.

Next, users can feed the log file and the dumped classes
into some static-analysis tool to conduct static analyses, and
to transform, e.g., optimize or instrument, the code. We use
Soot [39] with Spark [27]. Running Soot results in a set of
transformed class files (shown on the bottom right).

The right-hand side of Figure 1 shows what happens
when the user runs the program with the second agent, the
Play-in Agent (Section 4.3), installed. Whenever the origi-
nal program is about to load a class c, a Replacer within the
agent tries to retrieve the offline-transformed version of c
from the local repository. For classes that bear a randomly
generated class name, the agent asks the Hasher compo-
nent to compute a normalized class name. The Replacer then
looks for the offline-transformed class under the same nor-
malized name that the Dumper used to store the class. If the
Replacer finds a class in the repository, it replaces the orig-
inally loaded (or generated) class with the found class on
the fly. Otherwise, i.e., if the Replacer cannot find an ap-
propriate class file, for instance because no such class was
loaded on previous runs, the Replacer executes no replace-
ment. This means that in this case the program will instan-
tiate the class that the class loader originally loaded from
“the cloud.” Through a command-line option to the Play-in
Agent, users can opt to have a warning message issued when
such a situation occurs.
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Figure 1: Overview of TAMIFLEX

Note the flexibility of this design; TAMIFLEX works with
any Java 6-compatible virtual machine that supports re-
transforming classes through the java.lang.instrument
application programming interface (API). Through this API,
our agents are able to write out and replace classes that
the program loads. With the aid of our Hasher compo-
nent, this even works in cases where the program generates
classes with randomized names. Further, TAMIFLEX poses
no special restrictions on the static-analysis component (here
Soot/Spark), except that it must be able to load class files
from disk, to write class files to disk, and to correctly inter-
pret the reflection log file that TAMIFLEX generates.

TAMIFLEX, all our experimental data and all tools to
reproduce this data are available at the TAMIFLEX website:

http://tamiflex.googlecode.com/

4. Java Agents

As Figure 1 illustrates, TAMIFLEX consists of two Java
instrumentation agents: the Play-out Agent and the Play-in
Agent. Both use the java.lang. instrument API. We first
give a general overview of this API. Then, in Section 4.2,
we explain the Play-out Agent. We explain its counterpart,
the Play-in Agent, in Section 4.3. Finally, in Section 4.4 we
explain how both agents consistently normalize randomized
names of generated classes by hashing on the class contents.

4.1 The java.lang.instrument API

With Java 5, Sun introduced the java.lang.instrument
API that allows programmers not only to transform classes
as they are loaded but also to re-transform classes that have
been loaded already. Hereby, programmers manage class
transformations through an instrumentation agent that reg-
isters a set of class-file transformers. Just before invoking
the program’s main method, the Java virtual machine in-
vokes the agent’s premain method. To transform a class, the
agent passes the byte array that defines this class to a class-
file transformer. The transformer can then return a modified
byte array, replacing the original definition of the class, or
opt to return null, indicating that the un-modified class def-
inition should be used. During class re-transformations, a
transformer may only replace method bodies; all signatures
of classes, fields and methods need to remain unchanged.

4.2 Play-out Agent

The Play-out Agent fulfills two tasks: (1) logging informa-
tion about reflective calls, and (2) dumping all classes to disk
that the running program loads or generates.

4.2.1 Logging reflective calls

To log reflective calls, the agent first instantiates the Tracer, a
class-file transformer that uses the ASM toolkit [11] to insert
instrumentation into methods that may load or call code
through reflection (see left of Figure 1). Our experiments



will show that, at least for our benchmark set, it suffices to
restrict ourselves to the following reflection methods:

Class.forName(String) We log the String argument
that the program passes to this method.

Class.newInstance() We log the qualified name of the
class that receives the call.

Constructor.newInstance(..) We log the complete
signature that is encoded in the constructor object that
receives the call.

Method.invoke(..) We log the complete signature that
is encoded in the method object that receives the call.

The agent instruments the methods by inserting appropriate
calls to a small runtime library. At every such inserted call,
the library adds a data-set entry to a global set. Every en-
try contains the target of the reflective call (as explained in
the list above), the line number of the call site at which the
method was invoked (if available), and the qualified name
of the surrounding method. We obtain the last two pieces
of information through a stack trace. TAMIFLEX stores log
files as lines of semicolon-separated values (CSV file for-
mat), which makes it easy to import log files into spread-
sheet applications. A typical entry that the fop benchmark
generates (without the line breaks) looks like this:

Method.invoke;
<org.apache.fop.cli.Main:
void startFOP(java.lang.String[])>;
org.dacapo.harness.Fop.iterate;
41;

This entry tells us that method iterate called method
startFop at line 41, using a call to Method. invoke.

The data-set entries are not written to disk until just be-
fore the program shuts down: the agent installs a “shut-
down hook” [35] that prints all entries to the reflection log.
Class-file transformers are generally invoked through multi-
ple threads: every thread that loads a class causes transform-
ers to execute in this thread. By executing the bulk of the
work in a shutdown hook, which is executed by one single
thread only, we can restrict synchronization to a necessary
minimum, lowering thread contention.

It is important to note that the Tracer inserts the calls
to our runtime library just before every return statement
within the reflection methods, and not at the methods’ en-
try points. This matters because we only want to log calls
of these reflection methods that return successfully. We
found that some programs use, for instance, method calls
Class.forName(c) to check whether a class c exists on
the program’s classpath. If we logged unsuccessful calls,
this would confuse our static analyses, as the analyses would
be unable to find all those classes ¢ for which the call
did not succeed. Interestingly, we also found that this de-
sign decision matters for another reason: to guard against
buggy programs. The method ClassUtils$2.run() in

benchmark tradesoap of the DaCapo benchmark suite calls
forName(..) with “Ljava.lang.0bject;_Helper([]”
as argument, which is not even a valid class identifier. This
method call can never succeed, and therefore appears to
make no sense.

4.2.2 Dumping all loaded classes

The agent fulfils its second task, dumping class files, through
a second class-file transformer, the Dumper. The Dumper’s
internals are quite simple. When the agent invokes the
Dumper passing a byte array for a class c, then the Dumper
simply stores the contents of the byte array in a mapping
that associates ¢ with its byte array. Note that, in general,
multiple class loaders could load different classes with the
same name. When encountering a class ¢ for which a byte
array is stored already, the Dumper checks whether the new
byte array equals the stored one. If it does not, then the
Dumper issues an error message.> For all the benchmarks
that we tested, class names were consistent in the sense that
the benchmarks do not load two different classes with the
same name.

Similar to the Tracer, the Dumper does not actually dump
the class contents to disk until the program shuts down:
the same shutdown hook that triggers the writing of the
reflection log file also causes the Dumper to write out all
stored byte arrays to disk, in the form of . class files.

4.2.3 Bringing it all together

Algorithm 2 outlines the Play-out Agent’s premain method.
As we mentioned, the virtual machine executes this method
just before calling the program’s main method. First, the
agent installs the shutdown hook. Then, in lines 4-6, the
agent causes the Dumper to write out class files for all
already-loaded classes. In lines 8-10, the algorithm next
uses the Tracer to instrument Class, Constructor and
Method, so that they log calls using the Play-out Agent
runtime library. At line 12, the agent registers the Dumper
with the instrumentation API again. This causes the Dumper
to also be invoked on all classes that are still about to be
loaded. Note that the Tracer does not remain active: af-
ter (re-)transforming the classes Class, Constructor and
Method, it is no longer needed.

Users can instruct a Java virtual machine to use the
Play-out Agent when running a program by a simple set
of command-line options. For instance, the following com-
mand will execute a program using class Main from the
current directory.

