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A B S T R A C T

Similar to the PC world, the abundance of mobile malware has become a serious threat
to smartphone users. Thousands of new apps or app versions are uploaded to popular
app stores every day. All of them need to be analyzed against violations of the app store’s
content policy. In particular, one wishes to detect whether an application contains malicious
behavior. Similarly, antivirus companies check thousands of apps every day to determine
whether or not they are malicious. Both app store operators and antivirus vendors face the
same problem: it is generally challenging to tell apart malware from benign applications.
This is because malware developers aim to hide their applications’ malicious behavior as
long as possible from being detected by applying different obfuscation techniques. The
raising sophistication with which such measures are implemented pose a serious problem
not just to automated malware detection approaches but also to the manual analysis of
potential malware by human experts.

In this dissertation, we propose a novel reverse engineering framework that includes
different approaches for automatically extracting insights of the behavior of an Android
application. In particular, we propose a novel approach, based on machine-learning, to
automatically identify sensitive source and sink API methods. Furthermore, we propose
an approach to automatically extract concrete runtime values, such as SMS messages or
URLs, at any code location. The approach combines static and dynamic code analysis
techniques in such a way that it is resistant against common obfuscation techniques. A
further contribution is an approach that extracts concrete environment conditions that need
to be fulfilled in order to reach a certain code location. This approach is based on code
fuzzing that gets supported by static and dynamic code analysis techniques. All these
approaches provide different insights into the analyzed application, in particular how and
under which circumstances the application communicates with its environment.

The reliable extraction of these insights requires novel solutions that address fundamen-
tal limitations of current static and dynamic code analysis approaches. We, therefore, also
contribute new code analysis techniques that reduce well-known limitations of code anal-
ysis, such as reflective method calls or inter-component communications, resulting in in-
complete callgraphs, or complex path conditions that result in reachability problems.

All the insights that are extracted by our proposed approaches help human experts in
speeding up their malware investigations. Manual malware investigations benefit from the
automatic extraction of precise insights of the behavior of an application, which otherwise
requires a time-consuming, manual analysis. On the other hand, existing automated code
analysis approaches that are used during malware investigations benefit from our new
techniques by reducing well-known limitations. This improves the detection rate of these
approaches.
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Z U S A M M E N FA S S U N G

Die Häufigkeit von mobiler Schadsoftware ist, ähnlich zur PC-Welt, ein großes Problem
für Smartphone Benutzer geworden. Tausende von neuen Applikationen oder neuen Ver-
sionen von Applikationen werden täglich auf bekannte App Stores hochgeladen. All diese
Applikationen müssen auf Verletzungen der App Store Richtlinien hin untersucht werden.
Speziell werden hierbei Applikationen auf schadhaftes Verhalten untersucht. Ähnliches
gilt bei Antiviren-Firmen, die täglich mehrere tausend Anwendungen auf schadhaftes Ver-
halten untersuchen müssen. Beide Parteien haben im Prinzip ein ähnliches Problem: es
ist generell schwer zwischen gutartigen und schadhaften Applikationen zu unterscheiden.
Gründe hierfür sind Entwickler von schadhaften Applikationen, die ihre Applikationen
so programmieren, dass das schadhafte Verhalten so lange wie möglich unentdeckt bleibt.
Dies wird durch unterschiedliche Verschleierungstechniken erreicht. Die Art der Verfahren
wird jedoch immer komplexer und stellt somit nicht nur automatische Verfahren zur Erken-
nung von schadhaften Verhalten vor großen Herausforderungen, sondern auch manuelle
Untersuchungen durch Experten.

In dieser Dissertation stellen wir ein neues Reverse Engineering Framework vor, welches
unterschiedliche Verfahren zur automatischen Extraktion von sicherheitsrelevanten Infor-
mationen aus Android Applikationen beinhaltet. Konkret stellen wir in dieser Arbeit ein
Verfahren zur automatischen Extraktion von sicherheitsrelevanten Quellen- und Senken-
APIs vor, welches auf Techniken des maschinellen Lernens beruht. Des Weiteren wird ein
Verfahren vorgestellt, welches vollautomatisch Laufzeitwerte an beliebigen Codestellen ex-
trahiert. Dies könnten zum Beispiel konkrete SMS Nachrichten oder URLs sein. Das Ver-
fahren kombiniert statische und dynamische Codeanalyse-Techniken so miteinander, dass
es resistent gegen gängige Verschleierungstechniken ist. Ein weiteres Verfahren extrahiert
konkrete Umgebungsbedingungen, die erfüllt sein müssen, um eine bestimmte Codestel-
le zu erreichen. Dieses Verfahren basiert auf Code-Fuzzing und verwendet statische und
dynamische Codeanalyse Techniken. All diese unterschiedlichen Verfahren extrahieren un-
terschiedliche, sicherheitsrelevante Informationen aus einer Applikation, die Aufschluss
darüber geben, wie und unter welchen Bedingungen eine Applikation mit der Umgebung
interagiert.

Das Extrahieren dieser sicherheitsrelevanten Informationen bedurfte neuartiger Lösun-
gen, die fundamentale Limitierungen von statischen und dynamischen Analysen lösten.
Aus diesem Grund sind in dieser Dissertation neue Techniken beschrieben, die diese fun-
damentalen Limitierungen reduzieren. Dies beinhaltet neue Verfahren zur Verbesserung
der Konstruktion von Aufrufgraphen, welche durch reflektive Aufrufe oder der Abbildung
von Komponenten-Kommunikationen in Android erschwert wurden. Des Weiteren liefert
diese Arbeit neue Techniken die sich mit dem Thema der Erreichbarkeit von Codestellen
beschäftigt und neue Lösungsvorschläge aufzeigt.

Die in dieser Dissertation vorgestellten, neuartigen Verfahren helfen Analysten bei ihrer
täglichen Arbeit in der Identifizierung von schadhaften Applikationen. Durch die automati-
sche Extraktion von detaillierteren, sicherheitsrelevanten Informationen einer Applikation
wird die manuelle Analysezeit einer Applikation essenziell reduziert. Bereits bestehende
Werkzeuge, die von Analysten benutzt werden, profitieren ebenfalls von den in dieser Ar-
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beit vorgestellten Verfahren. Dies ist auf die Reduzierung von statischen und dynamischen
Limitierungen zurückzuführen. Somit können dem Analysten präzisere Ergebnisse vorge-
legt werden, welche ebenfalls die Analysezeit reduzieren.

vi



A C K N O W L E D G M E N T S

Foremost, I would like to thank my advisor Prof. Eric Bodden for his strong support,
feedback and guidance. I am very grateful that Eric supported me as much as possible in
all aspects of my academic carrier. He offered me numerous opportunities during my four
years, which very positively influenced my personality and my carrier.

Besides my advisor Eric, I would also like to thank my colleagues of Eric’s former chair
in Darmstadt and my colleagues at Fraunhofer SIT. Especially the reading groups gave new
impulses for different research directions, which resulted in publications like SuSi. I would
particularly thank Steven Arzt and Stephan Huber. Steven was my office mate during the
four years. Our brainstorming sessions, discussions and collaborations contributed to many
research papers and also into a new commercial product, CodeInspect. Many thanks also
to my Bavarian friend Stephan for our technical discussions about Android security and
our hacking sessions. Both positively influenced many design decisions of HARVESTER
and FuzzDroid.

I have been very lucky to work together with several excellent researchers. In particular,
I would like to thank Michael Pradel from TU Darmstadt, who worked with me on the
FuzzDroid project. I would also like to say thank you to Ben Livshits from Microsoft
Research in Redmond for working with him during a summer internship. Additionally,
I would also like to thank - alphabetically ordered - the following list of researchers for
our collaborative work: Alessandra Gorla, Alexander Roßnagel, Andreas Zeller, Damien
Octeau, Enrico Lovat, Jacques Klein, Konstantin Kuznetsov, Li Li, Mike Papadakis, Nicole
Eling, Patrick McDaniel, Peter Buxmann, Philipp Richter, Tegawendé Bissyande, Vitalii
Avdiienko, Voker Stolz, Yves le Traon. It was great working with you.

I had the privilege to supervise and work with several outstanding students. Max Kol-
hagen and Robert Hahn (each bachelor thesis), Dieter Hofmann and Julien Hachenberger
(each master thesis). A special thank goes to Marc Miltenberger for his outstanding imple-
mentation support of different projects. It was a lot of fun and I am very grateful for your
hard work.

Special thanks goes to Irfan Asrar, Carlos Castillo and Alex Hinchliffe from McAfee
research lab in Santa Clara for your support of sharing different malware samples, our
technical discussions and especially for giving me the chance to work with you on different
malware investigations.

Most importantly, I would like to say thank you to my parents for supporting me during
my study and research time and for always encouraging me in hard times. Without you,
this would not have been possible.

Last but not least, I am also deeply thankful to my girlfriend for her assistance and
patience in stressful days when workload was heavy.

vii





C O N T E N T S

1 introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Motivation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Common Obfuscation Techniques . . . . . . . . . . . . . . . . . . . . . 6

1.2 Goal and Scope of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Practical Security Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 background 13

2.1 Introduction to the Android Architecture . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Android Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Inter Process Communication . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Mobile Malware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Basic Obfuscation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 identification of sensitive sources and sinks 21

3.1 Motivation and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Background on Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Definition of Sources and Sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Classification Approach: SuSi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Design of the Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.2 Feature Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.3 Dataflow Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.4 Implicit Annotations for Virtual Dispatch . . . . . . . . . . . . . . . . . 33

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.1 RQ1: Sources and Sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.2 RQ2: Categories for Sources and Sinks . . . . . . . . . . . . . . . . . . 36

3.5.3 RQ3: Sources and Sinks in Malware Apps . . . . . . . . . . . . . . . . 37

3.5.4 RQ4: Changes during Android Versions . . . . . . . . . . . . . . . . . 39

3.5.5 RQ5: Existing Lists of Sources & Sinks . . . . . . . . . . . . . . . . . . 40

3.6 Application Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.9 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 runtime value extraction 47

4.1 Motivation and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Logging Points and Values of Interest . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Generic HARVESTER Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Overall Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.2 Detailed Solution Architecture . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.3 Evaluation of the Generic Approach . . . . . . . . . . . . . . . . . . . . 59

ix



x contents

4.4 Application Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.1 Intra-Component, Inter-Procedural Callgraph . . . . . . . . . . . . . . 66

4.4.2 Inter-Component Callgraph . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.3 Dynamic Dataflow Tracking . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Limitations and Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 environment inference 85

5.1 Motivation and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 A Targeted Fuzzing Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.1 Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.2 Main Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.3 Executing and Fuzzing Apps . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.4 Steering Towards the Target . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.5 Dealing with Dynamic Code Loading . . . . . . . . . . . . . . . . . . . 97

5.2.6 Determination of Target Locations . . . . . . . . . . . . . . . . . . . . . 98

5.3 Value Providers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.1 Symbolic Value Provider . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.2 Constant Value Provider . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.3 File Value Provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.4 Value Provider for Integrity Checks . . . . . . . . . . . . . . . . . . . . 101

5.3.5 Primitives-as-Strings Value Provider . . . . . . . . . . . . . . . . . . . . 102

5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5.2 Effectiveness in Reaching a Target Location . . . . . . . . . . . . . . . . 104

5.5.3 Importance of Multi-Analysis Approach . . . . . . . . . . . . . . . . . 104

5.5.4 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5.5 Environments Generated by FuzzDroid . . . . . . . . . . . . . . . . . 106

5.5.6 Comparison with State-of-the-Art Approach . . . . . . . . . . . . . . . 108

5.6 Limitations and Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.8 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 the codeinspect bytecode analysis tool 113

6.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1.1 Main Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1.2 Standard Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1.3 Jimple Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1.4 FlowDroid Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1.5 Permission-Usage View . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1.6 Communications View . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.1.7 SuSi View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.1.8 HARVESTER Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.1.9 FuzzDroid View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Application Scenario: Investigation of the Android/BadAccents Malware . . 120

6.3 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7 discussion and conclusion 125



contents xi

7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3 Practical Impact of the CodeInspect Framework . . . . . . . . . . . . . . . . . 127

7.4 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8 about the author 129

bibliography 133



L I S T O F F I G U R E S

Figure 1 Example inspired from the Android/BadAccents, Obad, MobWin and
Tascudap malware that leaks location information via email under
certain circumstances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 2 Main contributions and their relations . . . . . . . . . . . . . . . . . . 8

Figure 3 Intra- and Inter-Application communications . . . . . . . . . . . . . . 15

Figure 4 SMO classification example . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 5 SuSi’s machine-learning lifecycle . . . . . . . . . . . . . . . . . . . . . 28

Figure 6 Amount of source methods for bluetooth, location and NFC infor-
mation in different Android versions . . . . . . . . . . . . . . . . . . . 39

Figure 7 Workflow of HARVESTER . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 8 Slice representation of Listing 6 . . . . . . . . . . . . . . . . . . . . . . 53

Figure 9 Dynamic execution of reduced APK . . . . . . . . . . . . . . . . . . . 57

Figure 10 HARVESTER’s reduction of ICC links produced by IC3 . . . . . . . . 74

Figure 11 HARVESTER’s reduction of ICC links produced by Primo . . . . . . 76

Figure 12 Overview of the FuzzDroid approach . . . . . . . . . . . . . . . . . . 88

Figure 13 Detailed overview of the FuzzDroid approach . . . . . . . . . . . . . 90

Figure 14 Comparison of effectiveness in reaching target locations for different
subsets of all value providers . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 15 Amount of executions for reaching a target location . . . . . . . . . . 105

Figure 16 Amount of environment values for reaching target locations . . . . . 106

Figure 17 Workflow of packed Android malware . . . . . . . . . . . . . . . . . . 107

Figure 18 Phishing dialog for stealing Commerzbank credentials . . . . . . . . 108

Figure 19 Overview of CodeInspect . . . . . . . . . . . . . . . . . . . . . . . . . 115

Figure 20 Call hierarchy for the sendTextMessage API call . . . . . . . . . . . . 116

Figure 21 Overview of CodeInspect’s Jimple debugger perspective . . . . . . . 116

Figure 22 Overview of CodeInspect’s Permission-Usage view . . . . . . . . . . 118

Figure 23 CodeInspect’s Communications view . . . . . . . . . . . . . . . . . . 118

Figure 24 Overview of CodeInspect’s Sources and Sinks view . . . . . . . . . 119

Figure 25 Sources and Sinks view shows access to information about installed
applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Figure 26 Usage of Jimple debugger on the Android/BadAccents malware . . 121

Figure 27 Permission view shows the usage of sendTextMessage . . . . . . . . 123

Figure 28 Preview of Environment view in CodeInspect . . . . . . . . . . . . 123

L I S T O F TA B L E S

Table 1 Classification example on drunk driving . . . . . . . . . . . . . . . . . 24

Table 2 Source/sink cross validation PScout . . . . . . . . . . . . . . . . . . . 35

xii



Table 3 Source/sink cross validation PScout without permission feature . . 35

Table 4 Source/sink cross validation with implicit annotations . . . . . . . . 35

Table 5 Source/sink classifier comparison . . . . . . . . . . . . . . . . . . . . 36

Table 6 Source category cross validation . . . . . . . . . . . . . . . . . . . . . 37

Table 7 Sink category cross validation . . . . . . . . . . . . . . . . . . . . . . . 38

Table 8 Detection rate of most frequently used sources and sinks in malware
samples with different analysis tools . . . . . . . . . . . . . . . . . . . 46

Table 9 Recall evaluation of HARVESTER . . . . . . . . . . . . . . . . . . . . 60

Table 10 Measuring recall of HARVESTER in comparison to state-of-the-art
dynamic testing tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Table 11 Leak detection by FlowDroid on obfuscated DroidBench apps . . . . 67

Table 12 Comparing HARVESTER with IC3 . . . . . . . . . . . . . . . . . . . . 71

Table 13 Comparing HARVESTER with Primo . . . . . . . . . . . . . . . . . . 75

Table 14 Leak detection by TaintDroid on obfuscated DroidBench apps . . . . 78

Table 15 Overview of results. For values summarized over multiple applica-
tions, we provide the minimum/average/maximum values. . . . . . 104

Table 16 Prevalence of different kinds of environment values . . . . . . . . . . 107

L I S T I N G S

Listing 1 Motivating example SuSi: Android location leak example . . . . . . 23

Listing 2 Android location leakage via NMEA data . . . . . . . . . . . . . . . . 43

Listing 3 Motivating example HARVESTER: obfuscated code that sends an
email under certain conditions . . . . . . . . . . . . . . . . . . . . . . 49

Listing 4 Sliced version of the onReceive() method of Listing 3 (part 1) . . . . 51

Listing 5 Sliced version of the onReceive() method of Listing 3 (part 2) . . . . 52

Listing 6 De-obfuscated code that sends an email under certain conditions . . 53

Listing 7 HARVESTER’s handling of conditions that are not environment de-
pendent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Listing 8 Replaced reflective method call of Listing 3 . . . . . . . . . . . . . . . 58

Listing 9 "DogWars" game from Malware Genome Project . . . . . . . . . . . . 63

Listing 10 Path over-approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Listing 11 Motivating example FuzzDroid: shows that SMS messages are only
sent under certain circumstances . . . . . . . . . . . . . . . . . . . . . 87

xiii





1
I N T R O D U C T I O N

Smartphones are commonplace today. The number of smartphone users worldwide is fore-
cast to grow from 3.4 billion in 2015 to around 6.4 billion in 2021 [Eri16]. This is a very
big market, which is dominated by Google with its Android operating system [Fut15]. A
decisive reason behind the boom in smartphones is the wide range of applications (short
app), which can be easily downloaded from different app stores. Very recently, Google
announced at the Google I/O developer conference 2016 that 65 billion apps were down-
loaded and installed via Google Play. This is a tremendous number, which shows the
success of the application business. There is an application for almost every need: social
network applications for communicating with friends; email or banking applications for
business purpose; gaming applications during spare time, etc.

This increasing smartphone market is not only attractive for users, but also for mal-
ware authors. Their main purpose is to gain money from the victim, which is realized
by different techniques, such as blackmailing (ransomware [Anda]), phishing attacks for steal-
ing sensitive information [Ras+15b], sending costly SMS messages [Ras+16] or initiating
costly calls [Anda]. These kinds of techniques are implemented in mobile applications and
distributed via different channels like app stores, mail attachments or via SMS messages
containing a download link of the malware. Different statistics show that mobile malware
applications are mostly distributed via Android applications [LLC15]. One reason therefore
is probably Google’s lead in the mobile market share.

In comparison to PC, smartphones are a more valuable and generic attack surface since
they offer a lot more sensitive data, which can be easily accessed with simple API meth-
ods. More concrete, smartphones contain data such as phone numbers, call frequency, call
history, SMS data, location data or professional and personal schedules that are accessible
with simple API calls. In comparison, PCs do usually not contain such sensitive data (e.g.,
call history or SMS data) or do not provide a generic API for accessing this data directly.
Instead, this data is distributed on the file system and the location heavily depends on the
program that processes that data (e.g., Microsoft Office address book is stored at a different
location as Thunderbird’s).

One of the first discovered Android malware, FakePlayer, was detected in 2010 [Dun+14].
It was a trojan horse that attempts to send premium SMS messages to a hardcoded num-
ber once the user opens the malicious application. It was very easy to automatically or
manually spot the malicious behavior since there was no obfuscation technique involved.
However, during the years, malware authors applied more and more sophisticated obfusca-
tion techniques into their malicious applications for hiding the malicious behavior as long
as possible. For instance, in 2013 a malware named Obad [TKG13] appeared, which started
obfuscating the malicious code with techniques like string encryption in combination with
reflective method calls. This makes it very hard for a human malware analyst, but also for
static code analysis approaches, to understand the code functionality. These approaches
do not have a complete view of the application’s code and, therefore, do not work as
intended. In 2015, we detected a new banking trojan malware family called Android/BadAc-
cents [Ras+15b], which contained different malicious components. The components, e.g.,

1
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a phishing attack, were implemented in such a way that it is very hard, if not impossi-
ble with current analysis techniques, to automatically trigger (dynamic analysis) or detect
(static analysis) the malicious behavior.

One of the reasons for the malware evolution towards adding more obfuscation tech-
niques into the application is because of the improvement of automatic malware detection
approaches by antivirus companies or the app stores itself. For instance, Google Play is
protecting their users with Bouncer, a malware detection approach, which combines static
and dynamic code analysis approaches. While Oberheide and Miller [OM12b] have shown
that Bouncer performed only simplistic security checks on the application in 2012, Google
improved Bouncer over the years resulting in a much higher detection rate of malicious ap-
plications [Anda]. However, even the current version of Bouncer does not detect every ma-
licious application in the Google Play Store as different reports show [Rui16; Web16; PB15;
PK16; Chy15]. For instance, in 2015 the AVAST security team detected a new malware fam-
ily [Chy15] that affected millions of users and was distributed via the Google Play Store.
Before an application gets uploaded and even while the application remains in the Google
Play Store, it will be scanned for malicious behavior with machine-learning techniques that
get supported from state-of-the-art static and dynamic code analysis approaches [Anda].
However, this particular malware might have not been detected by Google’s system due to
a simple timing bomb, a well-known limitation of dynamic code analysis approaches. The
malicious application acted in a benign way until a certain point in time (e.g., after 30 days)
when the malicious behavior started.

Timing bombs and other limitations pose severe research challenges for current code
analysis approaches. In this thesis, we will cover some of those challenges and introduce
new code analysis approaches that will improve the current state-of-the-art that address
those challenges.

1.1 motivation

In the following, we first explain the major limitations of current static and dynamic code
analysis approaches for automatically extracting insights about the behavior of an appli-
cation (Section 1.1.1). Then, we summarize the major obfuscation techniques addressed in
this dissertation in Section 1.1.2.

1.1.1 Motivation Example

In the following, we will focus on a concrete example showcasing that modern Android
malware does not only pose a challenge for human analysts, but also for automated static
and dynamic code analysis approaches. This main motivating example will be re-used in
the following chapters and subsections for explaining the corresponding approaches. This
example was inspired by our malware investigation together with Intel Security [Ras+15a;
Ras+15b] in 2015. We identified a new threat campaign underway in South Korea that
distributed a new form of Android banking trojan we designated as Android/BadAccents.
By the time we had stopped the threat, within two months the trojan had infected more
than 20,000 devices.

In that case, it was already known that we discovered a new form of Android malware,
but concrete insights (e.g., what data is sent where and when) remained unanswered. Answer-
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ing these questions needed a detailed manual reverse engineering approach, which was
time consuming and, therefore, also cost-intensive.

Figure 1 shows a pseudo-code snippet, inspired by the Android/BadAccents malware1

and the sophisticated malware families Obad2, MobWin3 and Tascudap4. Note that some
methods are not implemented since the focus in this snipped is more on the different
code analysis challenges instead of a complete example. It illustrates problems why auto-
matic static and dynamic code analysis approaches did not help at that time. It shows a
code snipped that leaks personal information (access to location information in line 16-18)
to an email account (line 27). One cannot directly see the leakage since the sendEmail()

method call was obfuscated via reflection. The credentials for the email account are im-
plemented in native C/C++ code (line 2 and line 3). Both are accessed in the Java part
(line 9 and line 10) and passed into the obfuscated sendEmail() method call. Those are
very common obfuscation techniques in current malicious applications [TKG13; Ras+15b].
It makes it hard for a human analyst to understand the malicious behavior, but also for
current static analysis approaches that do not consider reflective method calls or native
C/C++ code. Further, an additional anti-analysis technique, a so-called emulator check in
line 13 (isEmulator()), prohibits the execution of the data leak when the application runs
on an emulator instead of a real device. Malware usually gets dynamically analyzed in
a sandbox [Lin+14; Spr+13] by running in an emulator. Malware developers try to evade
this by adding emulator checks into their code. The code also contains a second malicious
behavior, which is implemented in line 32-51: a classical spam distribution. The malware
sends spam messages to all contacts on the smartphone. Most of the time this technique
is used for malware distribution, where SMS messages like "Hey, check out this awesome
app www.malicious.com/malware.apk" are sent to all friends (contacts). Since it is sent
to all personal contacts, it is more likely that a contact clicks on the link and downloads
the malware. The text of the spam is received from an SMS-based C&C (Command and
Control) communication with the attacker. This makes it very flexible changing the spam
text. In line 38, the code shows a timing bomb, which stops the application for 30 minutes
until it executes the malicious behavior. This kind of behavior targets dynamic analysis ap-
proaches that try to dynamically analyze the malicious application. Since the application
waits for 30 minutes, the dynamic analysis has to wait that time before it can analyze the
subsequent code. Additionally, in line 41, the application dynamically loads a new Android
binary file called Dalvik Executable (dex). The name "anserverb.db" is used for confusion
purpose, there is no database file loaded, instead the dex-file is just renamed. Line 43 and
44 shows the calling of the method onStart(), which returns a Boolean value. Only if the
Boolean value is false (line 45), the malware continues and iterates over all contacts (line
46) and accesses the contact’s phone number (line 47). In line 51, the malware sends a spam
message via SMS message to all phone numbers of the contacts. The text of the spam is re-
ceived via an incoming SMS message, which is sent by the attacker (C&C communication).
The dynamic code loading part, together with the reflective method call is used to confuse
the manual analyst and to add a barrier for static code analyses.

As a summary, the example contains two malicious parts, a data leakage in line 27 and a
spam distribution in line 51. As we detail in the following, identifying these two malicious

1 Sample-MD5: a5028fd5df93ba753d919f02b7bf1106

2 Sample-MD5: 58617e6a483f59bc93e500c65116eb87

3 Sample-MD5: acfbb28b997275c365324e004c59771f
4 Sample-MD5: 7f12ec7d2fe00080856934b9da396261
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Runtime Value Extraction

Environment Inference

Sensitive API Calls

Figure 1: Main motivating example: example inspired by the Android/BadAccents, Obad, MobWin
and Tascudap malware that leaks location information via email and sends spam messages
to contacts under certain circumstances
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parts in a fully automatic way challenges current state-of-the-art static and dynamic code
analysis approaches:

• Identification of Sensitive API calls: To get a first idea of the behavior of an appli-
cation, it is important to analyze the usage of API method calls. This gives a manual
reverse engineer a good overview about the general behavior. However, Android ver-
sion 4.2 comprises more than 110,000 public methods [RAB14], it is an error-prone
and time consuming undertaking to identify sensitive method calls. Even worse, ev-
ery new major release of Android might introduce new sensitive API method calls.
Sensitive API calls are not only important for a manual analysis, they are also manda-
tory input for many code analysis approaches for security purposes. Concrete exam-
ples are the detection of code vulnerabilities [Ege+13], the detection of malicious
applications [Cha+13; Gor+14] or the detection of privacy leaks [Arz+14b]. The latter
can be applied in the motivating example. This example contains less common API
methods (line 17 and line 18), whose return values are sent to an email account. The
sending method is obfuscated (line 27) by the usage of a reflective method call. How-
ever, if the dataflow tracking tool does not consider less common API calls, this data
leak cannot be identified. Therefore, individual code analysis approaches can be as
precise as possible, if their input - sensitive API methods - are not well defined, the
tools may show a low recall, i.e., miss data leaks.

• Runtime Value Extraction: During a malware investigation, an analyst needs to ex-
tract concrete information about an application. This can include information about
URLs the application is communicating with or the content of SMS messages, which
is sent by the application. All these details are most of the time concrete runtime
values that get passed into an API call. As an example, in our investigation we were
interested in the username and password (line 9 and line 10) of the email account
since we assumed that the attacker uses this channel for data leakage reasons.

The research area of runtime value extraction has also a significant importance in the
context of resolving reflective method calls. The usage of reflective method calls is
a well-known limitation of static code analysis approaches in Java since either the
analysis does not have a complete view of the code (missing callgraph edges) or
it over-approximates in such a way that too many callgraph edges exist. However,
if the concrete runtime values that get passed into the reflective method call are
known, it is possible to identify the corresponding API call, which is essential for
the construction of the callgraph. This "problem" is exploited in the context of code
obfuscation as shown in Figure 1. Line 22 till line 27 and line 42 till line 44 show the
usage of reflective method calls. This is not only a problem for static code analysis
approaches, but also for manual code audits, which require a manual resolving of
the API calls for a better code understanding.

There are different approaches to extract runtime values from an application either in
a purely static [Ege+13; Li+15a] (extraction of constant strings) or a purely dynamic
way [Bod+11]. Both approaches fail once an application makes use of obfuscation
techniques that target well-known limitations of static and dynamic approaches. Un-
fortunately, malware applications make use of these techniques.

• Environment Inference: To avoid being detected as malware through automated or
manual analyses, many malware apps exhibit their maliciousness only when being
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executed in a particular environment. For example, some apps check whether they
are running in an emulator or another analysis environment, and behave benignly
in these cases. Other malware apps target specific countries and remain harmless
unless the SIM card in the victim’s phone is registered in one of the target countries.
Yet another kind of malware targets phones with a specific app installed, such as a
vulnerable banking app.

To decide whether an application is malicious or not it is essential to infer such envi-
ronment dependencies. Figure 1 for example shows a sensitive API call in line 51, the
sending of a text message. This can be a benign behavior in the case of a messaging
application or a malicious behavior in cases of SMS trojans or spam. However, deter-
mining the required environment setup for the application could provide important
information that can ease the decision. More concretely, in our example, the SMS
message is only sent if a well-formed SMS is received, the application needs to be
opened for at least 30 minutes, there has to be a dex-file ("anserverb.db") on the file
system and there has to be at least one contact on the smartphone. Only then, an SMS
message is sent to all contacts on the smartphone. These environment dependencies
are very uncommon for benign applications and provide a major indication that the
application is very likely to be malicious.

Static symbolic code analysis approaches [Fra+16; Sax+10] are a very common prac-
tice once one need to identify a constraint under which a certain code location
gets reached. However, apart from the well-known limitations of static analysis ap-
proaches, another challenge that these approaches need to face is how to effectively
handle the exponential number of path in checked code [BCE08; Kol+12a]. This re-
sults most of the time in performance penalties [CDE08b; Cad+08; GLM08; Sax+10].
Dynamic approaches such as concolic code execution [Sen07; CDE08b; Cha+12] or
program fuzzing [MFS90; GLM12] need to face the well-known limitations of dy-
namic code execution.

1.1.2 Common Obfuscation Techniques

In the following, we summarize the most common obfuscation techniques in modern An-
droid malware applications that complicate the extraction of security-relevant information
with static and dynamic code analysis techniques. The techniques are selected based on
related work [Hac16], our own malware investigations [Ras+15b] and personal feedback
from an antivirus company. Modern Android malware applications mostly contain tech-
niques such as:

string encryption : Encrypting constant strings, such as concrete URLs, mostly pre-
venting static analysis approaches from extracting concrete insights.

reflective method calls : Invoking a sensitive API call, such as sendTextMessage

with a reflective method call, mostly prevents static analysis approaches from cre-
ating precise callgraphs, resulting in imprecise information extraction, e.g., too many
false-positives or false-negatives in static dataflow approaches.

dynamic code loading : Dynamic loading prevents static analysis approaches from an-
alyzing the whole application’s code.
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time bombs : Actively adding delayed executions to an application usually negatively in-
fluences the dynamic extraction of security-relevant information, e.g., timeout before
detecting the sending of a premium SMS message.

logic bombs : Actively adding conditions that influence the execution of a certain ma-
licious behavior, negatively influences dynamic analysis approaches. Examples are
checks whether the application runs on an emulator or not.

integrity check : Verifying whether the code of an application got modified, i.e., in-
tegrity violation, is usually applied to prevent an application from dynamic analysis
techniques that make use of bytecode instrumentation techniques.

A more detailed explanation of these techniques will be described in Section 2.3.

1.2 goal and scope of this dissertation

The global goal of this dissertation is to aid the investigation of modern Android malware.
The proposed techniques operate at the application layer of the Android operating system
and the focus is on automatically extracting insights about the behavior of an application
realized with code analysis approaches. More concretely, we will show that (1) current
static and dynamic code analysis approaches that try to extract a certain behavior of an
application, e.g., what data is sent where, do have different limitations. This prevents current
approaches from extracting the behavior from applications. (2) We also improve the current
situation by designing new code analysis techniques that help existing approaches for
extracting application insights in performing much better results with current applications.
(3) In addition to that, we also implemented new code analysis techniques and tools that
provide more concrete details about the behavior of Android applications.

Providing concrete insights about the behavior of malicious applications is a very impor-
tant step for manual malware analysts who have to decide if an application is malicious or
not. However, it is also very important for a further decision on automatic approaches that
try to automatically argue about the detection of malicious applications [Gor+14; Avd+15;
Sha+12; Tam+15; BZNT11; Arp+14; Cha+13; AA15]. In this dissertation, we only focus on
the first step, the extraction of concrete insights of an Android application and we do not
automatically argue whether an application is malicious or not.

1.3 thesis statement

This dissertation confirms the thesis that

It is possible to create a framework that automates the extraction of fundamental in-
sights about the behavior of an Android application, even if that application uses ob-
fuscation techniques.

More precisely,

TS-1 : It is possible to automatically identify security- and privacy-relevant API meth-
ods that read (sources) and write (sinks) from/to resources from a large application
framework, the Android framework.
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Figure 2: Main contributions and their relations

TS-2 : It is possible to automatically extract runtime values at any code location in an
Android app, even if it contains anti-analysis techniques mentioned in Section 1.1.2.

TS-3 : It is possible to automatically resolve reflective method calls that are actively ap-
plied as an obfuscation technique for Android applications. This is even possible if
the reflective method’s parameter values are encrypted in a format that is not known
beforehand.

TS-4 It is possible to create precise inter-component callgraphs (Android inter-component
communications), even if the application is obfuscated with anti-analysis techniques
mentioned in Section 1.1.2, which is essential for further static code analysis ap-
proaches that try to extract concrete insights about the application’s behavior.

TS-5 : It is possible to dynamically identify data leakages in an application, even if it is
obfuscated with dynamic anti-analysis techniques described in Section 1.1.2.

TS-6 : It is possible to automatically infer required environment-conditions under which
a malicious application needs to run in order to reach a certain code location, even if
the application contains anti-analysis techniques mentioned in Section 1.1.2.

1.4 summary of contributions

Figure 2 gives a general overview of CodeInspect, a novel reverse-engineering framework
for inspecting modern Android malware applications. In the following, we highlight the
major contributions of this dissertation and how they relate to each other:
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susi : identification of sensitive api calls . We provide an automatic approach
that identifies sensitive API method calls from the Android Open Source Project. More con-
cretely, we automatically identify "Android Sources" that access sensitive resources, e.g.,
address-book data, and "Android Sinks" that write data to a resource, e.g., send text mes-
sages. Moreover, these API methods are automatically categorized into different categories,
such as "unique-identifier" for certain sources or "SMS_MMS" for certain sinks. (Chapter 3)

harvester : fully-automatic extraction of runtime values . HARVESTER is
an approach that fully-automatically extracts runtime values that get passed into method
invocations (values of arguments) during runtime. The proposed technique is even effec-
tive if the application is highly obfuscated (see Section 1.1.2). Besides the general function-
ality of extracting runtime values from Android applications, HARVESTER’s technique im-
proves current state-of-the-art limitations of static and dynamic code analysis approaches.
We improved the construction of static callgraphs as well as improved the recall of existing
dynamic dataflow tracking approaches. (Chapter 4)

As shown in Figure 2, HARVESTER takes the extracted sensitive API methods from SuSi

as input. If an application uses a sensitive API call, HARVESTER tries to extract runtime
values for these API calls.

fuzzdroid : environment-extraction of malicious behavior . FuzzDroid is
a target-driven fuzzing framework, which aims to reach a certain code location in an appli-
cation. The main goal is to extract environment dependencies under which a certain code
position gets reached. (Chapter 5)

The fuzzing framework makes use of SuSi’s list of sensitive API calls and HARVESTER.
In the latter case, FuzzDroid benefits from HARVESTER’s possibility of resolving reflective
method calls.

codeinspect : precise and fast reverse engineering of android applica-
tions . We provide a new Android reverse engineering framework that aims for a faster
and more precise investigation of an Android malware sample. It gives a human malware
analyst the possibility to read, change and enhance the application’s bytecode, which is
represented in a human readable type-based intermediate representation. Furthermore, it
offers various plugins that provide the analyst a detailed security overview of an applica-
tion. SuSi, HARVESTER and FuzzDroid are essential plugins for a faster and more precise
investigation of an application. (Chapter 6)
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1.6 practical security impact

The contributions of this dissertation have had a large impact on the security setup of
different companies and app developers. With the help of our newly developed CodeIn-
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spect tool, we found two serious vulnerabilities in Google’s AOSP (Android Open Source
Project) [Arz+14a; Ras+15b]. One of them [Ras+15b] was unfortunately already exploited
by attackers. Furthermore, we supported an antivirus company during a serious malware
investigation [Ras+15b], which resulted in a takedown of a malicious server and a ma-
licious email account. We stopped the distribution of the malware sample, which had
already affected 20,000 people, and we extracted information aimed at identifying the mal-
ware authors. Moreover, HARVESTER supported us in discovering a major data leakage
in Backend-as-a-Service solutions [RA15] due to improper protection mechanisms on the
part of the application developers. With the help of Backend-as-a-Service providers such as
Facebook or Amazon, we reached out to the developers and helped them fix the problem.

1.7 outline

In the following we will provide some background information about the topics discussed
in this thesis (see Chapter 2). After that, we describe the SuSi approach in Chapter 3,
the HARVESTER approach in Chapter 4, the FuzzDroid approach in Chapter 5 and the
CodeInspect framework in Chapter 6. Discussions and some conclusions conclude this
dissertation in Chapter 7.



2
B A C K G R O U N D

In this chapter, we provide some basic background information that is important to under-
stand the remainder of this dissertation. In particular, we focus on the topics of Android
applications, Android malware and obfuscation techniques. As a first step, we introduce
the Android architecture, along with a special focus on the application layer (Section 2.1).
Section 2.2 covers all information about certain malicious applications that are addressed
in this dissertation. Since modern malware makes use of code obfuscation, we introduce
the most common obfuscation techniques in Section 2.3. We only list those techniques that
we refer to in the remainder of this thesis.

