
Just-in-Time Static Analysis

Lisa Nguyen Quang Do
Fraunhofer IEM, Germany

lisa.nguyen@iem.fraunhofer.de

Karim Ali
University of Alberta, Canada

karim.ali@ualberta.ca

Benjamin Livshits
Imperial College London, U.K.

livshits@ic.ac.uk

Eric Bodden
Paderborn University and Fraunhofer

IEM, Germany
eric.bodden@upb.de

Justin Smith
North Carolina State University, USA

jssmit11@ncsu.edu

Emerson Murphy-Hill
North Carolina State University, USA

emerson@csc.ncsu.edu

ABSTRACT

We present the concept of Just-In-Time (JIT) static analysis that

interleaves code development and bug �xing in an integrated devel-

opment environment. Unlike traditional batch-style analysis tools,

a JIT analysis tool presents warnings to code developers over time,

providing the most relevant results quickly, and computing less rel-

evant results incrementally later. In this paper, we describe general

guidelines for designing JIT analyses. We also present a general

recipe for transforming static data-�ow analyses to JIT analyses

through a concept of layered analysis execution. We illustrate this

transformation through Cheetah, a JIT taint analysis for Android

applications. Our empirical evaluation of Cheetah on real-world

applications shows that our approach returns warnings quickly

enough to avoid disrupting the normal work�ow of developers.

This result is con�rmed by our user study, in which developers

�xed data leaks twice as fast when using Cheetah compared to an

equivalent batch-style analysis.

CCS CONCEPTS

•Security and privacy → Software security engineering;

•Software and its engineering → Software veri�cation;

KEYWORDS

Static analysis, Just-in-Time, Layered analysis

ACM Reference format:

Lisa Nguyen Quang Do, Karim Ali, Benjamin Livshits, Eric Bodden, Justin

Smith, and Emerson Murphy-Hill. 2017. Just-in-Time Static Analysis. In

Proceedings of 26th ACM SIGSOFT International Symposium on Software

Testing and Analysis, Santa Barbara, CA, USA, July 10-14, 2017 (ISSTA’17),

11 pages.

DOI: 10.1145/3092703.3092705

1 INTRODUCTION

More companies are integrating static analysis checks in their de-

velopment process to detect software bugs early in the development

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA’17, Santa Barbara, CA, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5076-1/17/07. . . $15.00
DOI: 10.1145/3092703.3092705

lifecycle. However, most static analysis tools, such as Microsoft’s

PRE�x/PREfast [9, 32], HP Fortify [19], and Coverity [14], are de-

signed to be used in batch mode, because analyzing real-life projects

can easily take hours. Therefore, many companies run static analy-

sis tools at major release points in the product lifecycle or as part of

nightly builds. In those use cases, developers pour over long lists of

warnings (often in the order of thousands of warnings for real-life

projects), deciding which messages correspond to real errors that

require a �x [4, 22, 26, 38]. Running static analysis tools in this

batch mode limits the potential utility of static analysis: by the time

the results are generated, the developer may have forgotten the

coding context to which these results pertain.

In this paper, we propose the Just-in-Time (JIT) static analysis

concept, in which we advocate for the integration of static analysis

into the development work�ow, allowing developers to immedi-

ately see the impact of their changes in the code without blocking

them from performing other coding tasks. Integrating the analysis

into the development environment (IDE) enables reporting more

manageable, “digestible” sets of warnings almost continuously, in-

stead of providing the user with a long list of warnings at the end

of the analysis run. We also advocate for a di�erent delivery strat-

egy for the results: return simple-to-�x and more precise results

�rst and use the time that the developers take to address them to

compute more complex, false-positive-prone results later, while

integrating developer feedback.

We instantiate this concept through a layered analysis, which

starts at the program point currently edited by the developer, grad-

ually expanding the analysis scope to encompass methods, classes,

�les, and modules further away. Early analysis layers quickly pro-

duce intra-procedural results, known to yield few false positives.

Later layers may �nd more complex results further out, but also run

the risks of higher analysis running times and more false positives.

To concretely illustrate the concept of JIT static analysis, we

instantiate the layered JIT analysis framework with Cheetah, a JIT

taint analysis for Android applications, that we have made publicly

available [10]. To evaluate the bene�ts and shortcomings of our JIT

approach compared to a traditional batch-style analysis, we have

conducted an empirical evaluation of Cheetah using real-world

Android applications, as well as a user study with 18 participants.

This paper makes the following contributions:

• It proposes the concept of JIT analysis that interleaves the pro-

cess of computing analysis warnings with that of the developer

�xing them.

307

https://www.acm.org/publications/policies/artifact-review-badging

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA
Lisa Nguyen �ang Do, Karim Ali, Benjamin Livshits, Eric Bodden,

Justin Smith, and Emerson Murphy-Hill

1 public class A {

2 void main(B b)

3 String s = secret (); // source

4 String t = s;

5 String u = s;

6 sendMessage(s);

7 b.sendMessage(t);

8 leak(u); // sink , leak A
9 }

10 void sendMessage(String x) {

11 x = ''not tainted '';

12 leak(x); // sink , no leak

13 }

14 }

15 public class B {

16 void sendMessage(String y) {

17 leak(y); // sink , leak B
18 }

19 }

Figure 1: Running example illustrating a

JIT taint analysis.

20 void encrypt(Y y, Z z) {

21 Cipher g = new Cipher ();

22 z.maybeInit(g); // polymorphic call

23 g.doWork (); C
24

25 Cipher h = new Cipher ();

26 y.maybeInit(h); // monomorphic call

27 h.doWork (); D
28 }

29

30 // class X extends Z

31 void maybeInit(Cipher a) {

32 a.init();

33 }

34

35 // class Y extends Z

36 void maybeInit(Cipher b) { }

Figure 2: Example illustrating JIT API misuse

detection.

37 void main() {

38 F g = new F();

39 F h = new F();

40 F f = null;

41

42 g = f;

43

44 if(...) h = f;

45

46 x = f.a; E

47 y = g.a; F

48 z = h.a; G
49 }

Figure 3: Example illustrating

a JIT nullness analysis.

• It describes how a large class of existing data-�ow analyses can

be transformed to JIT analyses using a layered analysis approach.

• It shows how such a layered JIT analyzer can be built for taint

analysis and applied to Android applications to �nd potentially

insecure information �ows.

• It empirically evaluates the implementation, focusing on perfor-

mance and developer experience. Our experiments show that

Cheetah returns results on real-world programs in less than a

second, and developers can address leaks twice as fast compared

to a batch-style analysis.

2 OVERVIEW

Despite years of work on eliminating false positives in static analy-

sis tools, end-user experience tends to be overwhelming, even for

the unsound (or optimistic) commercial tools; this is sometimes

called the “wall of bugs” e�ect [22]. Observing how developers

interact with static analysis tools, we highlight that: (1) reporting

a warning is e�ectively useless if it is unlikely to be examined or

result in a bug �x; and (2) some true warnings are abandoned be-

cause they are di�cult to deal with [6]. To address both problems,

batch-style tools typically draw developers’ attention to speci�c

high-priority warnings by applying post-analysis �ltering and rank-

ing to report the results higher or lower in the result list [12, 13].

Analyses that run in the background of the IDE can also report

the results earlier or later in time, allowing developers to focus on

a subset of warnings while the analysis computes further results.

This approach of interleaving analysis and developer activities re-

duces the perceived analysis latency, improving the overall usability

of an integrated analysis tool. Building on those observations, we

de�ne the following requirements for any sensible JIT analysis:

• Prioritization: The analysis must report the results most rele-

vant to the user �rst.