2Note that the perfect solution would be to store classes under a class
name that is qualified by the defining class loader. We considered this
design choice, but opted against it. Firstly, it would be hard to uniquely
identify class loaders across multiple runs, but this is necessary so that
our Play-in Agent can re-discover the correct class files. Secondly, none of
the static-analysis tools that we know of is class-loader aware. Therefore,
qualifying class names by a class-loader identifier would most likely yield
complications with these tools.
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premain(Instrumentation inst, String[] agentArgs) {
Runtime.getRuntime().addShutdownHook(HOOK);

inst.addTransformer(dumper, CAN_RETRANSFORM);
inst.retransform(alreadyLoadedClasses());
inst.removeTransformed(dumper);

inst.addTransformer(tracer, CAN_RETRANSFORM);
inst.retransform(Class.class, Constructor.class, Method.class);
inst.removeTransformed(tracer);

inst.addTransformer(dumper, \CAN_RETRANSFORM); }

Figure 2: premain method of Play-out Agent (pseudo code)

java -javaagent:poa.jar=/classdir Main

To enable the Play-out Agent, the user has instructed the vir-
tual machine to use poa. jar as an agent, using the special
-javaagent command-line parameter. The virtual machine
passes the “/classdir” portion of the command line di-
rectly to the agent’s premain method. This causes the Play-
out Agent to place all class files and the reflection log file
into the directory /classdir.

4.3 Play-in Agent

The Play-in Agent uses a second class-file transformer to
re-insert offline-transformed classes into a running program,
irrespective of the program’s class-loader setup. Using the
Play-in Agent, the user can just start the program using a
command line as follows:

java -javaagent:pia.jar=/classdir Main

When started this way, the virtual machine will first invoke
the Play-in Agent’s premain method, and then invoke the
program as usual, invoking Main.main(..). The Play-in
Agent’s premain method first registers its own class-file
transformer, the Replacer. Then, the agent uses the Replacer
to replace all already-loaded, re-transformable’ classes by
the contents of the respective .class files from the direc-
tory /classdir that the user provided as a command-line
option. Afterwards, the class-file transformer remains active
to replace in the same way all classes that still get loaded: for
every such class, the original class loader will first load the
original class from “the cloud”, and then pass the byte array
of this class to the Replacer. The Replacer will then delib-
erately ignore this array, however, and return the contents of
the respective . class file instead.

This may seem like wasted work. After all, why should
we first load the definition of a class to then ignore it? There
is two reasons for this design. Firstly, as mentioned earlier,
we may need the original class definition to compute a nor-

3Not all virtual machines support re-transformation and not all classes
are re-transformable. Array classes, for instance, are not, as the virtual
machine generates them on demand.

malized name for the class in case the class carries a ran-
domized class name. (We will give details in the following
section.) In these cases, the original byte array is therefore
not ignored entirely: it is used to compute a hash code. Sec-
ondly, the java.lang.instruments API offers no way to
prevent class definitions from being loaded (or generated)
before a class-file transformer is invoked.

4.4 Normalizing randomized class names

The above scheme of storing and re-inserting classes cru-
cially depends on the assumption that the name of any class
uniquely identifies that class. However, in general, there can
be multiple classes with the same name, and even multiple
names for virtually the same class. The first case can hap-
pen when multiple class loaders load different classes that
have the same class name. As we explained the previous sec-
tion, we ignore this issue because we found that it does not
seem to occur in practice, at least not in the programs that
we tested. The second issue, however, multiple names for
the same class, is worth treating.

We found that the programs that we tested TAMIFLEX
on generate classes at runtime, and sometimes even as-
sign randomized names to these classes. This includes class
names of the form GeneratedConstructorAccessor4?2
or SomeClass$$EnhancerByCGLIB$$4ac69885. These
names are random in the sense that multiple equivalent pro-
gram runs will generate different class names. This is detri-
mental to our purposes for two reasons. Firstly, with every
new run our Play-out Agent will create new entries in the
reflection log, because the agent discovers reflective calls to
classes with names that the agent has not seen before. This
prevents us from easily determining when the reflection log
is “stable”, i.e., when it reaches a fixed point at which we
have seen all the kinds of reflective calls that the program
can execute. Secondly, we would like to offline-transform
classes with randomized names in the same way as we can
transform all other classes. The randomized names, how-
ever, would cause the Play-in Agent to look for a class under
a name that is different from the name that the Play-out
Agent used to store the class on disk.

We therefore decided to enhance both the Play-in Agent
and the Play-out Agent with an additional mechanism to nor-
malize such randomized class names. Normalization assigns
the same names to the same classes, even over multiple runs.
We implement normalization using a Hasher component that
both agents have access to.

The Hasher component generates a new, normalized class
name, based on the contents of the class. Because this is
computationally expensive, we compute normalized names
only for classes that would otherwise carry a randomized
name. To identify such classes, agents carry a user-definable
list of infix strings. When a class name contains the infix, the
agent assumes that the fraction of the class name that follows
the infix may be randomized. For the DaCapo benchmark
suite, we identified the following infixes:



e $Proxy

® ByCGLIB

® GeneratedConstructorAccessor

® GeneratedMethodAccessor

® GeneratedSerializationConstructorAccessor

® org.apache.derby.exe.

This means, for example, that the agent would identify the
class GeneratedConstructorAccessor4? as a class with
randomized name, and would infer that 42 is the random
portion of that name. The Hasher would then replace this
name with a normalized name of the form Generated-
ConstructorAccessor$HASHED$a3f4e2b3, where the
suffix a3f4e2b3 is the hexadecimal hash code for this class.

4.4.1 Computing normalized names

For a class ¢, we compute c’s normalized name normalize( c)
as follows:

1. Use ASM to disassemble the byte array that defines c.

2. Replace all references to the randomized name c by the
string $$$NORMALIZED$$$. (We replace type references
and fully qualified references in string constants.)

3. Replace all references to another class ¢’ with normalized
name normalize(c’) .

4. Use ASM to re-convert the resulting class to a byte array.
5. Compute the SHA1 [33] hash over this byte array.

We perform Step 3 because the hash code for ¢ would not
be stable without replacing c’ by its normalized counterpart:
we would get different hash codes for c, depending on what
randomized name that class generator chose for c¢’. In a
first attempt, we tried a simpler approach that would replace
c’ by $$$NORMALIZED$$$, too. However, this yielded hash
collisions, assigning the same normalized name to different
classes. Such collisions would break a program running with
the Play-in Agent, as the agent would likely confuse offline-
transformed classes.

Note that Step 3 implies recursion: to compute the nor-
malized name of ¢ we need to compute the normalized name
of ¢’. This may cause an infinite recursion, when two classes
with randomized names c and ¢’ reference each other. For-
tunately, all the classes with randomized names that we ob-
served in our experiments only had a tree-like reference
structure; there are no cycles. Our agents can therefore com-
pute a dependency tree and compute hash codes starting
at leaf nodes. If a case occurred in which the dependency
“tree” contains cycles, our agent would not assign normal-
ized names to classes within the cycle and would issue a
warning. A general solution to this problem would have to
use a fixed-point iteration to assign normalized names to
entire strongly-connected components of classes. We leave
such a solution to future work.

We avoid hash collisions by hashing on the complete
definition of a class, i.e., its complete byte array, modulo
references to the class itself. Because we replace references
to other randomized names by their normalized class names
instead of a constant, the hash code is also sensitive to
references to those classes. Assuming a perfect hash function
that never causes collisions by itself, we therefore know that
two classes can only result in the same hash code when they
are in fact equal, and in particular reference equal classes.
The SHA1 hash function which we use has a very small
chance of producing accidental collisions: 27169

4.4.2 How the agents use normalized names

In the Play-out Agent, we normalize class names at the end
of the program run, when executing the agent’s shutdown
hook. The Tracer replaces each reference to a randomized
class name in the reflection log by its normalized counter-
part. In addition, the Dumper uses the ASM toolkit to re-
place in each stored byte array all references to randomized
class names c by their normalized counter part normalize( c).
When the Dumper stores class files on disk, it also uses the
normalized name. This causes the normalized reflection log
to be consistent with the dumped class files.