2.1 introduction to the android architecture

Android is an open-source, Linux-based software stack created for a wide array of de-
vices [Andd]. The Android operating system is used in many different devices including
smartphones, tablets, televisions or even cars. It consists of six major layers (ordered from
the bottom to the top): the Linux kernel, the hardware abstraction layer, Native C/C++ libraries
and the Android Runtime, the Java API Framework and the System Apps layer. The focus in
this dissertation is mostly on the Java API Framework and System Apps layer. The former
consists of different APIs written in Java that one needs to create Android apps. The API
simplifies the reuse of core components. More details are provided in the next section. The
latter one comes with a set of core apps for email, SMS messaging, calendars, Internet
browsing, contacts, and more.

2.1.1 Android Application

Android apps are most of the time written in the Java programming language. The Java
source code files are compiled into a register-based bytecode representation called Dalvik
Executable (dex). The dex-file gets further packed into an archive called Android Applica-
tion Package (APK) [Andc]. This APK not only includes the app’s bytecode, it also contains
further components such as the App Manifest, resource files, an assets folder and signature
files [Andf]. The latter ones are available since Android requires all APKs to be digitally
signed with a certificate before they can be installed on a device.

Every Android application consists of four different basic components, which will be
described in more detail in the following:

activity

An Activity is an application component that contains a user interface. It can be used
to click on a button, take a photo, send an email, or view a map. Each activity is given
a window in which to draw its user interface [Appa].

service

In comparison to an activity, a service does not provide any user interface. It is used
for long-running operations in the background such as playing music.
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broadcast receiver

A broadcast receiver is an application component that is able to receive broadcast-
messages from an app or the operating system. For instance, an application can de-
clare a broadcast receiver for intercepting incoming SMS messages. Once the device
receives an SMS, a specific callback gets called in the receiver class and the SMS
message is intercepted.

content provider

Content providers manage the access to a structured set of data. They are the stan-
dard interface that connects data in one process with code running in another pro-
cess [Appd]. An example of a content provider is the interaction with a database such
as the contact data.

The Android operating system is an event-driven system, which is reflected in the de-
velopment of an application: every application and especially every component consists of
a distinct lifecycle that must listen for changes in the application state and react accord-
ingly [Mei12].

Almost all components are declared in the AndroidManifest.xml file that is part of
the apk and contains all configuration information of an application. Broadcast receivers
are the only component that can be created and registered programmatically during run-
time [Appc]. All the other components are created automatically by the Android runtime.

2.1.2 Inter Process Communication

Android is a privilege-separated operating system. Every application runs with a distinct
system identity, the Linux user ID and group ID in its own sandbox. Therefore, applica-
tions are isolated from each other and it is per default not possible, for instance, that one
application accesses data from another application [Ande]. However, there are different
ways how applications can communicate with each other. One of the most common one
is the communication via messaging objects called Intents. Intents allow a communication
between activities, services and broadcast and they are handled via messages that are sent
between components.

An intent can be explicit, directly specifying the component name of the target where the
message needs to be sent. This is usually realized by adding the concrete class name to the
intent. However, there is also the possibility of implicit intents that only declare the func-
tionality that is desired for the target component. In such cases, the desired functionality
is described by the following fields [Appf]:

action Specifies the generic action that need to be performed. For instance, if "VIEW" is
specified, the sender of the intent wants some data do be displayed.

category Describes additional information about the kind of component that should
handle the intent. For instance, the category BROWSABLE indicates that the target
component shall be a web browser to display information.

data References data to be acted on. This can, for instance, be a phone number or a host
address.

More details about the individual items is described in related work [Appf].
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Components that wish to receive an implicit intent need to define an intent filter that
contains all attributes it is willing to receive. This includes action, category or data items.
Furthermore, components have the additional attribute called exported, if set to true indicate
that components in other applications are allowed to interact with this specific component.
This allows inter-application communications. If the flag is set to false, only components
within an application or applications with the same user ID can interact with the compo-
nent. There is also the possibility to define permissions on intents that restrict the commu-
nication with specific components.

Matching an intent to a specific component or to different components is realized by
the Android system during runtime. For explicit intents, the target component is directly
addressed. Therefore, the Android system directly calls the target component. For implicit
intents, the intent resolution process makes use of the action, category and data attributes
of an intent to determine the target components. More concrete information about the
intent resolution process is described online [Appf] and in related work [Oct+16].
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Figure 3: Intra- and Inter-Application communications

Figure 3 shows an example that explains the different communication flows for explicit
and implicit intents. In case of an explicit intent (intent 1) within an application, the mes-
sage first goes to the Android system, which directly calls the target component (Service A).
For implicit intents (intent 2), the Android system matches the corresponding components
(applications). This is realized by showing the user different applications that match for
that certain intent and the user decides which application shall proceed with the message.

Analyzing intent-based communication can be crucial to understanding an app’s behav-
ior. Such an analysis is called inter-component analysis if two components are communicat-
ing with each other, independent of the fact whether two distinct apps are communicating
or two components within a single application. An analysis that only considers a single
component is called an intra-component analysis.

2.1.3 Security Model

The main goal of this dissertation is to extract insights of the behavior of an application,
which can be used to identify malicious applications, either manually or with automated
approaches. Since Android provides different security features to protect the user against
malicious behavior, it is worth discussing the individual features in the following. We
will focus only on the main security features that try to prevent the user from installing
malicious applications or that protect the user once a malicious application is installed.
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Cloud-Based Security Analysis

Before developers publish their applications in the Google Play Store, every application
undergoes a review process that checks whether the application violates the developer
content policy. Examples for violations are restricted content (e.g., sexually explicit con-
tent) or malicious behavior. This process is also applied to applications that are already
released in the app market. It is based on an automated machine-learning approach that
makes use of static and dynamic code analysis techniques for identifying policy viola-
tions [Anda]. It further involves also manual inspection where automated analysis was not
precise enough [Anda]. If the system detects a violation, it will remove the application
from the Play Store and attempt to remove the application from all users’ devices, using
the Verify Apps protection mechanism (see next section).

On-Device Protection

In Android 4.2, Google introduced a new on-device protection feature called Verify Apps.
It extracts different fingerprints and heuristics from an application and determines based
on the Google database whether a particular application is already known as malware or
whether an application contains malicious behavior [Dra+14]. Verify Apps can prompt the
user to remove a potentially malicious application, can remotely delete it or can even block
it from installation [Anda].

Android Platform Security

The Android operating system itself also consists of different security features that protect
the user against malicious applications.

security settings Different security settings [Devb] protect the user’s privacy and se-
curity. Examples are settings that prevent app installations from other sources than Google
Play. Most of the time, malware is distributed not through Google Play but via third-party
stores, via spam or social engineering by directly sending an APK to the victim. This, how-
ever, requires the user to enable the security setting (prevent non-market-apps) and should
raise suspicions.

preventing cost-sensitive actions A cost-sensitive action is any action that might
generate costs to the user or the network [Appb]. Examples are premium SMS messages or
premium phone calls. Android tries to prevent applications from sending premium SMS
messages by checking the sender number against well-known premium numbers before
the SMS message is being sent. When addressing an SMS to such numbers, the user gets
prompted with a dialog with information about potential SMS Fraud that needs to be
confirmed by the user before the SMS gets sent.

android permissions As a security measure, Android applications can only access
sensitive API calls if a certain permission is defined in the application. As an example, if the
developer wants to send an SMS message, she needs to request the SEND_SMS permission.
If this is not the case, once the SMS API gets called during runtime, a security exception
is thrown and the application terminates. During installation, the user prompts a window
containing all permissions that the application requests. To install the application, one
needs to grant them all. This all-or-nothing solution was improved upon by Android 6,
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which introduced a more granular way of revoking and granting permissions. Android 6

allows the user to decide which permissions she wants to grant for a particular application
and is able to dynamically grant permissions once the application accesses an API method
that requires a permission [Anda].

2.2 mobile malware

Throughout this dissertation, we often refer to the term malware investigation. A malware
investigation is meant to be an investigation that verifies whether a certain application is
malicious or not. This can be realized by an automated approach that takes arbitrary appli-
cations as input and automatically decides whether the application is malicious. The alter-
native is a semi-automated approach that automatically reports different security-relevant
findings, which then need to be verified by a human analyst. Furthermore, a malware inves-
tigation can also be a manual analysis (human reverse engineering) of a potential malicious
application or a manual analysis of a known malicious application. In the latter case, an
analyst usually needs to extract specific information, e.g., email account credentials that is
required for a further investigation, e.g., botnet takedown.

During such malware investigations, it is sometimes necessary to spot different malicious
behaviors inside an application. In the following we describe different kinds of malicious
behavior, which is referred to in this dissertation.

Financial Fraud

There are different ways for mobile applications to commit financial fraud. SMS Fraud [Anda]
that charges the victim for costly outgoing SMS messages or call fraud [Anda] for making
costly calls, are the two common ones. In this thesis, we will often focus on SMS Fraud.
Android’s countermeasure of providing a dialog once a premium SMS is sent by an appli-
cation is offered since Android 4.2. However, it is only a blacklisting approach that is able to
identify premium SMS numbers with blacklisting patterns (e.g., numbers containing four
digits or less might be premium SMS numbers). Furthermore, tapjacking attacks [Yin+16]
can be used to hide the security dialog from the user by providing a window that overlaps
the security dialog. This hides the malicious activity from the user.

Mobile Phishing Attacks

In traditional phishing attacks, an attacker tries to draw a victim to a rogue website by
sending her an email containing a link she is lured into clicking on [DT05]. Once done,
the rogue website usually looks exactly like a known website but the website serves only
to capture the user’s personal information like passwords or credit card information. The
same techniques are applied by mobile phishing attacks. The step of drawing the victim
to a rogue website is in many cases realized by SMS Phishing [Sne16]. The victim gets an
SMS message from a service or more commonly from an infected smartphone of a friend.
In the latter case, the installed malware sends a Phishing SMS message iteratively to all
contacts of the victim’s address bock.
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Personal Information Theft

In the case of personal information theft, one has to differentiate different aspects: One
thing is information theft that is intended by the app developer. For instance, a restaurant
finder app usually sends location data to a benign server. There are also many applica-
tions that include third-party advertisement libraries that send sensitive user data to their
servers, because of their business model [Gra+12]. This kind of information theft is usually
considered as potential unwanted applications (PUA) or greyware. But there is also informa-
tion theft that steals sensitive user data for sending it to the attacker. This is an outright
malicious behavior. Differentiating whether an information theft is malicious or not heavily
relies on the context.

Command-And-Control

Traditional PC-based botnets usually consist of many infected PCs that receive commands
from the command-and-control server. The communication hereby works with commonly
used protocols like IRC or HTML for communicating with the infected PCs in a way that
it is hard to detect by intrusion detections systems, for instance. The botnets have differ-
ent goals. Spam distribution, initiating a distributed denial-of-service attack or stealing
personal information are common examples [PO12]. Botnets in the mobile world, and es-
pecially for the Android OS, act very similar. However, many of these botnets make use of
the SMS protocol as a communication channel since it is available on most of the devices.
In this case, the attacker sends an SMS message to the infected device and the malicious
application tries to intercept the incoming SMS message. The message itself contains differ-
ent commands that are used for triggering malicious activities such as sending spam SMS
messages to all contacts on the device (see Section 1.1.1).

2.3 basic obfuscation techniques

A common way of protecting the intellectual property of benign apps, even if sometimes
questionable (security by obscurity), is to apply code obfuscation techniques. Malicious
applications, on the other side, make use of code obfuscation for preventing the detection
of the malicious behavior as long as possible. There are many different techniques in the
area of code obfuscation and especially for obfuscating Android applications [Hac16]. In
the following, we explain those techniques that are important for the remainder of this
thesis.

code transformations Code transformation techniques are typically used for pro-
tecting the application from static analysis approaches including manual reverse engineer-
ing. Static code analysis approaches have different limitations [Ras+15b] that are exploited
by obfuscators. String encryption is one of those techniques. It takes a constant string of the
code, e.g., a URL, and encrypts it. The obfuscator further adds additional code statements
that automatically decrypt the encrypted code during runtime. This means the constant
string gets transformed in such a way that the value will be only available during execu-
tion. This makes it harder and more time-consuming for a human analyst to understand
the behavior of an application, e.g., to which server the application is communicating with.
Another common technique is the usage of reflective method calls. Reflective method calls
provide a way of invoking methods by hiding the original method call into an invoke()
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method [Ora]. The combination of string encryption together with reflective method calls
make it very hard for static analyses to determine what method gets invoked, resulting in
an incomplete callgraph of the application. However, this combination makes it also harder
for a human analyst to understand the behavior of the application.

integrity verification Protecting the integrity of an applications, e.g., the appli-
cation’s code, is important in different aspects. In the context of obfuscation, integrity
checks are usually applied to detect application manipulations. This can be used for iden-
tifying dynamic malware analysis approaches that rely on application modifications, e.g.,
through the adding of logging information to the bytecode. In this case, the bytecode will
be changed and the integrity verification check inside the application will fail, resulting in
application termination or other unintended app behaviors. Since all Android applications
need to be signed (see Section 2.1), a common way to implement an integrity check for
Android applications is to bind the certificate to the application’s code. This can be real-
ized by checking whether the hash of the certificate that is used for app signing, has been
changed. In case of a code manipulation, the application needs to be re-signed with a new
certificate and therefore, the hash will be different.

logic bombs Logic bombs cause an app to suppress any malicious activity when spec-
ified conditions are met [Chy15]. For example, the app itself detects that it is executed
within an analysis environment [Spr+13; Lin+14]. In such cases, it behaves different than it
would do on an infected device, since it usually gets analyzed for malicious behavior. The
same applies for emulator checks, since most applications run on a real device. Testing an
application on an emulator is usually applied for inspecting the application against mali-
cious behavior. Further checks that are treated in this thesis are checks for rooted devices.
An application on a rooted device has more privileges than on a non-rooted one. This re-
sults in the fact that on such a device a malicious application can access sensitive data from
another application, which is not usually possible in the non-rooted (sandboxed) case.

There are different ways to implement logic bombs in Android applications. Many of
them are covered in related work [Hac16].

time bombs Time bombs cause an app to suppress a specific behavior in any case for
a longer period of time. This can be realized by a specific date when the behavior gets
triggered, after a certain amount of time (e.g., after 30 minutes), or after certain events (e.g.,
a reboot of the phone), for instance. This technique is used by malicious applications to hide
the malicious behavior from dynamic code analysis approaches such as sandboxes [Spr+13;
Lin+14], which usually analyze an application for a limited amount of time.

packers Packers are software programs that compress and encrypt other executable
files in a disk and restore the original executable file when the packed files are loaded
into memories [Rie+11; YZA08]. This kind of technique protects the application from static
code analysis, including manual reverse engineering, since the main code is protected by
encryption. Attackers apply packers to their malicious code for evading signature-based
detection approaches as applied by many antivirus solutions [AN14].





3
I D E N T I F I C AT I O N O F S E N S I T I V E S O U R C E S A N D S I N K S

CodeInspect is a framework comprising different plugins that provide various insights
about the behavior of an application. These plugins are implemented by different kinds
of code analyses. Many of these automated approaches, such as the dataflow tracking
plugin (see Section 6.1.4), the automated extraction of runtime values (see Chapter 4) or
the automated extraction of environment information (see Chapter 5) rely on knowledge
of a complete set of sensitive API calls that are used within an application. If this list is
not complete, it is very likely that these approaches are not able to extract important in-
sights. Apart from the analyses within the CodeInspect framework there are also other
approaches [Spr+13; Lin+14; RC15; Gor+14; Arp+14] that provide security-relevant infor-
mation of an application, but rely on the identification of sensitive API methods. Besides
automated approaches, also manual investigations benefit from information about sensi-
tive API methods that are used within an application. It provides an analyst with a first
impression about the different functionalities of the application, which may point to rele-
vant code sections that need a deeper inspection.

Two classes of sensitive API calls are particularly important in security analyses: sensitive
sources and sensitive sinks. Sources are API methods that access sensitive data such as
location information or device information while sinks are a gateway to the outside of the
smartphone like sending SMS messages or sending post requests via the Internet (a more
detailed definition is provided in Section 3.3). This separation is especially important for
dataflow analysis approaches, since they try to identify data leakages based on a connection
between a source and a sink. In the following chapter we, therefore, mainly focus on the
dataflow problem but we will also outline further application scenarios in Section 3.6 and
in Chapter 6.

In version 4.2, Android’s runtime library comprises about 110,000 public methods. This
clearly makes a manual classification of sources and sinks infeasible. Furthermore, each
new Android release includes new functionality (e.g., NFC in Android 2.3 or restricted
profiles in Android 4.3), which often also leads to new sources and sinks. A manual identi-
fication of sensitive API methods is therefore impractical. It would impose a high workload
on the analyst and would have to be done again for every new Android release. Addition-
ally, handpicking is an error-prone task.

The fundamental research question addressed in this chapter is

How can one automatically identify sensitive source and sink API methods from a
large application framework, the Android framework?

We therefore propose SuSi, an automated machine-learning guided approach for identi-
fying sources and sinks directly from the code of the Android runtime library. We have
identified both semantic and syntactic features to train a model for sources and sinks on
a small subset of hand-classified Android API methods. SuSi can then use this model to
classify arbitrarily large numbers of previously unknown Android API methods.
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Awareness of sources and sinks is highly useful but if a leak is found, the user often
desires additional information on what information has leaked where, for instance location
information to the Internet.

Therefore, we address a second research question in this chapter:

How can one automatically categorize sensitive source and sink API methods from a
large application framework, the Android framework?

SuSi thus further classifies the identified sources and sinks into source and sink cate-
gories. As we find, all categories contain more than a single method. The categorization
hence shows that there is often more than one way to retrieve a certain piece of data, and
that there are multiple ways to send it out to an attacker.

Contributions. To summarize, this chapter presents the following original contributions:

• a practical and precise definition of data sources and sinks in Android applications,

• an automated, machine-learning based approach for identifying data source and sink
methods in the Android framework, even in case of new, previously unseen Android
versions and variants,

• a classifier for data source and sink methods into semantic categories like network,
files, contact data, etc., and

• a categorized list of sources and sinks for different Android versions, as well as
the Google Mirror and Google Cast APIs. Existing static and dynamic analysis ap-
proaches can directly us the list.

Chapter Outline. In this chapter, we will first use a motivating example to describe the
need for an automatic extraction of sensitive sources and sinks (Section 3.1). Then we
will give some background on machine-learning for our purpose (Section 3.2), continue
with some definition (Section 3.3) and explain the approach in Section 3.4. After that, we
continue with the evaluation of our approach (Section 3.5), mention further application
scenarios (Section 3.6) and show the limitations of the approach in Section 3.7. Related
work in Section 3.8 and a summary (Section 3.9) conclude this chapter.

3.1 motivation and contribution

As mentioned earlier, comprehensive lists of sources and sinks are hard to come by. As
a consequence, lists of sources and sinks known from the scientific literature [Enc+10;
Enc+11b; FCF09] only contain a few well-known Android API methods for obtaining and
sending out potentially sensitive information. Section 3.5 gives detailed information about
the current state-of-the-art. However, there are often multiple ways to achieve the same
effect. Developers of malicious applications can thus choose less well-known sources and
sinks to circumvent analysis tools. Let us assume an attacker is interested in obtaining
the user’s location information and writing it to a publicly accessible file on the internal
storage without being noticed by existing program-analysis approaches.
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1 void onCreate() {
2 //source: cell-ID
3 int cellID = CellLocation.getCid();
4 //source: location area code
5 int lac = CellLocation.getLac();
6 boolean darmstadt = (lac == 4222 && cellID == 44044);
7

8 String taint = "Darmstadt: " + darmstadt + " (" + cellID + " | " + lac + ")";
9 String f = this.getFilesDir() + "/mytaintedFile.txt";

10 //sink
11 FileUtils.stringToFile(f, taint);
12 //make file readable to everyone
13 Runtime.getRuntime().exec("chmod 666 "+f);
14 }

Listing 1: Motivating example SuSi: Android location leak example

Listing 1 shows an example that attempts to disguise a data leak by using less common
methods for both the source and the sink. The example contains the same sources as in the
introduction’s motivation example (see Figure 1), the sinks are different however. More con-
crete, we have two source methods. Firstly, line 3 calls getCid(), returning the cell ID. Line 5

then calls getLac(), returning the location area code. Both pieces of data in combination can
be used to uniquely identify the broadcast tower servicing the current GSM cell. While this
is not an exact location, it nevertheless provides the approximate whereabouts of the user.
In line 6 the code checks for a well-known cell-tower ID in Darmstadt, Germany. An actual
malicious app would perform a lookup in a more comprehensive list. Finally, the code
needs to make the data available to the attacker. The example creates a publicly accessible
file on the phone’s internal storage, which can be accessed by arbitrary other applications
without requiring any permissions. Instead of employing Java’s normal file writing func-
tions, the code uses a little-known Android system function (line 11) which SuSi identifies
as a "FILE" sink but which is normally hidden from the SDK (Software Development Kit):
the FileUtils.stringToFile function can only be used if the application is compiled against a
complete platform JAR file obtained from a real phone, as the android.jar file supplied with
the Android SDK does not contain this method. Nevertheless, the example application runs
on an unmodified stock Android phone.

This example is, at least for the source methods, a representative example for malware
[Vir] we inspected. We have tested this example with publicly available static and dynamic
taint analysis tools including Fortify SCA [Enc+11b], SCanDroid [FCF09], IBM AppScan
[Appe] and TaintDroid [Enc+10] and confirmed that none of these tools detected the leak.
This shows how important it is to generate a comprehensive list of sources and sinks
for detecting malicious behavior in deceptive applications. SuSi discovers and classifies
appropriately all sources and sinks used in the example.

3.2 background on machine learning

SuSi uses supervised learning to train a classifier on a relatively small subset of manually-
annotated training examples. This classifier is afterwards used to predict the class of an
arbitrary number of previously unseen test examples. Classification is performed using a
set of features. A feature is a function that associates a training or test example with a value,
i.e., evaluates a certain single domain-specific criterion for the example. The approach
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ID Experience Alcohol Phone No Accident

T1 5 yrs 0.6 1234 yes

T2 11 yrs 0.4 45646 yes

T3 3 yrs 0.2 76546 yes

T4 4 yrs 0.0 54645 no

T5 10 yrs 0.2 78354 no

C1 6 yrs 0.1 6585 ?

C2 12 yrs 0.55 67856 ?

Table 1: Classification example on drunk driving

assumes that for every class there is a significant correlation between the examples in the
class and the values taken by the feature functions.

As a simple example, consider the problem of estimating the risk of a driving accident for
an insurance company. We may identify three features: years of experience, blood alcohol
level and the driver’s phone number. Assume the learning algorithm deduces that a higher
level of experience is negatively correlated with the accident rate, while the alcohol level
is positively correlated and the phone number is completely unrelated. The impact of
a single feature on the overall estimate is deduced from its value distribution over the
annotated training set. If there are many examples with high-alcohol accidents, then this
feature will be given a greater weighting than the years of experience. However, if there
are more accidents of inexperienced drivers in the training set than alcohol-related issues,
the classifier will rank the experience feature higher.

The classifier works on a matrix, organized with one column per feature and one row per
instance. Table 1 shows some sample data. An additional column indicates the class and is
only filled in for the training data. In our example, this column would indicate whether or
not an accident took place. The first five rows are training data, the last two rows are test
records to be classified.

In this example, a simple rule-based classifier would deduce that all reports with alcohol
levels larger than 0.2 also contained accidents, so C2 would be classified as accident:yes.
However, since the converse does not hold, further reasoning is required for C1. Taking
the experience level into account (assuming that experienced drivers are drivers with more
than 5 years of experience), there are two records (T3 and T4) of inexperienced drivers
with levels of 0.2 or below in our test set: one with an accident and one without. In this
case, the classifier would actually pick randomly, since both accident:yes and accident:no are
equally likely. A probabilistic classifier could also choose accident:yes because accidents are
more likely for inexperienced drivers (two out of three) in general. This demonstrates that
results can differ depending on the choice of the classifier.

As a concrete classifier, we use support vector machines (SVM), a margin classifier, more
precisely the SMO [Pla98] implementation in Weka [Hal+09] with a linear kernel. We op-
timize for minimal error. The basic principle of an SVM is to represent training examples
of two classes (e.g., "sink" and "not a sink") using vectors in a vector space. The algorithm
then tries to find a hyper-plane separating the examples. For a new, previously unseen test
example, to determine its estimated class, it checks on which side of the hyper-plane it be-
longs. In general, problems can be transformed into higher-dimensional spaces if the data
is not linearly separable, but this did not prove necessary for any one of our classification
problems.
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Figure 4: SMO classification example

Figure 4 shows an SMO diagram for Table 1. We have not included the phone number
feature since it is unrelated to the probability of an accident. The red line shows a projection
of the hyper-plane. In this example, the SMO detects that all points above the line are
positive examples (i.e., records of accidents), and all points below are negative ones (i.e.,
no accident). C2 would thus be classified as an accident, just as with the simple rule-based
classifier above, but C1 would now definitely be classified as non-accident because it lies
below the line.

SMO is only capable of separating two classes. However, in SuSi, we have three classes
in the first problem (source/sink/neither) and a lot more in the second one (the catego-
rization). We solve the problem with a one-against-all classification, a standard technique
in which every possible class is tested against all other classes packed together to find out
whether the instance corresponds to the current single class or whether the classification
must proceed recursively to decide between the remaining classes.

We also evaluated other classification algorithms based on different principles, for in-
stance Weka’s J48 rule learner, which implements a pruned C4.5 decision tree [Qui93]. The
main problem with a rule set is its lack of flexibility. While many source-method names,
for instance, start with get, this is not the case for all source methods. On the other hand,
not all methods that start with get are actually sources. Since this rule of thumb is correct
most of the time, however, a rule tree would usually include a rule mapping all get meth-
ods to sources and only perform further checks if the method name has a different prefix.
With an SVM, such aspects that are usually correct, but not always, can be expressed more
appropriately by shifting the hyper-plane used for separation.

Probabilistic learning algorithms like Naive Bayes [Zha04] produced very imprecise re-
sults. This happens because our classification problem is almost rule-based, i.e., has an
almost fixed semantics. The variance is simply not large enough to justify the imprecision
introduced by probabilistic approaches, which are rather susceptible to outliers.

3.3 definition of sources and sinks

Before one can infer sources and sinks, one requires a precise definition of the terms
"source" and "sink". Several publications in the area of taint and information-flow anal-
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ysis discuss sources and sinks, but all leave open the precise definitions of these terms. For
instance, Enck et al. [Enc+10] define sinks informally as "data that leaves the system" which
is, however, too imprecise to train a machine-learning based classifier; such classifiers are
only as good as their training data.

Taint and information-flow analysis approaches track through the program the flow of
data. Sources are where such dataflows enter the program and sinks are where they leave
the program again. This requires us to first define data in the context of dataflows in An-
droid applications.

Definition 1 (Data) A piece of data is a value or a reference to a value.

For instance, the IMEI in mobile applications is a piece of data, as would be the numerical
value 42. We also treat as data, for instance, a database cursor pointing to a table of contact
records, since it directly points to a value and is thus equivalent in terms of access control.

In taint tracking, one monitors the flow of data between resources such as the file sys-
tem or network. Conversely, due to Android’s app isolation, data that is simply stored in
the app’s address space is not of interest. Before one can define sources and sinks, one
must therefore define the notion of a resource method. Mobile operating systems like An-
droid enable applications to access resources using pre-defined methods. While one could
also imagine fields being used for resource access, we found this not to be the case with
Android.

Definition 2 (Resource Method) A resource method reads data from or writes data to a shared
resource.

For instance, the operating system method for reading the IMEI (getDeviceId() in class
TelephonyManager) is a resource method. In this case, the phone’s hardware itself is the
resource as the IMEI is branded into the silicon. The sendTextMessage() method in class
SmsManager is a resource method for sending text messages to a specific phone number.
The resource is the GSM network.

Note that a writing resource method does not necessarily need a reading counterpart.
In our definition, there is no restriction on how the data is shared. A writing resource
method might, for instance, send out data over the network (which is a resource). Though
another application cannot directly obtain this data through a simple method call, the data
can easily be sniffed from the network and is thus shared. Data leaving the phone is thus
always considered shared.

After defining data and resource methods we can now define sources and sinks in the
context of Android applications:

Definition 3 (Android Source) Sources are calls into resource methods returning non-constant
values into the application code.

The getDeviceId() resource method is an Android source. It returns a value (the IMEI) into
the application code. The IMEI is considered non-constant as the method returns a different
value on every phone. Looking at the source code alone does not reveal this value. In
contrast, a function that just reads a fixed constant from a database is a resource method
but, by our definition, is not an Android source.
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Note that our definition of sources does not make any restrictions on whether the data
obtained from a source is actually private. SuSi will thus, at first, report sources of non-
private data as well. However, in a second step SuSi then applies a further categoriza-
tion which partitions sources into different categories of private data. This partitioning
includes a class NO_CATEGORY, which represents sources of non-private data, which
privacy-analysis tools can ignore. Details will be given in Section 3.4.1.

Definition 4 (Android Sinks) Sinks are calls into resource methods accepting at least one non-
constant data value from the application code as parameter, if and only if a new value is written or
an existing one is overwritten on the resource.

The sendTextMessage() resource method is an Android Sink as both the message text
and the phone number it receives are possibly non-constant. On the other hand, the reboot
method in the PowerManager class, for instance, just receives a kernel code for entering spe-
cial boot modes, which must be part of a pre-defined set of supported flags. This method
is thus only a resource method (the data is written into the kernel log), but not an Android
Sink. We require this restriction on constant values for methods, which do not introduce
any new information into the calling application in the case of sources, or do not directly
leak any data across the application boundary in the case of sinks. The values at calls to
such methods are of a purely technical kind (e.g., system constants, network pings etc.) and
not of interest to typical analysis tools. Note that our definition also excludes some implicit
information flows. This is a design choice. For instance, in our approach the vibration state
of the phone is not considered a single-bit resource, even though it could theoretically be
observed and would then be "shared".

Methods may act as a source or a sink depending on environment settings or parameter
values. As a simplified example, imagine a method which first checks whether a SIM card
is present and, if so, queries the SIM card for its serial number. This method would only
be a source if there is a SIM card in the phone. Since our model of sources and sinks does
not contain conditionals, we have to over-approximate and always regard the respective
method as a source or sink respectively.

A malicious app can try to access private information not only through calls to the official
Android framework API but also through calls to code of pre-installed apps. For instance,
the default email application provides a readily-available wrapper around the getDeviceId()
function. This app is pre-installed on every stock Android phone, which gives a malicious
app easy access to the wrapper: the app just instructs the Android class loader to load the
respective system APK file and then instantiates the desired class. To cover such cases, our
approach does not only analyze the framework API but the pre-installed apps as well. (We
use a Samsung Galaxy Nexus with Android 4.2.). In other words, our analysis boundary is
between a (potentially malicious) user application and all components pre-installed on the
device.

3.4 classification approach : susi

In this section, we explain the details of SuSi, our machine-learning approach to automat-
ically identify sources and sinks corresponding to the definitions given in Section 3.3. We
address two classification problems. For a given unclassified Android method, SuSi first
decides whether it is a source, a sink, or neither. The second classification problem refines
the classification of sources and sinks identified in the first step. All methods previously
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Figure 5: SuSi’s machine-learning lifecycle

classified as neither are ignored. For an uncategorized source or sink, SuSi determines the
most likely semantic category it belongs to. In our design, every method is assigned to
exactly one category.

section outline . Section 3.4.1 presents the general architecture of SuSi, while Sec-
tion 3.4.2 discusses the features SuSi uses to solve its classification problems. Section 3.4.3
gives more details on one particularly important family of features, which deals with
dataflows inside the methods to be classified. In Section 3.4.4 we show how the seman-
tics of the Java programming language can be exploited to artificially generate further
annotated training data.

3.4.1 Design of the Approach

Figure 5 shows SuSi’s overall architecture. It includes four different layers: input, prepara-
tion, classification, and output. The square elements denote objects, while the round elements
represent actions. We run two rounds: One for classifying methods as sources, sinks, or nei-
ther, and one for categorizing them. Solid lines denote the dataflow within SuSi. The two
dashed lines denote the initialization of the second round. The general process is the same
for both rounds. For the categorization, SuSi just takes the outputs of the classification as
test data inputs. More precisely, SuSi categorizes separately those methods it has previ-
ously identified as sources or sinks and disregards those it classified as neither.

SuSi starts with the input data for the first classification problem, i.e., for identifying
sources and sinks. This data consists of the Android API methods to analyze. These meth-
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ods can be separated into a set of training data (hand-annotated training examples) and a
set of test data for which we do not know whether a method is a source, sink or neither.
The set of training data is much smaller than the set of unknown test data, in our case only
roughly 0.7% for the classification and about 0.4% for the categorization. Beside the API
methods we need a database of features, both for the classification and categorization. The
features are different for classification and categorization. See Section 3.4.2 for details.

As described in in Section 3.2, a supervised learning approach requires two matrices.
The first one is built by evaluating the features on the set of hand-annotated training data,
the second one by applying the same feature set as well to the test data yet to be classified
(preparation step). SuSi then uses the first matrix to train the classifier (classification step),
which afterwards decides on the records in the test matrix (output step).

While there are a few methods in the Android library that are both sources and sinks
(such as some of the transceive methods of the NFC implementation), their scarcity stops
us from establishing a fourth category "both", even though in theory such a category might
sound sensible. Classifying a sufficient amount of training data for a machine-learning
approach would be equal to classifying almost all transceiver methods. Respectively, we
treat such methods as either sources or sinks. This decision affects both the training data
and the classifier’s results.

In a second step, SuSi categorizes the sources and sinks set. In this step, SuSi separately
considers the sources and sinks determined in the first step as new test sets (dashed ar-
rows). Note that methods classified as neither are ignored at this point. SuSi also requires
new training data for the second classification problem. To provide such data, we hand-
annotated a subset of the Android sources and sinks with semantic categories related
to the mobile domain. We furthermore chose different kinds of features for the feature
database as explained in Section 3.4.2. We chose 12 different kinds of source-categories
that we identified as being sufficiently meaningful for the different Android API meth-
ods: account, bluetooth, browser, calendar, contact, database, file, network, nfc, settings, sync, and
unique-identifier. For the sinks, we defined 15 different kinds of categories: account, audio,
browser, calendar, contact, file, log, network, nfc, phone-connection, phone-state, sms/mms, sync,
system, and voip. For the purpose of compiling our training data, if a method is not rele-
vant or does not fit in any of the identified categories, it is annotated as belonging to the
special no-category class. If one wants to add a new category, one simply has to create new
features for the feature database and randomly annotate the corresponding API methods.
Our approach then automatically uses the new feature for the generation of the categorized
sources and/or sinks. The subsequent steps as shown in Figure 5 are equal to the ones for
the classification. The final output consists of two files, one for the categorized sources and
one for the categorized sinks.

Note that some of these categories refer to data being managed by applications, not the
operating system itself. One example are contacts: The system provides a data interface to
make sure that there is a uniform way of obtaining contacts for all applications that require
them, e.g., travel planners, or calendars sending invitations. Additionally, Android contains
system applications providing default implementations of these interfaces, so there are
methods, which are available on every Android phone and which can be called in order to
obtain private data. Therefore, we include categories for such methods, despite them not
being part of the operating system as such.

Since we have different categories for sources and sinks, their categorization comprises
two distinct classification problems: one for sources and one for sinks. Though they share
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the same feature set (see Section 3.4.2), both are solved independently of each other. Thus,
quite naturally, the resulting correlations might differ significantly, as some features might
be more relevant to distinguish different kinds of sources than different kinds of sinks, and
vice versa.

3.4.2 Feature Database

We used a set of 144 syntactic and semantic features for classifying the Android methods.
A single feature alone does not usually give enough information to decide whether a given
Android method is a source, a sink or neither. However, all features in combination can
be used to train a highly precise classifier. The same holds for the second classification
problem in which we need to find categories for our sources and sinks.

One main reason for why these features work is that many developers of the Android
framework do in fact follow a certain regular coding style, or duplicate parts of one
method’s implementation when implementing another. These social aspects of software
development lead to a certain degree of regularity and redundancy in the code base, which
a machine-learning approach such as ours can discover and take advantage of.

Though we have a large number of distinct features, most of them are instances of the
same parameterized class. For example, the "method name starts with" feature class has
instances "method name starts with get", "method name starts with put", and so on. For
identifying sources and sinks, SuSi uses the following classes of features:

• Method Name: The method name contains or starts with a specific string, e.g., "get",
which can be an indicator for a source.

• Method has Parameters: The method has at least one parameter. Sinks usually have
parameters, while sources might not.

• Return Value Type: The method’s return value is of a specific type. A returned cursor,
for instance, hints at a source, while a method with a void return value is rarely ever
a source.

• Parameter Type: The method receives a parameter of a specific type. This can either
be a concrete type or all types from a specific package. For instance, a parameter of
type java.io.* hints at a source or a sink.

• Parameter is an Interface: The method receives a parameter of an interface type.
This is often the case with methods that register callbacks. Note that such methods
are neither sources nor sinks according to our definition, since they do not perform
any actual operation on the data itself.

• Method Modifiers: The method is static/native/etc. Static methods are usually nei-
ther sources nor sinks, with some exceptions. Additionally, sources and sinks are
usually public.

• Class Modifiers: The method is declared in a protected/abstract etc. class. Methods
in protected classes are usually neither sources nor sinks.

• Class Name: The method is declared in a class whose name contains a specific string,
e.g., Manager.
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• Dataflow to Return: The method invokes another method starting with a specific
string (e.g., read in the case of a source). The result of this call flows into the original
method’s return value. This hints at a source.

• Dataflow to Sink: One of the method’s parameter flows into a call to some other
method starting with a specific string, e.g., update, which would suggest a sink.

• Dataflow to Abstract Sink: One of the method’s parameter flows into a call to an
abstract method. This is a hint for sink as many command interfaces on the hardware
abstraction layers are built on top of abstract classes.