• Responsiveness: To provide the users with immediate feedback

on their changes, the analysis should report the earliest results

quickly.

• Monotonicity: A reported issue cannot be refuted until the

developer has �xed it: the analysis only adds warnings over time.

Therefore, a JIT analysis is not a re�nement of an imprecise

pre-analysis.

2.1 Examples of JIT Analysis

Determining what is relevant to the user directly in�uences what

should be reported �rst by a JIT analysis. We outline concrete

examples for expressing various relevance metrics in three data-

�ow analyses.

2.1.1 Taint Analysis. A taint analysis tracks sensitive data�ows

from sources to sinks to detect privacy leaks [16, 21, 39]. In Figure 1,

a taint analysis reports two leaks: from the source on line 3 to the

sinks on line 8 A , and line 17 B . The sink on line 12 is never

reached, because line 11 overwrites the tainted variable x with

non-sensitive data.

When writing code, developer attention is focused on the par-

ticular parts of the code that they are editing. Hence, it is sensible

to prioritize warnings by locality, i.e., report those warnings that

are closest to the user’s working set �rst. For example, if the user

is editing the main method in Figure 1, A should be reported �rst,

because it is located in the samemethod as the edit point. B should

be reported later, as it is located in a di�erent class.

2.1.2 API Misuse Detection. To ensure correct API usage, anal-

yses verify that programs follow a certain usage protocol [1]. In

Figure 2, the analysis veri�es that a cryptographic cipher is always

initialized with init before a call to doWork. Result C is harder

to detect than D , because the call to maybeInit on line 22 may

resolve to either of the two implementations of the method. Apply-

ing an ordering by locality, a JIT analysis for API misuse detection

can �nd D before C , because �nding C requires computing

information over three di�erent classes compared to two.

Another strategy based on con�dence could prioritize monomor-

phic calls to polymorphic calls, as the latter are more likely to

308

Just-in-Time Static Analysis ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

Table 1: Layers of a JIT analysis for Android applications. L3 and L8model the lifecycle of the event-basedAndroid framework.

Layer Name The layer propagates the data�ows...

L1 Method ... in the same method as the current edit point. At method calls, the analysis stores the propagated

information in memory to be resolved at later layers.

L2 Class ... along calls to methods in the same class as the current edit point.

L3 Class Lifecycle ... along lifecycle methods in the same class as the current edit point.

L4 File ... along calls to methods in the same �le as the current edit point.

L5 Package ... along calls to methods in the same package as the current edit point.

L6 Project Monomorphic ... along the monomorphic calls in the project.

L7 Project Polymorphic ... along the polymorphic calls in the project.

L8 Android Lifecycle ... along lifecycle methods in the project, to handle interactions between the application components.

yield false positives. Similarly, a strategy based on computational

resources could delay the computation polymorphic calls, as they

create more data �ows than monomorphic calls. In general, local

results are not just the most relevant to the user’s current task, they

should also be computed precisely and quickly.

2.1.3 Nullness Analysis. A nullness analysis searches for null

dereferences to avoid runtime errors. In Figure 3, a nullness analy-

sis reports three warnings: E because f points to null, F because

f and g must-alias after the assignment statement on line 42, and

G due to the may-alias on line 44. While E takes minimal com-

putation to �nd, F and G require additional alias information. In

real-world programs, such �ows can become exponentially more

complex, and take minutes of computation to be reported, holding

back the delivery of other simpler results that could be �xed in

the meantime. With an ordering strategy by con�dence, E can be

reported quickly, while alias information is computed to �nd F

and then G .

Correcting the �rst warnings early enables the JIT analysis to

update the results. For example, �xing E , automatically �xes F

and G as well. This early �x reduces the total number of warnings

that are presented to the user.

3 JIT ANALYSIS THROUGH LAYERING

In this section, we discuss how one can transform an existing data-

�ow analysis into a locality-based JIT analysis. Our approach re-

organizes the analysis into locality-based layers. The goal is to

immediately report the results closest to the user’s working set.

Lower analysis layers run �rst, yielding the �rst results in a few

seconds. The following layers enrich the analysis by computing

increasingly complex results.

3.1 Locality-Based Layers for Android

To analyze Android applications, we propose a layered analysis that

computes warnings by gradually increasing the analysis scope, i.e.,

by taking more code into consideration, starting at the current edit

point. Table 1 shows the set of layers for this strategy. Prioritization

comes by design, with a prioritization strategy based on locality.

Responsiveness is ensured as lower layers require minimal class

Table 2: JIT analysis results for Figures 1–3, for the respec-

tive starting points: main, encrypt, and main.

L1 L2 L3 L4 L5 L6 L7 L8

Taint A B

API D C

Null E F G

loading and computational resources. For example, only one class

is loaded to compute results up to L3. Monotonicity is guaranteed

by the internal implementation of each layer: if a layer cannot

con�rm a result, it delegates its computation to later layers.

3.2 Layered Analysis Examples

Table 2 shows the warnings that the JIT analyses described in

Section 2.1 report using the layering system of Table 1 for the

examples in Figures 1–3. The JIT taint analysis reports the direct

leak A at L1. Supposing that classes A and B are in the same �le,

B is reported after the resolution of the call on line 7, at L4. The

JIT API misuse detection reports C and D after the two calls

to maybeInit on lines 22 and 26, respectively. Assuming that the

calls are not in the same package as the encrypt method, C is

reported in L7 and D in L6. Since the layering system does not

include alias-speci�c information, the three null dereferences E ,

F and G are reported at L1.

3.3 Layering an Existing Analysis

To ease exposition, we describe how to transform into a layered

JIT analysis such analyses that are distributive [35], i.e., in which

�ow functions f distribute over the merge operator: f (x) ⊓ f (y) =

f (x ⊓ y). Therefore, one can compute �ows independently from

one another and in any order, without loss of precision. Layering

non-distributive analyses is possible but more complex, and we

leave its description to future work.

3.3.1 Definitions. A trigger is a statement at which the JIT anal-

ysis pauses the propagation of certain data-�ow facts to prioritize

others. In Figure 1, the triggers are the two calls to sendMessage

309

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA
Lisa Nguyen �ang Do, Karim Ali, Benjamin Livshits, Eric Bodden,

Justin Smith, and Emerson Murphy-Hill

Algorithm 1 Formalization of a JIT analysis

1: procedure main

2: PQ := {initialTask()} //init priority queue

3: computedTasks = ∅

4: while PQ , ∅ do

5: pop task t o� priority queue PQ

6: if t < computedTasks then

7: analyze(t)

8: computedTasks ∪ = {t}

9: procedure analyze(〈l , st , in〉)

10: wl := {st } //init worklist

11: IN [st] = in

12: whilewl , ∅ do

13: pop s o�wl

14: if isTriддer (s) and st , s then

15: for l ′ ∈ {1..|layers |} do

16: in′ := {i | i ∈ IN [s], layer (s, i, l) = l ′}

17: add new task 〈l ′, s, in′〉 to PQ

18: else

19: OLD := OUT [s]

20: IN [s] := ⊔{OUT [p] | p ∈ preds(s)}

21: OUT [s] := fs (IN [s])

22: if OLD , OUT [s] then

23: wl ∪ = succ(s)

PQ returns tasks with the lowest priority layers �rst. initialTask(),

isTriддer (), layer (), fs () are parameters of the analysis.

on lines 6 and 7. At those triggers, the JIT analysis propagates u

before propagating s and t to prioritize reporting A , because it is

in the same method as the starting point main. The choice of prop-

agating s or t next depends on the priority layers. Data-�ow facts

created at a trigger create a task. In Figure 1, two tasks are created:

one with the initial set {s} with priority L2, because the call to

sendMessage on line 6 resolves to a call in the same class, and one

with the set {t} with priority L4, because the call to sendMessage

on line 7 resolves to a call in the same �le. The analysis executes

the �rst task because its priority layer is lower, propagating s until

the next trigger, or the end of the program, and then executes the

second task to report B .