The Play-in Agent computes normalized class names on
the fly. When the virtual machine invokes the Replacer for
a class ¢ with a randomized name, the agent computes the
normalized name normalize( c) in the same way as above. In
cases where c references another randomized class name c’,
this requires that the normalized class name for ¢’ can be
computed as well. This is only possible when ¢’ is already
known to the Replacer. Fortunately, in our experiments it
was always the case that in such situations the virtual ma-
chine would present c’ to the Replacer before c. Therefore,
computing hash codes posed no special challenges to the Re-
placer. Again, this simple scheme would break in the case of
circular references among classes with randomized names.

After the Replacer has computed normalize(c), it tries
to retrieve a stored .class file under that name. When no
such class file is found, the Replacer returns the original
byte array, optionally issuing a warning. When the class
file is found on disk, the Replacer loads its contents into
a fresh byte array. Then the Replacer again uses ASM to
replace within this byte array all references to normalized
class names by their un-normalized, i.e., randomized coun-
terparts. This assigns to the class the “correct” names that
the running program expects in the context in which the Re-
placer was called. We determine the correct names for the
current context by using ASM to discover references in the
original byte array that the program passes to the Replacer.

5. Modifications to Soot

Soot [39] is one of the most widely used static-analysis
frameworks and researchers have implemented countless
static program analyses on top of Soot. The fact that Soot



comes pre-equipped with Spark [27], an efficient pure-
Java framework for flow-insensitive and context-insensitive
points-to analysis and call-graph construction, makes Soot
particularly attractive for people who aim at implementing
static whole-program analyses. In the following, we de-
scribe how we extended Spark to make use of the infor-
mation that TAMIFLEX’s Play-out Agent provides, enabling
whole-program analysis for programs that use reflection and
custom class loaders.

5.1 Pointer assignment graphs & call graphs in Spark

Spark computes both points-to sets* and a call graph using a
fixed point iteration. Spark starts by inspecting an initial set
of possible entry methods, which comprises the program’s
main method and the static initializers of all classes that
the program references. For each such method, Spark inserts
nodes into a global “pointer assignment graph.” Spark first
discovers all allocation sites within these methods and cre-
ates an “alloc node” for each such site.

Next, Spark creates “variable nodes” for all variables (in-
cluding fields) that the method references. Spark also wires
these nodes with edges, according to all possible assign-
ments within the method. (This includes non-trivial as-
signments like, for instance, assignments to formal param-
eters of outgoing method calls.) Spark can then use the
pointer assignment graph to compute points-to sets: for ev-
ery variable v, the allocation sites that may reach v in the
pointer assignment graph form v’s (intermediate) points-to
set points-to(v).

Next, Spark determines the possible targets of method
calls that originate from the current method. Method calls
induced by invokestatic and invokespecial bytecodes
are simple to resolve, as their call targets are determined stat-
ically. For method calls induced by invokeinterface and
invokevirtual bytecodes, however, Spark needs to deter-
mine the possible receivers that the Java runtime could in-
voke using dynamic dispatch. This is where the points-to sets
come into play again. For a call v.foo (), Spark can over-
estimate the set of receivers through the set points-fo(v) that
it computed above: if v can point to an object of type Foo,
then Foo.foo () is a possible receiver of the call v.foo().
To every call target determined that way, Spark inserts an
edge into the global call graph.

As new methods become reachable by expanding the call
graph, new allocation sites become reachable, too. Therefore
Spark iterates the process of computing points-to sets and
expanding the call graph until it reaches a fixed point.

5.2 Native methods and reflection in Spark

This way of computing points-to sets and a call graph works
very well for closed programs, for which all source code or
bytecode is known, and which reference code only through

4A points-to set for a variable v is the set of all allocation sites that
create objects that may reach v. A call graph is a directed graph that contains
an edge m —n if method m may call method n.

explicit method and constructor calls. However, one needs to
take care when analysing programs that use native calls and
reflection. Although most researchers will not be interested
in analyzing native code itself, native calls may, in certain
cases, call back into the program’s own bytecode.

One special group of native calls® comprises calls to the
Java reflection API. In this paper, we frequently name these
calls “reflective calls”. Ignoring such calls can lead to a call
graph and points-to sets that are unsound even for the pure-
Java portion of the program.

Spark therefore includes a framework for native-method
simulation that allows researchers to automatically insert
points-to relationships for a pre-determined set of native
calls, recognized by signature. Of particular interest to call-
graph construction are calls to the methods Class. forName,
Class.newInstance, Constructor.newInstance and
Method.invoke. The left-hand side of Figure 3 shows how
the default version of Spark handles these calls.

At a statement “c = Class.forName (String)”, Spark
connects the variable node for c to a fresh alloc node of type
Class in the pointer-assignment graph, capturing the return
value of the call. Loading a class may invoke the static ini-
tializer of that class. To extend the call graph appropriately,
Soot first tries to determine the name of the loaded class
from the string argument to the method call (not shown in
the figure). This sometimes works when the program uses
a string constant to refer to the name of the class. For all
other cases, Soot allows users to provide a special command-
line flag “~dynamic-class”, listing the set of names (D in
the figure) of all classes that the program may load using
Class.forName at runtime. For every such class ¢ € D,
Spark inserts a call edge to c’s static initializer <clinit>.

Spark treats calls to Class.newInstance by creat-
ing and connecting alloc nodes for all user-provided “dy-
namic classes” and by creating call-graph edges to the zero-
argument constructors of these classes. (Spark cannot infer
class names from string constants in this case because there
is no string argument to this call.)

Calls to Constructor.newInstance are treated the
same, except that Spark creates call-graph edges not only
to zero-argument constructors but to all constructors of all
“dynamic classes”.

Regarding calls to Method.invoke, it is important to
note that the default version of Spark does not treat such calls
soundly. A possible sound solution would assume that every
method could be called. However, this would result in a call
graph so conservative that it would likely be useless. Spark
therefore ignores such calls entirely, except for optionally
issuing a warning message.

5There are other kinds of native methods that call back into Java
bytecode, for instance calls that invoke shutdown hooks [35] or finalizers.
But these calls are not often relevant and we ignore them for now.
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Figure 3: Construction of pointer assignment graph and call graph.

For each of the four kinds of reflective call sites Class.forName, Class.newInstance, Constructor.newIntance and
Method. invoke we show the nodes that Spark creates in the pointer assignment graph (portion above each dashed line) and
call graph (below dashed line). On the left, we show Spark’s algorithm as it was originally, on the right we show Spark with
support for TAMIFLEX. Nodes with rounded corners and double lines represent allocation sites. Nodes with rounded corners
and single lines represent variables. Rectangular nodes represent methods in the call graph. D is the list of user-provided
“dynamic classes”. The methods forName, clNewInst, ctorNewInst and mInvoke extract the respective lists of reflective
call sites in m from the log file, identifying m by its name and the given line number i.

We use special names for certain nodes in the pointer assignment graph. “elements” nodes denote the union of all elements of
an array. “retval” nodes denote the return value of a method. “rcvr” nodes represent the method’s receiver, i.e., “this”. “arg;”
nodes represent argument variables of a method call at the side of the callee.




5.3 Improving Spark through Reflection Logs

We modified Spark so that it constructs its pointer as-
signment graph and call graph using the reflection log
that TAMIFLEX produces. In result, users no longer have
to specify dynamically loaded classes manually using the
“~dynamic-class” option. This not only eases the burden
on the user, it also improves soundness and precision of
Spark in the following ways.

With respect to calls to Method . invoke, Spark can now
handle these calls in a precise and, more importantly, sound
way. (See bottom right of Figure 3.) When encountering a
statement “r = method.invoke(o,argArray)” at line i
within a method with name® m, Spark searches the log file
for Method. invoke entries that were logged for this very
source location. Spark then creates call-graph edges to the
possible receiver methods of this call, as taken from the
entries in the log file.