• Required Permission: Invoking the method requires a specific permission. There is
one such feature for every permission declared in the Android API. We were only able
to use this feature on the approximately 12,600 methods for which we had permission
annotations from the PScout [Au+12] list.

Some features, in particular "Method Name", might sound naive at first, but it turns out
that such syntactic features are among the ones that correlate the strongest with sources
and sinks. Of course, their effect is only positive in combination with other features; one
could not, for instance, detect sources by only looking at prefixes of method names.

All our features can assume one of three values: "True" means that the feature applies, i.e.,
a method does indeed start with a specific string. "False" means that the feature does not
apply, i.e., the method name does not have the respective prefix. "Not Supported" means
that the feature cannot be decided for this specific method. The latter can happen if, for
example, the feature needs to inspect the method body, but no implementation is available
in the current Android version’s platform JAR file.

The details of our dataflow features are explained in Section 3.4.3. SuSi’s features for
categorizing sources and sinks can be grouped as follows:

• Class Name: The method is declared in a class whose name contains a specific string,
e.g., Contacts.

• Method Invocation: The method directly invokes another method whose fully-qualified
name starts with a specific string, e.g., com.android.internal.telephony for Android’s in-
ternal phone classes. This feature does not consider the transitive closure of calls
starting at the current method.

• Body Contents: The method body contains a reference to an object of a specific type,
e.g., android.telephony .SmsManager for the SMS_MMS category.

• Parameter Type: The method receives a parameter of a specific type (similar feature
as for the classification problem with different instances).

• Return Value Type: The method’s return value is of a specific type, e.g.,
android.location.Country for regional data.

Note that we do not use permission-based features for the categorization, since many
methods require permissions for internal functionality not directly related to their respec-
tive category. For instance, a backup method requests many permissions, but does not
necessarily give out all of the data it accesses using these permissions if it only creates
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an internal save point that can be restored later. The permission list alone thus does not
directly relate to the method’s category.

It becomes apparent that semantic features are much more suitable for identifying sources
and sinks than for categorizing them. On the source-code level, Android’s sources and
sinks share common patterns, which can be exploited by our dataflow feature. For finding
categories, however, there seems to be no such technical distinction and SuSi must rather
rely on syntactical features such as class and method names.

3.4.3 Dataflow Features

As we found through empirical evaluation, considering a method’s signature and the syn-
tax of its method body alone is insufficient to reliably detect sources and sinks. With such
features alone we were unable to obtain a precision or recall higher than about 60%. It
greatly helps to take the dataflows inside the method into consideration as well. Recall
from our definitions in Section 3.3 that sources must read from and sinks must write to
resources.

To analyze dataflows, we originally experimented with a highly precise (context-, flow-
and object-sensitive) dataflow analysis based on Soot [Lam+11], but found out that this did
not easily scale to the approximately 110,000 methods of the Android SDK. Computing
precise call graphs and alias information simply took too long to be practical. We thus
changed to a much more coarse-grained intra-procedural approximation (also based on
Soot1) which runs much faster whilst remaining sufficiently precise for the requirements
of our classification. Keep in mind that the result of the dataflow analysis is only used as
one feature out of many. Thus, it suffices if the analysis is somewhat precise, i.e., produces
correct results with just a high likelihood.

Our dataflow features are all based on taint tracking inside the Android API method
m to be classified. Depending on the concrete feature, we support the following analysis
modes:

• Treat all parameters of m as sources and calls to methods starting with a specific
string as sinks. This can hint at m being a sink.

• Treat all parameters of m as sources and calls to abstract methods as sinks. This can
hint at m being a sink.

• Treat calls to specific methods as sources (e.g., ones that start with "read", "get", etc.)
and the return value of m as the only sink. This can hint at m being a source. Option-
ally, parameter objects can also be treated as sinks.

Based on this initialization, we then run a fixed-point iteration with the following rules:

• If the right-hand side of an assignment is tainted, the left-hand side is also tainted.

• If at least one parameter of a well-known transformer method is tainted, its result
value is tainted as well.

• If at least one parameter of a well-known writer method is tainted, the object on which
it is invoked is tainted as well.

1 We took the android.jar built from the OS and the system applications on a real phone (Galaxy Nexus running
Android 4.2) as input for Soot.
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• If a method is invoked on a tainted object, its return value is tainted as well.

• If a tainted value is written into a field, the whole base object becomes tainted. For
arrays, the whole array becomes tainted respectively.

When the first source-to-sink connection is found, the fixed-point iteration is aborted
and the dataflow feature returns "True" for the respective method to which it was applied.
If the dataflow analysis completes without finding any source-to-sink connections, the
feature returns "False".

While such an analysis would be too imprecise for a general-purpose taint analysis, it is
very fast and usually reaches its fixed point in less than three iterations over the method
body. Since the analysis is intra-procedural, its runtime is roughly bounded by the number
of statements in the respective method.

3.4.4 Implicit Annotations for Virtual Dispatch

SuSi’s implementation is based on Weka, a generic machine-learning tool, which has no
knowledge about the language semantics of Java. However, we found that when annotating
methods to obtain training data it would be beneficial to propagate method annotations up
and down the class hierarchy in cases in which methods are inherited. Such a propagation
models the semantics of virtual dispatch in Java. We thus extended SuSi such that if en-
countering an annotated method A.foo, the annotation is implicitly carried over also to B.foo
in case B is a subclass of A that does not override foo itself, thus inheriting the definition
in A. Similarly, if B.foo were annotated, but not A.foo, we would copy the annotation in the
other direction.

For our subset of 12,600 methods with permission annotations taken from the PScout
list [Au+12], SuSi was able to automatically create implicit annotations for 305 methods.
After loading the remaining methods of the Android API to get our full list of 110,000

methods, SuSi was able to automatically annotate another 14 methods.

3.5 evaluation

Our evaluation considers the following research questions:

rq1 Can SuSi be used to effectively find sources and sinks with high accuracy?

rq2 Can SuSi be used to categorize the found sources and sinks with high accuracy?

rq3 Which kind of sources and sinks are used in malware apps?

rq4 How do the sources and sinks change during different Android versions? Can SuSi

be used to identify sources and sinks in new, previously unseen Android versions?

rq5 How complete are the lists of sources and sinks distributed with existing Android
analysis tools and how do they relate to SuSi’s outputs?

The following sections address these questions in order.
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3.5.1 RQ1: Sources and Sinks

To assess the precision and recall of SuSi on our training data, we applied a ten fold cross
validation and report the results in Section 3.5.1.1. Since the test data used for the cross
validation is picked randomly, the results of the cross validation usually carry over to the
complete classification performance on unknown training sets if the test set was sufficiently
representative. To confirm that this actually holds, we manually evaluated the source and
sink lists SuSi generated for the Google Mirror and Google Cast APIs and report the results
in Section 3.5.1.2. The Google Cast API is used for the communication between an Android-
based smartphone and Google’s Chromecast device [Chr]. The Google Mirror API links an
Android device to Google Glass [Goo]. We chose these two APIs to show that SuSi is
actually able to efficiently handle even previously unseen Android or Java APIs. Note that
neither API is included in the base Android system. Secondly, both APIs include methods
that handle personal data, such as location or network information. To the best of our
knowledge no taint analysis tool has considered these APIs yet. Thirdly, the APIs are of
manageable size, making a complete manual validation of SuSi’s results practical.

3.5.1.1 Cross Validation

We envision SuSi to be used as an automated approach in which experts like us hand-
annotate parts of the Android API and then use SuSi to automatically extrapolate these
annotations to larger parts of the API. Of course, such an approach only makes sense if
the extrapolation is meaningful, which is equivalent to delivering a high precision and
recall. Measuring precision and recall is hard in this setting, as one has no gold standard to
work with: there is no correctly pre-annotated Android API with which one could compare
SuSi’s results. Thus, as a best-effort solution we hand-annotated a subset of the Android
API ourselves (details below) and then used these methods both as training and test data in
a ten-fold cross validation [Koh95], which is the standard approach for evaluating machine-
learning techniques. It works by randomly dividing all training data into 10 equally sized
buckets, training the classifier on 9 of them, and then classifying the remaining bucket. The
process is repeated 10 times, omitting another bucket from training each time. In the end,
SuSi reports the average precision and recall. For each class c, precision is the fraction of
correctly classified elements in c within all elements that were assigned to c. If precision is
low it means that c was assigned many incorrect elements. Recall is defined as fraction of
correctly classified elements in c within all elements that should have been assigned to c. If
recall is low it means that c misses many elements.

Table 2 shows the results of this ten-fold cross validation over our training set of 779

methods randomly picked from the PScout subset [Au+12] of about 12,600 methods. The
training set contains 13% source-, 22% sink- and 65% neither-annotations. We started with
this subset as it provided mappings between methods and required permissions and thus
enabled us to also use Android permissions as features for our classifier. The averages we
report in our tables are taken from Weka’s output. They are weighted with the number of
examples in the respective class. Also note that, since our training set is randomly picked,
the precision and recall should carry over to the entire Android API with high probability.

Our final results for the source/sink classification had to be computed without any per-
mission features, though, since we do not have permission associations for the complete
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Category Recall [%] Precision [%]

Sources 92.3 89.7

Sinks 82.2 87.2

Neither 94.8 93.7

Weighted Average 91.9 91.9

Table 2: Source/sink cross validation PScout

Android API2. For assessing the impact of the permission feature, we ran the PScout subset
again with the permission feature disabled, yielding the results shown in Table 3. Interest-
ingly, the average precision and recall are almost the same with the permission feature and
without. The impact of the permission feature is apparently low enough for not having to
worry about the lack of permission information when analyzing the complete Android 4.2
API. Conversely, the results also indicate that permissions alone are not a good indicator
for identifying sources or sinks.

Category Recall [%] Precision [%]

Sources 90.5 91.3

Sinks 86.0 88.8

Neither 95.2 94.4

Weighted Average 92.8 92.8

Table 3: Source/sink cross validation PScout without permission feature

We evaluated SuSi on an extended test set obtained using the implicit-annotation tech-
nique explained in Section 3.4.4. With this technique, classifications for a method are copied
to all other methods that would lead to the same code being executed according to the
semantics of virtual method dispatch in Java. SuSi again shows an average recall and pre-
cision of more than 92% (see Table 4). The results are not exactly equal because some of
our features consider not just a method’s definition but also its container, e.g., the name
of the class the method resides in. The fact that SuSi obtains similar results despite these
differences is a good indicator of inherent consistency in the results as it shows that seman-
tically equal methods (i.e., ones that have not been overwritten and are thus exposed as-is)
are also recognized equally.

Category Recall [%] Precision [%]

Sources 89.6 88.0

Sinks 84.7 90.8

Neither 95.2 93.6

Weighted Average 92.3 92.3

Table 4: Source/sink cross validation with implicit annotations

The classifier takes about 26 minutes to classify the complete Android 4.2 API on a Mac-
Book Pro computer running MacOS X version 10.7.4 on a 2.5 GHz Intel Core i5 processor
and 8 GB of memory.

2 The available permission lists including PScout are incomplete since they exclude permissions enforced
through calls to native code.
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As explained in Section 3.2, we experimented with various classification algorithms, and
found that SMO performed best. In Table 5, we compare the weighted average precision
for SMO, J48, and Naive Bayes, the most well-known representatives of their respective
families of classifiers (margin, rule-based and stochastic classifier, respectively). The results
were computed on the extended training set obtained through the implicit-annotation tech-
nique. The permission feature was not used.

Classifier Avg. Recall Avg. Precision

Class. [%] Source Cat.
[%]

Sink Cat. [%] Class. [%] Source Cat.
[%]

Sink Cat.
[%]

Margin
(SMO)

92.3 88.8 88.4 92.3 89.7 90.4

Rule-Based
(J48)

89.5 81.0 80.2 89.4 81.6 77.4

Probabilistic
(Naive Bayes)

86.9 61.5 46.6 87.1 61.7 36.1

Table 5: Source/sink classifier comparison

3.5.1.2 Validating SuSi’s Source/Sink Output

The output of SuSi’s first phase is a list of sources and a separate list of sinks. In this
section we verify that the precision and recall of the cross validation in Section 3.5.1.1
is representative for SuSi’s actual output. Since manually verifying the outputs for the
complete Android API is infeasible, we concentrate on two APIs: The Google Cast API and
the Google Mirror API.

Our manual validation of the Google Cast API results in a precision of 96% and a recall of
99% for the sources and a precision of 100% and recall of 88% for the sinks. The somewhat
lower recall for the sinks is due the fact this API has only 18 sinks, out of which 16 were
detected. The Google Mirror API yields a precision of 100% and a recall of 97% for the
sources and a precision of 100% and recall of 94% for the sinks. In result it seems that one
can be rather optimistic: at least for these APIs the precision and recall are even higher
than the ones obtained through cross validation (cf. Section 3.5.1.1).

3.5.2 RQ2: Categories for Sources and Sinks

For evaluating the categorization of sources and sinks, we used similar techniques like the
ones used for assessing the identification of sources and sinks in Section 3.5.1. However,
recall that only methods identified as sources or sinks in the first step get categorized by
SuSi.

3.5.2.1 Cross Validation

We used ten-fold cross validation on our training data to assess the quality of our cate-
gorization. For this task, we do not use the permission feature, but do apply the implicit
annotation technique from Section 3.4.4. Table 6 shows the cross validation results for cat-
egorizing the sources, while Table 7 contains those for the sinks.
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Category Recall [%] Precision [%]

ACCOUNT 100.0 100.0

BLUETOOTH 83.3 100.0

BROWSER 83.0 100.0

CALENDAR 100.0 100.0

CONTACT 95.0 100.0

DATABASE 50.0 100.0

FILE 75.0 100.0

NETWORK 83.3 83.3

NFC 100.0 100.0

SETTINGS 75.0 85.7

SYNC 100.0 100.0

UNIQUE_IDENTIFIER 88.9 100.0

NO_CATEGORY 95.7 62.9

Weighted Average 88.7 89.6

Table 6: Source category cross validation

While SuSi achieves a very high precision and recall for most of the categories, the results
for a few categories (e.g., Bluetooth) are considerably worse. These categories are rather
small, i.e., randomly picking training methods from the overall set of 110,000 Android 4.2
API methods yields only few entries belonging to such categories. Respectively, there is
not much material to train the classifier on. Annotating more data (recall that we only have
category annotations for 0.4% of all methods) would certainly improve the situation.

Categories can be ambiguous in some cases. A method to set the MSIDN (the phone
number to be sent out when placing a call) could for instance be seen as a system set-
ting (category SETTINGS), but could also be considered a UNIQUE_ID. In such cases, we
checked the classifier’s result and updated our training data if a misclassification was due
to semantic ambiguity, i.e., the result would be right in both categories. Categories that
ended up empty or almost empty due to such shifts were removed.

Categorizing the sources took about 6 minutes on our test computer. The sinks were
classified in about 3 minutes.

3.5.2.2 Validating SuSi’s Categorized Source/Sink Output

Manually evaluating the categorized sources and sinks for the Google Cast and Google
Mirror APIs shows a precision and recall of almost 100% . The precision and recall for the
Google Cast API are 100% for both sources and sinks. For sources in the Google Mirror
API the precision is 98% and the recall is 100%. For sinks, both precision and recall are
100%. This shows that the results from Section 3.5.1.2 also carry over to the categorization.

3.5.3 RQ3: Sources and Sinks in Malware Apps

It is an important question to ask whether existing malware apps already use sources
and/or sinks discovered by SuSi but not currently recognized by state-of-the-art program-
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Category Recall [%] Precision [%]

ACCOUNT 85.7 100.0

AUDIO 100.0 100.0

BROWSER 50.0 100.0

CALENDAR 100.0 100.0

CONTACT 91.7 100.0

FILE 60.0 100.0

LOG 100.0 71.4

NETWORK 72.7 88.9

NFC 100.0 100.0

PHONE_CONNECTION 75.0 85.7

PHONE_STATE 100.0 100.0

SMS_MMS 96.3 100.0

SYNC 80.0 100.0

SYSTEM 80.6 89.3

VOIP 66.7 100.0

NO_CATEGORY 97.1 70.2

Weighted Average 85.7 88.0

Table 7: Sink category cross validation

analysis tools. To address this question, we selected about 11,000 malware apps3 from Virus
Share [Vir] and analyzed which kinds of sources and sinks these malware samples use.
Unsurprisingly, as already found by different researchers [Enc+11b; ZJ12; Gra+12] current
malware is leaking privacy information such as location information or the address book.

Interestingly, however, these samples do not only use the standard source and sink meth-
ods commonly known to literature, but also such ones not detected by popular program
analysis tools (see Section 3.5.5). In total, the samples revealed usage of more than 900

distinct source methods, all of which can be used to obtain privacy-sensitive information.
Furthermore, the samples leak data through more than 500 distinct sink methods. The
getLac() and getCid() methods used in our motivating example (see Section 3.1) are two
of the most commonly used methods in the LOCATION_INFORMATION category. This
is partly related to the fact that both are called in the Google Maps Geolocation API [Geo],
which is used in the respective malware samples. Another example is the getMacAddress()

method in the WifiInfo class that SuSi categorizes as NETWORK_INFORMATION. This
method is among the most often called methods in this category and is not treated as a
source by many tools either. By manual analysis of different malware samples, we found
that these source methods are not just called, but their privacy-sensitive return values are
indeed leaked to a remote web server.

Since approaches such as LeakMiner [YY12] create their source and sink lists from a
permission map, we also analyzed whether malware samples exploit source methods that
do not need a permission. Examples of such methods are getSimOperatorName() in the
TelephonyManager class (returns the service provider name), getCountry() in the Locale

class, and getSimCountryIso in the TelephonyManager class (both return the country code),
all of which are correctly classified by SuSi. By manually analyzing the malware samples,

3 Please note that this evaluation was conducted in 2013.
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Figure 6: Amount of source methods for bluetooth, location and NFC information in different An-
droid versions

we found that these methods are used frequently and that this data is actually leaked to
web servers. This confirms that approaches, which solely rely on the permission map for
inferring sources and sinks, miss data leaks in real-world malware samples.

SuSi’s categorized output of sources and sinks for Android 4.2 (see Section 3.5.1.1) in-
cludes a lot of methods that return privacy-sensitive information, such as the IMEI. SuSi

found that there is not only one way of accessing such information (e.g., via getDeviceID

for the IMEI). Instead, there are plenty of wrapper methods in internal Android classes or
pre-installed apps that return the same value. One example would be the internal GSMPhone
class or the pre-installed email-application which contains a getDeviceId() method for
returning the IMEI. These methods can only be called using explicit class loading and re-
flection, but still work on an unmodified stock Android phone. We analyzed the malware
samples for this obfuscation technique but found no sample that actually tries to obtain
personal data through such methods. Furthermore, we did also not find methods for sinks
that are not so well known as shown in the motivating example (cf. Section 3.1). However,
we expect such advanced techniques to become more prevalent when security tools evolve,
for instance by incorporating the results of this paper, and thus more effectively detect the
easier cases.

3.5.4 RQ4: Changes during Android Versions

To assess how well SuSi can deal with previously unseen versions of the Android operat-
ing system, we compared the categorized source and sink lists generated for a selection of
different Android releases3. Figure 6 shows the number of sources found for API versions
4 (Android 1.6) to 18 (Android 4.3). We here focus on the bluetooth, location, and NFC cat-
egories, as they nicely demonstrate how Android was extended over the various versions.
One can deduce from Figure 6 that new sources are introduced with every version. This
is yet another motivation to use a tool-supported approach like SuSi’s to discover sources
and sinks.

The distribution of the number of source methods for location information shows three
different jumps, namely between versions 8 and 9, between 16 and 17, and between 17
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and 18. This is due to major changes in the Android location APIs [Chaa; Chab; Chac]. The
same holds for the jumps in the number of bluetooth information sources between versions
17 and 18, where new source-bearing classes where added to the android.bluetooth API.
One also clearly sees that NFC was added to Android in API version 9 [Chaa]. There are
some cases in which the number of sources is decreased from one version to the next, e.g.
between versions 4, 5, 6, 7 and 8 for location. This is related to minor changes in the API.
The cross validation results on the different Android versions were effectively the same as
reported for version 4.2 in Sections 3.5.1.2 and 3.5.2.

Our results show that SuSi detects the changes in different API versions very well. It
reliably finds new sources and sinks that were added to the Android platform and thus
provides a much higher level of coverage than available lists assembled by hand. Note that
for completely new, previously unanticipated APIs that should yield a new category, SuSi

obviously cannot anticipate this category either. In such cases one can easily open a new
category, though, by annotating by hand a few examples that fall into this category. This is
exactly how we formed categories in SuSi’s training set.

3.5.5 RQ5: Existing Lists of Sources & Sinks

In this section we assess to what extent current static [MS12; Kim+12; Lu+12; Enc+11b;
FCF09; Gib+12; YY12; For; Appe] and dynamic [XSA12; Enc+10] code analysis approaches
could benefit from our categorized sources/sinks list3. As our results show, SuSi finds
all the sources and sinks these previous approaches mention, plus many others which the
community was previously unaware of, including some of which are actually being used by
malware. Most of the code analysis tools were not publicly available, precluding one from
directly comparing their source and sink lists to SuSi’s [MS12; Lu+12; Kim+12; Gib+12;
XSA12; YY12]. For those approaches we thus estimated the lists from their research papers.

Mann et al. [MS12] mention a few concrete source and sink methods. This hand-picked
list is only a fraction of the one produced by SuSi. The taint-tracking tool CHEX [Lu+12]
uses a list of 180 semi-automatically collected sources and sinks. Unfortunately, this list is
not publicly available and the paper does not explain how the semi-automatic approach
works. The authors do mention that their list is based on the Android permission map
by Porter Felt et al. [Fel+11] but also argue that this list is insufficient. LeakMiner [YY12]
uses the Android permission map to identify sources and sinks. From this map it filters
out all methods an application is not allowed to use. However, this leaves open how the
tool actually identifies the relevant sources and sinks in the remaining method set. Further-
more, if all methods not requiring a permission are filtered, some sensitive data might be
overlooked as we have shown. ScanDal [Kim+12] and AndroidLeaks [Gib+12] do not pro-
vide concrete lists of source and sink methods. The publications only provide categories
(e.g., location information, phone identifier, Internet, etc.), which are also covered by our
automatic categorization. Aurasium [XSA12] shifts the problem of identifying sources and
sinks by intercepting calls at the system level, i.e., between the native Android libraries
and the standard Linux system libraries. While this reduces the number of methods to
consider, it makes it harder to reconstruct higher-level semantics, and is failure-prone in
case of Android version upgrades. Due to this design, the sources and sinks considered by
Aurasium are incomparable to SuSi’s results.

Three different taint-analysis approaches were publicly available to us: The dynamic taint
analysis tool TaintDroid [Enc+10], an approach based on DeD by Enck et al. [Enc+11b], and
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SCanDroid [FCF09]. TaintDroid does not specify the high-level API calls as sources or sinks.
Instead, it uses the smaller set of lower-level internal system methods called by those, an
approach somewhat comparable to Aurasium. However, this again raises the problem of
reconstructing the higher-level context from lower-level calls. The type of data leaked can
thus be imprecise. The DeD approach works by decompiling the Android bytecode into
Java bytecode that is then used as input for the commercial Fortify SCA [For] static code
analysis suite. Fortify can be configured with rules for defining sources and sinks. Enck et
al. created such rules and made them publicly available [Enc]. The list contains about 100

Android sources and 35 Android sinks, all of which are also included in SuSi’s source and
sink lists. For SCanDroid, we extracted the source and sink specifications from the source
code (version of April 2013). The resulting list appears hand-picked and is fully covered by
SuSi’s output.

For evaluating the completeness of the source and sink lists contained in these three
tools, we analyzed the most frequently referenced source and sink methods in the malware
samples from Section 3.5.3. Table 8 shows that the three tools treat only a few of the
methods as a sources or sinks respectively. To assess TaintDroid, we created a separate
app for every source and sink in the table. For a source, the respective data is obtained
and then leaked via the network (note that the network connection is treated as a sink by
TaintDroid). For the sinks we used the well-known getLongitude() method as a source
(which is treated as a source by TaintDroid) and also created one app per sink. We ran all
of our apps on a phone with Cyanogenmod 10 [Cya] containing TaintDroid for Android
4.1. The results of our evaluation are shown in Table 8.

Table 8 shows that the source and sink lists of the three tools are missing some impor-
tant methods such as one returning the Wi-Fi MAC-address which enables a phone to be
uniquely identified. All three tools also miss the method for obtaining the list of accounts
(mail, Exchange, social networks, etc.) registered in the phone.

We also found that TaintDroid over-approximates the list of sources and sinks, leading
to over-tracking, for instance by tainting the result value of all methods in the Telephony-
Manager class, including the result of toString(), which is just the Java object ID (default im-
plementation inherited from java.lang.Object). We thus argue that automatically inferring
higher-level API methods as provided by our approach would improve tools like Taint-
Droid as this would allow one to more easily categorize and differentiate various types of
sources and sinks.

In total, the results of our evaluation show that obtaining a complete list of sensitive
sources and sinks is difficult and SuSi’s automatically generated list of categorized sources
and sinks can be used to improve this situation.

We also examined well-known commercial tools for static code analysis such as Fortify
SCA [For] by HP and IBM AppScan Source [Appe]. As we found, by default these tools
provide lists that are rather incomplete. However, both provide an easy way to integrate
new sources and sinks to be considered by the analysis. This shows that these tools shift
the problem of defining sources and sinks to the analyst, who still needs to obtain such a
list from somewhere. SuSi can help to provide more comprehensive defaults.

3.6 application scenarios

Apart from the described dataflow scenario, there are various code analysis scenarios,
where a comprehensive list of source and sink APIs is necessary. Sensitive API calls pro-
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vide a lot of semantic information about the behavior of an application. Code analysis
approaches for security problems take advantage of this fact and include this information
into their analysis.

manual reverse engineering . During a manual malware investigation, a malware
analyst needs to manually reverse engineer an application for understanding a certain
behavior of an application. Examples might be the identification of the malicious channels
(server, email account, etc.), the identification of the leaked data or the understanding of the
functionality of the malware. In all these cases, a comprehensive list of sensitive API calls
is indispensable. If the analyst is not aware of certain sensitive API calls that are part of the
malware, it is more time-consuming to successfully finish the investigation. In Chapter 6

we introduce a novel Android reverse engineering framework, which makes use of SuSi’s
output for a faster manual reverse engineering task.

static analysis approaches . Static approaches are very useful once the analysis
needs a more or less complete view of the application. Analyses range from simple anal-
yses to very complex ones. Easy analyses consist of search-based approaches for detect-
ing certain API calls, e.g., used in machine learning approaches [Arp+14; Gor+14]. More
complex ones implement a static slicing approach for detecting implementation flaws
in cryptographic APIs for instance [Ege+13] and very complex ones implement complex
dataflow analysis approaches [Arz+14b]. More concretely, there are already many different
approaches that make use of SuSi. For instance, there are approaches that use SuSi’s out-
put list as features input for malware detection [Avd+15; JGM15; Bac+14; Tri+16; Li+15c],
other use it for dataflow detection approaches [Li+15a; Kli+14; Arz+14b; TS15; Do+16],
privacy leak detection [He14; Sla+16] or vulnerability detection [Tia16]. Other approaches
use SuSi’s output for code obfuscation reasons [Hof14], permission to API method map-
ping [Bac+16a], library detection [Liu+15] or for developing fine-grained security policy
enforcement approaches [Fra+15b; Bag+16; Yu+15]. However, it is also used for loop detec-
tion in Android applications [Fra+15a] and automatically generating trust environments
for Android applications [Rub+16]. All of them have in common that they operate on the
application’s bytecode or more concretely on the usage of certain API calls. A comprehen-
sive list of sensitive API calls positively improves the recall of these approaches.

dynamic analysis approaches . Similar to the static approaches, also dynamic ap-
proaches suffer from an incomplete list of sensitive API calls. In the case of dynamic anal-
ysis approaches, different techniques are applied such as bytecode instrumentation [ARB13],
hooking techniques [Xpo] or manipulations of the AOSP [Enc+10]. For instance, droidfax [CR16]
uses bytecode instrumentation and makes use of SuSi’s output for detecting malicious ap-
plications.

hybrid analysis approaches . In this thesis, we will introduce two novel approaches,
HARVESTER in Chapter 4 and FuzzDroid in Chapter 5, which are based on a hybrid code
analysis. Both approaches require a complete list of sensitive API calls for a better detec-
tion rate of concrete insights of an application. Current research approaches use SuSi’s
output for detecting code vulnerabilities [Has+15; Li+14] or for security policy enforce-
ment [Ras+14] with hybrid approaches.
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1 NmeaListener mylistener = new NmeaListener() {
2 public void onNmeaReceived(long arg0, String nmea) {
3 if (nmea.startsWith("$GPGLL")) {
4 String[] data = nmea.split(",");
5 Log.d("Loc", "Longitude: "
6 + data[3]} + data[4]
7 + ", Latitude: " + data[1] + data[2]);
8 }
9 }

10 };
11 LocationManager lm = (LocationManager) this.getSystemService(LOCATION_SERVICE);
12 lm.addNmeaListener(mylistener);
13 // Just to start GPS, no data from this callback is ever used
14 lm.requestLocationUpdates (LocationManager.GPS_PROVIDER, 0, 0, new LocationListener() { ... });

Listing 2: Android location leakage via NMEA data

3.7 limitations

SuSi works well when it comes to classifying sources and sinks based on their structural
similarity to other sources, respectively sinks. In practice, this seems to work well for
sources that return data from method calls and sinks that obtain data through parameters.
Android offers other less prevalent sources and sinks, however, which cannot be easily
classified through machine-learning. We next give some examples.

Applications can implement callback methods and receive data from the operating sys-
tem through the parameters of these methods. This is commonly used to, e.g., obtain the
location in an Android application. In an attempt to avoid detection, the app could how-
ever register the callback with onNmeaReceived instead of the well-known onLocationChanged
method and then parse the raw GPS data (the NMEA records) as shown in Listing 2 to
get the same data. This shows that a complete list of callback methods is required for
finding all data leaks. Due to our definition of sources, SuSi cannot currently find such
callbacks. The number of callback interfaces in the Android operating system, however, is
sufficiently small for manual inspection. All callback handlers are defined using a small
set of well-known and documented interfaces. Static analyses thus aid their detection by
finding methods taking these interfaces as parameters. This approach scales well and does
not introduce an unreasonable number of false positives as shown in [Arz+14b].

Android defines layout controls through XML files. In the source code, they can be ac-
cessed by passing the respective identifier to the system’s findViewById function. Depending
on the ID that is passed, this function can return, for instance, a reference to a password
field or to a button with a constant label. Thus, depending on the ID, the method can or
cannot be a source. Since calls to this function are present in almost every Android app, a
precise analysis must model the Android resource system. If UI sources are restricted to
password fields (the default in FlowDroid [Arz+14b]), the analysis scales well in terms of
precision. Regarding every input field as a source, on the other hand, can lead to a substan-
tial number of false positives. A more fine-grained tradeoff might be possible by exploiting
knowledge about the app’s expected behavior.

3.8 related work

Our work was originally inspired by Merlin [Liv+09], a probabilistic approach that uses a
potentially incomplete specification of sources, sinks and sanitizers to produce a more com-
plete one. Livshits et al.’s approach is based on a propagation graph, a representation of the



44 identification of sensitive sources and sinks

inter-procedural dataflow in the program where probabilistic inference rules are applied.
Their specifications are based on string-related vulnerabilities, such as cross-side-scripting
vulnerabilities or sql-injections. SuSi in comparison to Merlin does not need any informa-
tion about the client program or application. It instead analyzes the Android framework
code alone to generate a list of categorized sources and sinks. Furthermore, purely string-
based approaches fit a web application scenario, while SuSi focuses on privacy-related
aspects of Android where data is usually not of type string (e.g., the longitude and latitude
information is of type double).

Privacy violations through leaks of sensitive data in Android applications are well known
in the community. To protect the user’s privacy, different kinds of taint-tracking approaches
have been proposed, both static [Hof+13; Lu+12; YY12; Enc+11b; FCF09; Kim+12; Gib+12;
Bat+11; MS12; ZO12; Chi+11; For; Appe; Li+15a; Cao+15] and dynamic [Enc+10; XSA12;
Jeo+12]. As already described in Section 3, such approaches are only as good as the source
and sink lists they are configured with. In Section 3.5.5 we have shown that all approaches
we have evaluated only consider a few sensitive methods for sources and sinks. With the
support of our categorized list of sources and sinks, we argue that all of them could be
improved to detect more data leaks that are a security problem for the mobile device user.
DroidSafe [Gor+15] is a static information flow approach that claims to manually identify
all sensitive sources and sinks. This is a very time-consuming and error-prone approach.

More generic policy enforcement approaches such as AppGuard [Bac+13] also require
comprehensive lists of sensitive information sources. AppGuard, for instance, provides the
user with the ability to revoke permissions after app-installation time. The implementa-
tion inserts additional permission checks into the application (not the framework). This
requires the identification of relevant methods at the API level for which such checks are
required. Our list of sources and sinks includes many methods that require permissions
and access sensitive information (e.g., phone identifier, location information, etc.) but are
not considered by AppGuard (evaluated version 1.0.3).

Applying machine-learning for security has already been done for automatic spam de-
tection [Sch03] or anomaly detection in network traffic [Seb+02]). Sarma et al. [Sar+12]
and Peng et al. [Pen+12] successfully used various machine-learning approaches to detect
malicious Android applications. MAST [Cha+13] is a machine-learning approach based on
Multiple Correspondence Analysis (MCA) for automatically identifying malicious appli-
cations from various Android markets. The tool aims at ranking apps for inspection by a
human security analyst, thereby giving priority to those applications that look suspicious.
For classifying sources and sinks, we use SMO instead of MCA since MCA requires a logi-
cal ordering of records that is not applicable to our scenario. SuSi instead works on discrete
and independent classes.

3.9 summary and conclusion

In this chapter, we presented SuSi, a novel automated machine-learning guided approach
for identifying sources and sinks in the Android framework and pre-installed apps. This
approach answers the first research question in the beginning of this chapter and presents
the first major contribution of this thesis.

Additionally, with a similar technique as for the identification of sources and sinks, we
have further proposed an approach that is capable of automatically categorizing sources
and sinks according to the type of data being processed, for instance to distinguish be-
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tween sources providing unique identifiers and sources providing file data. This approach
answers the second research question stated in the beginning of this chapter.
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Method Description TaintDroid SCanDroid DeD

android.bluetooth.BluetoothAdapt
er.getAddress()

Returns the hardware ad-
dress of the local Bluetooth
adapter.

no no no

android.net.wifi.WifiInfo.getMacA
ddress()

Returns the MAC address of
the Wi-Fi interface.

no no no

java.util.Locale.getCountry() Returns the country code for
the phone’s locale.

no no no

android.net.wifi.WifiInfo.getSSID() Returns the SSID of the cur-
rent 802.11 network.

no no no

android.telephony.gsm.GsmCellLo
cation.getCid()

Returns the GSM cell id. no no no

android.telephony.gsm.GsmCellLo
cation.getLac()

Returns the GSM location
area code.

no no no

android.location.Location.getLongi
tude()

Returns the longitude in de-
grees.

yes yes yes

android.location.Location.getLatitu
de()

Returns the latitude in de-
grees.

yes yes yes

android.accounts.AccountManager.
getAccounts()

Returns all accounts of any
type registered on the device
as a list.

no no no

java.util.Calendar.getTimeZone() Returns the time zone. no no no

android.telephony.TelephonyMana
ger.getDeviceId()

Returns the unique device
ID.

yes no yes

android.telephony.TelephonyMana
ger.getSubscriberId()

Returns the unique sub-
scriber ID.

yes no yes

android.telephony.TelephonyMana
ger.getLine1Number()

Returns the phone number
of the device.

yes no yes

android.telephony.TelephonyMana
ger.getSimSerialNumber()

Returns the serial number of
the SIM.

yes no yes

android.provider.Browser.getAllBo
okmarks()

Returns a cursor pointing to
a list of all the bookmarks.

yes no no

android.telephony.SmsManager.se
ndTextMessage()

Send a text based SMS. yes yes yes

android.util.Log.d() Sends a debug log message. no no yes

java.net.URL.openConnection() Returns a URLConnection
instance that represents a
connection to the remote ob-
ject referred to by the URL.

yes no no

Table 8: Detection rate of most frequently used sources and sinks in malware samples [Vir] with
different analysis tools
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In the previous chapter, we proposed a new approach for identifying Android Source and
Android Sink API calls in the AOSP and therefore in Android apps. This gives a first
assessment of the application, i.e., what sensitive API methods are implemented. However,
there are many situations in which more detailed information is required. For instance,
the malware investigation described in the motivating example (see Section 1.1.1) required
information about the concrete email-username and email-password for a takedown of the
malware. Especially for the Android Sinks, it is most of the time required to know concrete
runtime values that get passed into API calls.

Runtime values in benign applications are already hard to extract precisely, but modern
malware such as Pincer [sec16], Obad [TKG13] or FakeInstaller [Rui12] creates an even
greater challenge by obfuscating runtime values deliberately. The malware stores such val-
ues (e.g., reflective call targets, the target telephone numbers of SMS scams, or the ad-
dresses of remote C&C servers) in an encrypted format inside the application code, to be
decrypted only at runtime.

Statically extracting [Hof+13; Bac+16b] these runtime values is practically impossible for
many modern malware families such as Obad. Different well-known limitations for static
code analysis approaches hinder the extraction. The usage of reflective method calls is one
of them. Many current static analyses either do not handle reflection at all or only support
constant target strings [Arz+14b; Li+15b; Oct+13; Oct+16; Li+16a]. Therefore, they always
have an incomplete picture of the code’s behavior, because their handling of runtime values
can never be complete. This results in the fact that they are not able to extract runtime
values at arbitrary code locations.