3.3.2 Algorithm. We present Algorithm 1 as a general recipe to

transform a distributive data-�ow analysis in a JIT analysis.

The procedure analyze, excluding lines 14–17, represents a stan-

dard �xed-point iteration for a traditional data-�ow analysis that

applies the �ow function fs to the statements of a program (line 21)

until the OUT sets remain unchanged. The transformation to a JIT

analysis divides this large �xed-point iteration into smaller ones

(tasks). At trigger points, the JIT analysis forces an intermediate

�xed-point by not modifying theOUT set (line 14), stopping the cur-

rent analysis task prematurely. Non-trigger statements are handled

in the same way that the traditional analysis does (lines 18-23).

To eventually compute the same results as the traditional analy-

sis, the JIT analysis creates new tasks at triggers, and adds them

to the priority queue PQ to be executed later (lines 15-17). When a

task is executed, the JIT analysis pops the next highest-priority task

from PQ. It then creates a new instance of the traditional analysis,

and initializes it with the appropriate IN set, to continue the prop-

agation where the previous task stopped. The role of the priority

queue is to prioritize task propagation to report certain warnings

�rst. This is determined by layer(s,i,l), returning the priority layer l’

of the new task that will continue propagating the fact i at statement

s, knowing that it was paused at layer l.

While there are multiple ways of instantiating the JIT concept,

Algorithm 1 requiresminimal changes to adapt existing analyses: (1)

a priority queue is added to the solver, (2) no changes are introduced

into the original �ow functions fs (), leaving the de�nition of the

data-�ow problem entirely unmodi�ed, and (3) the analysis writer

can instantiate di�erent priority systems independently from the

solver and the �ow functions through initialTask(), isTriддer (),

and layer ().

Termination. Algorithm 1 extends an existing traditional analysis.

If the traditional analysis terminates, the inner loop (line 12) is

guaranteed to terminate for all analysis instances, because the

algorithm does not modify the IN and OUT sets. The outer loop

(line 4) also terminates, because the number of created tasks is

bounded. Tasks depend on their associated set of facts. If the data-

�ow lattice of the traditional analysis is bounded, the number of

facts, therefore tasks, is also bounded. Line 6 checks that no task is

computed twice, ensuring termination and improving e�ciency.

Soundness. To be as sound as the base traditional analysis, the

JIT analysis checks that every data-�ow fact created by the �ow

functions of the traditional analysis is assigned to at least one layer.

Algorithm 1 partitions the IN set of a statement into smaller sets

(line 16). For this operation to be safe, the data-�ow facts should

be separable, i.e., the analysis problem should be distributive so

that data-�ow facts can be independently distributed between the

layers. We further improve e�ciency by assigning each data-�ow

fact of an IN set to exactly one layer.

Requirements. We summarize the requirements for creating a

JIT analysis according to Algorithm 1:

• The base analysis must terminate.

• The analysis problem must be distributive.

• The priority layers must provide a complete and disjoint parti-

tioning of the IN set.

Layering by locality as described in Table 1 ful�lls these require-

ments by using method calls as triggers, and partitioning IN sets

according to their callees. Other layering strategies can be used to

�t other problems, e.g., by con�dence or computational resources.

4 CHEETAH: A JIT TAINT ANALYSIS

Following our proposed layered approach, we have implemented

Cheetah, a JIT taint analysis that detects data leaks in Android

applications. Cheetah is built on top of the Soot analysis frame-

work [40] and the Heros IFDS solver [7]. IFDS is a framework

for solving inter-procedural �nite distributive subset problems as

graph-reachability problems on a directed graph representing the

facts of interest to the analysis at each program point within the

exploded super-graph [35]. We use IFDS as a succinct way to de-

�ne Cheetah based on a simple IFDS taint analysis that tracks

explicit data-�ows. Cheetah uses the sources and sinks de�nitions

310

Just-in-Time Static Analysis ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

s = getSecret()

t = s

u = s

sendMessage(s)

b.sendMessage(t)

leak(u)

main()
0 u s t

A.sendMessage(x)

B.sendMessage(y)

0 x

x = “not tainted”

leak(x)

leak(y)

0 y

T1 T1

T1

T1

T1

T1

T2

T2

Normal Flow Function Call-to-Return Flow Function Return Flow Function Call Flow Function

T2

T2 T2

T1

T1

T2

T2

Figure 4: IFDS propagation for the example in Figure 1.

Edges are labeled by the analysis task that creates them. The

unlabeled edges are created by task T0.

described by Rasthofer et al. [33]. We have made Cheetah publicly

available online, along with all experimental data [10].

4.1 IFDS Flow Functions

The IFDS �ow functions map each existing data-�ow fact to its suc-

cessors. For a taint analysis, a typical �ow function (1) generates

new taint �ows if it encounters source methods; (2) kills taints if

the tainted variable is overwritten by non-tainted data; or (3) prop-

agates taint if tainted references are assigned to other references.

There are four types of IFDS �ow functions, which we illustrate in

Figure 4 for the running example from Figure 1.

• Normal �ow functions: are applied at each statement that is

not a call, e.g., s is mapped to t on line 4.

• Call �ow functions: are applied at each call statement. They

propagate the data-�ow facts from the caller to the callee, e.g., t

is mapped to y on line 7.

• Return �ow functions: are applied at call statements, and map

the facts from the callee back to the caller.

• Call-to-return �ow functions: are applied at each call state-

ment, and propagate the facts that are not a�ected by the call,

e.g., u is mapped to u on line 7.

For a detailed presentation of Cheetah’s �ow functions, we refer

the reader to our technical report [30].

4.2 Layered Taint Analysis

Using the layers in Table 1 and Algorithm 1 to transform a tradi-

tional IFDS taint analysis into Cheetah, we de�ne:

initialTask() = {L1, startPoint , {0}}

isTriддer (s) = s .containsMethodCall()

layer (s, i, l) = distance(s .callee, startPoint)

Cheetah marks all call sites as triggers, meaning that the data-

�ow propagations at call sites are paused and continued in sub-

sequent tasks. The layer that is assigned to a fact at a call site is

determined by the distance (in terms of the priority layers) between

the callee and the start point of the analysis, which is the method

containing the current edit point. For example, if Cheetah encoun-

ters a call to a method that is in the same �le but not the same class

as the starting point, the new task is assigned L4. As a result, one

task creates as many tasks as the number of call sites it contains.

New tasks are added to the priority queue PQ, and executed in order

of distance from the starting point. To adapt Algorithm 1 to the

IFDS framework, we apply the following changes:

• Every time a task is executed (line 7), Cheetah creates a new

IFDS instance starting at the task’s start statement (st), and

initializes it with the facts contained in its in-set. To reuse pre-

viously computed results, the state of the IFDS solver is carried

over from one instance to the next.

• The priority queue PQ is initialized with the task {L1, stmt , {0}},

where stmt is the �rst statement of the currently edited method,

and 0 is the initial fact for a standard IFDS propagation.

• To create new tasks at call sites, Cheetah slightly modi�es the

call �ow function of the traditional analysis to stop the prop-

agation of data-�ow facts at call sites (by returning the empty

set), except when the call is the start statement of the current

task. At a call site, Cheetah collects the variables that need to

be propagated further (i.e., the parameters of the call, the static

variables, and the receiver of the call) in an inSet . A new task

{layer (stmt), stmt , inSet} is then added to PQ to be executed

later. This change corresponds to lines 14–17 in Algorithm 1.