In the pointer-assignment graph, Spark connects r to the
variable nodes that model the return values of these methods,
and o to the nodes that model the receiver “this” within
the methods. This models that r and o may point to the
values represented by those nodes. To soundly model the
argument hand-over between the call to Method.invoke
and the possible callees, Spark further connects the node that
models the contents of the argArray to every (reference-
typed) parameter variable in any of the possible callees.
In sync with Spark’s usual handling of array elements, we
do not distinguish between different array elements. Hence,
within the method that was called reflectively it may appear
to Spark that the method’s arguments are aliased even when
in reality they are not.

We handle Class.forName, Class.newInstance and
Constructor.newInstance similarly (see Figure 3). In
these cases, using the log file enhances precision: instead
of creating edges and alloc nodes for all dynamic classes
at every reflective call site, Spark can use the log file to
determine for every dynamic call site (m,i) separately
which classes may be loaded and which constructors may
be called at that particular site. In particular, at calls to
Constructor.newInstance we do not need to create
edges to all possible constructors but only to the ones that
were actually called.

Calls to constructors of abstract classes When modify-
ing Spark to take into account TAMIFLEX’s reflection log
files, we initially found Spark complaining about attempts

Note that the log file holds only the name of the method that contains
the reflective call site, not the full method signature. This is because TAMI-
FLEX creates the entry using a stack trace and Java’s stack traces lack full
signatures. In theory, method names without signatures may render Spark
unable to infer the correct method when multiple overloaded methods with
the same name exist. In practice, however, this is not problematic: Soot can
usually infer the correct method using line-number information. In the few
cases where no such information is available in the bytecode and the calling
method is indeed overloaded, we soundly assume that the log-file entries
could apply to any of the overloaded versions of the method.

to generate alloc nodes for abstract classes. Creating such
alloc nodes usually makes no sense because in Java allocat-
ing objects of an abstract class is not allowed: Java compilers
prevent programmers from calling new on an abstract class.
The Java runtime library further forbids the instantiation of
abstract classes through reflection: invoking newInstance
on a Constructor object of an abstract class results in an
InstantiationException being thrown.

To our big surprise, though, we found that the Java run-
time library itself indeed does successfully call constructors
of abstract classes through reflection, when using serializa-
tion: both DaCapo benchmarks tradebeans and tradesoap de-
serialize certain data structures, which causes the runtime
library to call the default constructor of the abstract class
java.util.AbstractSet. The serialization interface ap-
pears to explicitly circumvent the usual restrictions of the
reflection interface.

The explanation for this somewhat unconventional tech-
nique is that during de-serialization the Java runtime always
initializes the de-serialized object, e.g. of type HashSet,
by calling the default constructor of the object’s first non-
serializable super class; in this case this is AbstractSet.
The serialization API then initializes all fields not defined
by AbstractSet but by HashSet by reading the respective
data values from the serialization input stream.

To cope with this subtlety, we modified Spark so that
it allows for creating alloc nodes for abstract classes when
being in “TAMIFLEX mode”.

5.4 Phantom Classes

Early on, Soot included a concept of “phantom classes”,
representatives of classes for which no definition is known.
These classes act as a sentinel, informing analyses that the
portion of the program that Soot should regard ends here.

Soot creates phantom classes on demand, when encoun-
tering a reference to a class for which it cannot find any def-
inition on its classpath. Likewise, when encountering a ref-
erence to an unknown field of a phantom class, Soot creates
a phantom field with the correct signature. For method ref-
erences Soot creates phantom methods with empty bodies.

Ideally, all of Soot’s components should be able to prop-
erly deal with phantom classes, but in reality Soot’s support
for phantom classes has long been incomplete. Users of Soot
frequently avoided this problem by disallowing Soot to use
phantom classes in the first place. This is only possible, how-
ever, when instead giving Soot access to the definitions of all
classes that the analyzed program references statically.

As we explained in Section 2, this is unrealistic in our sce-
nario: the Play-out Agent only dumps classes that get loaded,
but not every class that a program references statically will
indeed be loaded at runtime. We therefore need a working
mechanism like phantom classes to conduct static analysis



in conjunction with TAMIFLEX. To make phantom classes
work, we had to modify’ Soot in the following ways.

First, Soot contains checks that throw an exception when
attempting to access the super class of some class c and that
super class has not been set. We had to modify this check
so that no exception would be thrown if ¢ is a phantom
class. Second, Soot models both classes and interfaces using
the same concept, “Soot classes”. Phantom classes are just
Soot classes with a special marker. When creating a phan-
tom class, Soot creates this phantom class because it has no
access to the definition of the class. Therefore, Soot cannot
know if the phantom class actually represents a class or an
interface. By default, Soot assumes that a phantom class rep-
resents a real class, not an interface. But Soot also contains
checks that validate that an interfaceinvoke expression
only invokes methods of interfaces, not classes. With inter-
faces represented as phantom classes, this check would fail:
Soot sees a reference to a phantom class, not a “phantom in-
terface”. We solved this problem by modifying Soot to not
perform the check when the target of an interfaceinvoke
is a phantom class. Third, Soot contains a type-inference en-
gine [3] for inferring the declared types of local variables.
This is necessary because Java bytecode contains no such
type information. The type-inference engine uses the class
hierarchy to determine an appropriate declared type for vari-
ables that may hold object references of different types.
Phantom classes have no super classes or super interfaces.
Originally, this confused the type-inference algorithm, caus-
ing exceptions. We modified the inference engine to not take
into account phantom classes when computing type con-
straints. This avoids the exceptions, nevertheless results in
sound type assignment.

5.5 Incorrect references in dormant code

We also needed to make some minor adoptions to Soot
to gracefully handle incorrect references in dormant code.
Jython, for example, contains an invokevirtual bytecode
that attempts to invoke a static method. If execution ever
reached this bytecode, an exception would be thrown. Simi-
larly, both the tradebeans and tradesoap benchmarks contain
a reference to a non-existing method, presumably as a re-
sult of broken separate compilation. Soot normally refuses
to accept programs that contain such errors. We modified
Soot so that it would accept such programs in “TAMIFLEX
mode”. When encountering a method reference with “wrong
staticness”, this problem is just ignored, leaving the method
call it is. When encountering a reference to a non-existing
method, Soot creates this method on the target type but in-
serts a method body that will throw an Error when the pro-
gram’s execution ever reaches the respective call. This is
similar to other Java compilers which often insert statements

7Parts of this modification were contributed by Syed Albiz and Patrick
Lam from the University of Waterloo. We are grateful for their contribution.

that throw an “unresolved compilation error” in such situa-
tions.

Reflective call sites in dormant code Another problem that
we encountered with dormant code, i.e., code that appears
reachable statically but does not actually execute on pro-
gram runs, occurs when such dormant code itself contains
a reflective call site. When Soot encounters such a piece of
code during call-graph construction, it consults the log file
for information about the possible call targets at this site.
But when the code is dormant, the log file cannot contain an
entry for this site.

By default, our extension to Spark simply ignores such
reflective call sites, adding no edges to the pointer assign-
ment graph or call graph. This is sound if the code is not
only dormant but actually dead, i.e., will never execute on
any program run. If this assumption does not hold, i.e., if
runs exist that do execute the thought-to-be-dormant code,
the omission of edges may yield unsound results.

To give some form of guarantee, we allow programmers
to instruct Soot to insert guards at the reflective call sites
in questions. Depending on the chosen option, when pro-
cessing a reflective call site for which the log file contains
no information, Soot inserts code that will either throw an
Error at runtime, aborting the program run, or simply print
a stack trace so that the program run can resume despite the
error. This instrumentation will notify the programmer when
executing the program in a way that deviates from the exe-
cutions that were previously recorded.