If static analysis fails one might think that maybe dynamic analysis can come to the
rescue. Current malware, however, also fools dynamic analyses. This is because many ma-
licious applications nowadays contain so-called time bombs or logic bombs [Coo+09; Pet+14;
VC14a]. Logic bombs cause an app to suppress any malicious activity if the app itself de-
tects that it is executing within an analysis environment [Chy15]. Time bombs cause an app
to suppress the malicious behavior in any case for a longer period of time, or until after a
reboot of the phone, etc. This also includes botnet malware that only acts in response to a
command received from a command-and-control server—a command that dynamic anal-
ysis tools will find virtually impossible to guess correctly. Moreover, for all applications,
including benign ones, a dynamic analysis can only reason about code paths that the anal-
ysis actually executes. However, neither an automatic event-generation or UI-testing tool,
nor a human analyst can generally cover all possible execution paths in a finite amount of
time, causing most dynamic analyses to be incomplete. Even current approaches [JPM13a;
CGO15] do not yet scale very well and can take hours even for medium-sized apps. Equally
important, Android applications are heavily interactive. To trigger the malicious behavior,
certain user interactions may be required. Dynamic tools need to simulate these interac-
tions, as they can gather information only about code paths that they actually execute.
Previous work [RCE13; CNS13; HN11] has shown that even for medium-sized Android
apps complete code coverage is often impossible to achieve. Consequently, many runtime
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values of interest remain unknown when using purely dynamic tools. This makes it very
difficult for automatic classifiers or human analysts to detect malicious behavior.

The fundamental research question that we address in this chapter is:

How can one automatically extract runtime values at a given code location of modern
Android malware applications, even if this application uses common anti-static and
anti-dynamic code obfuscation techniques?

In this chapter, we present HARVESTER, a novel approach that seeks to effectively ad-
dress all of the above problems for current obfuscated malware samples. Even for the most
sophisticated malware families such as Obad, Pincer, or FakeInstaller, HARVESTER is able
to extract virtually all runtime values of interest within minutes, without any user inter-
vention, and in our experiments with perfect accuracy.

Contributions. In summary, this chapter provides the following original contributions:

• a variation of traditional slicing algorithms fine-tuned to support the hybrid extrac-
tion of runtime values in Android applications,

• a dynamic execution system for running the computed code slices and extracting the
values of interest without user interaction,

• an evaluation of the approach’s feasibility for a mass-analysis on real-world malware
applications, and

• three case studies assessing how HARVESTER can improve the coverage of existing
off-the-shelf static and dynamic analysis tools.

Chapter Outline. In the beginning of this chapter, we explain the basic principles of the
HARVESTER approach on a motivating example (Section 4.1) derived from the main moti-
vating example (Section 1.1.1). Afterwards, we provide some definitions in Section 4.2. The
approach is explained and evaluated in Section 4.3, followed by an explanation of different
application scenarios in Section 4.4. Then, limitations of the approach (Section 4.5) and re-
lated work (Section 4.6) are presented. A conclusion and summary concludes this chapter
in Section 4.7.

4.1 motivation and contribution

Listing 3 shows a slightly modified version of the data leakage part of the motivating
example in Section 1.1.1. The example heavily relies on obfuscation to hide its behavior
from both analysis tools and manual investigators. At runtime, instead of calling methods
directly, the example takes a string previously encrypted and decrypts it using a lookup
table. It then uses reflection to find the class and method that bear the decrypted name and
to finally invoke the retrieved method.

Many current malware applications are obfuscated in a similar way, either manually or
by using commercial tools such as DexGuard [Tec14]. For a human analyst to understand
the runtime behavior of such obfuscated code, she must know the target methods of the
reflective calls. In the example, these values are the decoded class name in line 18 and
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1 class SMSReceiver extends BroadcastReceiver {
2 private native String getAccountName();
3 private native String getAccountPassword();
4

5 void onReceive(SMS sms) {
6 String body = sms.getSMSBody();
7 String accountName = getAccountName();
8 String accountPassword = getAccountPassword();
9

10 //emulator-check
11 if(!isEmulator()) {
12 //stores country information
13 String countryInfo = simCountryIso().equals("US") ? US : INTERN;
14 int cellID = CellLocation.getCid();
15 int lac = CellLocation.getLac();
16 String emailBody = countryInfo + " : " + cellID + " : " + lac;
17 //class: MailSender class
18 String clazzString = decrypt("1234", "ai03_");
19 //method: sendEmail
20 String methodString = decrypt("1234", "fahg29favjvajii");
21 Method method = Class.forName(clazzString).getMethod(methodString, String.class, String.class,

String.class);
22 //MailSender.sendEmail(emailBody, account-name, account-password)
23 method.invoke(emailBody, accountName, accountPassword);
24 }
25 }
26 }

Listing 3: Motivating example HARVESTER: obfuscated code that sends an email under certain
conditions

the decoded method name in line 20. To find these values manually, she would have to
carefully inspect the decompiled bytecode, find the lookup table, and manually decrypt all
strings to detect the malicious behavior. Strings decrypted for one application once cannot
usually be reused, as different malware variants use different lookup tables.

Static code analysis approaches such as SAAF [Hof+13] apply techniques like backward
slicing in order to extract constant string information. These tools, however, have well-
known limitations that make them fail on highly obfuscated applications, e.g., ones with
dynamically-computed values as shown in Listing 3. Even those static-analysis tools that
model the full string API still have limitations that can easily be exploited by malware de-
velopers. For example, one can implement the string-decoding method in a custom library
written in native code. To the best of our knowledge, no static analysis tool for Android
supports such native code.

The code in the example challenges dynamic analysis approaches as well. The analyses
first has to send an SMS to the device for executing the onReceive() callback. Then, it has to
pass the isEmulator() check, which checks whether the applications runs on an emulator
or a real device [RKK07; Pet+14; VC14a]. Dynamic analysis environments can never fully
hide all of these characteristics [Coo+09] and thus fail on sophisticated malware.

HARVESTER, on the other hand, fully automatically retrieves all relevant runtime values
of the example in Listing 3. The security analyst simply specifies the variables for which
runtime values should be retrieved. For the example, we assume that the security analyst
knows that she is interested in the parameters given to any calls to MailSender.sendEmail()

(pseudo API call representing the sending of an email) that the application may make. As
one can easily see, the code in Listing 3 contains no direct call to this API. Instead, the
calls to this API are issued through reflection. But HARVESTER comes pre-configured
with a setting that further extracts the parameters to such reflective calls, and inlines calls
accordingly, once discovered.
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In a first step, HARVESTER would hence attempt to extract parameters to the forName()

and the getMethod() calls (line 21). HARVESTER’s static slicer automatically extracts all
code computing those values, while crucially, however, discarding certain conditional control-
flow constructs that do not impact the computed value (concrete details will be provided
in Section 4.3.2). In the example, this will discard the environment-detection check at
line 11. HARVESTER’s dynamic component then runs only the reduced code. Since all
environment-detection checks are eliminated, the dynamic analysis immediately executes
all those parts of onReceive() relevant to the computation of the selected values. At
runtime, the analysis discovers the name MailSender.sendEmail() of the method called
through reflection. In result, it replaces the original reflective method call by a direct call
to that very API, and re-iterates the extraction process.

Assuming that the security analyst configured HARVESTER to extract the arguments
given to such calls, HARVESTER performs a slicing for emailBody, accountName and
accountPassword. It extracts the corresponding slices in the same way as before, the re-
duced code is executed, and HARVESTER reports the concrete email account credentials
and data sent via email.

Note that HARVESTER does not require any manipulations to the underlying Android
framework. It works purely on the bytecode level of the target application, through a
bytecode-to-bytecode transformation.

4.2 logging points and values of interest

The main purpose of HARVESTER is to compute runtime values. Formally, we call these
runtime values values of interest. To use HARVESTER, a human analyst defines logging
points for which she wants to extract all values of interest. Both are defined as follows.

Definition 1 A logging point hv, si comprises a variable or field access v and a statement s such
that v is part of s.

Definition 2 A value of interest is a concrete runtime value of variable v at a logging point hv,
si.

For instance, if one is interested in runtime values passed to a conditional check s:

if(a.equals(b)) the runtime values of a and b are both values of interest at this statement
s, inducing the two logging points ha, si and hb, si. Another example would be an API
call to the sendTextMessage method such as s: sendTextMessage(targetNumber, arg2,

messageText, arg4, arg5) where h targetNumber, si and h messageText, si are possible
logging points at s. Parameters arg2, arg4 and arg5 can be also defined as logging points,
but do not provide security-relevant information. The corresponding runtime values are
the values of interest. Examples for values of interest for targetNumber would be ’+01234’

and for messageText would be ’This is a premium SMS message’.
To ease the definition of logging points for the human analyst, HARVESTER provides

a comprehensive list of pre-defined logging points taken from the output of the previous
chapter (see Chapter 3). Susi is a machine-learning approach, which provides a comprehen-
sive list of categorized sensitive API methods. HARVESTER makes use of these sensitive
API methods by providing generic categories such as URL, Shell-Command or SMS Number
as tool-input parameters. For instance, if one is interested in URLs inside the application,
one can run HARVESTER with the URL parameter and all API calls that are able to call a
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1 String clazzString = decrypt("1234", "ai03_");
2 String methodString = decrypt("1234", "fahg29favjvajii");
3 Harvester.report(clazz, method);
4 Method method = Class.forName(clazzString).getMethod(methodString, String.class, String.class,

String.class);

Listing 4: Sliced version of the onReceive() method of Listing 3 (part 1)

URL are automatically defined as logging points. This is the only human interaction that
HARVESTER requires.

4.3 generic harvester approach

In the following we will explain the HARVESTER approach first from a high level perspec-
tive (Section 4.3.1) and continue with a detailed description of the approach in Section 4.3.2.
An evaluation in Section 4.3.3 concludes this section.

4.3.1 Overall Approach

STATIC BACKWARD SLICING DYNAMIC EXECUTION OF REDUCED APK

RUNTIME VALUE INJECTION (optional)

APK

Configuration

Backward 
Slicer

Slice 1

Slice N

... Preparation
Phase

Reduced 
APK

Executor
(Emulator/Phone)

Runtime
Values

Bytecode 
Enhancer

Enhanced
APK

(in case reflective method calls have been resolved)

A B

C

Figure 7: Workflow of HARVESTER

Figure 7 depicts HARVESTER’s workflow. To compute values of interest, HARVESTER
first reads the APK file and a configuration file defining the logging points. HARVESTER
next computes a static backwards slice starting at these code points, as will be further
explained in Section 4.3.2.1. This slicing step runs on a desktop computer or compute
server. The pre-computed slices are then used to construct a new, reduced APK file, which
contains only the code required to compute the values of interest, and an executor activity.
The task of the executor activity is to invoke the computed slices and report the computed
values of interest.

HARVESTER additionally alters those conditionals whose value depends on the execu-
tion environment and on which the slicing criterion, i.e., the value in question, is data-
dependent. These conditionals are replaced by simple Boolean variables, allowing HAR-
VESTER to force the simulation of different environments at runtime. Listing 4 shows the
output of Harvester when requesting a slice for the parameters of the reflective call in line 4.
Line 3 extracts all runtime values that are necessary to replace the reflective call with its
API call. As a second step, if the extraction was successful, it adds the original API call into
the bytecode. In our example, the MailSender.sendMail() will be added to the bytecode. If
one is interested in the runtime values for the logging points emailBody, accountName and
accountPassword, HARVESTER starts again with its analysis and generates a new slice.

The results can bee seen in Listing 5. This Listing includes the replaced reflective method
call and the corresponding slice for the new API call. Please note that Listing 3 represents
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1 String countryInfo = EXECUTOR_1 ? US : INTERN;
2 int cellID = CellLocation.getCid();
3 int lac = CellLocation.getLac();
4 String emailBody = countryInfo + " : " + cellID + " : " + lac;
5 Harvester.report(emailBody, accountName, accountPassword);
6 MailSender.sendEmail(emailBody, accountName, accountPassword);

Listing 5: Sliced version of the onReceive() method of Listing 3 (part 2)

the replacement of the reflective method call in a simplified way; more details will be
explained in Section 4.3.2.3. One can see that the emulator check has been removed, as the
slicing criterion is reachable only if the branch falls through. The condition in line 11 has
been replaced by the global variable EXECUTOR_1, making the slice parametric.

This new, reduced APK file is then executed on a stock Android emulator or real phone,
as we explain in Section 4.3.2.2. These steps are fully automated and no user interaction is
required. In a forced execution, HARVESTER explicitly triggers all the different behaviors of
the parametric slice (in Listing 5 with both true and false for EXECUTOR_1) which allows
the complete reconstruction of the values of interest, for all concrete environments, de-
crypting any encrypted values. HARVESTER instruments the reporting mechanism for the
values of interest into the slices (see line 5), making changes to the runtime environment
(emulator, Android OS) unnecessary. Note that HARVESTER does not need to reconfigure
or reset the actual device or emulator on which the slices are executed which is novel in
comparison to other approaches that are based on symbolic or concolic execution [Xu+14;
MKK07].

4.3.2 Detailed Solution Architecture

Next we provide more details about the main components of HARVESTER namely the
static backward slicing process, the dynamic execution of the reduced APK and the injection of
runtime values into the APK, as shown in Figure 7. In order to explain these steps, we will
first assume that our approach is able to replace the reflective method call in line 23 of
Listing 3 into its original method call MailSender.sendEmail() (see line 18 Listing 6). The
explanation in this section will use Listing 6 as a working example and will explain the
steps that are required to replace the reflective method call in the end of this section (see
Section 4.3.2.3).

4.3.2.1 Static Backward Slicing

Part A comprises the static analysis phase. In traditional slicing as defined by Weiser [Wei81],
a program slice S is an executable program that is obtained from a program P by removing
statements such that S replicates the behavior of P [Tip94] with respect to the so-called
slicing criterion—a value of interest selected by the user. We use Figure 8 to explain the
effect of traditional slicing on our initial example from Listing 6. Assume that we want to
slice this program such that the parameters emailBody, accountName and accountPassword

passed to the sendEmail() method call (line 18) are our slicing criteria. The reflective call
is data-dependent on all four assignments to those three variables. The assignments to
countryInfo are further control-dependent on the check of the simCountryIso(). All of
those statements are further control-dependent on the check on isEmulator(), the environ-
ment check that circumvents the execution of the remaining code on Android emulators.
Traditional slicing approaches such as the one by Weiser [Wei81] would include this check
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1 class SMSReceiver extends BroadcastReceiver {
2 private native String getAccountName();
3 private native String getAccountPassword();
4

5 void onReceive(SMS sms) {
6 String body = sms.getSMSBody();
7 String accountName = getAccountName();
8 String accountPassword = getAccountPassword();
9

10 //emulator-check
11 if(!isEmulator()) {
12 //stores country information
13 String countryInfo = simCountryIso().equals("US") ? US : INTERN;
14 int cellID = CellLocation.getCid();
15 int lac = CellLocation.getLac();
16 String emailBody = countryInfo + " : " + cellID + " : " + lac;
17 //de-obfuscated reflective method call
18 MailSender.sendEmail(emailBody, accountName, accountPassword);
19 }
20 }
21 }

Listing 6: De-obfuscated code that sends an email under certain conditions

if(!isEmulator())

if(simCountryIso().equals("US"))

countryInfo:=:INTERN; countryInfo:=:US;

MailSender.sendEmail(emailBody,:accountName,:accountPassword);

Environment

X

if(EXECUTOR_1)

X
truefalse

false true

removed program flow
program flow
removed statement
statement

Harvester.report(emailBody,:accountName,:accountPassword);

text logging point

String:body:=:sms.getSMSBody();
String:accountName:=:getAccountName();
String:accountPassword:=:getAccountPassword();

int:cellID:=:CellLocation.getCid();
int:lac:=:CellLocation.getLac();
String:emailBody:=:countryInfo:+:":::":+:cellID:+:":::":+:lac;

Figure 8: Slice representation of Listing 6
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1 int valueOfInterest = 120, i = 0;
2

3 label1: if (i < 3) {
4 i++;
5 valueOfInterest++;
6 goto label1;
7 }
8

9 send("" + valueOfInterest, "Hello");

Listing 7: HARVESTER’s handling of conditions that are not environment dependent

in the slice. Executing the check, however, immediately leads to leaving the method, con-
sequently never triggering the "interesting code" that computes the values relevant to the
slicing criterion.

Even if the emulator check were removed, this traditional approach would still not be
sufficient as it would still retain the environment-dependent check on simCountryIso().
In the specific scenario of malware analysis, the method simCountryIso() will return ex-
actly one of several country codes, depending on the configuration of the emulator. But
frequently, the malware analyst is interested in inspecting all possible runtime values in
question. In the example, we would like to cover both possible branches. Without further
extensions to the approach this would require a reboot and reconfiguration of the emulator,
which is a time consuming and error-prone undertaking. However, while the assignments
to countryInfo are control-dependent on simCountryIso() and thus also on the execution
environment, there is no data dependency. HARVESTER exploits this fact by replacing the
conditional referring to simCountryIso() by a simple global Boolean flag EXECUTOR_1. This
flag causes the slice to become parametric: the selection of any concrete Boolean values for
the generated control variables allows the direct execution of one of the parametric slices.
This effectively breaks the dependencies of the app’s execution on its execution environ-
ment, depicted by the lower red cross in Figure 8.

The same concept also applies to the dependency on !isEmulator(). In this case, the
code of interest is, however, only executed if this check returns true. In other cases, the
whole computation of the values of interest would be skipped. Therefore, this conditional
is replaced by true, resulting in a removal of the condition as shown at the big red cross.

Note that HARVESTER only parameterizes the slice at those conditionals that are data-
dependent on environment values, while all other conditionals remain unchanged. This,
for instance, allows HARVESTER to swiftly recover the correct value 123 for the variable
valueOfInterest in Listing 7, which contains no such reference. Please note that in this
snippet we show a goto operation. HARVESTER works directly on the bytecode level,
where all loops are expressed that way. If HARVESTER were to replace all conditionals
regardless of whether they are environment-dependent or not, the slice for the example in
Listing 7 would compute the incorrect value 120 when choosing false for the condition
i < 3. Worse, when choosing true for the condition, the code would loop infinitely. At
this point it is important to note that HARVESTER maintains the assignment to control
variables fixed per run, i.e., it can only execute loops never (condition is false) or infinitely
often (condition is true). In particular, in cases in which a loop condition does depend
on an environment value, this may cause one of HARVESTER’s dynamic runs to loop
indefinitely. HARVESTER simply addresses this problem with a timeout on the overall
execution time for every run of a slice. As evident from our experiments, this theoretical
shortcoming does not pose a problem in practice. Developers intend computed values
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such as reflective call targets or telephone numbers for SMS scam to be independent of the
execution environment.

In general, HARVESTER replaces only such conditionals that access values dependent
on the execution environment. To be able to determine such conditionals, HARVESTER
comes pre-customized with a configuration file listing fields and methods whose return
values are known to depend on environment settings. Vidas et al. [VC14b] analyzed dif-
ferent techniques for Android emulator-detection and Maier et al. [MMP14] showed fin-
gerprinting techniques for mobile sandboxes. We use the methods from these papers as
a starting point for constructing the required lists. We believe the lists to be complete for
current Android versions, but they can easily be extended.

The remainder of this section discusses the most important challenges that arise during
backward slicing and how HARVESTER overcomes them.

data dependencies through persistent storage Most applications use API
classes such as SharedPreferences to persist data. Storage and retrieval can be distributed
over the program. For instance, data can be stored into a file during application startup
and read again after the reboot of the application—a common workflow also in current
Android malware applications [Ras+15b]. A slicing approach that does not model this data
dependency between user actions would yield an incorrect slice that attempts to read non-
existent data from an uninitialized data store. To handle these cases, HARVESTER resolves
all calls within the analyzed bytecode that write to persistent storage and prepends them
to the slice. This approximation may, however, miss some of the data if the stored value is
ambiguous, as only the last value is retained and all earlier values are overwritten. While
a better handling might seem desirable, in our experiments the current solution proves
sufficient to produce correct values for all logging points.

user input Further special handling is required for API calls that access environment
values such as free-text user input. It is one major contribution of this work to show that
within the slices that are frequently of interest to security analysts, such accesses to envi-
ronment values, are, however, typically restricted to conditionals (see Section 4.3.3). Thus,
they are removed by HARVESTER, as the respective expressions are replaced by Boolean
control variables. Semantically, this restriction applies because obfuscators and malware
authors seek to encode values independently of user input. The target of reflective call, for
instance, is assumed to always be the same, regardless of the environment. In some few
slices of interest, however, we found user input to be accessed also outside conditionals. In
some cases this can simply happen because the slice is less precise than one would like it to
be. To allow the execution also of such slices without user interaction, HARVESTER injects
code to short-circuit the actual API calls that read out the UI, returning dummy values
instead. Dummy values for a string can be "This is a dummy string", which might cause
an exception once the slice gets executed. One reason therefore are string operations such
as split("\|") that are part of the slice. Our experiments show this workaround, albeit
somewhat crude, to be highly effective when applied to current malware. However, we
improved this situation with our FuzzDroid approach, which is based on a target fuzzing
strategy (more details in Chapter 5).

dynamic code loading and native code As demonstrated by Figure 8, HAR-
VESTER can also cope with native methods, as long as all logging points are
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contained within the APK’s Dalvik bytecode. The same applies for dynamic code
loading. Two logging point (haccountName, si and haccountPassword, si for state-
ment s: MailSender.sendEmail(emailBody, accountName, accountPassword)) at the
MailSender.sendEmail() method call are computed by a native method. The slicer will
declare this function as required and the dynamic execution will evaluate the function just
as any other, invoking the same implementation that would also be invoked during normal
app execution. If a native method call is part of the slice, the slice will be extended with the
System.loadLibrary() method call, which is part of the bytecode. Many current malware
samples encode important values in native or dynamically loaded code, making this an
essential feature [Ras+15b].

cut-offs for large programs For very large programs it may be infeasible to com-
pute exact slices. HARVESTER therefore supports cut-offs that prevent it from walking
further up (into callers) or down (into callees) along the call stack while slicing. After the
cut-off, all further callees are retained as they are, without any slicing. All callers exceed-
ing the cut-off are simply disregarded, i.e., HARVESTER, assumes that the slice constructed
so far does not depend on any earlier program logic. To avoid uninitialized variables in
this case, HARVESTER inserts artificial initialization statements that assign dummy val-
ues. As our experiments show, only few such dummy values are required in practice (see
Section 4.3.3).

4.3.2.2 Dynamic Execution of Reduced APK

Part B in Figure 7 describes the dynamic analysis phase. HARVESTER assembles every slice
computed during the static slicing phase within a single new method that becomes part
of the reduced APK. The executor activity, injected into the same APK file, calls all these
methods one after another, directly after the new app has been started, e.g., on an un-
modified emulator or a stock Android phone. The executor writes the computed runtime
values into an SQLite database on the device’s SD card that can then be downloaded and
evaluated on a desktop computer. Since the slices are directly executed, regardless of their
original position in the application code, HARVESTER requires no user interaction that
might otherwise be necessary to reach the code location of the computing statements. If,
for instance, the extracted code was originally contained in a button-click handler, it would
have required the user or an automated test driver to click that button to be executed. HAR-
VESTER, however, executes the sliced code directly, making these interactions unnecessary.
In fact, the reduced app does not contain any GUI (Graphical User Interface) elements from
the original app at all. Figure 9 shows how the slice explained in Figure 8 would be exe-
cuted. Executing this program will cause HARVESTER to report both possible valuations
for emailBody, along with the values for accountName and accountPassword.

The reduced app is packaged with the same resources as the original app, such that
code that would load encrypted strings, for instance, from external resources, will find
those resources also in the reduced APK.

As explained in Section 4.3.2.1, slices are parametric and HARVESTER must explore ev-
ery possible combination of branches to retrieve all values of interest at a given logging
point. For the executor, this means that it must re-run the code slice for all possible com-
binations of these Boolean values. In the worst case (all conditions in the slice have to be
replaced), this leads to 2n paths where n is the number of conditionals between the intro-
duction of the variable and the position of the logging point. Only conditions inside the
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MainActivity() Callee1()

EXECUTOR_17=7false;

Callee1();

EXECUTOR_17=7true;

Callee1();

countryInfo7=7INTERN; countryInfo7=7US;

if(EXECUTOR_1)

false true

public7static7boolean7EXECUTOR_1;

String7body7=7sms.getSMSBody();
String7accountName7=7getAccountName();
String7accountPassword7=7getAccountPassword();

MailSender.sendEmail(emailBody,7accountName,7accountPassword);

Harvester.report(emailBody,7accountName,7accountPassword);

int7cellID7=7CellLocation.getCid();
int7lac7=7CellLocation.getLac();
String7emailBody7=7countryInfo7+7"7:7"7+7cellID7+7"7:7"7+7lac;

Figure 9: Dynamic execution of reduced APK

slice need to be considered. Thus, in practice, our experiments show n to be very limited
(n = 0.21 per path on average over all our sample data, see Section 4.3.3). In the few cases
in which it is not, our experiments show many of those paths to yield the same or at least
very similar values. HARVESTER can thus be configured to sample only a pre-defined
number of slice instances at random.

4.3.2.3 Runtime Value Injection

Part C in Figure 7 shows an optional step of HARVESTER, runtime value injection. This
step can be useful to combine HARVESTER with existing off-the-shelf analysis tools, or
to handle reflection. Static-analysis approaches require a callgraph to determine potential
targets for method invocations. For the large fraction of malware applications that are ob-
fuscated using reflective method calls, such as the example in Listing 3, a construction
of the callgraph fails. Some tools do not support reflective calls at all, while frameworks
such as DOOP [BS09] implement a static best-effort solution but can still be fooled through
string encoding. HARVESTER, however, can aid those off-the-shelf tools by manifesting the
runtime values of reflective call targets resolved during the dynamic execution as ordinary
method calls in the application’s bytecode. This allows existing callgraph construction algo-
rithms to construct a sound callgraph with ease. To embed reflective calls into the program,
HARVESTER uses the same approach originally taken in the TamiFlex tool [Bod+11].

Line 23 in our original motivating example in Listing 3 shows such a reflective method
call. As a first step, HARVESTER extracts the runtime values for clazzString and
methodString and replaces the invoke() method call with the original API call. Listing 8

shows the enhanced code snipped. The replaced API call in line 25 is surrounded with a
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1 private native String getAccountName();
2 private native String getAccountPassword();
3

4 void onReceive(SMS sms) {
5 String body = sms.getSMSBody();
6 String accountName = getAccountName();
7 String accountPassword = getAccountPassword();
8

9 //emulator-check
10 if(!isEmulator()) {
11 //stores country information
12 String countryInfo = simCountryIso().equals("US") ? US : INTERN;
13 int cellID = CellLocation.getCid();
14 int lac = CellLocation.getLac();
15 String emailBody = countryInfo + " : " + cellID + " : " + lac;
16 //class: MailSender class
17 String clazzString = decrypt("1234", "ai03_");
18 //method: sendEmail
19 String methodString = decrypt("1234", "fahg29favjvajii");
20 Method method = Class.forName(clazzString).getMethod(methodString, String.class, String.class,

String.class);
21

22 //injected code beginning
23 String methodSig = method.toGenericString();
24 if(methodSig.equals("public void MailSender.sendEmail(java.lang.String, java.lang.String,

java.lang.String)"))
25 MailSender.sendEmail(emailBody, accountName, accountPassword));
26 else
27 //injected code end
28 method.invoke(emailBody, accountName, accountPassword);
29 }
30 }

Listing 8: Replaced reflective method call of Listing 3

check (line 24) whether the extracted method signature is the expected one. Moreover, if
HARVESTER would extract more runtime values (more method signatures) for a particular
example, it would proceed in the same way and creates an if-else statement for every API
call. To allow for cases in which there are further call targets, which HARVESTER failed to
detect dynamically, the old reflective call is nevertheless retained in the fall-through branch
(line 28)1.

Off-the-shelf analysis tools such as CHEX [Lu+12], SCanDroid [FCF09] or FlowDroid
[Arz+14b] can then analyze the enriched APK file without requiring special handling for
reflection or string operations used to build the target method name. To the best of our
knowledge, HARVESTER is the first fully automated approach that performs such a value
injection for Android.

It is important to note that this very same mechanism is also what allows HARVESTER
itself to extract runtime values from applications whose API calls have been obfuscated
through reflection. In such cases, in phase A HARVESTER would first construct a partial
callgraph that is incomplete in the sense that it misses edges for reflective calls. It then
extracts information about the parameters to those calls and inlines the calls as regular
method calls. Finally, it reiterates the process, constructing a new, more complete callgraph,
and extracting further data values. This can be iterated up to a pre-defined number of times,
or until a fixed point has been reached. This step is shown in Figure 7 by an edge from
Enhanced APK to Backward Slicer.

1 This trick is adopted from the Booster component of the TamiFlex tool [Bod+11] for Java.
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The enriched APK files are functionally equivalent to their respective originals and only
use normal application-level code. Running them does not require any changes to the
operating system or the emulator.

The current prototype supports this technique for reflective method calls only, but it
could easily be extended for other obfuscated strings as well. Examples are the target tele-
phone numbers of SMS messages, to aid existing pattern-based malware-detection tools.
Injecting the action strings and URIs of Android intents used for inter-component commu-
nication is also important. Many static analyses fail if these strings are not constant, as they
can no longer map intent senders and receivers. The same applies to class-name strings
used with explicit intents. If they are only decrypted at runtime, static analyses have no
chance but to conservatively assume all possible recipients, which is highly imprecise. In-
jecting these strings as constants enables tools such as EPICC [Oct+13] or IC3 [Oct+15]
to reconstruct the inter-component callgraph more precisely and correctly identify the
dataflows between components and applications, which would otherwise not be possi-
ble. In Section 4.4.2, we evaluate how HARVESTER’s output can be used to improve the
construction of inter-component callgraphs.

4.3.3 Evaluation of the Generic Approach

We evaluated HARVESTER extensively on different sets of applications, one to address
each of the following four research questions. In total, all sets together, comprise 16,799

apps.

• RQ1: What is HARVESTER’s precision and recall?

• RQ2: How does the recall of HARVESTER relate to that of existing static and dynamic-
analysis approaches?

• RQ3: How efficient is HARVESTER?

• RQ4: Which interesting values does HARVESTER reveal?

In all experiments, the cut-offs were 20 for caller-slicing and 50 for callee-slicing which
proved to be a reasonable tradeoff between recall and performance.

RQ1: What is HARVESTER’s recall and precision?

We evaluated HARVESTER’s recall based on the coverage of logging points. Ideally, HAR-
VESTER should cover every logging point. For the covered logging points we furthermore
evaluated the precision and recall of the extracted runtime values. From our initial malware
set of 16,799 samples, we took 12 different malware samples from 6 different malware fam-
ilies for an in-depth evaluation as shown in Table 9. These samples were selected since they
are representatives of various challenges for HARVESTER. Obad [TKG13], for instance, is
one of the most sophisticated malware families today. FakeInstaller and GinMaster are also
highly obfuscated. These samples heavily rely on reflection to mask the targets of method
calls. Another malware family, Pincer, is known to hinder dynamic analysis through anti-
emulation techniques [Pet+14; VC14a]. Ssucl and Dougalek steal various private data items.
We deliberately chose 12 complex samples only, since we sought to manually verify the pre-
cision and recall of HARVESTER.
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URI Webview SMS No. SMS Text File Reflection Shell
Cmd

Sum

FakeInstaller (MD5)

b702b545d521f129e8efc1631a3abcee 3
3 (03 )

4
4 (

0
4 )

6
7 (17 )

6
6 (06 )

19
20 (

1
20 )

dd40531493f53456c3b22ed0bf3e20ef 248
280 (

0
280 )

248
280 (

0
280 )

GinMaster (MD5)

0878b0bb41710324f7c0650daf6b0c93

4
12 (

4
12 )

0
2 (

1
2 )

10
14 (

2
14 )

0
3 (

1
3 )

14
31 (

8
31 )

ebe49b1b92a3b44eb159d15ca1f25c70

7
9 (29 )

1
1 (

0
1 )

25
30 (

3
30 )

33
40 (

5
40 )

Obad (MD5)

e1064bfd836e4c895b569b2de4700284

185
185 (

0
185 )

185
185 (

0
185 )

dd1a3ff43330165298db703f7f0626ce 157
161 (

2
161 )

157
161 (

2
161 )

Pincer (MD5)

b2b7d5999dce0559d13ab06d30c2c6ec 2
2 (02 )

1
2 (12 )

2
2 (02 )

6
13 (

6
13 )

2
3 (13 )

1
1 (01 )

14
23 (

8
23 )

9c9afd6b77d8d3a66a2db2d2cf0b94b3

3
3 (03 )

1
2 (12 )

2
2 (02 )

6
13 (

6
13 )

2
3 (13 )

1
1 (01 )

15
24 (

8
24 )

Ssucl (MD5)

f0bf007b3d2580297b208868425e98c7

6
9 (29 )

1
1 (01 )

1
1 (01 )

11
22 (

8
22 )

0
2 (22 )

19
35 (

12
35 )

c5a2d14bc52f109a06641c1f15e90985

7
10 (

2
10 )

1
1 (01 )

1
1 (01 )

12
19 (

4
19 )

1
3 (23 )

22
34 (

8
34 )

Dougalek (MD5)

95a04cfc5ed03c54d4749310ba29dda9

2
2 (02 )

2
2 (02 )

2
2 (02 )

10
18 (

4
18 )

16
24 (

4
24 )

91d57eb7ee2582e0600f21b08dac9538

3
3 (03 )

3
3 (03 )

SUMMARY 37
53 (

10
53 )

5
7 (

1
7 )

6
8 (28 )

8
8 (08 )

86
136 (

34
136 )

600
641 (

5
641 )

3
7 (47 )

745
860 (

56
860 )

non-constant

constant

#(all non-constant) + #(all constant)

#(extracted non-constant)

#(all non-constant) + #(all constant)

#(extracted constant)( )
Table 9: Recall-Evaluation of HARVESTER. Green slices: amount of logging points with non-

constant values where a dynamic analysis is necessary for value extraction. Red slices:
amount of missing logging points. Grey slices: amount of logging points with constant
values where no static/dynamic analysis is necessary. Fraction next to circle: fraction of
successfully extracted logging points for non-constant values. Fraction in brackets: fraction
of successfully extracted logging points for constant values.

Table 9 shows the evaluation results for logging points from the categories URI, Webview,
SMS Number, SMS Text, File, Reflection and Shell Commands. The results for each malware
sample in each category are represented as circles. Grey slices indicate the fraction of log-
ging points that use constant values, which can be read off directly, and where consequently
no backward-slicing and dynamic execution is necessary. Though the complexity of HAR-
VESTER is not necessary to extract such constant values, HARVESTER discovers constant
values at once. Green slices indicate the fraction of logging points with non-constant val-
ues for which HARVESTER was able to successfully retrieve at least one value. Red slices
indicate the amount of missing logging points for which HARVESTER could not find a
runtime value. The fraction directly next to the circle indicate the fraction of successfully
extracted (non-constant) logging points, where the fraction in brackets show the fraction
of successfully extracted logging points for constant values.
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Table 9 shows two major facts: First, only 6.5% (bottom right corner 56
860 ) of the extracted

logging points contained a constant value. This confirms that a naive approach that only
extracts constant values is not sufficient for our representative set of current malware. Fur-
thermore, the table also shows that HARVESTER has a very high detection rate, since green
slices are bigger than the red slices (bottom right corner).

In summary, the table shows that, averaged over all categories, HARVESTER detects at
least one value for 86,6% (bottom right corner 745

860 ) of all logging points. The fraction of
missed logging points is due to HARVESTER’s limitations (see Section 4.5) such as the lack
of support for inter-component communication. HARVESTER is even able to cope with the
anti-analysis techniques used by the Pincer malware family where it successfully extracts
the SMS number and message, URIs, shell commands and various file accesses. The small
fraction of missed logging points is mainly caused by HARVESTER’s limitations, which
will be discussed in Section 4.5.

We then used those apps, for which at least one value of interest was discovered, to
assess HARVESTER’s precision and recall. Through manual inspection we were able to
confirm that all values discovered by HARVESTER are actual runtime values, i.e., that
HARVESTER has a precision of 100% on this data set. We furthermore evaluated the recall
of the extracted SMS numbers, SMS messages and shell commands of our test data since
those values are among the most important ones in a malware investigation. With the help
of CodeInspect’s interactive bytecode debugger (see Section 6.1.3), an independent ethical
hacker manually reverse engineered and confirmed that HARVESTER extracted all runtime
values for these categories. In other words, in those experiments also HARVESTER’s recall
is 100%.

HARVESTER was configured with a timeout of 10 minutes. This timeout caused the
execution to abort in less than 1% of all cases. Dummy values due to cut-offs during the
slicing (see Section 4.3.2.1) only needed to be inserted in about 1% of all cases as well.

RQ2: How does the recall of HARVESTER relate to existing static- and dynamic-analysis ap-
proaches?