• The normal, return, and call-to-return �ow functions remain the

same as the traditional analysis.

Example: Applying Cheetah to the example in Figure 1 results

in the following steps (also shown in Figure 4):

(1) The user triggers the analysis at the mainmethod. Task T0
= {L1, line 3, {0}} is enqueued.

(2) T0 is executed, resulting in the unlabeled edges.

(a) A is found and reported

(b) Task T1 = {L2, line 6, {0, s}} is created.

(c) Task T2 = {L4, line 7, {0, t}} is created.

(3) T1 is executed, resulting in the edges labeled T1.

(4) T2 is executed, resulting in the edges labeled T2, and B is

reported.

5 EMPIRICAL EVALUATION

We empirically evaluate Cheetah by comparing it to Base, the tra-

ditional IFDS taint analysis that we transformed to obtain Cheetah.

Our experiments address the following research questions:

RQ1: How responsive is Cheetah compared to Base?

RQ2: How early does Cheetah report warnings?

RQ3: Are the initial �ndings of Cheetah easier to interpret than

later ones?

5.1 Tools

Cheetah and Base have the same �ow functions, except for the

slight modi�cation to the call �ow function described in Section 4.2

which enables us to make Base just-in-time. To model the Android

lifecycle, Base uses a dummy main method that models the An-

droid lifecycle of an application [2]. Cheetah models the Android

lifecycle on a per-class basis by distributing the dummy main over

311

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA
Lisa Nguyen �ang Do, Karim Ali, Benjamin Livshits, Eric Bodden,

Justin Smith, and Emerson Murphy-Hill

0.2

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

T
im

e
 (

s
e

c
o

n
d

s
)

0.2

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

Result 1 Result 2 Result 3 Last Result BASE

T
im

e
 (

s
e

c
o

n
d

s
)

Figure 5: Time to report results (in log

scale) for CHEETAH and BASE, starting

at SPB (top) and SPS (bottom).

0

10

20

30

40

50

60

70

80

90

100

W
a

rn
in

g
s
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

L1 L2 L3 L4 L5 L6 L7 L8 Timeout

W
a

rn
in

g
s
 (

%
)

Figure 6: Percentage of warnings re-

ported at each layer in CHEETAH with

SPB (top) and SPS (bottom).

0

10

20

30

40

50

60

70

80

90

100

110

120

130

T
ra

c
e

 L
e

n
g

th
 (

#
 s

ta
te

m
e

n
ts

)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

L1 L2 L3 L4 L5 L6 L7 L8

T
ra

c
e

 L
e

n
g

th
 (

#
 s

ta
te

m
e

n
ts

)

Figure 7: Trace length of the warn-

ings reported at each layer in CHEETAH

with SPB (top) and SPS (bottom).

the layering system. Currently, both Base and Cheetah resolve

virtual calls by using a simple CHA-based callgraph [5].

5.2 Experimental Setup

Our benchmark suite contains 14 Android applications selected

from F-Droid [17], such that each application has a GitHub repos-

itory with more than one commit and is available for mining in

Boa [15]. We used Boa to collect the methods modi�ed in each

commit, referred to as SPB (Starting Points Boa). Each application

has at least 26 unique SPB (min: 26, max: 316, median: 127). We

ran two experiments. In the �rst one, we ran Cheetah 20 times

for each application using randomly selected SPB as starting points

for the analysis. In the second experiment, we chose the sources

of known data leaks that were obtained from the �rst experiment

as the starting points, referred to as SPS (Starting Points Sources).

SPS represent cases when the user is investigating a particular bug,

SPB, cases when the user does not actively use Cheetah during

code development. Base has one starting point: a dummy main

method that acts as the entry point to the Android application [2].

We ran our experiments on a 64-bit Windows 7 machine with

one dual-core Intel Core i7 2.6 GHz CPU running Java 1.8.0_102,

and limited the Java heap space to 1 GB.

5.3 Results

RQ1: How responsive is CHEETAH compared to BASE? We

have measured the time that Cheetah takes to report the �rst,

second, third, and last result when it starts at SPB and at SPS. We

compare those times to the time it takes Base to report its �nal

results. Figure 5 shows, in log scale, the total response time for those

quantities, which includes the overhead time taken by Cheetah to

load and process the initial set of classes. Across our benchmark,

Cheetah reports the �rst result in a median time of less than 1

second when it starts at SPB and a median of less than 0.5 seconds

when it starts at SPS. These results are below Nielsen’s 1 second

recommended threshold for interactive user interfaces, suggesting

that Cheetah usually allows the “user’s �ow of thought to stay un-

interrupted” [31]. Cheetah reports its last result in a median time

of 9.03s and 7.79s when it starts at SPB and SPS, respectively. Both

medians are larger than the median times of 1.85s (SPB) and 2.13s

(SPS) that Base takes to report its �nal results. This is becauseChee-

tah analyzes parts of the program that are not reachable from its

main entry points, a feature that traditional analyses such as Base

do not o�er. Any analysis imprecision in those parts propagates to

the other computations, making the analysis perform more work

than strictly necessary. Nevertheless, such a feature is desirable for

real-life code development scenarios, which we discuss in Section 8.

Cheetah returns the �rst result in less than one second,

allowing the developer to remain focused.

RQ2: How early does CHEETAH report warnings? One of

the main goals of Cheetah is to better help software developers

detect bugs located around their working sets compared to using

traditional analyses. This means thatCheetah should ideally report

most of its warnings in earlier layers. Figure 6 shows that, across

our benchmark, when Cheetah starts at SPB, a median of 38.97%

of the warnings is reported in L5 and a median of 44.12% in L6.

Starting at SPS, Cheetah reports a median of 32.56% warnings

in L5 and a median of 15.77% in L6. With SPS, Cheetah reports

more warnings in earlier layers: a median of 4.58% in L1 and a

median of 5.13% in L3. Unlike SPB, SPS simulates scenarios where

users are interested in the analysis results. In those cases, 33.3% of

the warnings are reported at L1-L4 on average, against 11.6% for

312

Just-in-Time Static Analysis ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

SPB. This shows that if Cheetah is guided towards the points of

interest in a program, more warnings are reported at earlier layers.

Additionally, in Figure 5, we see that the �rst results are returned

faster with SPS (e.g. medians of 1 second (SPB) and 0.5 seconds

(SPS) for the �rst result). Therefore, starting at SPS is optimal when

the user requires analysis updates while �xing a particular warning.

After Cheetah reports a leak, a separate module retrieves the

paths between the leak’s source and sink to provide the user with

more information. The process of retrieving those paths times out

in less than 1% of all the cases (average: 0.81%, median: 0%). It is

important to note that, for those timeouts, Cheetah itself does not

time out, but the path-�nding module does.

Across our benchmark, no results are reported in L7, because

none of the applications pass sensitive information through poly-

morphic calls. Similarly, no warnings are reported in L8, because

Cheetah currently does not support inter-component �ows.

Cheetah reports most of the warnings in L5-L6. If directed

to known sources of bugs, Cheetah reports the �rst warn-

ings faster, and it reports more warnings in earlier layers.

RQ3: Are the initial �ndings of CHEETAH easier to inter-

pret than later ones? The quick response time of Cheetah is

only useful if the �rst few warnings that it reports are easy to in-

terpret by the user. Otherwise, the user will spend most of her time

trying to trace her way through the program to �x that warning.