6. Experiments

In this section we present experimental evidence that shows
that programmers can effectively use TAMIFLEX and static-
analysis tools like our improved version of Soot to conduct
static whole-program analysis of programs that use reflec-
tion, custom class loaders, and runtime-generated classes.
First, in Section 6.1 we show that the call graphs we ob-
tain through Soot and TAMIFLEX are sound with respect
to all program runs that the programmer recorded using
TAMIFLEX’s Play-out Agent. In Section 6.2 we show that
programmers can collect stable log files even for programs
that do not execute entirely deterministically, such as multi-
threaded programs. Section 6.3 discusses the amount of code
coverage that is required to obtain meaningful log files with
TAMIFLEX. In Section 6.4 we show that applying TAMI-
FLEX to large programs with large inputs is not problematic:
Both our agents induce a runtime overhead of usually below
10%. The Play-in Agent even induces virtually no overhead
at all once all classes have been loaded. In Section 6.4 we
discuss the time and memory requirements of Soot when run
in “TAMIFLEX mode.”. In Section 6.5, we provide a sum-
mary, in Section 6.6, we discuss threats to the validity of our
experimental design.



6.1 Sound call graphs

The main reason for using a TAMIFLEX-generated log file in
a static analysis is that the analysis can use this information
to obtain a complete picture of the program’s calling struc-
ture, i.e., a complete call graph. In general, when we speak
of “complete” call graphs in the context of TAMIFLEX, we
always refer to call graphs that are complete with respect to
the recorded runs. For a static Spark-generated call graph to
be sound in that sense, the graph must contain an edgem — n
for every call from a method m to a method n that occurred on
a run that the programmer recorded with TAMIFLEX when
producing the reflection log file that the programmer uses as
input to Spark.

Obtaining dynamic call graphs To test whether our mod-
ifications of Spark are correct and sufficient, we compared
the static call graphs that we obtain through our combina-
tion of TAMIFLEX and Spark with dynamic call graphs for
the same runs. If the dynamic graphs contain the static ones,
this confirms that that the static call graphs are sound in the
above sense. But obtaining dynamic call graph is a non-
trivial task in itself. For the purpose of this evaluation, we
wrote a native JVMTI [25] agent that produces highly ac-
curate dynamic call graphs. The agent is able to record even
method calls in the very early stages of the VM’s start-up se-
quence, long before main (or even premain) are called; in
particular, the agent can record calls from native code back
into Java bytecode. We believe that the dynamic call graphs
that this JVMTI agent produces are as complete as possible
without modifications to the underlying virtual machine.
Producing these call graphs incurs huge runtime over-
heads, ranging from 124x (batik) to 8587x (sunflow). Multi-
threaded benchmarks suffer particularly from slowdown, as
tracing requires synchronization upon every method call.
This prevented us from recording dynamic call graphs for the
tradebeans and tradesoap benchmarks: in both cases hard-
coded timeouts within the exercised Apache DayTrader [14]
cause the benchmarks to diverge from their usual execu-
tion path when being executed so slowly. (Note that users of
TAMIFLEX do not require this agent at all. They only use the
Java-based Play-in Agent and Play-out Agent, both of which
incur far less overhead, as we will show in Section 6.4).

Comparing dynamic and static call graphs After record-
ing dynamic call graphs with our JVMTI agent, we used
Lhotdk’s call-graph differencing tool PROBE [26] to com-
pare these dynamic graphs to the static call graphs that
we compute with Soot and TAMIFLEX. The tool was of
great help to us, as it not only shows a list of all meth-
ods that are reachable in one graph but not in the other,
but also creates a ranked list of “critical” edges that lead
to sub-components that only exist in one graph. The com-
parison with dynamic call graphs indeed helped us find an
omission in our initial modifications to Spark; for calls to
Constructor.newInstance we had forgotten to insert one

of the necessary edges in the pointer-assignment graph (c.f.
Figure 3). Our results confirm that our current version of
Spark does indeed produce sound call graphs for all DaCapo
benchmarks (with the exception of tradebeans and trade-
soap, for which we do not know if the static call graphs
are sound because we could not record dynamic graphs, as
discussed above). Our implementation of TAMIFLEX, the
JVMTI agent, all static and dynamic call graphs and the diff
information produced by PROBE are available for future ref-
erence at the TAMIFLEX website.

6.2 Stability of log files

One important criterion for the feasibility of our approach is
the stability of the reflection-log files that our Play-out Agent
generates. The agent may, of course, produce different log
files for different program inputs, but it should generate the
same log files for the same inputs. However, even for the
same inputs, programs can generate different program runs,
due to concurrency.

To confirm that our implementation generates stable log
files, we ran every benchmark 10 times, one iteration at a
time, with the Play-out Agent enabled. After every single
run, the agent’s shutdown hook causes the benchmark to
report the number of new entries added to the reflection log.
Table 2 summarizes these numbers. As the results show,
the benchmarks tomcat, tradebeans and tradesoap require
multiple runs until they reach a plateau for which we have
reason to believe that it is the fixed point for this input. All
of these three benchmarks are multi-threaded. At the current
time it remains unclear as to why exactly different schedules
cause different classes to be loaded but we provide all log
files on the TAMIFLEX website, for others to inspect.

6.3 Effect of input size

We next sought to determine how much the quality of a log
file that TAMIFLEX produces depends on the code coverage
of the program run that produces this log file. We model
different levels of coverage through different input sizes.

Do larger inputs yield better coverage? The DaCapo
“bach” release offers up to four input sizes for each bench-
mark: small, default, large and huge. Because “huge” only
exists for a small subset of benchmarks, we restrict our-
selves to the other three input sizes: “small,” “default,” and
“large.” By the names of these input sizes, one could ex-
pect that “large” always yields better code coverage than
both “default” and “small,” etc. To not merely rely on such
assumptions, we measured the relative coverage that the dif-
ferent inputs yield. We used PROBE to create intersections
of all possible combinations of the dynamic call graphs that
we obtained by running DaCapo with each of the input sizes
and with our call-graph generating JVMTI agent enabled.
Figure 4 shows the result of this process as a set of twelve
Venn diagrams [40] (again, as discussed above we cannot
produce dynamic call graphs for tradesoap and tradebeans).
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Figure 4: Venn diagrams [40] showing the number of reachable methods shared by the dynamic call graphs at different input
sizes (small / default / large) and with a run of the DaCapo suite without selecting a benchmark, merely printing the harness’

usage message (no_bm); fop and luindex have no large inputs



small

Run # 01 23456789

avrora 36 36
batik 55 64
eclipse 387 593
fop 321 295
h2 54 54
jython 161 267
luindex 77 86
lusearch 52 56
pmd 71 77
sunflow 61 61
tomcat 568 2 596
tradebeans | 2803 10 2807
tradesoap | 3076 6 3104
xalan 201 201

01 2

default large
3456789 01234
30

64

595

56789

n/a
54
267
n/a
56
79
61
2 2 598 2
10 2807
10 3106 10 6
201

Table 2: Number of new reflection-log-file entries discovered in each of 10 runs

In the figure, “no_bm” denotes the run where we start the
DaCapo suite without stating the required command-line
parameter that selects the benchmark to run. We found this to
be an interesting “input” too, because it can be regarded as an
erroneous benchmark run that deliberately diverges from the
benchmark’s normal execution. As the figure shows, most
benchmarks have a large overlap between all three input
sizes. For instance, avrora has 5064 methods that are reached
no matter what input size is chosen. The number of methods
that is covered by all four configuration (including “no_bm”)
is virtually constant for all benchmarks, at around 2150.
These are methods reachable from the bare benchmarking
harness. Similarly, there appears to be an almost constant
number of methods that is only reachable on the “no_bm”
run: around 125. Often there is also indeed a significant
number of methods covered by “default” and “large”, which
is not covered by “small.” Batik, for instance has 2458 such
methods but it has only three methods that “small” covers
but the other configurations do not. An interesting outlier
is fop; its “small” input appears to induce a call graph that
differs significantly from those induced by the ‘“default”
runs. (The small input causes fop to generate a PDF file,
while “default” causes fop to generate a PS file.) We can
also see that, while “default” is often a super-set of “small,”
the “large” configurations often do not seem to add much
coverage. For instance, in h2 there is only a single method
that the benchmark reaches on a “large” input but not on
the other inputs. To conclude, the assumption that “larger”
inputs yield better coverage appears generally correct, but
there are exceptions: for instance, the number of methods
covered by fop-small is larger than the number of methods
covered by fop-default.