We next compare HARVESTER with purely static and purely dynamic approaches for
automatically extracting values of interest from malicious applications.

static analysis We compared HARVESTER with SAAF [Hof+13], a static approach
for identifying parameter values based on a backward slicing approach starting from a
method call. This method is similar to the static backward-analysis part in HARVESTER
but uses traditional slicing. HARVESTER was evaluated on the same 6,100 malware sam-
ples as SAAF was evaluated (taken from MobileSandbox [Spr+13]). The logging points for
both tools were the number and the corresponding message of text messages. The results
for SAAF show that the tool has some issues with certain string operations such as concate-
nation. Instead of the concatenated string, SAAF reports the two distinct operands. This
gives only partial insight into the behavior of the application. In some cases, HARVESTER
found more fragments of the target telephone number as SAAF2. In contrast, HARVESTER
extracts the final, complete SMS numbers for all of the samples, even in cases in which
SAAF did not yield any data. Furthermore, SAAF does not support extracting the texts of
the SMS messages being sent since they are usually not string constants, but built through

2 e.g., number 1065-5021-80133 in sample with MD5 hash b238628ff1263c0cd3f0c03e7be53bfd
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concatenation and string transformation. Due to its static nature, opposed to HARVESTER,
SAAF cannot handle reflective calls with obfuscated target strings either. We further eval-
uated SAAF on current Android malware taken from Table 9 including the most sophisti-
cated Android malware families: Obad, Pincer, Ssucl and Dougalek. SAAF was configured
to extract values of interest for reflective method calls, SMS numbers and SMS messages.
The tool was not able to extract any value of interest for Obad, Pincer and Ssucl. For
Dougalek, SAAF found the same SMS numbers as HARVESTER, but was not able to ex-
tract SMS messages. The SMS numbers can be extracted in a static way (static backward
slicing) since no obfuscation is applied to the constant string values. In summary, this
shows that hybrid approaches such as HARVESTER can handle current malware samples
more effectively than purely static ones like SAAF.

dynamic analysis Extracting values of interest can also be achieved by executing the
app and applying code coverage techniques [Goo14a; MTN13; Hao+14; CNS13; Ana+12]
that try to reach the statement of the logging point. To evaluate HARVESTER on dy-
namic approaches, we randomly chose a set of 150 samples from 18 malware families
from the Malware Genome Project [ZJ12]. We compared HARVESTER’s recall with 5 differ-
ent state-of-the-art testing-based approaches that were publicly available to us and could
be setup with reasonable effort: Google’s Monkey [Goo14a], PUMA [Hao+14], Android-
Hooker [Andb], DynoDroid [MTN13] and a naive approach that starts the app, waits for
10 seconds and quits the app. Unfortunately, we were not able to test Acteve [Ana+12] and
SwiftHand [CNS13] on our samples due to tool-internal issues. Google’s Monkey [Goo14a]
was set we to run with at least 1,000 randomly-generated events per app that were limited
to normal user interactions (click, swipe, navigation button use).

The goal was to find the telephone numbers to which SMS messages are sent (all 150

samples contained at least one API call for sending SMS messages). To count how many
logging points the dynamic testing tools reached, we instrumented the malware samples’
bytecode to create a log entry directly before sending the message. After running the testing
tools, we evaluated the log output taken from the Logcat tool. All tests were carried out on
an Android 4.1 emulator (API version 16).

Table 10 shows that HARVESTER’s recall is around four to six times higher than the one
of current state-of-the-art dynamic analysis approaches. One reason for the particularly
poor recall of the existing dynamic testing tools are emulator-detection techniques. These
checks prevent the tools (which run the potentially malicious apps on an emulator for
security reasons [Spr+13; Lin+14]) from ever reaching a logging point in most malware
samples.

Approaches total logging-points covered
Simply open and close app 14.1%
Monkey 15.6%
PUMA 17.3%
AndroidHooker 16.2%
Dynodroid 22.3%
HARVESTER 83.4%

Table 10: Measuring recall of HARVESTER in comparison to state-of-the-art dynamic testing tools
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1 public void onStart(Intent intent, int i)
2 ContentResolver cr = getContentResolver();
3 Cursor contacts = cr.query(CONTENT_URI, null, ...);
4 SmsManager sms = SmsManager.getDefault();
5 if (contacts.getCount() > 0) {
6 do {
7 int colIdx = contacts.getColumnIndex("data1");
8 String telNo = contacts.getString(colIdx);
9 sms.sendTextMessage(telNo, null, "I take pleasure in hurting small animals, just thought you

should know that", ...);
10 } while (contacts.moveToNext());
11 String number = getNumber();
12 sms.sendTextMessage(number, null, "text", ...);
13 }
14 }

Listing 9: "DogWars" game from Malware Genome Project

As an example for such an emulator check, Listing 9 shows malicious code extracted
from the "DogWars" application. It accesses the user’s contact database in line 3. Only if
contacts are available on the phone (line 5), the app sends out the premium SMS message
(line 12). When a dynamic tool runs the app on an emulator, the contact database is usu-
ally empty and the logging point for sending SMS messages is thus never executed. As
our results confirm, such behavior is common among modern malware applications. Since
such checks, however, do not influence the target telephone number, HARVESTER simply
removes the respective condition and correctly retrieves the number 73822. Note that the
taunting text messages (line 9) get sent to every telephone number in the user’s address
book and are thus data-dependent on the environment (i.e., the contact database). Thus
no fixed target phone number can be retrieved by any tool. In such cases, HARVESTER
reports a constant string with information about the source (e.g., contact database informa-
tion). Many malicious applications such as the GoldDream, BaseBridge, and BgServ malware
families, as well as the DogWars app, perform their malicious activities in a background
service that is started only after the phone is rebooted. Apps from the GPSSMSSpy family
act on incoming SMS messages. To obtain the respective runtime values, traditional dy-
namic approaches must generate such external events and restart the phone. HARVESTER
instead directly executes the code slices containing the logging points and thus does not
need to emulate these events.

To overcome simple environment checks, AndroidHooker [Andb] and Dynodroid [MTN13]
first prepare the emulator with fake "personal user data" such as contacts. Only afterwards,
they install the application and exercise it. Both also send external events such as incoming
SMS messages and AndroidHooker even reboots the emulator during the test to trigger ac-
tions that only happen at boot time. AndroidHooker was able to reveal the premium SMS
message in the DogWars app, but does not solve the code-coverage problem in general.
For instance, it still fails if the malicious code is only executed after receiving a command
from a remote server, such as in the GoldDream malware family. Due to such problems,
AndroidHooker only covered 16.2% of all logging points. In only 10.67% of all apps it
covered any logging point at all—a marginal improvement over running Monkey as is. In
summary, these results show that current state-of-the-art testing tools are not sufficient
for revealing malicious behavior of current state-of-the-art malicious applications. HAR-
VESTER succeeds in all cases, as the conditional checking for the server’s command is not
part of the slice that HARVESTER computes, and the code containing the logging point is
executed directly and unconditionally.
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Furthermore, tools such as Monkey can only improve code coverage by triggering in-
teractions in the user interface. Some malware apps from the GPSSMSSpy family, how-
ever, contain a broadcast receiver that directly leaks incoming SMS messages and which is
completely distinct from the UI. While Monkey never executes the respective code, HAR-
VESTER directly invokes the slice containing the data leak regardless of its original position
in the code.

As a summary, dynamic tools only reach a small fraction of all logging points for these
malware samples. It is worth mentioning that a naive approach that starts an app, waits
for ten seconds and closes the app, produces similar results (first line in table) as Google’s
Monkey approach. HARVESTER, on the other hand, covers 83.4% of all logging points and
thus shows a much higher recall.

RQ3: How efficient is HARVESTER?

App Stores such as the Google Play Store receive thousands of new or updated Android
apps per day [Sta14], which they need to check for malicious behavior. Therefore, one re-
quires fast tools, which scale to the size of the market. We tested HARVESTER on our full
set of 16,799 malware samples (which includes all samples from the previous sections). We
configured HARVESTER with two logging-points (SMS phone numbers and the respective
text messages) for each sending SMS API call included in the app’s bytecode. We focused
on SMS numbers and messages since SMS trojans are among the most sophisticated mal-
ware apps today [FS14]. With HARVESTER, one can effectively find the real values for
phone numbers and text messages and compare them to known blacklists or apply exist-
ing filters for identifying scamming malware.

The performance evaluation reported in this section was run on a compute server with
64 Intel Xeon E5-4650 cores running Ubuntu Linux 14.04 with Oracle’s Java HotSpot 64-Bit
Server VM version 1.7.0 and a maximum heap size of 20 GB to avoid intermediate garbage
collection. We used the Android ARM emulator. On average, HARVESTER took about 2.5
minutes per application. This shows that HARVESTER can be used for mass analyses and
delivers results very quickly. On average over all slices in all our samples, HARVESTER
had to try different values for 0.21 EXECUTOR flags per slice. The highest average number of
EXECUTOR flags we encountered per slice in a single app was 1.31.

RQ4: Which interesting values does HARVESTER reveal?

We next report interesting values that HARVESTER extracted from malware applications.
Our analysis is based on our full sample set of 16,799 malware apps. Some of these results
have already been found through earlier manual investigation by security experts. How-
ever, to the best of our knowledge, HARVESTER is the first fully automated approach that
is able to reveal all of these findings.

Our exemplary findings in the malware samples can be used to improve the precision of
current automatic malware detection approaches such as MAST [Cha+13], DroidAnalytics
[ZSL13] or Drebin [Arp+14].

hiding sensitive method calls A growing number of sophisticated Android mal-
ware applications such as Obad [TKG13] uses reflection to call methods identified by en-
crypted string constants which only get decrypted at runtime. We used HARVESTER to
recover the targets of these reflective method calls and found two popular obfuscation pat-
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terns. In a first scenario, only sensitive API calls, such as getSubscriberID, getDeviceId,
or sendTextMessage are obfuscated, which is likely to be the result of a manual obfusca-
tion to hinder human analysts or automatic tools that looks for sensitive API calls such as
CHABADA [Gor+14]. In the second scenario, all method calls are obfuscated, even non-
critical ones such as StringBuffer.append() or String.indexOf(), which is most likely
the result of automatic obfuscation tools such as DexGuard [Tec14]. In some applications
even the reflective calls themselves were again called via reflection to produce a multi-
stage obfuscation. HARVESTER is able to extract the called method as well as the concrete
parameter values of the invocation in all these cases.

premium-rate sms and sms command and control Silently sending SMS mes-
sages to premium-rate numbers is one of the most common Android malware schemes
[FS14]. Depending on the provider and the malware, a single message can cost from about
$3.5 to $6 [Chi12], which causes a high financial harm to the user. HARVESTER extracts
many distinct premium-rate numbers from various known SMS trojan malware families
such as Pincer. Many numbers can be found in multiple samples, making them good candi-
dates for blacklisting. Many samples are obfuscated, requiring a tool such as HARVESTER.

Furthermore, most SMS trojans store the number of messages sent in SharedPreferences,
a key-value storage provided by the Android framework. HARVESTER uncovers many
keys like "SENDED_SMS_COUNTER_KEY" or "sendCount" used for this purpose. Some
samples even use keys like "cost" for storing the total amount of money stolen so far. Based
on these values, the malware decides when the next premium-rate SMS message is sent. We
also found applications that contact a command-and-control (C&C) server via SMS. Since
the same commands reappear in many samples, they also could be used for blacklisting.
We also found spam messages, which are sent via SMS to all contacts on the phone. Most
of them contained links to further malicious applications. The link can be used for a server
shutdown to stop spreading further malware.

interesting uris HARVESTER is able to extract the concrete URL of http requests
sent by applications. These URLs can give hints whether an application is malicious or not.
HARVESTER extracts connections to advertisement servers, but also to many well-known
C&C server URLs3. Furthermore, it also extracts many interesting phone-local URIs for
accessing content providers, such as content://sms, content://mms or tel://<number>

which are used by malware for reading SMS/MMS messages or initiating phone calls
without user awareness [ZJ12]. In the case of the tel scheme, HARVESTER found the actual
telephone numbers being called. In applications with advertisement libraries such as Air-
Push, HARVESTER revealed a lot of market://details URIs, which open the Play Store
app to offer other apps for download.

executed commands We also used HARVESTER to extract runtime values for com-
mand-executing API methods such as Runtime.exec(). Applications containing su and
chmod commands are likely to used for checking whether the smartphone is rooted or not.
HARVESTER was able to detect such commands in the given malware set, even in the case
of obfuscation.

3 http://198.211.118.115:9081/Xq0jzoPa/g_L8jNgO.php, http://m-l1g.net/q.php, and others

http://198.211.118.115:9081/Xq0jzoPa/g_L8jNgO.php
http://m-l1g.net/q.php
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encryption keys Some benign applications encrypt sensitive data such as chat con-
versations, or credit card information, before storing it locally on the phone. This encryp-
tion, however, is rendered useless if the same hard-coded symmetric key is used for all
installations of the app. Interestingly, this was the case in the popular WhatsApp mes-
senger app [Goo14b]. Since the encrypted database is stored on the SD card, malicious
applications can easily access it. Once the key is known, it can be decrypted and leaked.
HARVESTER can fully automatically extract the WhatsApp encryption key by obtaining
the values passed to the constructor of the SecretKeySpec class.

4.4 application scenarios

The techniques provided by HARVESTER can not only be used as a direct feedback, e.g.,
what concrete URLs are part of the app, it can be also used to improve existing code analy-
sis approaches. Especially in these cases where concrete values at certain code locations are
essential for precise results. Please note, improving the current state-of-the-art for different
code analysis approaches, e.g., dataflow analyses, also provides more detailed information
about the insights of an application’s behavior. This is essential during a malware investi-
gation. In the following, we will evaluate the effectiveness of HARVESTER in combination
with further code analysis approaches on three different application scenarios. As first, we
will evaluate on two static analysis problems: improving the generation of an intra-component,
inter-procedural callgraph in the context of dataflow analysis and improving the generation of an
inter-component, inter-procedural callgraph. Afterwards, we will elaborate on a dynamic anal-
ysis problem: improving the recall of dynamic dataflow analysis approaches.

4.4.1 Intra-Component, Inter-Procedural Callgraph

As mentioned in the previous sections, reflective method calls are one of the reasons for im-
precise and most of the time incomplete callgraphs in Android applications. This reduces
the precision and recall of static code analysis approaches. In this section, we evaluate in
more detail whether HARVESTER - used as a pre-analysis tool - can improve the precision
and recall.

4.4.1.1 Application Scenario

For this application scenario, we used HARVESTER’s code injection feature (phase C in
Figure 7) to enhance the bytecode with concrete API calls for the corresponding reflective
method calls. The static code analysis approach for this evaluation is the static dataflow-
tracking tool FlowDroid [Arz+14b]. Especially for dataflow problems, it is necessary to
have a precise callgraph for reducing the amount of false positives. Therefore, we used
different Android applications that contain reflective method calls and measured how
many data leaks FlowDroid detects on the original application. Afterwards, we used HAR-
VESTER to enhance the original application and applied FlowDroid again on the new
application.
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? = correct warning, = missed leak
multiple circles in one row: multiple leaks expected

App (Obfuscated) FlowDroid

Enhancement BEFORE AFTER

Button1

?

Button3

? ?

FieldSensitivity3

?

ActivityLifecycle2

?

PrivateDataLeak3

?

StaticInitialization2

?

EmulatorDetection1

? ?

EmulatorDetection2

? ?

LoopExample1

?

Reflection1

?

Table 11: Leak detection FlowDroid on obfuscated DroidBench apps before and after value injection
/ slicing.

4.4.1.2 Evaluation

As a first evaluation on real-world applications, we chose the Fakeinstaller.AH [Rui12]
malware family4, which is known for leaking private data, but also for its massive use
of reflection to hide calls to sensitive API methods. On the original obfuscated sample,
FlowDroid detected only 9 distinct leaks. After using HARVESTER with the option of
replacing reflective calls with their respective actual callees, FlowDroid detected 26 privacy
leaks, almost three times as many as before. These 26 leaks included stealing the IMEI or
phone number via SMS.

To evaluate in more detail how HARVESTER improves the precision and recall of exist-
ing tools on obfuscated applications, we tested FlowDroid on ten randomly-picked appli-
cations from DroidBench [Arz+14b] which we obfuscated using DexGuard [Tec14]. All API
method calls were replaced with reflective calls on encrypted strings. Table 11 compares the
detection rate of FlowDroid on the obfuscated applications without applying HARVESTER
(BEFORE - column 2) to the respective detection rates after applying HARVESTER (AFTER
- column 3). These results show that FlowDroid was initially not able to detect any leak
in the obfuscated apps. After de-obfuscating the apps with HARVESTER through runtime-
value injection, FlowDroid found the same leaks as in the un-obfuscated original version.
In "PrivacyDataLeak3", FlowDroid always misses one of the two leaks, even in the original,
un-obfuscated file, for reasons unrelated to the work presented in this thesis.

4.4.2 Inter-Component Callgraph

Apart from reflective method calls, inter-component communications are another reason
for imprecise callgraphs of Android applications. An Android application usually consists
of different components that communicate with each other via intent messages (see Sec-
tion 2.1.1). The same applies for communications between applications. For static analysis

4 Sample MD5: 38a9ed0b5577af6392096b4dc4a61e02
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approaches, it is important to precisely determine these communication links for a precise
construction of the callgraph.

One of the major problems in the construction of inter-component callgraphs is the iden-
tification of concrete links between components, i.e., what components can communicate
with each other. All intent-based communications in Android are realized through the An-
droid system (see Section 2.1.2), which determines what component to start. In case of static
analysis approaches, this intent resolution process needs to be realized in a static way by
determining values for intents, intent-filter and URIs [Oct+16] (ICC values). These values
are mainly string values. Values for intent-filters are usually provided in the AndroidMan-
ifest file, which can be parsed in a straightforward process. However, dynamically created
intent-filters, intents and URIs need some form of code analysis to extract the values. If
an analysis is not able to extract this information with perfect precision, it can result in
over-approximations. In case of an intent and its corresponding intent filter, it is important
to determine all concrete values of the intent and intent filter. For instance, if an analysis
is able to determine the action field, but not the category field of the intent object, the in-
tent resolution process may not be able to determine the correct intent filter, resulting in
considering too many possible intent filters that are not the correct ones. In the worst case,
a callgraph for a single application must consider all components inside the application
as potential links. The problem gets even worse in inter-application communications. In
such cases, different components inside the individual applications need to be additionally
considered. This results in callgraph constructions that need too much memory and an
analysis on top of it, e.g., dataflow analysis, would be too time-consuming.

The main problem for constructing precise inter-component callgraphs boils down to the
problem of identifying concrete runtime values at certain code locations (e.g., of an intent).
HARVESTER provides a solution for this and we therefore evaluate its effectiveness in the
following.

4.4.2.1 Application Scenario

In this application scenario, we wish to examine whether HARVESTER’s output can im-
prove the state-of-the-art approaches that focus on identifying links between components
in Android applications, or more precisely, whether it can reduce the amount of edges in
an inter-component based callgraph.

We evaluated HARVESTER against two other state-of-the-art approaches called IC3

[Oct+15] and Primo [Oct+16] that are currently available for inter-component based call-
graph constructions.

ic3 is a static constant string propagation approach that works in two stages. It first gath-
ers the dataflow facts of constant string values and applies them to a constraint solver
called COAL (constant propagation language). The task of the solver is to determine
regular expressions that satisfy the constraint. For instance, if the static propaga-
tion approach was only able to determine com.a as package name, but the complete
package name would be com.a.b.c of a component, the solver will return com.a.*.
The constant string propagation analysis is inter-procedural, context-sensitive, flow-
sensitive and field-sensitive. With regards to IC3’s analysis and its limitations, it is
sound to assume that the results (regular expressions for strings) of the analysis are
either the correct information of an intent object or at least over-approximates the
current values in such a way that the correct values are part of the regular expression.
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After the extraction of the intent object information, it is also necessary to determine
the concrete links of the components, which is realized in the same way as Android’s
intent resolution algorithm (see Section 2.1.2).

primo One of the main limitations of IC3 is the fact that statically inferring ICC values
with a static solver is in many cases too computationally expensive or even not possi-
ble in cases of values that are generated during runtime. Therefore, many ICC values
are over-approximated (.*). Primo tries to improve this situation with a probabilistic
approach that takes as input the results of IC3 and tries to determine, based on a
probabilistic model, possible links between the components. Their main goal is to
reduce the links that are produced by IC3 in combination with the intent resolution
process. However, their approach is based on a probabilistic approach with some
assumptions [Oct+16] and does heavily rely on the results produced by IC3.

harvester Since HARVESTER’s focus, similar to IC3, is only on the extraction of runtime
values, we extended it with Android’s intent resolution rule set. This extension takes
as input concrete intent information that is extracted by HARVESTER and provides
the corresponding callgraph links.

In all of these approaches, it is important to avoid considering links between components
that can never occur during runtime. The matching precision, i.e., the identification of
the correct intent object information, determines the precision of the overall analysis. Its
influence on analysis precision is similar to the influence of the callgraph construction
process in inter-procedural program analyses: an imprecise callgraph results in an overall
imprecise analysis.

4.4.2.2 Evaluation

In the following evaluation, we focus on links between intents and intent-filter since they
are one of the major problems for the over-approximation in current inter-component call-
graph construction approaches [Oct+16]. A link between an intent and an intent-filter is
a true positive if the real value of an intent object matches an intent-filter, i.e., those com-
ponents that would be determined by the Android system. On the other hand, a link is a
false positive if the value of an intent i inferred by an analysis matches an intent-filter, even
though the real value of i does not. A link is considered to be a false negative if the real
value of an intent object matches an intent-filter, but the corresponding link is not inferred
by an analysis.

The evaluation was conducted on the IC3 [Oct+15], Primo [Oct+16] and HARVESTER
approaches. IC3 and HARVESTER have similar goals, namely extracting values at specific
code locations. IC3 realizes this with a static approach and HARVESTER with a hybrid
approach. Since the outputs of both approaches are values of intent objects, we additionally
implemented an intent resolution algorithm that determines the links between an intent
and an intent-filter based on the inferred values. The algorithm is based on Android’s
intent resolution process, which is informally described online [Appf] and formally in
related work [Oct+16]. Throughout the evaluation, we refer to HARVESTER but mean the
combination of HARVESTER with the intent resolution algorithm. The same applies for
IC3.

Unfortunately, there is no ground truth for real-world Android applications that describe
the correct set of ICC links. At the beginning of this evaluation, we started with a manual
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investigation, e.g., reverse engineering, to determine the ground truth, but found that it is
not possible to complete this task with perfect precision for many hundred applications in
a reasonable amount of time. Therefore, we decided to evaluate HARVESTER against IC3

and HARVESTER against Primo, separately. Since HARVESTER extracts runtime values in
a hybrid way, it is easier to validate the results with IC3 and Primo.

In all experiments, the cut-offs of HARVESTER were 3 for caller-slicing and 10 for callee-
slicing (see Section 4.3.2.1) and the timeout was set to 20 minutes, similar to IC3. Primo
runs with its default settings. The approaches were evaluated on 227 malicious samples
from VirusTotal5 and 206 samples from Google Play Store (crawled date: 2014) including
Android system apps. In total, we used 434 Android apks.

In the following, we consider sets of links that the individual approaches inferred. LIC3,
LPrimo and LHV are sets of links between an intent and an intent-filter, correspondingly
for IC3, Primo and HARVESTER.

how well does harvester perform in comparison to ic3?
IC3 is a static approach that infers regular expressions for intent object values. Due to its
static nature, it can be the case that certain fields of an intent object contain wildcards,
such as "com.a.*" for the component field. This may lead to over-approximations during
the intent resolution process. Therefore, as a first step, we evaluated the occurrence of
ICC values that contain at least one wildcard for the action, data or category field. Our
evaluation shows that 67% (all applications containing benign and malicious apps) of all
intent objects contain at least one wildcard for their fields. This shows that many links
between components may be false positives. In the following, we exclude the remaining
33% of intent objects for which IC3 was able to infer all concrete field values. These are
all cases where IC3 was able to extract the concrete object intent and HARVESTER cannot
perform better.

Table 12 shows the results of our comparison. We distinguish seven different cases (first
column) that include different scenarios we want to evaluate. Note that we verified that
every link in LIC3 and LHV fits in exactly one case, i.e., no double counts and no additional
cases are necessary. Furthermore, we evaluated benign, malicious and all apps separately
to verify whether there are any differences. In the following we explain the meaning of
each case and the results in detail. All cases are evaluated with the assumption that all
intent objects extracted by HARVESTER contain either correct fields, i.e., every extracted
value for a field is a real value, or wildcards, i.e., those cases where HARVESTER was not
able to extract a runtime value. We verified the correctness of these cases by hand and can
guarantee that this is true in all cases.

case 1 measures how often IC3 over-approximates ICC links. If HARVESTER’s links are
a proper subset of those from IC3, we can measure this fact. We explicitly excluded
those cases where HARVESTER is not able to identify a link (LHV = ;), since we
evaluate this in Case 2.

Line 1 of Table 12 shows that there are no big differences between over-approximations
in the cases of benign, malicious and all applications. For the case "ICC links be-
tween all applications", including intra-application links, we can see that IC3 over-
approximates in 32,45% of the cases. In other words, HARVESTER is able to reduce

5 Free service that analyzes suspicious files and URLs and facilitates the quick detection of malware. Download
date: January 2016
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Case ICC in Benign (%) ICC in Malicious (%) ICC in all apps (%)

1

LHV ⇢ LIC3 ^ LHV 6= ;
(over-approximation by
IC3)

31.01 32.42 32.45

2

LHV = ;
(HARVESTER extracted
value, but no ICC link
available)

15.5 16.47 15.37

3

LIC3 ⇢ LHV ^ LIC3 6= ;
(over-approximation by
HARVESTER)

1.69 6.66 4.44

4

LIC3 = ;
(IC3 extracted value, but
no ICC link available)

0.05 0.17 0.12

5

LHV = LIC3 ^ LHV 6= ;
(same links)

51.75 44.28 47.63

6

LHV \LIC3 = ;^ (LHV 6=
;^ LIC3 6= ;)
(all links are disjoint)

0.00 0.00 0.00

7

LHV \ LIC3 6= ; ^

¬(LHV ✓ LIC3 _ LIC3 ✓
LHV )
(parts of the links are
disjoint)

0.00 0.00 0.00

Table 12: Comparing HARVESTER with IC3
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the amount of links in inter-component callgraphs by 32,45%. This is a significant
reduction, which shows that hybrid approaches can perform much better when ex-
tracting correct intent objects, compared to purely static ones.

The reason for this result is the fact that IC3 was either not able to extract any infor-
mation about the intent, i.e., yielding wildcards for all intent fields, or it extracted an
intent object that contained too many wildcards for its fields.

case 2 is a special case, since it considers those cases where HARVESTER is able to extract
values for the intent object fields, but there is no ICC link to other components. Our
evaluation showed that this is the case in 15,5% of benign and 16,47% of malicious
apps (see line 2).

A closer look into the reasons revealed interesting facts. In the following, we explain
the major cases we identified.

There are cases where explicit or implicit intents are implemented in the code, but
no corresponding intent filter exists. There are two sub-cases, first intra-application
communication links (inter-component communication within an application) and
second inter-application communication links (inter-component communication be-
tween applications). Reasons for the former are cases were apps include additional
code that gets not executed. These applications contained code that cannot get ex-
ecuted since there were no intent-filters defined (no component declaration in the
AndroidManifest). One possible reason for such apps are free-version apps that mis-
takenly contain code from the paid version (more functionality), but the Android-
Manifest is designed for the free-version app (no declaration of intent-filters). There
are also cases where application developers falsely defined an intent filter, such
as UnityPlayerNativeActivity instead of UnityPlayerActivity. Reasons for inter-
application communication are apps that need to communicate with other apps, e.g.,
the YouTube app, but these apps where not part of our corpus. Therefore, we were
not able to identify the corresponding link.

Intent-filters for broadcast-receiver can be, apart form the static declaration in the An-
roidManifest, also dynamically registered in the application’s code (see Section 2.1.2).
Unfortunately, we did not consider these cases in our evaluation and were therefore
not able to identify the corresponding ICC link. This is subject to future work.

Especially for malicious applications, there are apps that want to exploit security
vulnerabilities in system applications. These are vulnerabilities that are based on the
fact that a system application usually has higher privileges as a user app. In particular,
we found cases where system apps accepted intents in SMS receiver services. This
can be either used to fool the user that she received an SMS, even if she did not or if
the corresponding service contains a further vulnerability, e.g., SQL injection, further
damage can be produced. However, since our corpus of apps consisted of the latest
versions of Android system apps, these kinds of vulnerabilities were already fixed
and no ICC link was determined. This is one of the reasons why the percentage of
malicious applications (column 3 line 2) is slightly higher than the one of benign
applications (column 2 line 2).

Another reason why malicious applications contain missing ICC links is the fact that
HARVESTER has some limitations with apps that are protected by an integrity check
(will be explained in Section 4.5). For instance, HARVESTER was able to extract a
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value ("#V#TW- VC%RK(X8\EW&ux*&‘") for an action field, but the value is encrypted
due to an integrity check. However, these cases are covered by FuzzDroid, which
will be explained in Chapter 5.

case 3 covers those cases where HARVESTER produces more ICC links than IC3. The rel-
atively low percentage of 4,44% for all apps is caused by HARVESTER’s limitations,
which will be described in more detail in Section 4.5. More concrete, there are cases
where IC3 is able to extract parts of a field, resulting in values with a wildcard, e.g.,
"http://www.bitinstant.com?addr=(.*)" for the data field. In this particular case,
another string (value2) gets appended to the string: "http://www.bitinstant.com?
addr=" + value2. However, due to HARVESTER’s limitations, HARVESTER is some-
times not able to extract the complete value (e.g., value2), even if "http://www.bit
instant.com?addr=" is part of the slice. HARVESTER cannot return a concrete value
(e.g., missing information about value2), which results in a wildcard for the value.
Therefore, IC3 is able to extract at least parts of the value, while HARVESTER is not,
resulting in the case that ICC produces less links.

case 4 is similar to Case 2, with the difference that we evaluated IC3 on those cases that
do not find an IC3 link. The very low percentage of 0.12% in comparison to HAR-
VESTER’s 15,37% (line 2 column 4) reveals that HARVESTER is able to extract more
concrete field information than IC3. This can be inferred since Case 4 and Case 2 covers
only those cases where IC3 or HARVESTER extracted concrete values for the intent
object fields instead of a wildcard. If only a wildcard would have been extracted, all
possible components would have been connected to the intent object (no empty set).

A closer look into the intent objects that were responsible for no ICC links revealed
that IC3 covered similar issues explained in Case 2. Furthermore, we also found a
possible bug in IC3 since we verified that "com.pokercity.ddz.NULL-CONSTANT" is
not a valid account name.

case 5 measures how often both, IC3 and HARVESTER determine the exact same ICC
links. Table 12 shows that this case is true in almost 50% of benign, malicious and
all apps. The reasons therefore are cases where IC3 and HARVESTER extracted sim-
ilar values for the intent object fields that link to the same components or where
both approaches over-approximated for all intent object fields. We investigated those
cases where HARVESTER was not able to extract any intent object information and
conclude that these cases exist due to HARVESTER’s limitations (see Section 4.5).
Improving the limitations in subject for future work.

case 6 and case 7 show that there are no odd cases that need to be further investigated.

As a next step we further evaluated the frequency of ICC link reduction/over-approximation
produced by HARVESTER’s over IC3.

Figure 10 shows a plot that contains all links from Case 1 and Case 3 applied on all
applications. We only took Case 1 and Case 3, since these cases contain ICC links where
HARVESTER either reduces the amount of links or adds more in comparison to IC3. One
can see that for the majority of intent objects, approximately 1200, HARVESTER is able to
reduce more than 1000 ICC links per intent object. On the other hand, for a smaller amount
of intent objects, approximately 200, HARVESTER produces 1000 more ICC links than IC3.
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Figure 10: HARVESTER’s reduction of ICC links produced by IC3

In total, HARVESTER is able to reduce 1,425,438 links (32,45%) and adds 192,520 (4,44%)
more links to the inter-component callgraph.

As a summary, we conclude that a pure static determination of ICC links between benign,
malicious and even in both cases produces too many false positives. In total 32,45% for
all applications. Instead, extracting runtime information for intent object fields in a hybrid
way, as proposed by HARVESTER, reduces false positives, which results into much smaller
callgraphs. However, we state that a static analysis should be used as a pre-analysis for
determine those cases where all intent object field information is provided in such a way
that it is statically easily to extract. In our evaluation, this was the case in 33% of all intent
objects. This step is necessary, since a static analysis is much faster than a hybrid approach.

how well does harvester perform in comparison to primo?

Primo is based on a probabilistic model and there is no guarantee that Primo’s results
are free of false negatives. This was our first part of the evaluation. We were interested in
those cases where Primo produces false negatives (9x 2 LHV : x /2 LPrimo). Interestingly,
we found 13% of all ICC links to be false negatives. We manually verified all of them and
found interesting cases for which the probabilistic approach has some weaknesses. These
are new findings, which were not identified in Primo’s [Oct+16] work.

explicit intents There are cases where IC3 is not able to identify the component value
of an intent object, but HARVESTER extracted a component name. Therefore, the
intent object can only be explicit not implicit (see Section 2.1.2). This observation is
not known from a view of Primo. It instead uses a probabilistic approach that tries to
reduce the over-approximation. However, it should not be the case that the explicit
intent is missing in the results (false negative). These cases were identified by us and
shows that Primo reduces the over-approximation in such a way that it removes the
valid ICC link from IC3’s results.
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implicit intents We identified a similar situation for implicit intents. There are some
cases where HARVESTER is able to identify the correct links between an intent and
an intent-filter, but Primo’s outcome misses such links, resulting in false negatives.

After excluding the false negatives from our initial sets, we continued evaluating the
remaining in the same way as IC3 (please see previous paragraph). The results are provided
in Table 13.

Case ICC in Benign (%) ICC in Malicious (%) ICC in all apps (%)

1

LHV ⇢ LPrimo ^ LHV 6=
;
(over-approximation by
Primo)

33.1 36.9 35.85

2

LHV = ;
(HARVESTER extracted
value, but no ICC link
available)

16.0 17.96 16.35

3

LPrimo ⇢ LHV ^

LPrimo 6= ;
(over-approximation by
HARVESTER)

0.00 0.00 0.00

4

LPrimo = ;
(Primo has no ICC link)

0.00 0.05 0.03

5

LHV = LPrimo ^ LHV 6=
;
(same links)

50.9 45.15 47.81

6

LHV \ LPrimo = ; ^
(LHV 6= ;^ LPrimo 6= ;)
(all links are disjoint)

0.00 0.00 0.00

7

LHV \ LPrimo 6=
; ^ ¬(LHV ✓ LPrimo _

LPrimo ✓ LHV )
(parts of the links are
disjoint)

0.00 0.00 0.00

Table 13: Comparing HARVESTER with Primo

Please note that one cannot directly compare IC3’s Table 12 with the one of Primo (Ta-
ble 13), since we further removed ICC links in Primo’s case (false negatives).

case 1 includes those cases where Primo over-approximates ICC links. It is interesting
to see that Primo’s probabilistic approach is not very effective for 33,1% of benign
applications and 36,9% of malicious applications. One of the reasons hereby is the fact
that IC3 (see previous paragraph) extracted a lot of wildcards for intent object fields,
which directly affects Primo’s probabilistic approach. This shows the importance of
precise runtime value extraction approaches. HARVESTER is one of them.

case 2 is equal to Case 2 of Table 12, with the only difference that Table 13 includes less
links (removed false negative cases).

case 3 shows that HARVESTER did not over-approximate ICC links in the comparison
with Primo’s results.
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case 4 is a special case where Primo was not able to detect a link. It is important to note
that in all of these cases, IC3 provided intent object values, which included enough
information to correctly link to the corresponding component. However, Primo’s
probabilistic approach removed those links resulting in false negatives. Please note
that these cases were originally not counted in our removal of false negatives since
9x 2 LHV : x /2 LPrimo did not hold.

case 5 covers those cases where Primo has exactly the same edges as HARVESTER. Rea-
sons therefore are already mentioned in Case 5 of IC3’s comparison. In addition to
that, similar to Case 1 of Primo’s comparison, IC3 extracts a lot of wildcards for the
different intent object fields, which again negatively influences Primo’s results where
Primo considers all links.

case 6 and case 7 show that there are no odd cases that need to be further investigated.

As a next step, we further evaluated the frequency of ICC link reduction produced by
HARVESTER over Primo.
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Figure 11: HARVESTER’s reduction of ICC links produced by Primo

Figure 11 shows that for the majority of intent objects, approximately 1200, HARVESTER
reduces more than 1000 edges for a single intent object. In total, HARVESTER reduced
1,481,075 links in the inter-component callgraph. The results are very similar to those in
Figure 10 due to the fact that IC3 was not able to extract non-wildcard values for the intent
object fields.

As a summary, Primo’s probabilistic approach for reducing false positives heavily de-
pends on IC3’s output, which showed that Primo was not able to reduce many links due
the imprecise results of IC3. A more precise approach for extracting runtime values is re-
quired to improve Primo’s probabilistic approach. HARVESTER is one of those approaches.
Furthermore, the evaluation also revealed that a probabilistic approach as described by
Primo often results in false negatives, which is a big issue for static code analysis that rely
on complete inter-component callgraphs.
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4.4.3 Dynamic Dataflow Tracking

When compared to dynamic dataflow analysis approaches, static dataflow analysis ap-
proaches have the advantage that they have a more complete view on the application’s
code. However, as mentioned in the previous sections (especially in Section 4.4.1 and Sec-
tion 4.4.2), different limitations prohibit the complete view. Apart from the mentioned
problems of the usage of reflective method calls or the generation of inter-component call-
graphs, there are further problems that inhibit a static analysis from creating a complete
callgraph, for instance, applications with encrypted code parts that include sensitive API
calls [AA14].

On the other side, dynamic taint tracking can only evaluate the code that gets executed.
More concretely, the dynamic analysis first has to reach the code position of the source
before it can start tracking the taint until it reaches a sink. As we have shown in our
evaluation in Section 4.3.3, current testing approaches for Android, however, often fail to
trigger the malicious behavior in current malware samples. This results in undetected data
leaks.

4.4.3.1 Application Scenario

HARVESTER’s static slicer extracts exactly the code required for computing a specific value
of interest. Afterwards, only this code runs on an emulator or a real phone. Most impor-
tantly, the reduced code executed by HARVESTER does not include any emulator checks or
other techniques targeted at hindering dynamic analysis. Furthermore, no user interaction
with the application is required anymore, eliminating code coverage issues with existing
input-generation approaches. Running existing off-the-shelf dynamic analysis tools not on
the original APK, but on the reduced APK (see phase B in Figure 7) created by HAR-
VESTER can thus greatly improve their recall as we show in this section. In this case study,
we compare the recall of the well-known dynamic taint tracker TaintDroid [Enc+10] on the
original APK file and on HARVESTER’s reduced version.

4.4.3.2 Evaluation

In an approach similar to Anubis [Lab14], we ran TaintDroid 4.1 inside the emulator on
the Tapsnake [ZJ12] malware sample6, which steals location data only after a delay of 15

minutes [Yan+13]. On the original malware, the analyst needs to know that she has to wait
this time. With the app reduced by HARVESTER’s slicing approach, TaintDroid reports the
leak instantly, without any UI interaction.