We approximate the ease of interpretation of the initial warnings

that Cheetah reports by computing the trace length: the number

of statements between the source and the sink for a given warning.

Figure 7 shows the trace lengths for the warnings that appear in

each layer of Cheetah. When Cheetah starts at SPB, the median

length of the traces for the initial layers L1-L4 is 0, 1, 4, and 4

statements, respectively. For later layers, Cheetah reports more

complex warnings with longer trace lengths: medians of 26 and 25

statements for layers L5 and L6, respectively. Starting at SPS, Chee-

tah reports more warnings in earlier layers. In such a case, the

median length of the traces that Cheetah reports for the initial

layers L1–L4 is a median of 4, 2, 12, and 1 statements, respectively.

In layers L1–L4, Cheetah reports warnings with shorter

traces than later layers, making them easier to interpret.

6 GRAPHICAL USER-INTERFACE

Interleaving analysis and developer activities requires careful re-

porting. Otherwise, warnings can literally become moving targets

in result lists as new ones are found and others are �xed, which

confuses the developer. Figure 8 captures the main GUI elements

of Cheetah that we have introduced to support reporting warn-

ings over time. These features, described below and highlighted

with the corresponding numbers in the �gure, address the observa-

tions made during our pilot study. A demo of the GUI is available

online [10].

1. Views: To avoid overwhelming the users by showing them all

warnings and their details in one place, we separate the informa-

tion into two views: Overview lists all reported warnings, and

Detail presents the path of a selected leak, o�oading the amount

of information contained in Overview.

Figure 8: GUI elements of Cheetah.

2. Color-coded warnings: Warnings in Cheetah have three

states: active (con�rmed by the latest analysis run), comput-

ing (found by the previous analysis run, but not yet con�rmed

by the current run), and �xed. Cheetah displays active warnings

in black and computing warnings in gray. Fixed warnings are

grayed out for one run of the analysis, and removed from the

view at the next run. This feature provides a light history of

�xed leaks, allowing users to quickly check if a �x was e�ective.

3. Descriptive icons: Cheetah displays source and sink icons on

the left gutter. When a warning is grayed out in the Overview,

the corresponding icons are also grayed out. Tooltips provide

additional information on the leaks.

4. Seamless run: To integrate Cheetah in Eclipse, we trigger the

analysis every time the project is built. Cheetah hooks into

Eclipse’s incremental builder and re-runs the analysis starting

from the method that has the focus.

5. Other features: Cheetah also provides a few features that are

not JIT-speci�c, such as highlighting the path of the leak that

the user is currently examining.

7 USER STUDY

In a user study, we evaluate how a JIT analysis integrates into

the development work�ow compared to a batch-style analysis. 18

participants performed development tasks using Cheetah or Base

to keep the number of data leaks to a minimum.

An earlier pilot study with 11 participants showed that the proto-

type had poor usability. GUI-related issues prevented participants

from focusing on their tasks. We �xed those issues before conduct-

ing the study we describe in this section.

7.1 Setup

7.1.1 Participants. Our study includes 18 participants of vary-

ing backgrounds (9 academics and 9 professional developers), with

di�erent skill levels in terms of Android development and knowl-

edge of taint tracking static analysis tools. In the following, we

identify them as P1 . . .P181.

1We discard P17’s data, as (s)he encountered a user interface bug and was unable to
properly perform the tasks.

313

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA
Lisa Nguyen �ang Do, Karim Ali, Benjamin Livshits, Eric Bodden,

Justin Smith, and Emerson Murphy-Hill

7.1.2 Tasks. In order to evaluate the in�uence of the analysis

tools on the development work�ow, each participant performed

a development task: removing code duplicates in an Android ap-

plication. At the same time, we asked them to keep the number

of data leaks to a minimum. To help detect potential data leaks,

Cheetah or Basewere provided as Eclipse plugins. To �x the leaks,

we provided the participants with data sanitization APIs. Each task

was limited to 10 minutes.

7.1.3 Protocol. Each participant performed one task per tool

(Base and Cheetah). Before each task, the participants warmed up

on a small Android application to get used to the tool. The order of

the tools was randomized, so that half of the participants started

with Cheetah, and the other half with Base. Afterwards, the par-

ticipants �lled a comparative questionnaire and were interviewed

in person. The questionnaire, responses, and the interview protocol

are available online [10].

7.1.4 Test Applications. The warm-ups were performed on a

small, arti�cial Android application that contained 6 simple data

leaks. The two tasks were performed on a real-life application from

F-Droid [17]: Bites, a basic cookbook app. Due to the limited time

(10 minutes per task), we have modi�ed Bites to add data leaks

around code duplications, resulting in a total of 106 more complex

data leaks. This ensured that participants encountered data leak

warnings while conducting their duplication removal task. In the

pilot study, some participants had spent most of their time handling

code duplicates not related to any data leaks.

7.1.5 GUI. To reduce any GUI-induced bias, the GUI used for

Base is almost identical toCheetah’s. For this study, Base emulates

a batch-style tool: Base is not triggered on code build, but by

pressing a button. A popup then blocks the GUI to prevent the user

from modifying the code while the analysis is running. All results

are shown at the same time after the analysis �nishes.

7.2 Results

Figure 9 shows, in log scale, the distribution of the time taken to

�x a leak for the two main tasks. The reported numbers take into

account the time taken to �x a leak, discarding the time needed by

the participant to understand the code, the tool, or to discuss the

solution before implementing it. For Tasks 1 and 2, participants

usingCheetah took half as long as the participants usingBase to �x

a leak (0.53× and 0.45×, respectively). For Task 1, the median time

to �x a leak using Base was 63 seconds, compared to 33.5 seconds

per leak for Cheetah users. The times reported for Task 2 are

lower: 54.5 seconds per leak for Base and 24.5 seconds per leak

for Cheetah. This is because by Task 2, participants are more

familiar with the application and the tasks. We also note that across

both tasks, the participants were signi�cantly faster when using

Cheetah compared to Base (p < .01, Wilcoxon Rank-Sum test),

regardless of whether they used Base �rst and Cheetah second

(2.6× faster), or Cheetah �rst and Base second (1.6× faster).

We also observed that in the 10 minutes allocated to each task,

Cheetah users �xed more leaks than Base users, with a median

of 2 leaks for Base users and 4 leaks for Cheetah users in Task

1. For Task 2, the medians are 3 leaks for Base users and 4 leaks

1st Task 2nd Task

Scenario

4

8

16

32

64

128

256

512

T
im

e
 t
o

 F
ix

 L
e

a
k
 (

s
e

c
)

Base Cheetah

63

33.5

54.5

24.5

Figure 9: Violin plot representing the distribution of the

times to �x leaks across all participants, by task and tool

used during the task. Each horizontal line represents data

leaks �xed in the corresponding time. The length of a line

represents the number of leaks �xed in that time. Dashed

lines are medians.

for Cheetah users. The Wilcoxon Rank-Sum test failed to detect a

signi�cant di�erence in the number of leaks �xed (p = .31).

Using Cheetah enables users to �x leaks twice as fast com-

pared to using Base.

7.3 Questionnaire

After the four tasks, the participants �lled a questionnaire com-

prised of 29 questions designed to assess the merits of the two

approaches, also providing some open-ended comments to com-

pare Cheetah to Base. The participants answered several 5-point

Likert-type questions from the System Usability Scale (SUS) [8],

a questionnaire designed to measure the e�ectiveness and e�-

ciency of a system, and rated both tools using a Net Promoter Score

(NPS) [34], an 11-point Likert scale that measures their likelihood

of recommending the tool to a friend.