Impact of input size on quality of log files An easy metric
for the quality of a reflection log file is the number of reflec-

tive call sites that it covers. The more call sites it covers the
more call sites Spark can model soundly using the informa-
tion in the log file. In Table 3 we show the number of reflec-
tive call sites covered by the log file for every benchmark
configuration. We were pleasantly surprised to see the num-
ber of covered reflective call sites is not heavily correlated
with the code coverage of the respective benchmark run. For
many benchmarks, the number of covered sites does not in-
crease at all for larger inputs, or only increases slightly. For
avrora, the small and default inputs even reach more reflec-
tive call sites than the large input. Considering Figure 4a,
this is not surprising: the small and default inputs cover 271
methods that the large input does not cover.

Even when a larger input does not cover more reflec-
tive call sites, the larger input could yield more varied kinds
of reflective calls (to more targets) at these call sites. But
looking back at Table 2, we can see that also the increase
in total log-file entries seems unproblematic: only for few
benchmarks does the number of generated entries differ sig-
nificantly among different input sizes. We conclude that
even program runs that expose relatively bad code coverage
do nevertheless frequently cover many reflective call sites.
Therefore, users of TAMIFLEX will not necessarily have to
aim for complete code coverage to produce at least “almost
sound” analysis results.

Impact of input size on number of phantom classes In
Section 5, we explained how we use Soot’s concept of
phantom classes to deal with dormant code that appears to
be live only from a static point of view. Fewer phantom
classes mean more input information for the static analy-
sis. Therefore, having to model fewer classes as phantom
classes would be desirable. How does a change in code cov-
erage impact the number of phantom classes? In Table 4
we give the number of phantom classes that Soot generates



small default large

avrora 18 18 12
batik 41 44 44
eclipse 212 351 351
fop 142 130 n/a
h2 31 31 31
jython 41 50 50
luindex 66 41 n/a
lusearch 40 42 42
pmd 32 32 32
sunflow 30 30 30
tomcat 165 165 165

tradebeans 624 620 618
tradesoap 638 634 640
xalan 54 54 54

Table 3: Number of reflective call sites in log file

small default large

avrora 152 152 154
batik 420 407 383
eclipse 765 554 554
fop 510 522 n/a
h2 96 95 95
jython 461 401 401
luindex 71 57 n/a
lusearch 78 78 78
pmd 217 197 175
sunflow 85 84 84
tomcat 271 271 270

tradebeans 2809 2807 2808
tradesoap 2799 2798 2798
xalan 204 204 203

Table 4: Number of phantom classes

for every benchmark configuration. First we can see that the
number of phantom classes is by no means negligible; es-
pecially tradebeans and tradesoap statically reference many
such “missing” classes. In addition, the numbers show that
there is a slight tendency for larger workloads to result in
fewer phantom classes: runs on larger inputs are likely to
load classes that runs on smaller inputs fail to load (and
therefore fail to dump). However, overall the impact of the
input size on the number of phantom classes is only very
small. This confirms the intuition that we formed above, i.e.,
that small inputs can already reach a long way.

6.4 Performance overhead of TamiFlex

Users may need to apply the Play-out Agent across multiple
runs. In addition, researchers may want to use the Play-in
Agent to measure the performance impact of static optimiza-
tions. It is therefore important to consider the runtime over-
head that both agents incur. To quantify this runtime over-

head, we used the DaCapo benchmark suite for what it was
designed for: runtime-performance evaluation. The evalua-
tion was done on a 2.33 GHz Intel E6500 Core 2 Duo pro-
cessor running Ubuntu Linux 9.10 (kernel 2.6.31) in single-
user mode. The entire main memory of 2GB was available as
heap to the Sun HotSpot Server VM (build 14.2-b01), run-
ning in mixed mode.

We recorded the runtime of ten invocations each for all
benchmarks under three configurations: one without any
agents (acting as a baseline), one with the Play-out Agent,
and one with the Play-in Agent enabled. During each invo-
cation, the benchmark performed two iterations of its default
workload and we report the runtime of both iterations. Fig-
ure 5 shows both the arithmetic mean and standard deviation
of the recorded runtimes. As we can see, in all three con-
figurations the first iteration takes noticeably longer than the
second one. One reason for this is that the VM’s just-in-time
compiler successively optimizes the generated code; thus,
not only has more code already been optimized during the
second iteration, the optimizing compiler will also spend
less time compiling new code. There is another reason, how-
ever, which has more impact on the workings of TAMIFLEX:
the VM loads most (if not all) classes during the first itera-
tion; not only has the VM less work to do during the second
iteration, but so do the Play-out Agent and Play-in Agent
because they are triggered at class load time.

Figure 5 shows that TAMIFLEX incurs little overhead®
during either iteration. The one notable exception is the
tradesoap benchmark, for which the Play-out Agent causes
a 85.5% overhead during the first iteration and a 160.2%
overhead during the second iteration. This is due to the large
number of reflective calls that tradesoap makes—more than
10 times as many as made by tradebeans, the close cousin of
tradesoap and second on the list (cf. Table 5).

What makes logging these reflective calls expensive
are the calls to Thread.getStackTrace that the Play-out
Agent performs (cf. Section 4.2.1). Although TAMIFLEX re-
quires only the topmost stack frames, the calls construct a
representation of the call stack in its entirety.” Table 5 shows
the total number of reflective calls encountered and the aver-
age depth of the call stack at the reflective calls. In the case of
tradesoap, Thread.getStackTrace constructs more than

8We could not measure the runtime nor average stack height of tomcat
because of a known infinite recursion in tomcat that causes the call stack to
grow indefinitely until the respective thread dies. (For more info see tracker
item 2934521 in DaCapo’s bug tracker.) On our benchmarking machine,
this error causes the virtual machine to signal a segmentation fault when
one of our agents is enabled. We suspect that the virtual machine does
not handle the error correctly. All the other numbers that we do report for
tomcat were taken on a different machine on which the error causes no
segmentation fault. Unfortunately we could not use this other machine to
measure runtimes because it is a time-sharing environment unsuitable for
performance evaluation. Even on this machine, an average stack height is
not meaningful when a stack overflow occurs.

9 At the expense of portability, one could improve performance by using
JVMTI [25] to selectively access the stack.
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Figure 5: Normalized runtime® (arithmetic mean + standard deviation) on the programs from the DaCapo benchmark suite

(size: default) for the first (m) and second (o) iteration.

Number Stack height
avrora 38 14.68
batik 212 39.95
eclipse 2730 42.58
fop 3449 50.53
h2 68 22.38
jython 1511 76.11
luindex 90 16.96
lusearch 312 11.08
pmd 29021 29.60
sunflow 88 29.18
tomcat 17594 n/a®
tradebeans 51268 58.09
tradesoap 684486 32.17
xalan 27633 15.43

Table 5: Number of reflective calls and average stack height
at these calls (size: default)

22 million stack frames for the 684486 reflective calls made,
at an average stack height of 32.17, during a single iteration
of the benchmark. The majority of the calls target the acces-
sor methods of a single class, the DataHoldingBean. When
using a “dummy” stack trace instead of constructing stack
traces anew upon every reflective call, the Play-out Agent’s
overhead on tradesoap drops to a mere 10.0%.