As a second evaluation, we took 10 randomly chosen examples from DroidBench (sim-
ilar to Section 4.4.1) and obfuscated them with DexGuard [Tec14]. Table 14 compares the
recall of TaintDroid on the obfuscated apps (BEFORE in column 2) with the recall after
using HARVESTER’s value injection (AFTER in column 3). In the original app, TaintDroid
missed leaks depending on user actions such as in "Button3". On apps containing emulator-
detection checks it failed as well. When running the slices extracted by HARVESTER (see
"Reduced APK" in Figure 7), both types of leaks are found fully automatically without
any user or machine interaction. The remaining missing leaks occur due to TaintDroid not
considering Android’s logging functions (e.g., Log.i()) as sinks, as we confirmed with the
authors of TaintDroid.

6 Sample MD5: 7937c1ab615de0e71632fe9d59a259cf



78 runtime value extraction

? = correct warning, = missed leak
multiple circles in one row: multiple leaks expected

App (Obfuscated) TaintDroid

Enhancement BEFORE AFTER

Button1

?

Button3

?

FieldSensitivity3

? ?

ActivityLifecycle2

? ?

PrivateDataLeak3

? ?

StaticInitialization2

? ?

EmulatorDetection1

?

EmulatorDetection2

?

LoopExample1

? ?

Reflection1

? ?

Table 14: Leak detection by TaintDroid on obfuscated DroidBench apps before and after value in-
jection / slicing. Note that we did not have to interact with the app for the TaintDroid
test.

1 String number = null;
2 if(simCountryIso().equals("DE"))
3 number = 9371;
4 if(simCountryIso().equals("XX"))
5 number = 0000;
6 sendTextMessage(number, "msg");

Listing 10: Path over-approximation

4.5 limitations and security analysis

While HARVESTER improves over the state-of-the-art significantly, like any approach it
comes with some limitations. We next discuss those limitations and how malware authors
could potentially exploit them. Attempting to overcome those limitations will be an inter-
esting piece of future research.

Attacking Timeout Mechanism

To compute the values of interest, HARVESTER executes the extracted slices. Execution
ends if either all values of interest have been computed, or a timeout occurs. An at-
tacker can theoretically exploit this timeout by deliberately creating large apps with many
dataflow dependencies on the values of interest. Such an attack would lead to larger slices,
and hence, longer execution times per slice, making timeouts - and thus missed values -
more likely. An analyst, however, can easily increase the timeout if she detects that they
happen too frequently and results are poor. Additionally, one has to keep in mind that
such Data- and Control-flow obfuscations also increase the code size and execution time of
the original app. This would severely limit the practical applicability of such obfuscators.



4.5 limitations and security analysis 79

Overwhelming the Analyst with Spurious Values

Since HARVESTER over-approximates the paths to be executed, it may yield false positives,
i.e., values that cannot be computed by the original program in any given environment.
The code in Listing 10 computes a different telephone number for every mobile carrier
country. The code assigning the value 0000, however, can never be reached in the original
program because there is no environment with an XX country code. Since HARVESTER
cannot make any such assumptions about the possible set of environments, it explores this
path as well, reporting the spurious value 0000. For future work, we plan to additionally
add semantic checks that try to verify the validity of an environment-check (e.g., whether
if(simCountryIso().equals("XX")) is a valid check or not) to eliminate fake environment
checks.

Hiding Logging Points

HARVESTER is currently implemented for the Dalvik part of Android applications. Sec-
tion 4.3.2.1 described that HARVESTER is able to handle applications containing native
method calls as long as the logging point is still contained in the Dalvik code. If, for in-
stance, an SMS message is sent by native code, this hidden call to sendTextMessage()

cannot be used as a logging point. If an attacker hides the complete computation of the
value of interest in native code and never yields the computed result back to the Dalvik
layer, HARVESTER will not be able to extract these values. However, according to previous
research, current state-of-the-art banking trojans [Ras+15b] use native code mainly to hide
sensitive information but leak the data in the Dalvik part. In such cases, HARVESTER can
extract this sensitive information, returned by the native methods, without problems.

HARVESTER can succeed, however, if the app loads Dalvik code dynamically. In such a
situation, the analyst would first run HARVESTER once to obtain the dynamically loaded
code (which is just another runtime value), and then once again to extract the values of
interest. In the first run, the dynamically loaded code will be merged into the dex-file and
in the second step the hidden logging point in the merged dex-file will be recognized and
analyzed by HARVESTER. However, if an application dynamically loads code that is en-
crypted with the hash of the certificate of the original application, HARVESTER will not be
able to extract the packed dex-file. In Android, every application gets signed with a devel-
oper certificate. HARVESTER needs to do this as well with our own certificate. Therefore,
HARVESTER’s hash of the certificate is different to the one of the original application and
we are not able to extract the correct value. This technique is used to protect the applica-
tions integrity (see Section 2.3). In Chapter 5 we introduce a new approach that is able to
address this problem.

Attacking Static Backward Slicing

Attackers could also focus on the static backward slicing. To compute a static program
slice, a complete callgraph is indispensable, as with an incomplete callgraph the slices
may be incomplete as well. If an app contains multiple layers of reflective calls, the slices
computed by HARVESTER will be incomplete. However, since HARVESTER is able to
replace reflective method calls with their original call targets (see Section 4.3.2.3), an analyst
can run HARVESTER multiple times, removing one layer of reflective calls per run. In the



80 runtime value extraction

end, HARVESTER is able to construct a complete callgraph and, hence, a complete slice.
The same technique of multiple executions can also be used if reflective calls occur in the
code that computes the target of further reflective calls.

At the moment, HARVESTER does not support slices that span multiple Android com-
ponents. If a value, for instance, is computed in one activity and then sent to a second one,
which then contains the logging point, this value will be missed. In the future, we plan
to extend HARVESTER with support for inter-component communication, by integrating
HARVESTER’s ICC link extraction feature described in Section 4.4.2.

Attacking Data Dependency

We assume the values of interest not to be data dependent on environment values. For
current malware this proves to be a reasonable assumption. If malware developers will
introduce such dependencies in the future, one could react by extending HARVESTER
to detect and report such cases to a human analyst. This can be achieved with the help
of a static dataflow tracking approach that tries to identify whether the logging point is
data dependent on an environment value. While this approach can be attacked due to
its static nature, such a detection would significantly raise the bar for an attacker. Note
that HARVESTER can be applied iteratively to remove layers of obfuscation (e.g., replace
reflective calls with direct method invocations). In every run, the app gets simpler and,
thus, more accessible to such static detections.

Attacking the Completeness of Values of Interest

If values of interest are computed using data from external resources such as servers on
the web, we assume this data to be static. If, for instance, a remote server returns different
target phone numbers for an SMS scam every day, HARVESTER will only be able to recover
the value of interest for the present day.

4.6 related work

Researchers have proposed various approaches for analyzing the behavior of Android ap-
plications. Tools which simply convert the Android dex code back to Java source code such
as ded [Enc+11a] or Dare [OJM12] suffer from the problem that obfuscated applications do
not contain sensitive values such as URLs or telephone numbers in plain, but the analyst
rather needs to reconstruct them by manually applying the deobfuscation steps that would
normally execute at runtime.

The remainder of this section describes more advanced approaches that provide a higher
level of automation using static, dynamic, or hybrid analysis techniques.

static analysis FlowDroid [Arz+14b] or DroidSafe [Gor+15] are static taint analysis
tools which determine whether sensitive information is leaked in an Android application.
Due to their static nature, they cannot handle reflective calls whose target class or method
name is decrypted or concatenated dynamically at runtime. CHEX [Lu+12], IC3 [Oct+15]
or Amandroid [Wei+14] are static approaches that face the problem of inter-component
dataflow tracking in Android applications. Just like FlowDroid, the approaches rely on
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a complete call graph and thus fail if call targets are obfuscated using reflection. They
would thus also benefit from our runtime value injection for a more complete analysis.
SAAF [Hof+13] is a purely static tool for finding constant strings in Android applications
based on backwards slicing. It does not aim at providing any runtime semantics, e.g., if
an application decrypts a constant string at runtime, SAAF will only produce the original
cipher text, leaving substantial work with the human analyst. DroidRA [Li+16b; Li+16a], R-
Droid [Bac+16b] and an approach by Barros et al. [Bar+15] are pure static based approach
for resolving reflective method calls in Android applications. Since they can only cope with
applications that contain constant strings, they are not able to resolve reflective method
calls for highly obfuscated Android malware such as Obad.

dynamic analysis Dynamic approaches that profile runtime behavior such as Google
Bouncer [OM12a] can only detect runtime values that violate the Play Store’s policy (e.g.,
blacklisted URLs or telephone numbers) if they are actually used in API calls during the
test run. Malware, however, often employs sophisticated mechanisms to detect whether
it is run in an emulator or simply waits for longer than the test run lasts before starting
the malicious behavior. TaintDroid [Enc+10] is a dynamic dataflow tracker, which detects
leaks of sensitive information at runtime. Other techniques such as Aurasium [XSA12]
inject a native code layer between the operating system and the Android application, which
intercepts sensitive API calls and checks the data passed to them. Dynamic determinacy
analysis [Sch+13] is an approach for identifying values that always have the same value in
all executions of a program, regardless of the input values. All these approaches share the
problem of only finding values in code that is actually executed, thus requiring a test driver
with full code coverage. HARVESTER circumvents this problem by directly executing the
code of interest regardless of its position in the original application.

hybrid analysis TamiFlex [Bod+11] monitors reflective method calls in Java appli-
cations at runtime and injects the found call targets into the application as call edges to
aid static analysis tools. It does not support Android, however, and employs no slicing.
Instead, it always executes a full, single run, leaving open how full coverage of callees is
to be achieved. AppDoctor [Hu+14] slices Android applications to find user interactions
that lead to application crashes. AppDoctor’s hybrid slice-and-run principle is similar to
HARVESTER. However, AppDoctor executes the complete derived UI actions, while HAR-
VESTER’s slices only contain code contributing to the value of a concrete value of interest.
AppSealer [ZY14] performs static taint tracking on an Android application and then in-
struments the app along the respective propagation paths to monitor for actual leaks at
runtime, effectively ruling out false positives introduced by the static analysis. It then fixes
component-hijacking vulnerabilities at runtime if sensitive data reaches a sink. This ap-
proach can, however, not find leaks missed by the static analysis and thus inherit the prob-
lem of reflective method calls. SMV-Hunter [Sou+14] scans for custom implementations
of the SSL certificate validation in Android applications. It first statically checks whether
custom validation routines are present. If so, the dynamic part attempts to trigger this code
and confirm a man-in-the-middle vulnerability. The tool only supports simple UI interac-
tions that neither span multiple pages nor require complex inputs. Rozzle [Kol+12a], a tool
for de-cloaking Internet malware has a similar goal as HARVESTER, but has its limitation
in triggering the malicious behavior. For instance, it cannot handle time bombs or logic
bombs. Zhou et al. [Zho+15] present an approach that is, just like HARVESTER, based on
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slicing and execution. They, however, execute the app inside a custom interpreter, which
is also responsible for steering the execution into specific branches. As this approach com-
pletely replaces the Android OS, it requires a very precise model of the OS and its libraries.
Roundy et al. [RM10] combine static and dynamic code analysis in order to make the CFG
more precise in cases where malware is packed, obfuscated or dynamically loads addi-
tional code. Zhao et al. [ZAH11] provide an approach for extracting runtime values for
native binaries. They also combine static backward slicing with dynamic code execution,
but their extracted slice contains an unmodified code, including conditions. This results in
a lack of extracting values of interest since only one path will be executed during runtime.

ui-automation SwiftHand [CNS13] uses machine-learning to infer a model of the
application which is then used to generate concrete input sequences that visit previously
unexplored states of the app. On complex user interfaces, however, SwiftHand’s code cov-
erage can fall under 40% according to the numbers stated in the paper. Code that is only
executed in specific environments (e.g., depending on data loaded from the Internet) might
not be reached at all. Dynodroid [MTN13] instruments the Android framework for captur-
ing events from unmodified applications, generated both by automatic techniques such as
MonkeyRunner [Goo14a] and by human analysts. On average, it achieves a code coverage
of 55%. Brahmastra [Bho+14] is another UI-testing tool that combines static analysis with
bytecode rewriting in order to directly execute certain code statements. Since the tool relies
on a complete static callgraph, it has its limitation in applications that are obfuscated with
reflective method calls such as the one used in the Obad malware family. AppsPlayground
[RCE13] uses an enhanced version of TaintDroid [Enc+10] for dynamic dataflow tracking.
The authors changed the Android framework to additionally monitor specific API and
kernel level methods. For exercising the application at runtime, they use random testing
guided by heuristics leading to a code coverage of about 33%. As HARVESTER directly exe-
cutes the code fragments of interest, it does not need a method for UI automation, avoiding
the problem of poor coverage and recall.

4.7 summary and conclusion

In this chapter, we showed that the extraction of runtime values from applications that
include anti-static and anti-dynamic code obfuscation techniques is only possible if one
combines techniques from static analysis with techniques from dynamic analysis. More
concretely, in order to reach a certain code location in highly obfuscated applications one
needs to combine a particular variation of static program slicing with code generation and
concrete dynamic code execution. This is another major contribution of this dissertation
and answers the research question in the beginning of this chapter.

In addition, we have also shown that the techniques proposed by HARVESTER, to-
gether with bytecode manipulation, can be used for resolving reflective method calls in
Android applications, another major contribution of this thesis. This is especially impor-
tant in cases where reflective method calls are actively used as an obfuscation technique
against static code analysis approaches. Furthermore, this positively influences the cre-
ation of precise static intra-component, inter-procedural callgraphs. However, with the help
of HARVESTER it is also possible to minimize the amount of inter-component callgraph
edges. Existing off-the-self static analysis tools that extract concrete insights about the be-
havior of an application, e.g., dataflow tracking approaches, immediately benefit from this
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situation. They have a more complete (or more precise) view about the application’s code
resulting in determining more concrete insights about the behavior of an application. This
was not able prior to this work since existing inter-component callgraph construction ap-
proaches created callgraphs containing too many edges (impractical). The reduction of
inter-component callgraph edges is another major contribution of this work.

We further demonstrated that the technique of combining program slicing with code
generation and concrete dynamic code execution also positively influences dynamic taint
tracking approaches. We reduced the main problem of reaching a data leakage source posi-
tion along the dataflow path until the sink’s position to a minimal piece of code that imme-
diately executes the data leakage. Existing off-the-self dynamic taint tracking approaches
are able to immediately extract concrete data leakages.





5
E N V I R O N M E N T I N F E R E N C E

In the previous chapters, we proposed SuSi and HARVESTER, two novel approaches that
improve current malware investigations with concrete insights about the behavior of an
application. However, there are different situations in which both approaches do not pro-
vide sufficient insights that would be necessary for identifying a malicious behavior in an
application.

For example, one of the limitations (see Section 4.5) of the HARVESTER approach are val-
ues of interest that are data-dependent on input data. Let’s consider the second argument
of the sendTextMessage() method call (line 51 in Figure 1) in the main motivating example
as a logging point, which is data-dependent on an incoming SMS message. HARVESTER
will not be able to extract a value of interest, since it is not able to trigger an incoming
SMS method with the format of #s:<some text>. A correct environment (incoming SMS
message with a specific format) needs to be identified in order to generate an example for
a value of interest.

Another example are C&C servers that are hosted on legitimate websites. For remaining
undiscovered by a security expert, many C&C servers are hosted on legitimate websites
that are either controlled by the attacker or that are not recognized by legitimate web
services such as Facebook’s Parse [RCH15]. In such cases, the extraction of concrete run-
time values like URLs are not sufficient enough to judge whether an application contains
malicious behavior or not. It would be more important to extract concrete circumstances
under which the app starts communicating with the remote server, for instance. This might
provide more information for judging about malicious behaviors. For instance, in our mo-
tivating example (see Figure 1), the application requires a specific incoming SMS message,
needs to wait for a certain amount of time and requires at least one contact on the smart-
phone before an SMS message gets sent. These can be good hints for malicious activities.

Moreover, there are different security-relevant API calls that do not contain any argu-
ment for which one could extract a concrete runtime value. An example is the AlertDialog.
show() API method. Once implemented, it shows a dialog to the user that provides arbi-
trary alert information. This is a very common way in benign Android applications to ask
the user about taking a decision between yes or no in response of any particular action
taken by the user. However, it is also a common way of malicious applications that apply a
phishing attack [Ras+15b]. The attacker provides a dialog to the user that prompts her to
insert her credit card credentials, for instance. In order to look legitimate, these kind of ma-
licious applications usually scan the victim’s phone for certain applications, e.g., a certain
banking application [Ras+15b], and prompt a dialog that looks identical to the one of the
installed application. All these conditions, under which the dialog gets prompted, provide
a lot of information that helps a security analyst in identifying a malicious behavior.

Therefore, in this chapter, we address the following fundamental research question:

85
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How can one automatically extract environment-dependencies under which a certain
code location gets reached, even if an application contains anti-static and anti-dynamic
code obfuscation techniques?

In this chapter, we present FuzzDroid, a framework for automatically generating an
Android execution environment where an app exposes its malicious behavior.

In summary, this chapter contributes the following:

• A framework to generate Android environments that expose otherwise hidden mali-
cious behavior,

• a set of static and dynamic analyses that provide values for circumventing various
checks in malware apps,

• a search-based fuzzing algorithm that selects environment values to steer an app
toward a target location and

• empirical evidence that the approach is efficient and effective for current malware
apps, and that it clearly outperforms the closest existing approach.

Chapter Outline. Section 5.1 describes a motivating example that will be used for this
chapter. In Section 5.2 and Section 5.3 we explain our framework in detail. Then we pro-
vide information about the implementation (Section 5.4) and evaluate our approach (Sec-
tion 5.5). In Section 5.6 we describe limitations of our approach and compare FuzzDroid

with related work in Section 5.7. The chapter concludes with a summary in Section 5.8.

5.1 motivation and contribution

This section illustrates several key challenges for reaching a particular code location in
state-of-the-art malware apps and outlines how our approach addresses these challenges.
Listing 11 shows the motivating example for this chapter. It is a modified version of the
main motivating example (Figure 1) containing additional environment-checks from the
Anserver malware family.

The code shows the same functionality as the main motivating example (see Section 1.1.1);
it sends an SMS message to all contacts stored on the smartphone with a text that is re-
ceived from an incoming SMS message. However, this behavior gets only triggered under
certain circumstances. Automatically sending SMS messages to friends in a malicious con-
text is usually used for spam distribution. The malware tries to distribute further malicious
applications by requesting friends to download a certain application.

To understand an app’s behavior, a human analyst or an automated analysis is interested
in the conditions under which the app sends an SMS message. The human can directly
draw conclusions if a certain behavior only occurs under certain suspicious environments.
An analysis tool can configure its sandbox for dynamic investigation with the right envi-
ronment.

In the example, suppose that we mark the call to the sendTextMessage() method (line 45)
as the target location and want to trigger an execution where the app calls this method.
Reaching this target location is difficult because the app requires a particular environment
to expose its malicious behavior:
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1 class SMSReceiver extends BroadcastReceiver {
2 String hashValue = "389d90"
3

4 void onReceive(SMS sms, Intent intent) {
5 String body = sms.getSMSBody();
6 String certificateHash = this.getCertificate().getHash();
7

8 //expects "#s:<spam message>"
9 if(body.startsWith("#s:") {

10 // integrity check whether the APK got modified
11 if (certificateHash.equals(hashValue)) {
12 // get MCC and MNC codes
13 String mobileOp = getNetworkOperator();
14 File encryptedFile = readFileFromStorage();
15 File decryptedFile = decryptFile(encryptedFile);
16 boolean containsMobileOp = false;
17 Reader bf = new Reader(decryptedFile);
18 String line;
19 // checks whether file contains specific
20 // mobile operator
21 while((line = br.readLine()) != null) {
22 if(line.equals(mobileOp)) {
23 containsMobileOp = true;
24 break;
25 }
26 }
27 // targeted attack against specific network
28 if (containsMobileOp) {
29 String spamMessage = body.substring(2);
30 Set<Contact> contacts = getAllContacts();
31

32 //30 minutes
33 wait(30 * 60000);
34 // dynamic class loading, expects a dex file,
35 // even though file suffix is .db
36 DexClassLoader dcl = new DexClassLoader("anserverb.db");
37 Class clazz = dcl.loadClass("BaseABroadcastReceiver");
38 Method method = clazz.getMethod("onStart", Intent.class);
39 boolean returnValue = (boolean)method.invoke(intent);
40 if (returnValue == false) {
41 for(Contact contact : contacts) {
42 String contactNumber = contact.getNumber();
43 //sends a spam message like "check out the following app:
44 //www.malicious.com/malware.apk" to all contacts
45 sendTextMessage(contactNumber, spamMessage);
46 }
47 }
48 }
49 }
50 }
51 }
52 }

Listing 11: Motivating example FuzzDroid: shows that SMS messages are only sent under
certain circumstances



88 environment inference

Application + Target Locations + Fuzzed APIs

Fuzzing Framework

Constant Value Provider

Symbolic Value Provider

File Value Provider

...Environment to reach 
target location

Figure 12: Overview of the FuzzDroid approach

• The app checks whether the user’s network operator is part of a pre-defined list of
targets (lines 13 to 28). This kind of technique is usually used in cases of targeted
attacks where only specific users are attacked, e.g., only users located in a certain
country.

• The behavior must be triggered by an incoming SMS message that starts with a
particular string (line 9). This is a common behavior of command-and-control com-
munications.

• The smartphone has to have an address book containing at least one contact (line 41).

The problem is compounded by the fact that the app tries to evade analysis:

• The app checks whether the APK file of the app has been modified. It obtains
the signature with which the running app has been signed, hashes it, and com-
pares it against a known hash value (line 11). Such behavior is designed to prevent
instrumentation-based dynamic analyses from modifying the app.

• The app loads an additional class from a file, reflectively calls a method of the loaded
class, and checks whether the method returns a particular value (lines 36 to 40). Such
behavior challenges static analyses, which cannot easily reason about reflective meth-
ods calls, and in particular, about methods of classes that are dynamically loaded
from an external file.

All these conditions are typically hidden in highly obfuscated code. A naive dynamic
analysis that simply executes the app, possibly by sending a random SMS, does not reach
the target location. Randomly fuzzing the environment is very unlikely to be successful,
because multiple non-trivial conditions must be met. A purely static analysis [Fra+16]
cannot easily reason about reflectively called methods, and in particular, about methods
of classes that are dynamically loaded from an external file. Even a recently-proposed
approach that combines static and dynamic analysis [WL16] cannot reach the target, among
other reasons because it cannot deal with obfuscation through reflection.

FuzzDroid addresses the problem of extracting the constraints and finding a matching
environment through directed fuzzing. Figure 12 gives a high-level overview of the ap-
proach. Given an app, a set of target locations, and a set of APIs to fuzz, the approach
repeatedly executes the app while fuzzing the values returned by the specified APIs, until
it finds an environment where the app reaches a target location. To this end, the approach
intercepts calls of the app to APIs and modifies their return values to steer the app toward
the target.
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An observation crucial for our work is that a single fuzzing approach is insufficient to
reach target locations in real-world malware apps. Instead, FuzzDroid consists of a generic
framework and an extensible set of value providers. Each value provider is a static or dy-
namic program analysis that provides values to the fuzzed APIs. To decide which of the
suggested values to use for a particular API call, we present an evolutionary algorithm-
based search strategy. The strategy iteratively refines the selection of values based on feed-
back from previous executions.

To illustrate FuzzDroid with the motivating example, suppose we trigger the onReceive()
method with an empty SMS message. At line 5, the approach intercepts the first call to the
environment, getSMSBody(), and queries multiple analyses for possible return values. Sup-
pose that one analysis, which extracts string constants from the app’s bytecode, suggests
the value "anserverb.db". Another analysis, which reasons about string operations by
extracting and solving constraints, suggests a value "#s:abc". Suppose that FuzzDroid

randomly decides to return the value "anserverb.db", so the onReceive() method returns
without reaching the target.

Next, the approach re-executes the method and again reaches the fuzzing decision at
line 5. Suppose that now, FuzzDroid fuzzes the getSMSBody() call by returning "#s:abc",
so the app takes the if branch and gets closer to the target location. During all executions,
the approach keeps track of the distance of the executed path to the target location. Fuzz-
Droid exploits this knowledge to prioritize values. For the example, the approach may
infer from the first two executions that "#s:abc" leads the execution closer to the target,
and is thus more likely to reach the target than "anserverb.db".

To eventually reach the target, FuzzDroid proceeds to fuzz environment calls while
improving the selection of fuzzed values, until it finds suitable return values for further
environment calls at lines 6, 13, 30, 36 and 39. Key to reaching the target is to combine val-
ues extracted with several, complementary analyses, instead of relying on a single analysis.
Note that we only consider a target location as reached if it can be executed without an
exception. Sections 5.2 and 5.3 present our approach in more detail.

5.2 a targeted fuzzing framework

The FuzzDroid approach consists of a generic fuzzing framework and an extensible set of
value providers for fuzzing particular APIs. This section presents the fuzzing framework.
At first, we present a more detailed overview of the framework including the main com-
ponents of FuzzDroid (Section 5.2.1). Afterwards, we explain the overall algorithm of the
framework (Section 5.2.2). Then, we describe how the framework interacts with the app
during the execution (Section 5.2.3). Next, Section 5.2.4 presents how the framework steers
the execution toward a target location by picking appropriate values for the fuzzed APIs.
Finally, we present how FuzzDroid deals with dynamically loaded code (Section 5.2.5).

The goal of FuzzDroid is to find an environment in which the app reaches a tar-
get location. An Android app interacts with its environment through API calls, such as
getDeviceId() and getSMSBody(). We control the environment of an app by fixing the
values returned by such API calls:

Definition 5 (Environment) An environment E : L⇥N ! V is a map that assigns a value
v 2 V to a pair (l,n), where l 2 L is a code location and n 2 N is a counter of how often l has
been reached in the current execution.
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Figure 13: Detailed overview of the FuzzDroid approach

For example, suppose that lSMS is a call site of getSMSBody(). The environment {(lSMS, 1)
7! "abc", (lSMS, 2) 7! "def"} specifies that the call to getSMSBody() returns "abc" and "def"

when the location is reached for the first and second time, respectively. The counter n of
the definition is mainly used by the value providers, which will be described in Section 5.3.
For instance, the File.readLine() API is usually used in a while-loop. A value provider
must thus first provide values for n=0,1,2..., but then < null > at some point to break out
of the loop for some n.

We call an environment that enables the app to reach a target location a successful envi-
ronment.

5.2.1 Framework Overview

Figure 13 provides an overview of the main components of the FuzzDroid framework. In
general, the framework consists of a server and an emulator. The server-part is responsible
for extracting an environment in which the app reaches a target location and the emulator
is used for executing the app and providing runtime information to the server. As shown
in the figure, the framework takes as input an app and a configuration file that contains,
among others, the target locations. The instrumenter enriches the app with additional func-
tionality that is required for identifying the environment. It contains an In-App Watchdog
that keeps track of the executed code locations and dynamic values. The latter one will be
described in more detail in Section 5.3.1.3. Furthermore, it also contains a component that
is responsible for replacing environment API values that are provided by the server. The
Global Watchdog App is required due to implementation reasons, which will be explained
in the implementation section (Section 5.4).

The extraction of the environment in which the app reaches a target location is extracted
by the Environment Generator, which gets the necessary values from different Static/Dynamic
Value Providers. A detailed description about the former component including different
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Algorithm 1 Find an environment E that reaches location ltarget in app.
Require: App app, set Ltarget of target locations, and set Afuzz of APIs to fuzz
Ensure: Environment E

1: Q [app] # app queue
2: while Q 6= empty do
3: appcurrent  Q.pop()
4: staticPreAnalysis(appcurrent)
5: instrument(appcurrent,Ltarget,Afuzz)
6: nbRuns 0

7: T  ; # trace pool
8: while nbRuns < maxRuns do
9: nbRuns nbRuns+ 1

10: E initializeEnvironment(T)
11: trace executeAndFuzz(appcurrent,E,Q)
12: T  T [ {trace}
13: if targetReached(trace,Ltarget) then
14: report(E, trace)
15: exit
16: end if
17: end while
18: end while

algorithms and information about the Executor is provided in the next section. Section 5.3
describes the individual value providers in detail.

5.2.2 Main Algorithm

In the following, we will focus on the Environment Generator and Executor components of
Figure 13. To find a successful environment, FuzzDroid repeatedly executes the app while
refining the environment, as summarized in Algorithm 1. The outer loop of the algorithm
will be explained in Section 5.2.5; the reader should ignore it for now and focus on the
steps starting from line 3.

At first, the algorithm triggers a static analysis of the app to build an inter-procedural
control flow graph of the app, which will be used by the subsequent steps (usage of reflec-
tive method calls and dynamic code loading will be explained in Section 5.2.5). In addition,
each value provider plugged into the framework can apply further static analysis at this
point. Next, the framework instruments the app so that both can interact with each other
when the app executes. Specifically, FuzzDroid adds instrumentation code to keep track of
the execution path and to intercept calls to the fuzzed APIs (see Instrumenter in Figure 13).

The main loop of the algorithm starts at line 8. The framework repeatedly executes the
app until either a target location or a configurable maximum number of executions has
been reached. Before each execution, function initializeEnvironment creates an environ-
ment. Section 5.2.4 describes this step in detail. During the execution, the instrumented app
queries the framework for values to be returned at call sites of fuzzed APIs. Section 5.2.3
presents the executeAndFuzz function, which implements this step, in detail. The frame-
work summarizes each execution into an execution trace and maintains a pool of all previ-
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ous executions. After each execution, the algorithm checks whether the target location has
been reached (line 13). If the framework has reached the target, the algorithm returns the
successful environment. Otherwise, the algorithm refines the environment based on the
feedback obtained from previous executions and executes the app again.

5.2.3 Executing and Fuzzing Apps

The core of FuzzDroid’s fuzzing happens in function executeAndFuzz, called at line 11 of
Algorithm 1.

We will explain the individual parts of this algorithm based on the motivating exam-
ple (Section 5.1). For the sake of simplicity, we assume that FuzzDroid needs to identify
the correct environment for SMS-body (line 5), the certificate (line 6) and the mobile op-
erator (line 13) for reaching the target location sendTextMessage() at line 45. More con-
crete, possible environment values are body = "#s : abc", certificateHash = 389d90 and
mobileOp = "telecom". In the following, we will use body, certificateHash and mobileOp

for line 5, line 6 and line 13, respectively. The handling of the timing bomb (line 33) and
contacts will be explained in Section 5.4 and dynamic code loading in Section 5.2.5.

5.2.3.1 Fuzzing the Environment

Each execution starts with an initial environment E that maps a subset of all possible API
calls that may happen during the execution to return values. During the execution, the app
queries the framework whenever the execution reaches a fuzzed API. If the app requires
a pair (l,n) 2 E, i.e., a value provided by the initial environment, then the framework
returns this value. Otherwise, the framework queries the value providers, selects one of
the provided values, and adds this value to the environment E.

To help the framework select a value, value providers associate with each value a weight
that specifies the confidence the value provider has in the respective value. The weights also
allow for prioritizing particular value providers over others, e.g., if one value provider is
generally more precise than others. The framework selects a value by ordering all provided
values and by picking randomly among the values with the highest weight. To prevent the
framework from permanently rejecting values with low weight, the framework also con-
siders all remaining values with a low probability (10% per default) and selects randomly
among them, regardless of their weight. Algorithm 2 represents a possible implementation
for the proposed value determination.

In addition to extending the current environment E with the selected value, the frame-
work also keeps all other provided values in so-called shadow environments. These environ-
ments have not yet been used during an execution. The framework may pick from these
shadows if no analysis is able to compute any further values for a given environment query
(l,n).

During the execution of the app in the fuzzed environment, the framework summarizes
the execution into a trace:

Definition 6 (Trace) A trace t = (L,E) summarizes the execution of an app into the list L =
[l1, ..ln] of executed code locations li 2 L and the environment E that has triggered this execution.

At the end of an execution, the framework adds the trace to a trace pool. These traces have
two purposes. First, the framework creates future initial environments based on the traces
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Algorithm 2 Determine value v for environment
Require: set V of values provided by value providers and a probability p 2 1, 2, .., 99 for

picking non-high values
Ensure: value v for environment

1: VH  getAllValuesWithHighestScore(V)
2: VR  getAllValuesExceptHighestScore(V)
3: cmp 0

4: rand Random.nextInt(p) # random value between 0 and p

5: if cmp == rand then
6: v pickRandom(VR) # pick random value of set
7: return v

8: else
9: v pickRandom(VH) # pick random value of set

10: return v

11: end if

of previous executions, as described in detail in Section 5.2.4. Second, value providers
can adjust the set of provided values based on the current trace and on the trace pool. For
example, a value provider may reduce the weight based on values already used in previous
executions or provide values based on the path taken in the current execution.

Let’s assume for now that FuzzDroid run three times and produced the following trace
pool

T = (

0

BBBB@

0

BBBB@

line 5,
line 6,
. . . ,

line 28

1

CCCCA
,

0

BB@

(body, "#s : abc"),
(certificate, 389d90),
(mobileOp, "aaaa")

1

CCA

1

CCCCA
,

0

BB@

0

BB@

line 5,
line 6,
line 9

1

CCA ,

 
(body, "aaaa"),

(certificate, 99999)

!
1

CCA ,

0

BBBB@

0

BBBB@

line 5,
line 6,
. . . ,

line 11

1

CCCCA
,

 
(body, "#s : abc"),
(certificate, 11111)

!
1

CCCCA
)

Please note that we only show the environment and part of the executed code locations
and we further omit the location-counter information for simplifying the formulas.

5.2.3.2 Triggering Events and Services

The approach described so far assumes that the target location is reachable by simply
starting the app under a suitable environment. However, some target locations may only
be reached when the app reacts to a particular event, such as an incoming SMS message
or a click on a button. To enable the approach to reach such target locations, FuzzDroid

programmatically triggers event handlers (see Executor in Figure 13). For this purpose, the
framework computes a static callgraph of the app and traverses it backwards, starting
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at the method of the target location. When reaching the beginning of a callback method,
FuzzDroid checks the event for which the respective callback is registered and triggers
the event programmatically. FuzzDroid directly calls the respective event handler method
and thus does not need a full system model or a graphical UI model. Even if several UI
interactions would be necessary to trigger the event during normal execution, it shortcuts
all of them and directly jumps into the handler.

5.2.3.3 Properties of Successful Environments

Since FuzzDroid checks dynamically whether an environment reaches the target location,
a reported environment is guaranteed to reach the target. In contrast, FuzzDroid guaran-
tees neither to find a minimal environment nor to generate a realistic environment, i.e.,
a reported environment may over-constrain individual environment values, possibly with
values that may not occur in reality. Suppose an app requires the name of the network
operator to contain the string "tele" (e.g., telecom). In this case, FuzzDroid may report
an environment that sets the network operator to "teleFoo", which is not an actual net-
work operator. Our evaluation shows that the absence of these guarantees is a non-issue in
practice, because most successful environments specify a manageable number of values.

5.2.4 Steering Towards the Target

Since the set of possible environments that FuzzDroid can generate is too large to ex-
plore exhaustively, it is crucial to steer the approach toward an environment that reaches
the target location. This section explains how FuzzDroid steers toward such an envi-
ronment based on the trace pool. These steps of the approach correspond to function
initializeEnvironment in Algorithm 1.

5.2.4.1 Measuring the Fitness of Environments

To identify environments that are likely to lead the app to the target location, we compute
a fitness score for each environment based on the trace that the environment yields:

Definition 7 (Fitness of an environment) Given a trace (L,E) and a target location ltarget,
the fitness of E is the minimum distance between ltarget and any location l in L.

FuzzDroid computes the distance between code locations as the minimum number of
edges between the locations in an inter-procedural control flow graph. The rationale for
considering the minimum distance is that traces that get close to the target at some point
during the execution are more likely to reach the target than traces that always remain far
from the target. Applied to our running example,

F1 =

0

BBBB@

0

BBBB@

line 5,
line 6,
. . . ,

line 28

1

CCCCA
,

0

BB@

(body, "#s : abc"),
(certificate, 389d90),
(mobileOp, "aaaa")

1

CCA

1

CCCCA
= 10

since the minimal distance between the closest executed statement (the mobile operator
check in line 28) and the target location is 10 statements. Correspondingly,



5.2 a targeted fuzzing framework 95

Algorithm 3 Create an initial environment E
Require: Trace pool T
Ensure: Environment E

1: if |T| < minTraces or randomNb() < 0.25 then
2: return empty environment
3: end if
4: Esorted  sortEnvsByFitness(T)
5: while Esorted 6= empty do
6: E1,E2  selectParentEnvs(Esorted)
7: E crossover(E1,E2)
8: if isNewEnv(E,T) then
9: mutate(E)

10: return E

11: else
12: remove(Esorted,E1)
13: end if
14: end while
15: return empty environment

F2 =

0

BB@

0

BB@

line 5,
line 6,
line 9

1

CCA ,

 
(body, "aaaa"),

(certificate, 99999)

!
1

CCA = 19

since the execution trace does not pass the SMS-body-check in line 9 and

F3 =

0

BBBB@

0

BBBB@

line 5,
line 6,
. . . ,

line 11

1

CCCCA
,

 
(body, "#s : abc"),
(certificate, 11111)

!
1

CCCCA
= 18

since the execution trace does not pass the certificate-check in line 11.
Other measures can be easily added to our approach.

5.2.4.2 Evolutionary Algorithm

Based on the fitness of environments, FuzzDroid influences the generation of environ-
ments using an evolutionary algorithm that creates new initial environments. The intuition
behind the approach is that traces, which came close to the target are likely to have val-
ues in their environment that enable the app to reach the target. The algorithm repeatedly
combines such successful environments into new environments, until FuzzDroid reaches
the target.