Overall, the participants responded positively to Cheetah.

Among the participants who rated Cheetah and Base on the NPS

question (n = 16), Cheetah’s mean score is 7.4 (out of 10) compared

to a mean score of 2.7 for Base. According to the aggregated SUS

scores, 12 participants rated Cheetah higher than Base. Using a

Wilcoxon Signed-Rank test [41], we observed signi�cant (p < 0.05)

di�erences between these aggregated scores and participant’s re-

sponses on 4 of the individual SUS questions. Compared to Base,

participants less likely found Cheetah unnecessarily complex or

cumbersome (-0.6 mean response each). Moreover, the participants

responded that they were more likely to use Cheetah frequently

(+0.7 mean response), and more likely found its functions well-

integrated (+0.5 mean response).

314

Just-in-Time Static Analysis ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

7.4 Interviews

During the individual interviews, the participants were asked to

detail their experience of the tools, focusing on the percieved dif-

ferences, in particular waiting times, integration of the tools in

the IDE, and warning ordering. The interviews lasted 14 minutes

on average (min: 10 minutes, max: 23 minutes). We now present

notable comments and behavior.

Quick Updates. In total, 12 participants found Cheetah’s quick

updates useful, noting this feature as the main advantage of the

tool. Professional developers in particular, noted that this system is

“much more comfortable, and what I would expect in the Eclipse
environment” (P7). P2 noted that Cheetah “integrates well into
the Eclipse build-on-save paradigm”. This results in a “more fluent
workflow” (P9), as opposed to Base, which proved more interrup-

tive to the participants: “having to wait interrupts the coding and
thinking process” (P6). P4 explained from their personal experience

with UI-blocking compilation tools that they “do a context switch
in your head. [...] When you are back to the actual work, you might
have forgo�en what you wanted to do”. In summary, participants

felt that for code development, Cheetah was less interruptive, as

it allowed them to deviate less from their coding tasks.

Ordering. P8, a professional Android developer, noticed the order

in which the results were reported with Cheetah, and commented,

when using Base: “When I’m in one class, I get familiar with it,
and when I click on a warning, it takes me to a completely di�erent
class, and I have to get used to it again”, which further validates

the choice of layers in Cheetah. P18, in particular, handled the

leaks in the presented order. P18 �xed all encountered leaks when

using Cheetah, but skipped most of the �rst warnings when using

Base after deeming their traces “too long”. We see that reporting

warnings following Cheetah’s layers positively a�ects participant

performance and integrates more discretely in their work�ow.

Performance. Two expert participants expressed performance

concerns about Cheetah running too often on big projects: “if the
analysis a�ects the performance, I would like to have a bu�on to
control it” (P13).

7.4.1 Comparison. The participants were asked in which cases

they would use one tool rather than the other.

• Twelve participants reported Cheetah is best suited for code

development. P9, in particular, noted that it would make the

development task slightly harder, but it would “force me to write
be�er code from scratch”.

• Two participants were concerned about using Cheetah for big

projects because “if it has a big impact on the CPU, it might be
annoying and I might not be as productive” (P4).

• Eleven participants noted that Base should be used infrequently

or in situations where debugging and coding are separated: “a�er
a milestone” (P9), “creating reports for so�ware” (P7).

• No participants reported they would use Base for code develop-

ment.

Twelve out of 17 participants preferred Cheetah for code

development due to its quick updates. Two participants ex-

pressed concerns about CPU overhead. Cheetah’s inherent

ordering helps code developers perform bug-�xing tasks.

8 DISCUSSION

A traditional whole-program analysis usually starts from a main

method and propagates through the code that is reachable from

there. This approach is ill-suited for the scenario of code develop-

ment, where developers often work on new features in incomplete

programs that may not even have a main method. Cheetah pro-

vides full code coverage by arti�cially creating tasks that are not

naturally induced by the code base. In addition to the tasks that it

naturally creates, a task on Lx arti�cially creates all tasks on Lx-1

which are in its scope and a task on Lx+1 initialized with its own

starting point. Therefore, the �rst task of the analysis, which is at

L1, generates a task at L2, which in turn generates a task at L3,

eventually generating a task at L8. This last task encompasses the

whole project, therefore, the set of tasks at L7 that it creates also

covers the whole project, eventually resulting in a full coverage of

the source code at lower layers. An extra check ensures that no task

is executed twice. Because of the priority queue, tasks with lower

layers are executed �rst. Therefore, the tasks of L1 generated by a

task of L2 will be executed before the task of L3 generated by this

same L2 task is executed. This ensures Cheetah’s prioritization by

locality. This approach ensures that the entire code base is analyzed

and enables Cheetah to help software developers reason about

unreachable code, a property that a traditional IFDS-based taint

analysis does not provide.

In our evaluation, the IFDS taint analysis Base uses a dummy

main as described by Arzt et al. [2] and only reports leaks in those

parts of the code that are reachable from that method using a CHA

call-graph. On the other hand, Cheetah provides full code cov-

erage, resulting in more reported warnings and a longer overall

analysis time. In our empirical experiments, Cheetah reports 2.1×

more warnings compared to Base (min: 1×, max: 10×, geometric

mean: 2.06×). Since Base and Cheetah have the same IFDS �ow

functions, they have the same soundness and precision by con-

struction. By covering more of the code base, Cheetah provides

the code developer with a more relevant result set than traditional

analyses such as Base.

A JIT analysis’s layering system can support more complex lay-

ering schemes. For example, in Cheetah, more layers can be added

to improve the aliasing strategy. Currently, Cheetah computes

aliases intra-procedurally, and ignores inter-procedural aliases. A

more complex aliasing strategy could be instantiated by computing

aliases together with the taint analysis such that both analyses share

the same scope. When the analysis scope widens, more aliases are

discovered, adding more taints to the analysis. A whole-program

alias analysis could also be used in one of the later layers operating

on the project scope.

9 RELATED WORK

Given the vast amount of research on static analysis, we focus this

section quite narrowly, highlighting the interactions between static

analysis tools and developers.

9.1 Human Aspects of Static Analysis Tools

Several researchers have studied the usage of static analysis tools by

developers. Sadowski et al. [36] report that most Google developers

�nd static analysis warnings usable. Phang et al. [23] found that

315

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA
Lisa Nguyen �ang Do, Karim Ali, Benjamin Livshits, Eric Bodden,

Justin Smith, and Emerson Murphy-Hill

a program �ow visualization tool helps developers quickly triage

warnings. Ayewah and Pugh [3] found that checklists helps devel-

opers consistently evaluate warnings. In an experiment, Smith et

al. [38] characterized the information needs of developers while

addressing warnings. In contrast, our work focuses on smoothly

integrating static analysis warnings into developers’ work�ows.

Several human studies have highlighted challenges related to

work�ow integration. Johnson et al. [22] recorded interviewees

stressing the importance of integrating static analysis into their

work�ows. Lewis et al. [26] found that almost all interviewed devel-

opers agreed that static analysis should not disrupt their work�ow.

Through interviews and surveys, Xiao et al. [43] and Witschey et

al. [42] found that developers whose security tools help them do

their work quickly report being more likely to adopt those tools.

Christakis and Bird [11] interviewed and surveyed Microsoft de-

velopers who complained that existing tools are too slow and do

not �t into their work�ow. Accordingly, our work aims to address

work�ow integration problems by providing relevant static analysis

results quickly.