The Play-out Agent incurs runtime overhead not only
when logging reflective calls but also when dumping class
files. Figure 5 does not account for this overhead, as the
agent keeps the class files in memory and only dumps them
when the VM is about to shut down, i.e., after the benchmark
itself has finished and has reported its runtime. The time
that it takes to dump the class files is, however, negligible
in practice. In Table 6 we show the amount of classes that
the Dumper dumps for each benchmark run. Dumping the

Number Volume [MiB]
avrora 1039 5.71
batik 2129 12.25
eclipse 3157 23.90
fop 1848 11.42
h2 1006 6.34
jython 3026 18.32
luindex 782 4.72
lusearch 729 4.33
pmd 1520 9.17
sunflow 965 6.02
tomcat 2752 18.02
tradebeans 8078 51.38
tradesoap 8207 51.99
xalan 1264 7.50

Table 6: Classes dumped by Play-out Agent (size: default)

8207 class files loaded when running tradesoap amounts to
51.99 MiB of data and prolongs the runtime of the overall
benchmark invocation by a mere 1.7 seconds.

In contrast to the Play-out Agent, the overhead incurred
by the Play-in Agent is mainly limited to the first itera-
tion, during which it replaces newly-loaded classes. Once all
classes have been loaded, the agent does not slow down the
running application any more. This is important, as it means
that researchers can indeed use the Play-in Agent to evaluate
statically optimized versions of DaCapo.

Runtime and memory requirements of Soot The only
worrisome result that we could find was the increased run-
time and memory consumption of Soot and Spark when
producing call graphs based on TAMIFLEX trace files. The
problem is that, for programs like the DaCapo benchmarks
that use reflection and custom class loaders heavily, Soot
creates much larger call graphs when used with TAMIFLEX



small  default large
avrora 1:50 1:52 2:05
batik 12:10 12:10 12:46
eclipse 11:34 18:18 17:51
fop 24:47 23:36 n/a
h2 2:42 2:43 3:06
jython 41:59 1:01:47 1:00:54
luindex 1:53 1:52 n/a
lusearch 1:48 2:04 2:01
pmd 2:51 2:51 2:56
sunflow 7:00 6:42 6:47
tomcat 23:57 23:41 25:70
tradebeans 1:13:56  1:12:00 1:12:42
tradesoap  1:15:40 1:13:41 1:15:32
xalan 3:08 2:50 2:47

Table 7: Runtimes of Soot in TAMIFLEX mode (h:mm:ss)

than without. This is actually a good thing: large portions
of the call graph that Soot would miss without TAMIFLEX
are likely to be reached at runtime. These call graphs would
therefore be unsound. On the other hand, creating and pro-
cessing larger call graphs (and pointer-assignment graphs)
requires more time and memory. Table 7 shows the runtime
of Soot and Spark in TAMIFLEX mode, i.e., including the
construction of a call graph and points-to sets and including
the time that it takes to write transformed classes back to
disk. (In our case the classes were not actually transformed
but they could have been had we enabled any of the opti-
mizations in Soot.) We ran Soot on a compute server with
12 CPUs of type Quad-Core AMD Opteron 8356, clocked
at 2.3GhZ. (Note though, that Soot is single-threaded). As
virtual machine we used the 64bit Linux version of IBM’s
J9 1.6.0 SR7 because Sun’s HotSpot is known to have prob-
lems with large heap sizes: HotSpot frequently leads to seg-
mentation faults when used with Spark, likely caused by a
programming error in the virtual machine itself, as Spark is
implemented in pure Java. We did not measure the memory
requirements of Soot explicitly but 6GB were insufficient
to run Soot on all benchmark configurations while 10GB
sufficed. It appears that memory-efficient representations of
call graphs and pointer-assignment graphs like the ones in
Paddle [28] and bddbddb [41] gain importance through these
results.

6.5 Summary

To summarize our experimental evaluation, we have shown
that programmers can use TAMIFLEX in combination with
Spark to obtain call graphs that are sound with respect to
all program runs that TAMIFLEX recorded. In addition, we
showed that the quality of the log files that TAMIFLEX pro-
duces does not depend much on the code coverage of the
programs in our benchmark suite: even on small inputs, the
benchmark runs will often visit most reflective call sites,

causing TAMIFLEX to record information about these sites.
Similarly, the input size has no large impact on the the num-
ber of classes that Soot needs to model as phantom classes,
although there is a slight tendency that better code coverage
yields less phantom classes. The runtime overhead of TAMI-
FLEX’s agents is generally low. In particular, there appears to
be no perceivable overhead after the first iteration of any of
the DaCapo benchmarks. The only unfavourable side effect
of using TAMIFLEX appears to be that constructing sound
call graphs and points-to sets based on TAMIFLEX log files
requires a significant amount of computation time and mem-
ory, but this is just due to the nature of these analyses and
nothing that TAMIFLEX itself could address.

6.6 Threats to validity

The internal validity of our experiments is high. In general,
showing that our static call graphs entirely contain the dy-
namic call graph for the same run allows us to conclude that
the static call graphs are sound with respect to those runs.
We could only find one minor problem with this approach.
To perform comparisons between the static call graphs com-
puted with Soot and TAMIFLEX and those generated by the
JVMTI agent (cf. Section 6.1), we use the PROBE call-graph
differencing tool [26]. This tool, however, is unable to dis-
tinguish between signatures that only differ in their return
type. Due to this limitation, PROBE combines these meth-
ods in its internal call-graph model, although our JVMTI
agent and TAMIFLEX can tell the methods apart. But this
problem, which did not exist before Java 5 introduced meth-
ods with covariant return types, is negligible for two reasons:
First, at most two dozen methods found in the generated log
files have a covariant return type. Second, all these meth-
ods are synthetic “bridge” methods [20, Section 15.12.4.5]
which simply call the method they overwrite. As PROBE
treats these two methods as equal, it treats the call to the
overwritten method as a recursive call. While strictly speak-
ing incorrect, this does not affect reachability in the call-
graph at large. Both Soot and TAMIFLEX correctly distin-
guish methods with covariant return types.

The external validity of our experiments is threatened by
our choice of benchmarks programs, and in particular by
the chosen benchmark runs. It appears widely accepted that
the DaCapo benchmarks give an accurate picture of Java ap-
plications with industrial relevance. Nevertheless, we argue
about the stability of TAMIFLEX’s log files only by com-
paring three runs (small/default/large) for each benchmark.
This is unproblematic in the scenario where researchers use
TAMIFLEX and Soot to analyze benchmarks such as DaCapo
only. However, further experiments are required to show that
TAMIFLEX can just as effectively be used in a broader con-
text where many more program runs would need to be con-
sidered. In the near future, we plan to evaluate TAMIFLEX
in combination with test-coverage tools.



7. Related Work

We compare our work with online analyses, Bruno Dufour’s
“blended” analysis, static analyses for resolving reflection,
approaches for partial evaluation, Tatsubori’s approach on
enforced meta-programming layers and PRuby, a hybrid dy-
namic/static approach to type inference. We also refer to an
article on the static-analysis tool Coverity, in which the au-
thors describe problems similar to the ones that TAMIFLEX
solves. Coverity solves these problems through tracing on
the operating-system level.

Online analysis Hirzel et al. [23, 24] present an online ver-
sion of Andersen’s points-to analysis [2] that executes along-
side the program, as an extension to the Jikes RVM [1], an
open-source Java Research Virtual Machine. As an online
algorithm, the approach can exploit runtime information; for
instance, it can observe reflective calls as they execute. An-
dersen’s points-to-analysis algorithm consists of two phases:
finding constraints that model the program’s semantics, and
propagating these constraints until reaching a fixed point. An
online approach requires multiple extensions to the first part:
constraints cannot be computed in a single pass but rather
have to be discovered during program execution. An online
algorithm must therefore use abstractions that allow for such
online updates. Hirzel et al. solve this problem using a spe-
cialized constraint graph.