Algorithm 3 summarizes the main steps. Given a trace pool T, the algorithm computes
an environment E for the next execution. At first, the algorithm checks whether the size of
the trace pool exceeds a minimum value (five in our evaluation and two in our running
example), and otherwise, returns an empty environment. The empty environment forces
FuzzDroid to query value providers at runtime for values, which yields additional traces
to learn from. If there are sufficiently many traces, the algorithm sorts the environments
of these traces by their fitness score. Applied to our running example, the order of the
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fitness scores F1, F2, F3 would be (F1, F3, F2). Next, the main loop of the algorithm (lines 5

to 14) performs the following classical steps of an evolutionary algorithm: select two parent
environments, create a new environment through a crossover operation, and check whether
this yields an environment that has not yet been used in any previous execution. If so, the
algorithm mutates the new environment and returns it. Otherwise, the search continues
until the algorithm runs out of possible parent environments. In this case, the algorithm
returns an empty environment.

selecting parents The selectParentEnvs function (line 6) selects the two environ-
ments with the highest fitness (F1 and F3 in our running example). If combining these
environments yields an environment that has already been tried before, then the algorithm
removes the current best environment from the sorted list Esorted of environments to con-
sider. Please note that the sorted list Esorted from line 4 is only a copy of the original trace
pool T. Therefore, the removal of the environment does not influence T, it is only applied
on the sorted environment list. As a result, the next iteration of the algorithm’s main loop
selects the second-best and third-best environment as potential parents, and so on, until
there are no more possible parent environments left.

Note that there can also be the opposite mode: If no analysis has generated any new
values during the last dynamic execution, i.e., there was no other option than re-executing
an already-seen environment, FuzzDroid switches to a genetic-only mode in which it
always performs a genetic re-combination and never creates an empty environment.

crossover To combine two environments, FuzzDroid first computes the union of all
keys in the environments. If a key is provided by only one environment, then this environ-
ment contributes the values. Otherwise, FuzzDroid randomly chooses which environment
contributes the value. More concrete, the environments of F1 and F3 get combined as fol-
lows:

1. (body, "#s : abc") and (body, "#s : abc"): (body, "#s : abc")

2. (certificate, 389d90) and (certificate, 11111): FuzzDroid randomly collect one of
both. Let’s assume FuzzDroid takes (certificate, 389d90)

3. (mobileOp, "aaaa"): Since only F1 contains this element, FuzzDroid’s union step
adds it to the new environment.

This results to a new environment Enew = ((body, "#s : abc"), (certificate, 389d90),
(mobileOp, "aaaa")).

mutation To avoid getting stuck in a local minimum, i.e., an environment that brings
the execution close to the target but based on which the execution cannot reach the tar-
get, the algorithm mutates the environment that results from crossover. This step allows
the algorithm to explore new directions instead of only exploiting existing knowledge.
Through mutation, "worse" environments that escape such minima can be evaluated. Fuzz-
Droid mutates each value of an environment with a small probability (0.1 in our eval-
uation). To mutate a value for a particular API method, the approach picks from an
environment, different from the two current parents, a random value provided for this
API method. If no environment contains this value, FuzzDroid looks up a new value
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from the shadow environments (see Section 5.2.3.1) or asks the value providers to pro-
vide a new value. Let’s assume for our running example that FuzzDroid picked the
(mobileOp, "aaaa") in Enew for mutation. A lookup in the shadow environments resulted
in the fact that "aaaa" get replaced to "telecom", which further results to a new environ-
ment Enew = ((body, "#s : abc"), (certificate, 389d90), (mobileOp, "telecom")).

In addition to mutation, the algorithm uses two other ways to evade local minima. First,
the algorithm returns an empty environment with a configurable probability (0.25 in our
evaluation) to ensure that FuzzDroid continuously tries new environments (line 2). Second,
with a probability (0.1 in our evaluation), the selectParentEnvs function picks two random
traces for combination instead of the two best ones.

FuzzDroid detects when an app execution crashes. In such a case, the environment that
was executed at that time receives a penalty, i.e., a very low fitness value. This makes
choosing environments that crash the app less likely than choosing any other environment,
including those that fail to reach the target location.

5.2.5 Dealing with Dynamic Code Loading

Some malware apps hide malicious behavior by storing the malicious code in an encrypted
file and by decrypting and loading this code at runtime. In this case, the malicious code is
unavailable to the static part of our framework. In particular, the target location may not be
visible to static analysis, making it impossible to, e.g., compute the distance between the
target and already executed locations. FuzzDroid deals with such packing by observing dy-
namically loaded code and by rewriting the app into an app that contains this code. To this
end, FuzzDroid first takes all locations of dynamic code loading as targets and attempts
to steer the execution to these parts of the code. At runtime, the framework then obtains
the dynamically loaded code right before it is being passed to the Dalvik/ART runtime.
The code is then merged into the original APK file and future runs of the framework can
operate on the full, un-obfuscated code.

Because an app may load different code on different execution paths, we do not simply
overwrite the app but copy the current app and rewrite the copy. Algorithm 1 keeps track of
the rewritten copies of the app in an app queue Q. We chose a queue as data structure since
the first loaded dex-file should be merged first into the app, the second loaded dex file as
second and so on. Initially, the queue contains only the original app (line 1). Whenever the
framework observes dynamically loaded code, it copies the current app and adds the code
to the copy. This is why the executeAndFuzz method is passed a reference to the queue Q.
If, in a later execution of the original app, the framework detects other dynamically loaded
code, the app will again be copied and have new code added to it, which does not interfere
with the code added in a previous execution. We do not copy the traces, though, as new
code can arbitrarily change the environment required to reach the target location.

To call methods from dynamically loaded dex files, apps use the Java reflection API. As
a further obfuscation step, these method and class names are, not present as static strings.
Instead, they are only computed or decrypted at runtime, making them unavailable to static
analysis even if all parts of the code are available. To address this challenge, FuzzDroid

applies HARVESTER (previous chapter) as a pre-analysis to each app. Harvester uses a
combination of static and dynamic analysis to precisely extract the targets of reflective
method calls and replaces them with direct calls.
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5.2.6 Determination of Target Locations

To ease the definition of target locations, FuzzDroid provides a comprehensive list of pre-
defined target locations, which is mainly taken from the SuSi approach (see Chapter 3).
FuzzDroid makes use of the APIs within the sink categories. However, depending on
the malware investigation, also the APIs within the source category need to be considered.
Examples are the access to the getInstalledApplications() API for instance, which can be
used for benign, but also in malicious purposes (more details provided in Section 6.2). We
manually add APIs for dynamic code loading and reflective method calls. FuzzDroid also
supports the manual adding of code locations that are of interest for the human analyst.

5.3 value providers

This section presents a set of value providers, which create values to be returned at call
sites of fuzzed APIs.

5.3.1 Symbolic Value Provider

Reaching the target location typically requires the app to take a particular path, and taking
this path requires particular environment values. The way an app uses the values obtained
from the environment often reveals semantic information about the expectations that the
app has on environment values. For example, line 9 in Listing 11 reveals that the incoming
message must start with "#s:". Likewise, a call to sendTextMessage(nr, body) reveals
that nr is expected to be a number or to start with a "+", e.g., "+491234" or a call of
String.substring(0, 5) reveals that a string should contain at least six characters.

To exploit such information, FuzzDroid contains a constraint-based, symbolic analysis
that reasons about the usages of environment values in the app. The basic idea is to encode
the results of a local, static analysis and values extracted at runtime into constraints, and
to query a constraint solver to find values for fuzzing. The analysis computes for each call
site Lfuzz of a fuzzed API a set of values. The approach consists of three steps explained
in the following.

5.3.1.1 Static Dataflow Analysis

The approach statically reasons about the uses of fuzzed values through an inter-procedural
dataflow analysis. Given a set of source locations and a set of sink locations, the analysis
extracts sequences of statements that propagate and modify values between a source and
a sink. We call such a sequence of statements a dataflow path. The sources for our analysis
are all call sites of fuzzed APIs. As sinks, we consider all call sites of a configurable set of
methods that reveal expectations by the app on value, such as String.startsWith() and
sendTextMessage(). The static analysis yields a map Lfuzz ! D from call sites of fuzzed
APIs to sets of dataflow paths.

For example, Listing 11 yields a dataflow path that connects getSMSBody() (line 5) with
sendTextMessage() (line 45) via startsWith("#s:") (line 9) and spamMessage (line 29).
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5.3.1.2 Constraint Solving

The analysis translates the dataflow paths into constraints and solves them to obtain val-
ues to be suggested at call sites of fuzzed APIs. At first, the approach transforms each
dataflow path into a static single assignment (SSA)-form [AWZ88], where each variable is
assigned at most once. This step is necessary since our implementation is based on the
Jimple [ARB13] intermediate representation that re-uses variable names. This can result
to the case that a dataflow path contains two or more different statements where the left-
side of an assignment has the same variable name. Next, the approach translates dataflow
paths into conjuncts of constraints understood by the Z3 solver [DMB08], similar to prior
work [Arz+15]. Specifically:

• The initial call of a fuzzed API method in each dataflow path is represented as a
symbolic variable vfuzz.

• Any operations applied in the dataflow path are translated into the corresponding Z3

constraints. For example, we translate string operations into their corresponding con-
straints provided by the Z3 string theory [ZZG13]. For API methods not supported by
the Z3 solver, such as String.split(), we provide additional constraints that model
the behavior of the respective API.

• To encode the information revealed by the call of the sink method at the end of each
dataflow path, we translate this call into appropriate constraints. For example, a call
to sendTextMessage() is encoded as constraints that specify that the first argument
provided to the method must be a number or "+" followed by a number.

• For dataflow paths with sink methods that represent Boolean statements, such as
String.equals(), we generate two conjuncts of constraints, which represent the case
that the check returns true and false, respectively. Our experiments show that this, al-
beit somewhat crude, approach is highly effective when applied to current malware.
Furthermore, it is much faster as if we would have added additional symbolic evalua-
tion for detecting the correct path. Please note that our approach is based on fuzzing,
which does not produce any issues if both conditions are considered.

This translation yields a map Lfuzz ! C from call sites of fuzzed APIs to sets of symbolic
constraints. To compute values for fuzzing, the approach queries the solver for each set of
constraints to obtain a concrete value for vfuzz. The solving yields a map Lfuzz ! V that
assigns to each fuzzed location a set of possible values. Whenever the framework queries
the analysis for a value to be returned at a location l 2 Lfuzz, the analysis returns one
of the possible values. To reduce the computational cost of constraint solving, the analysis
solves all statically extracted constraints before executing the app for the first time.

5.3.1.3 Dynamic Refinement of Constraints

The statically extracted constraints may contain symbolic variables in addition to the fuzzed
value vfuzz. For example, suppose an app compares the return value of a fuzzed API to
a dynamically created string using String.equals(). Without knowing the dynamically
created string, the constraint solver is unlikely to return a suitable value for vfuzz, because
it knows only that vfuzz is equal to another symbolic variable vunknown. We address this
problem by enriching the statically computed constraints with dynamically extracted val-
ues. To this end, the analysis obtains from the framework runtime values involved in calls
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of a configurable set of methods. By default, we include into this set of methods string op-
erations, such as String.equals() and String.substring(), because these operations are
particularly important in various malware apps. If an execution produces a concrete value
c for a symbolic variable vunknown in one of the statically computed constraints, then the
approach copies the constraint and, in the copy, replaces the vunknown with c. By solving
the refined constraints, the analysis is more likely to obtain a suitable value for vfuzz. For
the above example, the refined constraints specify that vfuzz is equal to c, making it trivial
to find a precise solution.

To reduce the cost of constraint solving, the analysis performs the dynamic refinement
of constraints on demand. That is, whenever the framework queries the analysis for a
value at a location, the analysis checks whether the constraints for this location contain
any symbolic variable for which concrete runtime values have been observed in previous
executions. Only if such runtime values exist, the analysis gives the refined constraints to
the solver.

As an example, please consider line 13 till line 28 from the motivating example in Sec-
tion 5.1. A constraint for mobileOp would be vmobileOp = vline where vline is not known
during the static phase since it gets assigned with dynamic values. However, our Dynamic
Value Tracker shown in Figure 13 sends all dynamic values of the String.equals() (line 22)
method to the value providers. Therefore, in the next run, the Symbolic Value Provider refines
its constraint to

vmobileOp = "telecom" _ vmobileOp = "megafon" _ vmobileOp = "mts"

if "telecom", "megafon" and "mts" is included in the encrypted file (line 21).
Since the results computed from constraints that make use of dynamic values are usually

more precise than those that rely only on static dataflow paths, the approach gives them a
higher weight when providing them to the framework.

Our constraint-based analysis differs from traditional symbolic and concolic execution
[Kin76; GKS05; SMA05; GLM08; CDE08b; Cad+08; Sax+10] by applying a local symbolic
analysis instead of reasoning about the entire execution path. The benefit of avoiding path
sensitivity is that our local analysis scales well to large apps. However, the approach can-
not guarantee that values obtained from the solver will cause the app to reach the target.
For example, our analysis does not reason about which of the two branches of a condi-
tional leads to the target, but instead, suggests values for both branches. Fortunately, since
FuzzDroid is a fuzzing approach that validates by executing the app whether an environ-
ment reaches the target, the symbolic analysis need not to provide this guarantee. Instead,
FuzzDroid iteratively selects suitable values based on the fitness of executed environments
(Section 5.2.4).

5.3.2 Constant Value Provider

Many apps compare runtime values against constants stored in the code. These constants
may not be directly in a condition statement but, e.g., read from variables or fields. To
execute branches guarded by such conditionals, we have implemented an analysis that
gathers from an app’s bytecode all constants of primitive types and strings. The value
provider returns these constants when being queried for a value of a matching type. If
the app does not contain any statically extractable constants, e.g., due to obfuscation, the
analysis returns values from a pre-defined pool of random values.
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For the example in Listing 11, the constant value provider helps pass by the integrity
check at line 11. The value provider extracts the hash value of the certificate at line 2 and
suggests it when the app queries the certificate hash at line 6.

5.3.3 File Value Provider

For some malware apps, the existence of a file, possibly containing data of a particular
file type, is essential for triggering malicious behavior [Ras+15b]. To prevent apps from
failing when an expected file is missing, the file value provider suggests values for APIs
that access the file system. If the accessed file does not exist, the provider emulates the
file. Such scenarios usually occur if the app itself, or some other app installed on the same
phone, creates the file under specific circumstances.

Since some apps crash when files do not contain data of the expected type, the file value
provider infers the expected file type and provides a dummy file of the inferred type. Dur-
ing the static pre-analysis, the analysis approximates the set of possible file types for this
particular file using a forward dataflow analysis. The idea is to follow the dataflow from
the file access to an API call that reveals the expected file type. For example, a dataflow that
reaches a SQLiteDatabase.openOrCreateDatabase() call reveals that the file is expected to
be a database file. We provide a manually assembled map between API calls and file types.
Once the type is known, a manually created dummy file of the correct type is picked and
pushed onto the phone before the app accesses that file. If the analysis fails to statically
identify the expected file format, it tries to create a suitable file based on the name of the
accessed file.

Note that this analysis is not responsible for creating a file with correct content. The
file must only be in a shape that allows for successfully loading it. Further API calls that,
e.g., read data from the file are intercepted separately. Other analyses such as the symbolic
value provider (Section 5.3.1) can then provide the values expected to be read from the file.

5.3.4 Value Provider for Integrity Checks

Many malicious apps protect against code modifications by validating their own integrity
through a check of the app’s certificate, which is used for signing an Android app. When
modifying the app’s bytecode, one must re-sign the app. However, without access to the
original developer’s private key, it is practically impossible to use the same certificate for
signing the app. A common way to implement an integrity check is to compute the hash
code of the signature certificate extracted from Android’s package manager and to compare
it to an expected value. Alternatively, an app may also use the computed hash to decrypt
data, such as additional, dynamically loaded code.

To circumvent such checks, FuzzDroid contains a value provider that fuzzes API calls
that access an app’s signature. Instead of the real certificate of the actually running app, the
value provider returns the certificate that was used to sign the original, un-instrumented
app, effectively fooling the check.
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5.3.5 Primitives-as-Strings Value Provider

Java supports various API calls for data type conversion, e.g., to convert a string into a
numeric value type. These methods are usually called valueOf() or parse() and give ad-
ditional hints on the expected format of unknown data. Assume data is read from a file as
a string. If the data is later on converted to an integer, this constrains the possible contents
of the file to be emulated. The most common case are Boolean flags. Many malware apps
expect files such as Android’s shared preferences to contain strings like "true" or "false",
which are then converted to Boolean flags at runtime and which define whether the ma-
licious code behavior gets executed or not. Most of the time, the behavior is disabled by
default. Only upon, e.g., a command from a remote command-and-control server, the app
enables the flag in the file, i.e., changes the file contents to "true" to enable the malicious
behavior.

The primitives-as-strings value provider uses static dataflow analysis to track dataflows
from file code locations where dynamic values are obtained (e.g., file reads or the Properties.
getProperty() method) to data type conversion methods. If the analysis is able to identify
the type of the primitive, the value provider picks a value from a pre-defined set of random
values of the correct type.

5.4 implementation

We use Soot [VR+99] with the Dexpler front-end for Android [Bar+12] to statically analyze
and dynamically instrument the apps. For implementing dataflow analyses, we build upon
FlowDroid [Arz+14b]. The FuzzDroid framework runs on a desktop computer or server
while the app runs on an Android emulator. Both communicate via a TCP connection, e.g.,
to request environment values or to report which path is executed (Code Position Tracker
in Figure 13). To intercept fuzzed API calls, we use a user-space hooking library (ZHook-
Lib1, based on the Xposed framework2), which is represented as API Value Replacement in
Figure 13. For most requests, the hooking component queries the server using TCP and
directly injects the server’s response into the app. This is, however, not suitable for trans-
ferring large objects such as dynamically loaded dex files, because the Android operating
system enforces a strict time limit on its callbacks. If a dex file is loaded (and thus sent to
the server) in a callback, Android is likely to kill the app due to a timeout. We therefore
implemented a secondary, one-way communication mechanism that stores data on the em-
ulator’s SD card. A separate Global Watchdog App (see Figure 13) that runs in parallel on
the same emulator monitors this folder, picks up all files stored there, and sends them to
the server for analysis. Details about FuzzDroid’s handling of dynamic code loading is
provided in Section 5.2.5.

A similar performance problem exists for methods that are frequently called. While the
hooking library only intercepts calls within the app’s process and not system-wide, this
still includes many internal calls that happen inside the usermode part of the Android
framework. Though we are not interested in those calls, the fact that they are hooked,
delays every call slightly. In sum, these delays can add up and cause a timeout. We therefore
handle such "hot" methods separately through instrumentation instead of hooking which
allows us to a priori pick only the code locations of interest. In contrast, using a global

1 https://github.com/cmzy/ZHookLib
2 http://repo.xposed.info/

https://github.com/cmzy/ZHookLib
http://repo.xposed.info/
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instrumentation would be more complex, since every method and class in Android has a
limited amount of statements. It is very likely that this limit gets exceeded if we apply a
global instrumentation instead of API hooking. On the other hand, fine-tuning the API-
hooking that it disregards the Android framework was not possible with the ZHookLib
library.

Some malware apps contain timing bombs, i.e., actions that are only executed after a
certain time. To avoid having to wait for this time span, we statically patch those state-
ments during our instrumentation phase and decrease the waiting time to a few seconds.
These timing-based API calls are pre-defined by us and can be easily extended. Additional
instrumented code notifies FuzzDroid that such a location was reached at runtime.

There are applications that require the existence of different contacts on the smartphone,
e.g., used for spam distribution among the contact list. Since every default emulator does
not contain contacts on the smartphone, FuzzDroid adds different contacts to the smart-
phone after it installed a new app on the emulator.

5.5 evaluation

We evaluate the effectiveness and efficiency of FuzzDroid by applying it to 209 malicious
Android apps. Our evaluation focuses on the following research questions:

• How effective is the approach at finding an environment that enables an app to reach
a target location?

• How effective are FuzzDroid’s use of multiple analyses and the way these analyses
are combined with each other?

• How efficient is the approach?

• What do the environments generated by the approach reveal about real-world mal-
ware?

• How does FuzzDroid compare to the best existing approach for generating inputs
that steer an Android app toward a particular location?

5.5.1 Experimental Setup

We randomly collected 300 recent malware apps from VirusTotal3 in June 2016. As target
locations, we use call sites of seven API methods related to SMS messages. Sending SMS
messages and aborting incoming SMS messages are a common threat for Android appli-
cations [Nak14; Anda]. Based on a manual pre-analysis, we found that the interception
of SMS messages and the sending of SMS messages often require complex environments.
Other interesting target locations for malicious applications such as Internet connections
are most of the time immediately executed without any specific environment setup. This
is the reason why we focus on SMS related API methods. Out of the 300 apps, 209 apps
contain at least one target location. As environment APIs, we use 32 different API methods.
We run FuzzDroid on a server with 64 Intel Xeon E5-4650 CPUs running at 2.70 GHz and
1 TB of physical memory. We configured FuzzDroid with at most 15 executions and to
start the genetic recombination after 5 runs.

3 Online malware database: https://www.virustotal.com/

https://www.virustotal.com/
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Approach

Launch Launch & trigger FuzzDroid

Apps with > 1 target reached 31.28% 45.02% 75.12%

Target locations reached 10.48% 15.82% 62.34%

When target reached (min/avg/max):

- Executions 1/1/1 1/1.33/6 1/3.20/14

- Time to target (seconds) 3/8/18 3/19/310 3/62/1469

- Size of environment — — 0/3.69/47

- Contributing analyses — — 0/1.14/4

Table 15: Overview of results. For values summarized over multiple applications, we provide the
minimum/average/maximum values.

5.5.2 Effectiveness in Reaching a Target Location

We evaluate the effectiveness of FuzzDroid at finding an environment where the appli-
cation reaches a target location. Furthermore, we compare the approach to two simpler
approaches: 1) simply launch the app and hope that it will reach the target location with-
out further intervention, and 2) launch the app and trigger specific events, such as clicking
a button or sending an SMS message, as described in Section 5.2.3.2. In neither of the
two simpler approaches we generate a particular environment. Instead, if the app calls
environment APIs, the emulator’s default values are returned.

Table 15 shows our results. We find that running the app under the "right" environment
is crucial for reaching the target location. The default environment of the emulator is insuf-
ficient for most current malware. Furthermore, the results show that FuzzDroid is effective
in generating an environment that successfully reaches the target location. In total, the ap-
proach reaches 240 different target locations (62.34%), which are part of 75,12% of all apps.
Line 1 in Table 15 contains all those cases where at least one logging point is part of an
application, while line 2 contains all logging points (there can be more than one logging
point within an application).

In some cases, FuzzDroid fails to reach the target location. For example, several malware
apps contain malicious behavior, which is however, not yet enabled, and thus never called.
We conjecture that the app will be updated at some point to actually activate the malicious
behavior that is already present in the code. Other reasons for not reaching a target location
is covered in our limitations section (see Section 5.6) or is due to our current handling of
initial triggers (see Section 5.2.3.2).

5.5.3 Importance of Multi-Analysis Approach

To evaluate how much the individual analyses of FuzzDroid contribute to the framework’s
overall effectiveness, we first evaluate the framework with all analyses enabled. Then, we
disable each analysis in turn, i.e., run the framework with all but one analysis and then
run it with a single analysis. The result indicates how much the effectiveness decreases if
this analysis is left out. The results in Figure 14 show that there is no single analysis that
can be left out without a negative impact, i.e., all analyses are of value. This shows that



5.5 evaluation 105

Sy
mbolic

Consta
nt

File

In
teg

rit
y-C

hec
k

Prim
-as

-St
rin

gs

All Valu
e-P

rov
iders

0

20

40

60

80

100

47
55 53 53 5656
49

24 24 24

62

Ta
rg

et
R

ea
ch

ed
(%

)

All except this Value-Provider
Only this Value-Provider

Figure 14: Comparison of effectiveness in reaching target locations for different subsets of all value
providers

2 4 6 8 10 12 14
100

101

102

#Executions

#
Ta

rg
et

Lo
ca

tio
ns

Figure 15: Amount of executions for reaching a target location

only a framework supporting multiple interacting analyses such as FuzzDroid is able to
find correct execution environments for state-of-the-art malware.

We also found that overly simplistic analyses can decrease the effectiveness of the frame-
work, i.e., the percentage of target locations reached. Choosing only random values, for
instance, often leads to semantically invalid values. If the app reads the phone’s IMEI, it
can reasonably expect it to contain only digits. While the constant analysis will return
digit- and non-digit strings, the probability of getting a digit-string from a purely random
analysis is much lower.

5.5.4 Efficiency

Table 15 shows how long FuzzDroid takes to find an environment under which the appli-
cation reaches the target location. On average, it takes 62 seconds to reach a target location.
Most of the time (75%, 46.5 seconds) is spent for (repeatedly) executing the app. In con-
trast, both instrumenting apps (5%, 3.1 seconds) and statically analyzing apps (20%, 12.4
seconds) are secondary for the overall time.
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Figure 16: Amount of environment values for reaching target locations

Figure 15 shows the number of executions required by FuzzDroid to reach the target
location. In most cases, the target location is reached in a single execution, i.e., the first gen-
erated environment is sufficient. For a substantial number of apps, however, the approach
tries two to seven environments, showing that incremental fuzzing is required to reach the
target location. The maximum number of execution needed during our evaluation is 14.

5.5.5 Environments Generated by FuzzDroid

5.5.5.1 Number and Size of Environments

The environments required to reach a target location range from trivial environments,
where simply starting the app in the default emulator is sufficient, to complex environ-
ments with dozens of values. For the 75.12% of all apps where a trivial environment is
insufficient, reaching the target locations requires 106 different environments. Manually
creating these environments would be impractical for a human analyst, showing the need
for approaches such as FuzzDroid.

Figure 16 shows the sizes of the environments generated by FuzzDroid. For several tar-
get locations in malware apps, no particular environment is required, i.e., the environment
size is zero. For many others, two to ten different environment values must be combined to
reach the target location, showing that FuzzDroid is highly beneficial for a security analyst
interested in triggering malicious behavior. In some cases, the environment even consists
of more than 30 values.

5.5.5.2 Examples of Environments

Beyond being useful for security analysts, FuzzDroid allows us to better understand how
current malware interacts with the Android environment. The environments generated for
several apps show that targeted attacks against a particular country, network operator, etc.
are common in current malware. Table 16 summarizes which kinds of values we find in the
environments that reach a target location. The following discusses several representative
examples.

A very common kind of interaction with the environment is to access information from
files. Besides such file accesses, various malware apps target particular SIM/network oper-
ators or check the SIM country code. For example, some apps expect SIM operator names
to be "mts" or "megafon", two prominent network providers in Russia, or to match the



5.5 evaluation 107

Kind of environment values Prevalence

File access 47.97%

SIM/network operator code 16.82%

Specific incoming SMS message 10.84%

SIM operator name 5.53%

Timing bomb 4.06%

SIM country 3.16%

Integrity check 1.02%

Admin check 0.68%

Others 9.92%

Table 16: Prevalence of different kinds of environment values

Encrypted Malware

Unpacker Code 1

Unpacker Code 2
...
if(currentActivity == "commerzbank")
   showFakeDialog();
...

Hash of original
APK's certificate

1

2
3

Figure 17: Workflow of packed Android malware

regular expression "*tele*", as in "telecom". We also find several malware apps that target
specific countries, either by attacking users in a particular country or by checking that users
are not located in a particular country.

Another interesting interaction with the environment are so called timing-bombs, where
the malicious behavior only gets executed after a specified time has passed. This technique
has been crucial for many malware samples to be accepted into the official Google Play
Store without being detected [Coo+09]. Another technique popular among malware writers
are integrity checks implemented to thwart bytecode instrumentation. Perhaps surprisingly,
relatively few of the apps in our sample check whether the user grants the app device
administration privileges.

Packed Malware

During the evaluation we encountered a malware app4 with unusually few classes. Since
all API calls are obfuscated through reflection, the malicious behavior is not directly visible.
Instead, the app uses two additional files to hide more code. Figure 17 gives an overview
over the app’s workflow. In total, there are 3 different dex-files involved (highlighted as
a circle). The Unpacker Code 1 contains a byte-array that further contains a new dex-file
(Unpacker Code 2), which gets dynamically loaded and which is responsible for unpacking
the encrypted malware. The original malware is encrypted with the hash of the certificate
of the application. Therefore, the Unpacker Code 2 extracts the hash to unpack the original

4 MD5: 012ef9403fc221c84d7f9b43d51869c0
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malware (Encrypted Malware). The dependency between certificate and decryption key is
supposed to protect the integrity of the malware against, e.g., bytecode instrumentation. If
the original APK file is modified, e.g., through bytecode instrumentation, the decryption
fails unless the correct original certificate hash is injected. All these techniques are part of
the commercial DexProtector [LY16] packer, which was applied on the malicious app.

After discovering through manual inspection that the malware may show a fake user
interface asking about user name and PIN, we set the showFakeDialog() call as the target
location. FuzzDroid then finds an environment that circumvents the integrity check and
makes the malware app believe that the app of "Commerzbank" (a major bank) is opened.
Only if both conditions hold, the phishing dialog prompts the user to her credentials as
shown in Figure 18.

Figure 18: Phishing dialog for stealing Commerzbank credentials

This example illustrates (i) that FuzzDroid is able to handle applications with dynami-
cally loaded dex-files (two in this case), (ii) what kind of techniques current malware uses
for hiding its malicious behavior.

5.5.6 Comparison with State-of-the-Art Approach

IntelliDroid [WL16] is the conceptually closest approach to FuzzDroid. Yet, there are im-
portant differences. First, IntelliDroid is solely based on constraint solving and does not
support multiple analyses. Second, IntelliDroid has a different notion of runtime values.
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While we consider all values that are dynamically computed inside the app as runtime
values, IntelliDroid obtains only the current device state, such as the current time or the
registered alarm managers. Only this information becomes part of the constraint system.
Therefore, if an app (such as the one in Listing 11) dynamically decrypts data, this data is
unavailable to IntelliDroid. Third, IntelliDroid does not intercept API calls made within the
app. It only relies on externally triggered events, such as sending an SMS message. This
approach fails for the check on the mobile operator in our example. Fourth, IntelliDroid
runs the app under analysis only once and therefore cannot obtain additional knowledge
during this run to revise the constraint system and try again. Finally, IntelliDroid requires
a lot of manual interaction with the tool and provides little automation.

Due to the lack of automation, we apply IntelliDroid to a random sample of 20 of our mal-
ware apps. We chose apps that contain at least one target location that is not immediately
reached when starting the app or when triggering an event. In total, in this sample Intel-
liDroid reaches 11% of the target locations, whereas FuzzDroid reaches 62%. We conclude
that FuzzDroid successfully addresses important limitations of IntelliDroid that prevent
the state-of-the-art tool from reaching various target locations.

5.6 limitations and security analysis

Multi-Path Triggers

FuzzDroid currently assumes that it is sufficient to trigger a single path to reach the target
location. If an app, on the other hand, requires a first SMS message to set a flag and
then only executes the malicious code when a second SMS message is received after the
flag has been set, FuzzDroid cannot trigger the malicious behavior. This is because we
do not model the dependency between the two events and the flag is not considered as an
environment value for FuzzDroid. Such dependencies are subject to future work. However,
if the flag gets compared with an environment value at some point in the code, FuzzDroid

might be able to extract the correct environment, e.g. with the help of the dynamic value
provider. This highly depends on the implementation of such checks.

Callgraph Construction

Our current research prototype is based on an intra-component callgraph generated with
the help of FlowDroid [Arz+14b]. To detect environment checks that are distributed across
multiple components, FuzzDroid would need to be extended by an inter-component call-
graph as described in Section 4.4.2. This is subject for future work.

Incomplete Implementation Support

An attacker who wants to circumvent FuzzDroid can try to attack the implementation by
exploiting the lack of support for specific features. For instance, the current implementa-
tion does not support all possible environment APIs. As an example, it does not support
Internet communication APIs, e.g., HTTP get/post requests. This means command-and-
control messages received and send from and to a malicious server are not evaluated by
now. The extension of FuzzDroid is subject to future work.
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5.7 related work

Various approaches for analyzing environment-dependent code are already known to lit-
erature. The topic has been of interest for revealing malicious behavior in suspicious apps
as well as for increasing the test coverage of benign apps. Both aspects are related, as full
code coverage would trigger the behavior of interest as well, though not specially targeted
at the respective code position.

malware analysis In X-Force, Peng et al. [Pen+14] propose a binary analysis engine
which forces the execution of a program into specific branches. Their approach makes the
program agnostic of the execution environment, revealing hidden behavior in malware.
GoldenEye [Xu+14] exploits several virtual environments executed in parallel. The tool
adaptively switches the analysis environment at runtime through a specially designed spec-
ulative execution engine. Moser et al. [MKK07] addresses a similar problem for x86 code
as we do in our work for Android. His tool uses a dynamic approach in combination with
system snapshots of the execution to execute code statements that produce a malicious
behavior. To explore different paths, the program state is reset to earlier snapshots. The
values on which the conditionals depend are updated to force different branches when
the execution is resumed. This approach, however, requires linear relationships between
all variables in the program to ensure consistent updating. Our approach restarts the pro-
gram and steers the execution from the beginning to avoid this issue. Kolbitsch [Kol+12b]
proposes a hybrid approach that combines a light-weight form of static symbolic execu-
tion with an instrumentation of additional code statements for a multi-path execution on
JavaScript code. Abraham et al. [Abr+15] also propose a hybrid approach for reaching a cer-
tain target location. Their approach has an success rate of 28% and less on current Android
malware and does not report information about the environment. TriggerScope [Fra+16]
is a pure static approach that relies on symbolic execution for extracting environment in-
formation. The drawback of this approach is the static part, which comes with a lot of
limitations, which prohibits the full extraction of the environment in many current mal-
ware samples. FuzzDroid in contrast is a hybrid approach and the extracted environments
are verified to be correct by the dynamic part of our approach. IntelliDroid [WL16] uses
constraint solving for generating environments under which a target location is reached.
In contract to our approach, the tool runs the app a single time and has no feedback loop.

test case generation Thummalapenta et al. [Thu+11] propose a mechanism for
increasing test coverage by generating proper method call sequences. They first run the
program to gather runtime information, which is then used to statically reason about
non-executed branches. The execution is afterwards steered into those missing branches.
ShamDroid [Bru+15] uses constraint solving to generate app-specific mocks for environ-
ment data to not give away real data during app execution while retaining the app’s
functionality. DART [GKS05] uses directed automated random testing to improve test
coverage. The program is first executed using random inputs. Afterwards, symbolic ex-
ecution is used to generate new inputs that steer the execution into paths that have not
been explored yet. This way, it already improves over classical symbolic testing such as
KLEE [CDE08a] or EXE [Cad+08]. Mirzaei et al. [Mir+12] create an Android system model
in Java Pathfinder [HP00] to apply symbolic execution to the whole app for increasing test
coverage. Similar to our approach, Malburg and Fraser [MF11] combine symbolic execu-
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tion based on Java Pathfinder with a genetic algorithm that negates individual conditions
during mutation. EvoDroid [MMM14] focuses on promoting the genetic makeup of good
individuals during the genetic recombination in evolutionary testing for Android apps.
Jensen et al. [JPM13b] use concolic execution to first summarize the effect of event han-
dlers on the program state. Then, backwards from the target location, it composes these
event handler summaries to find a path that reaches a given target.

5.8 summary and conclusion

In this chapter, we showed that reaching a certain target location in applications that con-
tain different anti-static and anti-dynamic obfuscation techniques is possible if one applies
a fuzzing based approach that makes use of different static and dynamic code analysis
approaches. Pure static or pure dynamic approaches have too many limitations to be able
to solve this problem. This is the final major contribution of this dissertation and answers
the fundamental research question in the beginning of this chapter.





6
T H E C O D E I N S P E C T B Y T E C O D E A N A LY S I S T O O L

App store operators usually check thousands of apps per day against developer policy vi-
olations [Anda]. This includes, among other checks, checks against malicious applications
that are uploaded by the developer. They usually have some form of automated code re-
view process to handle this large amount of apps. For example, Google’s application review
process is based on a machine-learning approach that makes use of static and dynamic code
analysis approaches [Anda]. However, a fully-automated app review process that is able
to identify all possible malicious applications is not feasible in practice as explained by
Google [Anda]. Limitations of the automatic code analysis approaches [Ras+15b] hinders
most of the time a fully-automated detection. This gets exploited by attackers in imple-
menting applications that circumvent the detection process [Nak14]. Google’s automated
review process includes manual reviews [Anda]. A human has to manually verify an appli-
cation in cases where the machine-learning approach is not completely able to judge about
potential policy violations. In such cases, human analysts reverse engineer the application’s
code and check whether the detection of the machine-learning approach was correct or not.
If the human decides that the application does not violate the developer content policy, the
application will be published in the Play Store.

Other examples that require manual code inspection through reverse engineering are
malware analysts at antivirus companies who need to create virus signatures [Szo05] for
malicious applications. This is most of the time a manual process and therefore very time
consuming. Based on a personal interview with a malware analyst, she has on average
about 30 minutes per application to decide whether the application is malicious or not.
This shows that there is a need for good reverse engineering tools, for a faster analysis of
an application.

There are different open-source [Sma; Jad; Jdg; Apk] and commercial [Jeb; Ida] solutions
for manual reverse engineering Android applications. Most of them are limited to a static
inspection of the app’s bytecode, an intermediate representation of it or a decompiled
Java-version. In the latter case, there are many different obfuscation techniques [BH07]
that make it very hard, if not impossible, to convert an Android binary application into
its original Java source code. Therefore, many human analysts inspect the bytecode on
an intermediate representation level. Some of these approaches further include debugging
functionality, which allows the analyst to step through the code during execution. However,
due to the lack of type information in their intermediate representations, it is in many cases
not easy to debug such an Android application.