9.2 Warning Prioritization

Researchers have proposed several ways to prioritize which warn-

ings developers should address �rst. Industrial tools tend to use

heuristics, such as FindBugs [18], which classi�es warnings as

low, medium, or high priority. Surveying the research, Muske and

Serebrenik [28] organize prioritization approaches into three main

categories: statistical, historical, and user-feedback. As an example

of a user-feedback based approach, Heckman and Williams [20]

use machine learning to prioritize actionable warnings over unac-

tionable ones. As an example of a history-aware approach, Kim and

Ernst [24] use code history to prioritize defects. Other approaches

do not easily �t into these categories. For example, Shen et al. [37]

deprioritize predicted false positives, then use developer feedback

for future prioritization. As another example, Liang et al. [27] use

resource leak defect patterns to prioritize potential resource leaks.

While prior approaches prioritize using the warning or the code,

our approach instead (1) prioritizes using a developer’s working

context, and (2) uses that context to guide the analysis itself.

9.3 Result Presentation

Several prior researchers have investigated how to best present

analysis results to the user. For example, Solstice [29] focuses on

non-disruptive reporting. It runs an o�ine analysis on a replica of

the developer’s workspace, reporting results in a non-disruptive

manner. In contrast, Cheetah is an interactive analysis of the

original codebase in the IDE, without code replication.

Parfait [12, 13] runs an initial bug detector then cascades di�er-

ent analyses in layers of an increasing order of complexity and a

decreasing order of e�ciency to con�rm the initial �ndings. Unlike

Cheetah, one layer in Parfait may invalidate some of the bugs that

a previous layer has already reported. In Cheetah, each layer uses

previously computed information to detect new bugs and does not

invalidate previously reported warnings, minimizing the disruption

in the developer’s work�ow.

Cheetah reports warnings in a similar way to how Eclipse’s

incremental compiler reports errors to a user while editing source

�les [25]. This is the same approach used by ASIDE [44], an Eclipse

plugin that detects security vulnerabilities in Java programs. ASIDE

incrementally reports errors to the user by only analyzing recent

code changes. Cheetah is a whole-program analysis, but it still

incrementally reports warnings to the user by starting at speci�c

points of interest in the program (e.g., a recently modi�ed method).

Although incremental analyses compute minimal changesets and

Cheetah recomputes everything at each run, Cheetah consistently

provides the �rst results quickly while some changesets can cause

an incremental analysis to fully recompute its results. Nevertheless,

we plan to incrementalizeCheetah to improve the responsiveness

of its later layers L5–L8.

10 CONCLUSION

We have presented the novel concept of JIT analysis that interleaves

the processes of code development, static analysis execution, and

bug �xing, through a layered static analysis approach. We have

shown how to obtain a JIT analysis by modifying a base distributive

data-�ow analysis with minimal changes. We have also provided

Cheetah, an implementation of a JIT taint analysis for �nding

privacy leaks in Android applications, and evaluated it on real-

world applications. Our empirical results, questionnaire results,

and a detailed user study show that Cheetah’s quick updates and

ordering strategy make it particularly well-suited for integrating

bug �xing within the natural �ow of code development.

ACKNOWLEDGMENTS

This research was supported by a Fraunhofer Attract grant as well

as the Heinz Nixdorf Foundation. This material is also based upon

work supported by the National Science Foundation under grant

number 1318323.

REFERENCES
[1] Steven Arzt, Sarah Nadi, Karim Ali, Eric Bodden, Sebastian Erdweg, and Mira

Mezini. 2015. Towards secure integration of cryptographic software. In Interna-
tional Symposium on New Ideas, New Paradigms, and Re�ections on Programming
and Software (Onward!). 1–13.

[2] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. In Programming Language Design and Implementation
(PLDI). 259–269. DOI:http://dx.doi.org/10.1145/2594291.2594299

[3] Nathaniel Ayewah and William Pugh. 2009. Using Checklists to Review Static
Analysis Warnings. In International Workshop on Defects in Large Software Sys-
tems (DEFECTS). 11–15. DOI:http://dx.doi.org/10.1145/1555860.1555864

[4] Nathaniel Ayewah and William Pugh. 2010. The Google FindBugs �xit. In
International Symposium on Software Testing and Analysis (ISSTA). 241–252. DOI:
http://dx.doi.org/10.1145/1831708.1831738

[5] David F. Bacon and Peter F. Sweeney. 1996. Fast Static Analysis of C++ Virtual
Function Calls. In Proceedings of the 11th ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications (OOPSLA ’96). ACM,
New York, NY, USA, 324–341. DOI:http://dx.doi.org/10.1145/236337.236371

[6] Al Bessey, Ken Block, Benjamin Chelf, Andy Chou, Bryan Fulton, Seth Hallem,
Charles-Henri Gros, Asya Kamsky, Scott McPeak, and Dawson R. Engler. 2010.
A few billion lines of code later: using static analysis to �nd bugs in the real
world. Communications of the ACM 53, 2 (2010), 66–75. DOI:http://dx.doi.org/10.
1145/1646353.1646374

[7] Eric Bodden. 2012. Inter-procedural data-�ow analysis with IFDS/IDE and Soot.
In International Workshop on State of the Art in Java Program Analysis (SOAP).
3–8. DOI:http://dx.doi.org/10.1145/2259051.2259052

[8] John Brooke and others. 1996. SUS-A quick and dirty usability scale. Usability
Evaluation in Industry 189, 194 (1996), 4–7.

[9] William R. Bush, Jonathan D. Pincus, and David J. Siela�. 2000. A static analyzer
for �nding dynamic programming errors. Software–Practice & Experience (SPE)
30, 7 (2000), 775–802.

316

http://dx.doi.org/10.1145/2594291.2594299
http://dx.doi.org/10.1145/1555860.1555864
http://dx.doi.org/10.1145/1831708.1831738
http://dx.doi.org/10.1145/236337.236371
http://dx.doi.org/10.1145/1646353.1646374
http://dx.doi.org/10.1145/1646353.1646374
http://dx.doi.org/10.1145/2259051.2259052

Just-in-Time Static Analysis ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

[10] Cheetah. 2017. https://blogs.uni-paderborn.de/sse/tools/cheetah-just-in-time-
analysis/. (2017).

[11] Maria Christakis and Christian Bird. 2016 (to appear). What Developers Want
and Need from Program Analysis: An Empirical Study. (2016 (to appear)).

[12] Cristina Cifuentes. 2008. Parfait - A Scalable Bug Checker for C Code. In Source
Code Analysis and Manipulation (SCAM). 263–264. DOI:http://dx.doi.org/10.1109/
SCAM.2008.21

[13] Cristina Cifuentes, Nathan Keynes, Lian Li, Nathan Hawes, and Manuel Val-
diviezo. 2012. Transitioning Parfait into a Development Tool. IEEE Security &
Privacy 10, 3 (2012), 16–23. DOI:http://dx.doi.org/10.1109/MSP.2012.30

[14] Coverity. 2017. http://www.coverity.com/. (2017).
[15] Robert Dyer, Hoan AnhNguyen, Hridesh Rajan, and Tien N. Nguyen. 2013. Boa: a

language and infrastructure for analyzing ultra-large-scale software repositories.
In International Conference on Software Engineering (ICSE). 422–431.

[16] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. 2010. TaintDroid: An Information-�ow
Tracking System for Realtime Privacy Monitoring on Smartphones. In Operating
Systems Design and Implementation (OSDI). 393–407.

[17] F-Droid. 2017. Free and Open Source Android App Repository. https://f-droid.org.
(2017).

[18] FindBugs. 2017. http://�ndbugs.sourceforge.net. (2017).
[19] HP Fortify. 2017. http://www8.hp.com/us/en/software-solutions/

static-code-analysis-sast/. (2017).
[20] Sarah Heckman and Laurie Williams. 2009. A model building process for iden-

tifying actionable static analysis alerts. In International Conference on Software
Testing, Veri�cation and Validation (ICST). 161–170.