The authors do not present how programmers can effec-
tively use the points-to sets and the call graph that their
approach computes at runtime. While, for any given point
in time both the points-to sets and the call graph correctly
model the part of the program that has already executed, they
cannot soundly model program parts that have not yet exe-
cuted. Most existing analyses that use call graphs and points-
to sets operate under a closed-world assumption, e.g., as-
sume that call graphs and points-to sets soundly model all
possible executions. It appears non-trivial to convert such
algorithms so that they could use the incomplete, online-
generated points-to sets and call graphs instead. TAMIFLEX
aims at supporting programmers in obtaining call graphs that
are complete for the entire program, by collecting reflection
information and class files across multiple program runs, e.g.
using test cases. That way, assuming sufficient test coverage,
one can obtain a call graph that is complete for all possible
executions. Also, Hirzel’s et al.’s approach is bound to Jikes,
while TAMIFLEX can be used with any Java 6 compliant vir-
tual machine.

Blended analysis Dufour [15] uses dynamically-recorded
calling structure data as input to a static method-escape an-
alysis. In the process, termed blended analysis, a runtime
component feeds information to a static component. The
purpose of this approach is a detailed static analysis of
parts of a large program that has been identified as a per-
formance bottleneck. A dynamic component records infor-
mation about reflective calls and about the classes that are

loaded at runtime, and then feeds this information, along
with information about the performance bottlenecks, to a
static-analysis component. This is similar to TAMIFLEX’s
Play-out Agent, although in a more specialized setting. The
authors’ analysis is deliberately unsound, as it aims to find
the performance problems present in a given program run.
The authors do not address the problem that TAMIFLEX’s
Play-in Agent addresses: re-inserting offline-transformed
classes into the original system. Therefore, the author’s ap-
proach also does not need to normalize randomized class
files in the way TAMIFLEX does.

Reflection analysis  Livshits, Whaley and Lam [4] present
a static-analysis approach that attempts to infer additional
information about reflective call sites directly from program
code. The analysis attempts to use information stored in
string constants to resolve reflective calls statically. (For
call sites for which this information is insufficient, their
approach allows programmers to provide additional infor-
mation through manual hints.) As we discussed in Section 5,
Spark uses the same mechanism for calls to Class . forName
but not for calls to Method . invoke. The author’s approach
further analyzes type casts to narrow down the possible
type of objects created by Class.newInstance: assum-
ing that casts do not fail, an expression such as o = (C)
Class.newInstance(..) will always assign an object of
type C (or a subtype) to o. However, existing pointer analysis
frameworks like Spark implement this idea already: Spark
will narrow down the possible type of o to any subtype of
C for any expression of the form o = (C) <exp>, irrespec-
tive of the use of reflection. The author’s approach assumes
that all class files that the program may load at runtime are
accessible offline. We do not make this assumption; instead
TAMIFLEX’s Play-out Agent gathers these class files for us.

Partial evaluation Similar to Livshits et al., Braux and
Noyé [10] propose a static approach to handling reflection at
compile-time. The author’s solution propagates type infor-
mation through the program’s abstract syntax tree. In some
cases this information may be sufficient to substitute dynam-
ically loaded classes by concrete types and calls to the reflec-
tion API by concrete method calls. However, unlike TAMI-
FLEX, the authors focus on lowering the runtime overhead
involved with creating and manipulating reflective objects of
type Class, Method or Field. For instance, their approach
can replace the code from Figure 6a by the one in Figure 6b
if the type of anObj can be inferred and happens to declare
fields x and y.

Enforced meta-programming layers Tatsubori [38] intro-
duces “Enforced meta-programming layers” (EMPL), a run-
time notification mechanism for reflective calls. Tatsubori
identified a problem similar to the static-analysis problem
that we described: application middle-ware layers may use
a custom class loader 1 to re-write, at load time, calls to
a certain method m(). But when the application happens



Field [] fields = anObj.getClass (). getFields ();

for(int i=0; i<fields.length; i++) {
System.out. println ( fields [i ]. getName() +
”: 7+ fields [1i ]. get(anObj) );

(a) Code using reflection

System.out. println ("x: “+anObj.x);
System.out. println ("y: “+anObj.y);

(b) Replaced code without reflection

Figure 6: Code replacement through partial evaluation

to call m through reflection or happens to load classes that
call m through a class loader that is not a child class loader
of 1 then there is no way for 1 to detect and rewrite these
calls. Tatsubori therefore introduces EMPL as a mechanism
to systematically discover such calls nonetheless, and that
way make them available to rewriting class loaders. At appli-
cation start-up time, EMPL rewrites the application’s class
loaders and the reflection interface of the Java runtime li-
brary such that these classes notify callbacks within EMPL
of any loaded class and any reflective method call. EMPL
then provides programmers with a meta-programming inter-
face to handle such events in a uniform way.

EMPL’s intent is similar to that of TAMIFLEX: making
program analyses and transformations aware of reflection
and dynamically loaded classes. EMPL however targets pro-
gram transformers that rewrite classes at load time, while
TAMIFLEX targets static program analyses. It also appears
that some of the problems that Tatsubori describes were al-
ready solved through the java.lang.instrument API that
we use for TAMIFLEX. For instance, using this API, pro-
grammers can rewrite every class, no matter which class
loader loads it. When Tatsubori published his work in March
2004, this API did not yet exist.

PRuby With PRuby [19], Furr et al. propose a static-
type inference system for the Ruby programming language.
PRuby’s analysis consists of three steps. The first step uses
run-time instrumentation to gather application specific run-
time profiles. The second step replaces dynamic features
with statically analyzable alternatives, based on the profile.
Importantly, PRuby adds instrumentation to safely handle
cases when subsequent runs do not match the profile. In a
last step, DRuby performs static type inference on the trans-
formed code to enforce type safety.

Coverity In arecent article [6], the makers of Coverity [12]
explain some of the difficulties that they encountered from
making a research tool for bug finding ready for the market.
One of the problems they mention:

“Law: You can’t check code you don’t see. It seems
too trite to note that checking code requires first find-
ing it... until you try to do so consistently on many

large code bases. Probably the most reliable way to
check a system is to grab its code during the build
process; the build system knows exactly which files
are included in the system and how to compile them.
This seems like a simple task. Unfortunately, it’s of-
ten difficult to understand what an ad hoc, homegrown
build system is doing well enough to extract this infor-
mation, a difficulty compounded by the near-universal
absolute edict: *No, you can’t touch that.” By default,
companies refuse to let an external force modify any-
thing; you cannot modify their compiler path, their
broken makefiles (if they have any), or in any way
write or reconfigure anything other than your own
temporary files. Which is fine, since if you need to
modify it, you most likely won’t understand it.”

The Coverity group eventually solved this problem (in a C-
based setting) by intercepting system calls during the pro-
gram’s build process. In TAMIFLEX, the Play-out Agent
solves the same problem in a Java-based setting: it writes
all loaded code into a flat directory.

8. Conclusion

During the past decade, the notion of a realistic Java program
has changed. Industrial Java applications have enormously
grown in size and therefore researchers have proposed many
new algorithms to improve the scalability of static analyses.
However, few researchers have considered the problems that
reflection and custom class loaders pose for static analyses.
While ten years ago there may have been few Java programs
that use these dynamic features, today’s industrial Java ap-
plications use reflection and custom class loaders as the rule,
not the exception, improve maintenance, integrate with other
tools and frameworks, or to facilitate distributed computing.

In this work we have presented TAMIFLEX, an integrated
solution to taming reflection in static analysis. For the first
time, TAMIFLEX allows researchers to automatically con-
struct sound call graphs and points-to information for Java
programs that invoke methods and load classes using reflec-
tion, or even generate classes at runtime. Moreover, TAMI-
FLEX allows researchers to transform, e.g. optimize or in-
strument, these classes statically and re-insert the offline-
transformed classes into the original application on the fly.

We have proven the feasibility of our approach by ap-
plying it to version 9.12-bach of the DaCapo benchmark
suite, a realistic cross-section of the current state of the art
in Java programming. Our results show that researchers can
effectively use TAMIFLEX to create sound call graphs for all
DaCapo benchmarks, despite their use of reflection, custom
class loaders and dynamic class generation.
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