[21] Wei Huang, YaoDong, AnaMilanova, and Julian Dolby. 2015. Scalable and Precise
Taint Analysis for Android. In Proceedings of the 2015 International Symposium on
Software Testing and Analysis (ISSTA 2015). ACM, New York, NY, USA, 106–117.
DOI:http://dx.doi.org/10.1145/2771783.2771803

[22] Brittany Johnson, Yoonki Song, Emerson R. Murphy-Hill, and Robert W. Bow-
didge. 2013. Why don’t software developers use static analysis tools to �nd
bugs?. In International Conference on Software Engineering (ICSE). 672–681.
http://dl.acm.org/citation.cfm?id=2486877

[23] Yit Phang Khoo, Je�rey S Foster, Michael Hicks, and Vibha Sazawal. 2008. Path
projection for user-centered static analysis tools. In Workshop on Program Anal-
ysis for Software Tools and Engineering (PASTE). 57–63.

[24] Sunghun Kim and Michael D Ernst. 2007. Which warnings should I �x �rst?. In
Foundations of Software Engineering (FSE). 45–54.

[25] Andrew Jensen Ko and Brad A. Myers. 2006. Barista: An implementation frame-
work for enabling new tools, interaction techniques and views in code editors.
In Conference on Human Factors in Computing Systems (CHI). 387–396.

[26] Chris Lewis, Zhongpeng Lin, Caitlin Sadowski, Xiaoyan Zhu, Rong Ou, and
E. James Whitehead Jr. 2013. Does bug prediction support human develop-
ers? Findings from a Google case study. In International Conference on Software
Engineering (ICSE). 372–381. http://dl.acm.org/citation.cfm?id=2486838

[27] Guangtai Liang, Qian Wu, Qianxiang Wang, and Hong Mei. 2012. An e�ective
defect detection and warning prioritization approach for resource leaks. In
Computer Software and Applications Conference (COMPSAC). 119–128.

[28] Tukaram Muske and Alexander Serebrenik. 2016. Survey of Approaches for
Handling Static Analysis Alarms. In Source Code Analysis and Manipulation

(SCAM). http://www.win.tue.nl/~aserebre/SCAM2016.pdf
[29] Kivanc Muslu, Yuriy Brun, Michael D. Ernst, and David Notkin. 2013. Making

O�ine Analyses Continuous. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2013). ACM, New York, NY, USA,
323–333. DOI:http://dx.doi.org/10.1145/2491411.2491460

[30] Lisa Nguyen Quang Do, Karim Ali, Benjamin Livshits, Eric Bodden, Justin Smith,
and Emerson Murphy-Hill. 2016. Just-in-Time Static Analysis. Technical Report
doi:10.7939/DVN/10859. University of Alberta.

[31] Jakob Nielsen. 1994. Usability Engineering. Elsevier.
[32] PREfast. 2017. https://msdn.microsoft.com/en-us/library/ms933794.aspx. (2017).
[33] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. 2014. A Machine-learning Ap-

proach for Classifying and Categorizing Android Sources and Sinks. In Network
and Distributed System Security Symposium (NDSS).

[34] Frederick F Reichheld. 2003. The one number you need to grow. Harvard Business
Review 81, 12 (2003), 46–55.

[35] Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. 1995. Precise Interproce-
dural Data�ow Analysis via Graph Reachability. In Principles of Programming
Languages (POPL). 49–61. DOI:http://dx.doi.org/10.1145/199448.199462

[36] Caitlin Sadowski, Je�rey Van Gogh, Ciera Jaspan, Emma Söderberg, and Collin
Winter. 2015. Tricorder: Building a program analysis ecosystem. In International
Conference on Software Engineering (ICSE). 598–608.

[37] Haihao Shen, Jianhong Fang, and Jianjun Zhao. 2011. E�ndbugs: E�ective error
ranking for �ndbugs. In International Conference on Software Testing, Veri�cation
and Validation (ICST). 299–308.

[38] Justin Smith, Brittany Johnson, Emerson R. Murphy-Hill, Bill Chu, and
Heather Richter Lipford. 2015. Questions developers ask while diagnosing
potential security vulnerabilities with static analysis. In Foundations of Software
Engineering (FSE). 248–259.

[39] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman.
2009. TAJ: e�ective taint analysis of web applications. In Programming Language
Design and Implementation (PLDI). 87–97.

[40] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, Patrice Pom-
inville, and Vijay Sundaresan. 2000. Optimizing Java Bytecode Using the
Soot Framework: Is It Feasible?. In Compiler Construction (CC). 18–34. DOI:

http://dx.doi.org/10.1007/3-540-46423-9_2
[41] Frank Wilcoxon. 1945. Individual comparisons by ranking methods. Biometrics

Bulletin 1, 6 (1945), 80–83.
[42] Jim Witschey, Olga Zielinska, Allaire Welk, Emerson Murphy-Hill, Chris May-

horn, and Thomas Zimmermann. 2015. Quantifying Developers’ Adoption of
Security Tools. In Foundations of Software Engineering (FSE). 260–271. DOI:

http://dx.doi.org/10.1145/2786805.2786816
[43] Shundan Xiao, Jim Witschey, and Emerson R. Murphy-Hill. 2014. Social in-

�uences on secure development tool adoption: why security tools spread. In
Computer Supported Cooperative Work & Social Computing (CSCW). 1095–1106.
DOI:http://dx.doi.org/10.1145/2531602.2531722

[44] Jing Xie, Heather Lipford, and Bei-Tseng Chu. 2012. Evaluating Interactive
Support for Secure Programming. In Conference on Human Factors in Computing
Systems (CHI). 2707–2716. DOI:http://dx.doi.org/10.1145/2207676.2208665

317

http://dx.doi.org/10.1109/SCAM.2008.21
http://dx.doi.org/10.1109/SCAM.2008.21
http://dx.doi.org/10.1109/MSP.2012.30
http://www.coverity.com/
https://f-droid.org
http://findbugs.sourceforge.net
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/
http://dx.doi.org/10.1145/2771783.2771803
http://dl.acm.org/citation.cfm?id=2486877
http://dl.acm.org/citation.cfm?id=2486838
http://www.win.tue.nl/~aserebre/SCAM2016.pdf
http://dx.doi.org/10.1145/2491411.2491460
https://msdn.microsoft.com/en-us/library/ms933794.aspx
http://dx.doi.org/10.1145/199448.199462
http://dx.doi.org/10.1007/3-540-46423-9_2
http://dx.doi.org/10.1145/2786805.2786816
http://dx.doi.org/10.1145/2531602.2531722
http://dx.doi.org/10.1145/2207676.2208665

	Abstract
	1 Introduction
	2 Overview
	2.1 Examples of JIT Analysis

	3 JIT Analysis Through Layering
	3.1 Locality-Based Layers for Android
	3.2 Layered Analysis Examples
	3.3 Layering an Existing Analysis

	4 CHEETAH: A JIT Taint Analysis
	4.1 IFDS Flow Functions
	4.2 Layered Taint Analysis

	5 Empirical Evaluation
	5.1 Tools
	5.2 Experimental Setup
	5.3 Results

	6 Graphical User-Interface
	7 User Study
	7.1 Setup
	7.2 Results
	7.3 Questionnaire
	7.4 Interviews

	8 Discussion
	9 Related Work
	9.1 Human Aspects of Static Analysis Tools
	9.2 Warning Prioritization
	9.3 Result Presentation

	10 Conclusion
	References