Therefore, we introduce a new Android reverse engineering tool called CodeInspect.
One of the main goals of this tool is to help human analyst in speeding up their man-
ual reverse engineering task. This is achieved by different features, including the three
approaches that have been described in the previous chapters. SuSi (Chapter 3) provides
insights about sensitive API calls in an application, HARVESTER (Chapter 4) is able to
extract runtime values even from obfuscated applications and is able to de-obfuscate re-
flective method calls and FuzzDroid offers the analyst insights about the concrete environ-
ment in which an application has to run for reaching certain code positions.

113
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The main purpose of this chapter is to show how SuSi, HARVESTER and FuzzDroid can
be integrated into a tool that can be used during a malware investigation. Furthermore, we
want to show that the combinations of the proposed approaches, including other features of
CodeInspect (will be introduced in the following), provide a lot of insights of the behavior
of an application. We will demonstrate the tool interaction on a real malware investigation,
which was introduced in the beginning of this thesis (Chapter 1).

Chapter Outline. Section 6.1.9 describes the tool and the individual features of CodeIn-
spect. In Section 6.2 we describe the usage of CodeInspect on an a real malware investi-
gation. Section 6.3 concludes this chapter.

6.1 architecture

CodeInspect is a tool that is based on the Android frontend of the Soot framework. Differ-
ent parts of the tool make use of algorithms implemented in Soot such as the use-def chain
analysis or different callgraph algorithms. The GUI of CodeInspect is implemented with
Eclipse‘ Rich Client Platform1. Eclipse provides different toolsets for developing Android
applications including source code editors for code completion or renaming of variables,
debugging support or Android device interaction with the Dalvik Debug Monitor Server
(DDMS). These features are very useful during an app development process. However,
most of them are also useful for manually reverse engineering apps. The key difference is
the language with which the user or analyst is interacting. The source code in case of app
development and the bytecode for reverse engineering tasks. CodeInspect’s language is a
variation of Soot’s internal intermediate representation called Jimple [ARB13]. The frame-
work includes different features that support an analyst with insights about the behavior of
an app. In the following, we explain the main features and focus on the SuSi, HARVESTER
and FuzzDroid (described in previous chapters) features.

6.1.1 Main Components

Figure 19 shows the start screen once CodeInspect successfully imported an apk either
from the file system or directly from the smartphone. In this example, CodeInspect im-
ported the Android/BadAccents2 malware and shows an excerpt of the AndroidManifest.
Under Project Explorer on the left side, an analyst can inspect all the files that are part of
the apk in a human readable format. The Jimple files are located in the Sources folder. This
figure furthermore shows that CodeInspect comes with different Perspectives and Views.
A perspective defines different parts of the UI in which a view is a specific part of. For
instance, SuSi, HARVESTER or FuzzDroid are implemented in form of a view, while the
debugger or the dataflow analysis support is implemented in an own perspective. Depend-
ing on the goal of an analyst, she can switch between these perspectives.

1 https://wiki.eclipse.org/Rich_Client_Platform
2 MD5: a5028fd5df93ba753d919f02b7bf1106

https://wiki.eclipse.org/Rich_Client_Platform
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Perspectives

Views

Figure 19: Overview of CodeInspect

6.1.2 Standard Features

The bytecode editor represents every class in an intermediate representation called Jimple.
For better readability, we modified the original Jimple representation. For instance, we
striped off the fully-qualified name for classes and instead only show the class name and
import the package name in the beginning of the class. Every class file is represented with
syntax highlighting and the analyst is able to rename identifiers such as method names or
variable names.

A very useful feature during a malware investigation is the Open Call Hierarchy feature
that lists the callgraph for a specific statement in the code. This is especially useful if one
needs to determine initial triggers, e.g., incoming SMS messages, that may lead to the
corresponding statement (influenced by conditions on the path). Figure 20 shows a call-
graph from the sendTextMessage() API call to different initial triggers. It contains two
onReceive() callbacks that are triggered once the application receives an incoming SMS
(com.a.a.AR) or receives an incoming call (com.shit.service.CallService$1). The third
callback onClick() gets triggered once the user clicks on a certain button. If one of these
callbacks get triggered, it is very likely (depending on path conditions) that an SMS mes-
sage gets sent.

Another handy feature is the field and variable read and write access tracking. This gives
an analyst the possibility to find all statements that read a particular variable or field and
on the other hand all statements that write to a variable or field.

During a malware investigation, it is important to document findings. This is especially
useful for long investigations or investigations that involves different analysts. Comments
on certain code statements make it easier to understand the important findings of an ana-
lyst. For that purpose, we use the Bookmark feature of Eclipse.
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Figure 20: Call hierarchy for the sendTextMessage API call

Figure 21: Overview of CodeInspect’s Jimple debugger perspective
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6.1.3 Jimple Debugging

Figure 21 shows CodeInspect’s Jimple debugger perspective. It is very similar to a stan-
dard Eclipse debugger perspective for Java or Android applications. The only difference
is the representation language of the code, which is in our case a modified version of Jim-
ple. The analyst is able to set breakpoints at Jimple code locations and once hit, can step
through the code in a single-step mode for instance. Figure 21 also shows the Variables view,
which contains the runtime values for every variables. In the example, one can see that the
variable-name $String points to the string "http://nisgjoee.vicp.co/appHome/", a mali-
cious website. Due to Jimple’s type-based language, we are able to represent complex data
structures such as an object with different fields. In comparison to other debugger such
as IDAPro [Ida], which usually operates on an untyped intermediate representation, it is
in general not possible to display runtime values of complex data structures if there are
no type information of the object. Apart from the runtime value information, one can also
modify the runtime values in the Variables view. Furthermore, Figure 21 also shows the
stack frames (Debug view) at the current statement (line 239). This is very useful if one
needs to track the sequence of nested functions.

6.1.4 FlowDroid Plugin

In many malware investigations, it is useful to know what kind of data are leaked where or
where particular pieces of data flow into. FlowDroid [Arz+14b] is a context-, flow-, field-
, object-sensitive and lifecycle-aware dataflow-tracking tool for Android Apps. It is very
precise and supports an analyst answering these questions. FlowDroid comes with a lot
of individual settings [Arz16] that gives an analyst the option to fine-tune her analysis.
Modifying these settings usually results in a faster analysis, which can negatively influ-
ence the precision and recall. We run FlowDroid on a Class Hierarchy Analysis (CHA) based
callgraph that excludes exceptional paths. Furthermore, we also disabled support for im-
plicit flows [Kin+08] and used a flow-insensitive alias analysis. These settings are not the
most precise ones, but based on our experience, the ones which scale best for current An-
droid malware applications. The specification of Android source and Android sink (see
Section 3.3) methods can be regulated by the analyst. However, CodeInspect comes with a
pre-defined list of source and sink methods based on the results from SuSi (see Chapter 3).

6.1.5 Permission-Usage View

Android applications usually contain different Resource Methods (see Section 3.3) such as
accessing location information or sending SMS messages. Most of these resource methods
are protected by permissions and need to be declared in the AndroidManifest by the app
developer. For instance, if the developer wants to use the sendTextMessage() API method,
she needs to declare an android.permission.SEND_SMS permission in the AndroidManifest.
Unfortunately, due to a lack of documentation of the AOSP, there is little information about
the mapping between the resource methods and the corresponding permissions. Therefore,
researchers proposed different approaches [Au+12; Fel+11] that try to extract that mapping.
Based on the results of the latest research [Au+12], we also offer a permission-method
view in CodeInspect. Figure 22 shows an example of the view. Please keep in mind that
the example shows original statements of the Android/BadAccents malware. One can see
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that the malware needs to implement the android.permission.GET_TASKS permission in
order to use the sensitive getRunningTasks() method. This API returns a list of tasks that
are currently running, which is usually used for tapjacking attacks [Ras+15b] in malicious
applications.

Figure 22: Overview of CodeInspect’s Permission-Usage view

6.1.6 Communications View

In many malware investigations, it is essential to know the different communication chan-
nels and more important the concrete addresses of these channels. Examples are concrete
URLs or SMS numbers. Therefore, CodeInspect contains a view called Communications,
which provides concrete information about the addresses and the corresponding API calls
where these addresses are used.

Figure 23: CodeInspect’s Communications view

This information is statically extracted with the help of FlowDroid’s inter-procedural
constant string propagation approach. Different Android sink (see Section 3.3) API calls
are not directly called with a constant string as address. For instance, the HttpClient.

execute(param1) API can be called with an HttpGet object (param1), where the constant
URL string gets passed into the HttpGet constructor. Since we want to provide the ana-
lyst the actual Android sink API with the corresponding string address, we applied an
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additional static dataflow tracking analysis to get the connection between the API that gets
passed the constant string and the actual Android sink API.

Figure 23 shows an example of this view. It categorizes the findings into different cate-
gories, such as File, HTTP or SMS in our malware example. Figure 23 furthermore shows
that a static extraction of information about different communication channels was only
possible in a small number of cases.

If the information is not statically extractable, mainly due to static-analysis limitations,
we apply the HARVESTER approach (see Section 6.1.8).

6.1.7 SuSi View

As described in Chapter 3, we proposed a new approach for automatically identifying
Android source and Android sink API methods. Furthermore, we also categorize these
source- and sink-API calls.

Information about Android sources and Android sinks are not only important for a
dataflow analysis approach, they are also important for a malware investigation. Android
sources give a good overview what kind of sensitive data are accessed via different resource
methods and Android sinks give insights about different communication channels, like
Internet or email. CodeInspect offers this information to the analyst in form of a view as
shown in Figure 24.

Figure 24: Overview of CodeInspect’s Sources and Sinks view

6.1.8 HARVESTER Integration

In Chapter 4 we introduced HARVESTER, a hybrid code analysis approach that extracts
runtime values at concrete code locations in the application’s bytecode. HARVESTER is
able to extract these values even in highly obfuscated applications that try to circumvent
static and dynamic code analysis approaches. Depending on the application, extracting
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these runtime values may take some time. Since manual investigations are usually limited
in time, we only apply HARVESTER in cases where a purely static or dynamic analysis is
not sufficient enough. For instance, the Communications view applies static code analysis
approaches for extracting concrete addresses. Only if the analysis is not able to extract
these values, we apply HARVESTER as a post-analysis.

Apart from the extraction of runtime values, Section 4.3.2.3 describes another scenario
where HARVESTER can be applied: the resolution of reflective method calls. This feature
is also integrated into CodeInspect. The analyst simply needs to click on the reflective
method call that needs to be resolved and HARVESTER gets applied. In case of a success-
ful resolution, HARVESTER re-writes the Jimple code and inserts information about the
original API call (see Section 4.3.2.3).

6.1.9 FuzzDroid View

The decision whether an application is malicious or not is in many cases not easy to answer.
For instance, if an application displays an alert dialog to the user, this can be outright
benign behavior, but it can also be used for malicious purposes. Examples are malware
samples that checks whether a specific banking application is installed on the device and
only then displays a UI that prompts the user to add her banking credentials [Ras+15b].
Information about the environment (see Section 5), for instance, under what circumstances
the UI gets displayed, helps the analyst to judge about the maliciousness.

For that purpose, we will integrate FuzzDroid into CodeInspect in form of a new view
in the near future. The analyst will be able to click on an interesting code location and
FuzzDroid tries to identify all environments that are necessary to reach that particular
code location. A graphical example of this view will be described in Section 6.2.

6.2 application scenario : investigation of the android/badaccents mal-
ware

In the main motivating example (see Section 1.1.1), we introduced our malware investiga-
tion together with Intel Security [Ras+15b; Ras+15a]. We discovered a new malware fam-
ily (Android/BadAccents) that had already infected more than 20.000 devices before we
stopped the threat. Back then, we had to manually reverse engineer the malicious sample in
order to identify the different communication channels of the malware and to understand
the concrete behavior of the malware. The complete investigation was very time consuming
since little approaches existed that could support us during the investigation.

However, in this dissertation, we proposed three different approaches SuSi (Chapter 3,
HARVESTER (Chapter 4) and FuzzDroid (Chapter 5) that provide concrete insights about
the behavior of an application. All of them are integrated into CodeInspect that makes it
convenient for an analyst to inspect a malicious application. In the following, we demon-
strate how CodeInspect can be used during a real malware investigation and what kinds
of insights of the application are presented to the analyst. We will exemplarily explain this
on the Android/BadAccents malware.
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Insights Through SuSi and Jimple Debugger

The Source and Sink view provides a first overview of Android sources and Android sinks
that are used in the app. This can be an initial starting point for a deeper investigation. For
instance, Figure 25 shows that the application makes use of the getInstalledApplications()
API call. This API call returns a list of all applications that are installed on the device and
does not require any permission in the AndroidManifest. Therefore, it would not appear
in the Permission Usage view, but SuSi’s list contains this sensitive Android source API call.

Figure 25: Sources and Sinks view shows access to information about installed applications

A double-click on the statement in the Source and Sink view directly jumps to the code
location in the Jimple editor. From there, we can now start with a deeper investigation why
the malware is accessing this information. Within CodeInspect there are different options
to do so. One example would be the debugging mode where we set a breakpoint at that
code location and once hit, we can dynamically debug the application in a single-step
mode. This gives us the opportunity to follow the execution path to understand why the
malware needs to access this sensitive data.

Figure 26: Usage of Jimple debugger on the Android/BadAccents malware
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CodeInspect executes the application and switches into the debugging mode. Fortu-
nately, the breakpoint gets immediately hit, once the application is opened. From there on,
we continue the debugging process until we reach the first position that reads the data from
the getInstalledApplications() call. Figure 26 shows the code location (equalsIgnore
Case()) and with the help of the Variables view inside the debugger perspective, we see that
the malware checks all installed applications (currently the Sound Recorder application) if it
is equals to the "AhnLab V3 Mobile Plus 2.0" application. This is a security application from
a company located in South Korea. A further debugging process reveals that the applica-
tion tries to uninstall the security application if it is installed on the device. The malware is
probably afraid that it gets detected by the security application, in case it is installed on the
device. These are very interesting insights about the behavior of the application provided
by SuSi’s output together with the Jimple debugger.

Insights Through HARVESTER

Since the malware sample contains some packages of the type javax.mail.*, we assumed
that the malware uses email-communication for stealing sensitive data, which would be
back then unique for Android malware. Using the text search feature of CodeInspect

with "mail" revealed that the malware implements a method with the name MailSend().
The body of that method revealed that two of the arguments are the username and the
password of the mail account, which are necessary for sending emails using that account.
Concrete values for both credentials are not easy to extract since they are encoded within
native code [Ras+15b]. Therefore, one can use HARVESTER with the two arguments as
logging points and it automatically extracts the runtime values, even if the code is ob-
fuscated. HARVESTER successfully extracted the username hjgyfjhg1010@126.com and
password zxcv1234 without any human interaction. These two credentials were sufficient
for a further email-account investigation, which revealed the impact of the malware, 20.000

infections within two month. It further helped for a legal investigation of the malware au-
thors. This shows, that the automatically extraction of runtime values are very important
during a malware investigation.

Insights Through FuzzDroid

CodeInspect’s Permission Usage view reveals that the malware sample implements some
functionality for sending SMS messages (see Figure 27). This can be used for benign rea-
sons, but also for malicious reasons. In many cases, it is essential to know the environment
in which the malware has to run for determining whether the sending of the SMS message
is malicious or not.

The FuzzDroid view provides more insights about the environment. Figure 28 shows
that SMS messages are only sent once the device first receives an SMS with a concrete
message body of the form sd_aaaaaaaB. Furthermore, there has to be also one contact
stored on the device. If both conditions are met, an SMS with the content aaaaaaaB is
sent to that contact. The aaaaaaaB part of the incoming SMS messages is a string that
was automatically generated by the Symbolic Value Provider (see Section 5.3.1) and is
usually not sent by an attacker. Since FuzzDroid is a fuzzing based approach, it provides
one possible value that could have been sent. In a more generic way, we can say that the
incoming SMS message has to have the form sd_<Attacker Text> (e.g., sd_aaaaaaaB). This
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Figure 27: Permission view shows the usage of sendTextMessage

Figure 28: Preview of Environment view in CodeInspect

is a very common pattern for C&C communication. The format is usually of the form
ACTION SEPARATOR SETTING, which is in our case sd _ aaaaaaaB. Figure 28 further shows
that the aaaaaaaB string is part of the SMS body in the 4th step. Step 3 reveals that the
malware accesses a contact (TU Darmstadt with the phone number 9999999999), where the
number of that contact is also used for sending an SMS message in step 4. All these steps
are a very common pattern of SMS phishing attacks (see Section 2.2) that sends an SMS
message to all contacts stored on the device. Based on the provided information, it is very
likely that the attacker controls the text of the SMS spam, since the aaaaaaaB message is
received from an incoming SMS message (likely to be a C&C communication), which is
also used for sending the SMS message in step 4.

In summary, this shows that the FuzzDroid view provides a lot of important facts that
provide detailed information to the analyst who needs to decide whether an application
contains malicious behavior or not. In this particular case, we manually verified it and
can say that FuzzDroid was indeed able to point an analyst to an SMS phishing attack.
Even more, FuzzDroid was able to identify the concrete C&C communication protocol
(sd_<Phishing Text>) for sending SMS spam. With the help of FuzzDroid, an analyst does
not have to wait until the C&C server sends a command to the victim, she can immediately
extract environment information without any human or server interaction. This saves a lot
of time, and helps speeding up the manual investigation.

6.3 summary and conclusion

In this chapter, we introduced the implementation of our novel reverse engineering frame-
work called CodeInspect. It converts the Android bytecode into a human readable interme-
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diate representation called Jimple and contains different features, which provide detailed
information about the behavior of an application. This information is essential during an
investigation.

More concretely, we demonstrated how SuSi, HARVESTER and FuzzDroid reveal de-
tailed insights about the behavior of an application during a real malware investigation.
We explained this using the Android/BadAccents malware family and showed different
insights of the malware, which were not known prior to this work, only after applying
these new approaches. Insights about this malware sample show the complexity of mod-
ern Android malware. Without the help of approaches that combine static with dynamic
code analysis approaches, it would have been much harder to extract these insights.



7
D I S C U S S I O N A N D C O N C L U S I O N

In this dissertation, we addressed the problem of automatically extracting fundamental
insights about the behavior of an Android application. More concrete, we focused on the
automatic identification of sensitive API calls from the Android framework (Chapter 3),
the automatic extraction of runtime values from the application’s bytecode (Chapter 4),
the automatic de-obfuscation of reflective method calls (Chapter 4) and the automatic ex-
traction of context information (environment) under which a certain code location gets
reached (Chapter 5). These insights are very important during a malware investigation,
which would have, prior to this work, required a time-consuming, manual effort. Also ex-
isting, automated approaches from literature would have not been able to extract these
insights in highly obfuscated malware applications that apply anti-static and anti-dynamic
code obfuscation techniques.

7.1 summary of contributions

The CodeInspect framework described in this dissertation consists of different approaches,
SuSi, HARVESTER and FuzzDroid, for automatically identifying concrete insights about
the behavior of an application, even if the application’s code is highly obfuscated.

In Chapter 3, we presented an approach called SuSi for automatically identifying sen-
sitive source and sink API methods in the Android operating system. The approach is
based on machine-learning, which provides a categorized list of sensitive source and sink
API methods of a specific Android version. Therefore, the whole Android API gets trans-
formed into a smaller set of relevant sensitive API methods that read (source) or write (sink)
from/to Android resources. SuSi’s output is used to improve the lack of completeness
of source and sink lists used by different automated code analysis approaches [Avd+15;
Arz+14b; Liu+15] that try to extract insights of the behavior of an application. It also serves
as a starting point in manual malware investigations helping an analyst to identify ma-
licious behaviors. SuSi is an important element in the CodeInspect framework, since it
directly supports HARVESTER (Chapter 4) and FuzzDroid (Chapter 5) with sensitive API
methods that are essential for identifying concrete runtime values or the environment un-
der which an application reaches a certain code location, respectively.

Chapter 4 addresses the problem of automatically extracting runtime values at any code
location (concrete values of API-arguments) in an Android application. The automatic ex-
traction of runtime values is especially important at code locations that provide important
insights of an application, like the connection to a server, the sending of SMS messages
or the sending of emails. The approach is called HARVESTER and combines static and
dynamic code analysis techniques in such a way that it is able to automatically extract
runtime values even in applications that use obfuscation techniques against static and/or
dynamic code analysis approaches. Our evaluation showed that HARVESTER is not only
able to extract runtime values with a perfect precision, it is able to extract these values
within minutes. This stresses the practical feasibility of this approach. The HARVESTER
approach is further able to automatically resolve reflective method calls in cases where re-
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flective method calls are used as an obfuscation technique. We further evaluated how HAR-
VESTER can be used to create precise intra- and inter-component callgraphs. Especially the
latter one is one of the biggest limitation in current whole static analysis approaches for
Android application. However, we have shown that HARVESTER is able to reduce the
amount of callgraph edges significantly, outperforming current state-of-the-art approaches.
The techniques applied by HARVESTER can also be used to support dynamic taint track-
ing approaches in immediately identifying a data leak in cases where anti-dynamic code
obfuscation techniques are applied. As one can see, HARVESTER is a fundamental element
in the CodeInspect framework, which can be often used as a standalone tool supporting
other static or dynamic code analysis approaches, such as FuzzDroid (Chapter 5).

In Chapter 5, we introduced an approach that automatically extracts the context, i.e.,
the environment, under which a certain code location gets reached. FuzzDroid, a fuzzing-
based approach, gives insights about the conditions, e.g., receiving a specific SMS mes-
sage, an application expects to execute a certain behavior. The output of this approach
provides concrete context-insights that further help to identify malicious activities in ap-
plications. The approach consists of different static and dynamic code analysis approaches,
which makes it possible to analyze applications containing anti-static and anti-dynamic
code obfuscation techniques. Our evaluation resulted that pure static and pure dynamic
code analysis approaches are not sufficient enough for extracting environment-information
from modern Android malware applications.

It is important to highlight that the SuSi, HARVESTER and FuzzDroid approach are
highly connected to each other. Without the pre-analysis of SuSi, HARVESTER and Fuzz-
Droid would not be supported with sensitive API methods. On the other hand, HAR-
VESTER’s output, the automatic de-obfuscation of reflective method calls is essential for
FuzzDroid, which otherwise would not be able to determine a target location. In summary,
only a combination of SuSi, HARVESTER and FuzzDroid performs the best insights about
the behavior of modern malware applications that include anti-static and anti-dynamic
code obfuscation techniques.

7.2 conclusions

This research confirmed that it is possible to automatically extract fundamental insights
about the behavior of highly obfuscated Android applications. In particular:

• It has shown that a machine-learning based approach (Chapter 3) is able to automat-
ically identify sensitive API methods that read (sources) and write (sinks) from/to
resources in the Android framework. Furthermore, the same approach is also able to
automatically categorize these source and sink API methods. [Thesis Statement TS-1].

• It has described that a combination of static program slicing with code generation and
concrete dynamic code execution (Chapter 4) is required to extract runtime values
from highly obfuscated (Section 1.1.2) Android applications [Thesis Statement TS-2].
The same technique can be also applied to create precise inter-component (Android
inter-component communication) callgraphs (Chapter 4.4.2) [Thesis Statement TS-4].

• It has shown that a combination of static program slicing with code generation, con-
crete dynamic code execution and bytecode manipulation (Section 4.3.2.3) is able to
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resolve reflective method calls within highly obfuscated Android application that is
implemented as a form of static code obfuscation [Thesis Statement TS-3].

• It has shown that a combination of static program slicing with code generation (Chap-
ter 4) can be also used as a pre-analysis for dynamic taint tracking approaches in
order to immediately identify a data leak [Thesis Statement TS-5].

• It has described that a fuzzing based approach (Chapter 5) that makes use of differ-
ent static and dynamic code analysis techniques, in combination with an evolution-
ary algorithm, is able to identify conditions under which a certain code location is
reached, especially in those cases were an application applies anti-analysis techniques
described in Section 1.1.2 [Thesis Statement TS-6].

All the above confirms that extracting fundamental insights about the behavior of a
potential malicious application that applies different code obfuscation techniques (Sec-
tion 1.1.2) is only possible if an analysis combines static with dynamic code analysis ap-
proaches.

7.3 practical impact of the codeinspect framework

The CodeInspect framework described in Chapter 6, has already had a large impact
on the security setup of different companies and app developers. As already mentioned
in Section 1.6, CodeInspect helped identifying two serious Android operating system
bugs [Arz+14a; Ras+15b] and helped identifying a new Android malware family [Ras+15b;
Ras+15a]. Furthermore, it also helped in discovering a major data leakage in Backend-as-a-
Service solutions [RA15] of Facebook and Amazon.

This shows that the theoretical concepts in the individual parts of the CodeInspect

framework work very well in practice. Furthermore, it already helped in identifying serious
security problems in individual Android applications, which were not known prior to this
work.

7.4 future research directions

Automatic Malware Detection The focus of this dissertation was on automatically extract-
ing insights of the behavior of an application in the context of malware-investigations.
However, we did not focus on automatically judging whether an application is malicious
or not. Based on the results of SuSi, HARVESTER and FuzzDroid, the next step in this re-
search area would be to combine these results to automatically identify malicious activities
in applications. There are already first research approaches in this area that are based on
machine-learning [Gor+14; Cha+13; Arp+14] but their feature set relies on features that ex-
pect more or less un-obfuscated applications. Combining these approaches with the results
of this dissertation is an interesting part for future research.
Application to Native Code The implementation of SuSi, HARVESTER and FuzzDroid

currently focuses on Java-based Android code. However, Android applications or parts of
an application can also be implemented in C/C++ [Deva]. Malware applications can also
implement its malicious behavior within the native part of an application, causing one to
extract less precise behavior information with our proposed approaches. Fortunately, the
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majority of current Android malware is implemented in Java and only a few malicious sam-
ples make use of native code. However, we see a trend, especially for commercial packers
that adopted their unpacking process from a previous Java-based implementation [LY16]
to a native-based implementation [Dex]. Moreover, there are also a few malware sam-
ples [Li13] that implement its malicious behavior in the native layer. Therefore, it is an
interesting research question if the proposed approaches can be also applied to native code
in Android applications and how efficient such approaches would be.
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Riyadh Mahmood. “Testing Android Apps Through Symbolic Execution.” In:
SIGSOFT Softw. Eng. Notes (Nov. 2012).

[MKK07] Andreas Moser, Christopher Kruegel, and Engin Kirda. “Exploring Multiple
Execution Paths for Malware Analysis.” In: Proceedings of the 2007 IEEE Sympo-
sium on Security and Privacy. SP ’07. IEEE Computer Society, 2007.

[Nak14] Daisuke Nakajima. Vietnamese Adult Apps on Google Play Open Gate to SMS
Trojans. http://blogs.mcafee.com/mcafee-labs/vietnamese-adult-apps-
google-play-open-gate-to-sms-trojan. McAfee Labs Website. 2014.

[OM12a] J Oberheide and C Miller. “Dissecting the android bouncer.” In: SummerCon2012,
New York (2012).

[OM12b] Jon Oberheide and Charlie Miller. Dissecting the Android Bouncer. Talk at Sum-
mercon 2012. 2012.

[OJM12] Damien Octeau, Somesh Jha, and Patrick McDaniel. “Retargeting Android Ap-
plications to Java Bytecode.” In: Proceedings of the ACM SIGSOFT 20th Interna-
tional Symposium on the Foundations of Software Engineering. FSE ’12. ACM, 2012.

[Oct+13] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,
Jacques Klein, and Yves Le Traon. “Effective Inter-component Communication
Mapping in Android with Epicc: An Essential Step Towards Holistic Secu-
rity Analysis.” In: Proceedings of the USENIX Security ’13. USENIX Association,
2013.

[Oct+15] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick
McDaniel. “Composite Constant Propagation: Application to Android Inter-
Component Communication Analysis.” In: Proceedings of the 37th International
Conference on Software Engineering (ICSE). 2015.

[Oct+16] Damien Octeau, Somesh Jha, Matthew Dering, Patrick McDaniel, Alexandre
Bartel, Li Li, Jacques Klein, and Yves Le Traon. “Combining Static Analysis
with Probabilistic Models to Enable Market-scale Android Inter-component
Analysis.” In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. POPL 2016. ACM, 2016.

[Ora] Oracle. Invoking Methods. https : / / docs . oracle . com / javase / tutorial /

reflect/member/methodInvocation.html.

[Pen+14] Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu, Zhiqiang Lin, and Zhen-
dong Su. “X-force: Force-executing binary programs for security applications.”
In: Proceedings of the 2014 USENIX Security Symposium, San Diego, CA (August
2014). 2014.

[Pen+12] Hao Peng, Chris Gates, Bhaskar Sarma, Ninghui Li, Yuan Qi, Rahul Potharaju,
Cristina Nita-Rotaru, and Ian Molloy. “Using probabilistic generative models
for ranking risks of Android apps.” In: Proceedings of the 2012 ACM conference
on Computer and communications security. CCS ’12. ACM, 2012.

[Pet+14] Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Michalis Polychron-
akis, and Sotiris Ioannidis. “Rage Against the Virtual Machine: Hindering Dy-
namic Analysis of Android Malware.” In: EuroSec ’14. ACM, 2014.

http://blogs.mcafee.com/mcafee-labs/vietnamese-adult-apps-google-play-open-gate-to-sms-trojan
http://blogs.mcafee.com/mcafee-labs/vietnamese-adult-apps-google-play-open-gate-to-sms-trojan
https://docs.oracle.com/javase/tutorial/reflect/member/methodInvocation.html
https://docs.oracle.com/javase/tutorial/reflect/member/methodInvocation.html


144 Bibliography

[PO12] H. Pieterse and M. S. Olivier. “Android botnets on the rise: Trends and charac-
teristics.” In: Proceedings of the 2012 Information Security for South Africa. 2012.

[Andd] Platform Architecture. https : / / developer . android . com / guide / platform /

index.html. last checked: Oct. 2016.

[Pla98] John C. Platt. “Fast training of support vector machines using sequential min-
imal optimization.” In: Advances in Kernel Methods – Support Vector Learning.
MIT Press, 1998.

[PB15] Andrey Polkovnichenko and Alon Boxiner. BrainTest – A New Level of Sophisti-
cation in Mobile Malware. Blog Post. 2015.

[PK16] Andrey Polkovnichenko and Oren Koriat. Viking Horde: A New Type of Android
Malware on Google Play. Blog Post. 2016.

[Qui93] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Pub-
lishers Inc., 1993.

[RKK07] Thomas Raffetseder, Christopher Kruegel, and Engin Kirda. “Detecting System
Emulators.” In: Proceedings of the 10th International Conference on Information Se-
curity. ISC ’07. Springer-Verlag, 2007.

[RA15] Siegfried Rasthofer and Steven Arzt. “(In-)Security of Backend-As-A-Service
Solutions.” In: Blackhat Europe. Nov. 2015.

[RAB14] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. “A Machine-learning Ap-
proach for Classifying and Categorizing Android Sources and Sinks.” In: 2014
Network and Distributed System Security Symposium (NDSS). 2014.

[RCH15] Siegfried Rasthofer, Carlos Castillo, and Alex Hichliffe. “We know what you
did this Summer: Android Banking Trojan Exposing its Sins in the Cloud.”
In: 18th Association of Anti-virus Asia Researchers International Conference (AVAR)
2015. Dec. 2015.

[Ras+14] Siegfried Rasthofer, Steven Arzt, Enrico Lovat, and Eric Bodden. “DroidForce:
Enforcing Complex, Data-Centric, System-Wide Policies in Android.” In: Pro-
ceedings of the 9th International Conference on Availability, Reliability and Security
(ARES). IEEE. Sept. 2014.

[Ras+15a] Siegfried Rasthofer, Irfan Asrar, Stephan Huber, and Eric Bodden. An Investi-
gation of the Android/BadAccents Malware which Exploits a new Android Tapjacking
Attack. Tech. rep. TU Darmstadt and McAfee Research Lab, Apr. 2015.

[Ras+15b] Siegfried Rasthofer, Irfan Asrar, Stephan Huber, and Eric Bodden. “How Cur-
rent Android Malware Seeks to Evade Automated Code Analysis.” In: 9th
International Conference on Information Security Theory and Practice (WISTP’2015).
2015.

[Ras+16] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. “Har-
vesting Runtime Values in Android Applications That Feature Anti-Analysis
Techniques.” In: 2016 Network and Distributed System Security Symposium (NDSS).
San Diego, 2016.

[RCE13] Vaibhav Rastogi, Yan Chen, and William Enck. “AppsPlayground: Automatic
Security Analysis of Smartphone Applications.” In: Proceedings of the Third
ACM Conference on Data and Application Security and Privacy. CODASPY ’13.
ACM, 2013.

https://developer.android.com/guide/platform/index.html
https://developer.android.com/guide/platform/index.html


Bibliography 145

[RC15] Idan Revivo and Ofer Caspi. “CukooDroid - An Automated Malware Analysis
Framework.” In: Blackhat USA. Aug. 2015.

[Rie+11] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz. “Auto-
matic Analysis of Malware Behavior Using Machine Learning.” In: J. Comput.
Secur. (Dec. 2011).

[RM10] Kevin A. Roundy and Barton P. Miller. “Hybrid Analysis and Control of Mal-
ware.” In: Proceedings of the 13th International Conference on Recent Advances in
Intrusion Detection. RAID’10. Springer-Verlag, 2010.

[Rub+16] Konstantin Rubinov, Lucia Rosculete, Tulika Mitra, and Abhik Roychoudhury.
“Automated Partitioning of Android Applications for Trusted Execution Envi-
ronments.” In: Proceedings of the 38th International Conference on Software Engi-
neering. ICSE ’16. ACM, 2016.

[Rui12] Fernando Ruiz. FakeInstaller Leads the Attack on Android Phones. https://blogs.
mcafee.com/mcafee-labs/fakeinstaller-leads-the-attack-on-android-

phones. McAfee Labs Website. 2012.

[Rui16] Fernando Ruiz. Android Malware Clicker.G!Gen Found on Google Play. Blog Post.
2016.

[Sar+12] Bhaskar Pratim Sarma, Ninghui Li, Chris Gates, Rahul Potharaju, Cristina
Nita-Rotaru, and Ian Molloy. “Android permissions: a perspective combining
risks and benefits.” In: Proceedings of the 17th ACM symposium on Access Control
Models and Technologies. SACMAT ’12. ACM, 2012.

[Sax+10] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCa-
mant, and Dawn Song. “A Symbolic Execution Framework for JavaScript.” In:
Proceedings of the 2010 IEEE Symposium on Security and Privacy. SP ’10. IEEE
Computer Society, 2010.

[Sch+13] Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. “Dynamic De-
terminacy Analysis.” In: Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’13. ACM, 2013.

[Sch03] Karl-Michael Schneider. “A comparison of event models for Naive Bayes anti-
spam e-mail filtering.” In: Proceedings of the tenth conference on European chapter
of the Association for Computational Linguistics - Volume 1. EACL ’03. Association
for Computational Linguistics, 2003.

[Seb+02] Abdallah Abbey Sebyala, Temitope Olukemi, Lionel Sacks, and Dr. Lionel
Sacks. “Active Platform Security through Intrusion Detection Using Naive
Bayesian Network For Anomaly Detection.” In: Proceedings of London communi-
cations symposium. 2002.

[Sen07] Koushik Sen. “Concolic Testing.” In: Proceedings of the 22nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering. ASE ’07. ACM, 2007.

[SMA05] Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: a concolic unit testing en-
gine for C.” In: Proceedings of the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ESEC/FSE-13. ACM, 2005.

https://blogs.mcafee.com/mcafee-labs/fakeinstaller-leads-the-attack-on-android-phones
https://blogs.mcafee.com/mcafee-labs/fakeinstaller-leads-the-attack-on-android-phones
https://blogs.mcafee.com/mcafee-labs/fakeinstaller-leads-the-attack-on-android-phones


146 Bibliography

[Sha+12] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss.
““Andromaly”: a behavioral malware detection framework for android de-
vices.” In: Journal of Intelligent Information Systems 38 (2012).

[Sla+16] Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini, James Hester, Ram Krish-
nan, Jaspreet Bhatia, Travis D. Breaux, and Jianwei Niu. “Toward a Framework
for Detecting Privacy Policy Violations in Android Application Code.” In: Pro-
ceedings of the 38th International Conference on Software Engineering. ICSE ’16.
ACM, 2016.

[Sne16] Bruce Snell. Mobile Threat Report: What’s on the Horizon for 2016. http://www.
mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf.
2016.

[Sou+14] David Sounthiraraj, Justin Sahs, Garrett Greenwood, Zhiqiang Lin, and Latifur
Khan. “SMV-Hunter: Large Scale, Automated Detection of SSL/TLS Man-in-
the-Middle Vulnerabilities in Android Apps.” In: Proceedings of the Network and
Distributed System Security Symposium (NDSS). 2014.

[Spr+13] Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas Schreck, and
Johannes Hoffmann. “Mobile-sandbox: Having a Deeper Look into Android
Applications.” In: Proceedings of the 28th Annual ACM SAC. SAC ’13. ACM,
2013.

[Sta14] AppBrain Stats. Number of Android applications. http://www.appbrain.com/
stats/number-of-android-apps. Android Statistics Page of AppBrain. 2014.

[Ande] System Permissions. https://developer.android.com/guide/topics/security/
permissions.html. last checked: Oct. 2016.

[Szo05] Peter Szor. The art of computer virus research and defense. Pearson Education,
2005.

[Tam+15] Kimberly Tam, Salahuddin J. Khan, Aristide Fattori, and Lorenzo Cavallaro.
“CopperDroid: Automatic Reconstruction of Android Malware Behaviors.” In:
Network and Distributed System Security Symposium (NDSS). The Internet Soci-
ety, 2015.

[Tec14] Saikoa Applied Compiler Technology. DexGuard. http://www.saikoa.com/
dexguard. Saikoa Website. 2014.

[Geo] The Google Maps Geolocation API. https://developers.google.com/maps/
documentation/business/geolocation/. 2013.

[Thu+11] Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and
Zhendong Su. “Synthesizing method sequences for high-coverage testing.” In:
Proceedings of the 2011 ACM International Conference on Object Oriented Program-
ming Systems Languages and Applications. OOPSLA ’11. 2011.

[Tia16] Di Tian. Detecting vulnerabilities of broadcast receivers in Android applications. 2016.
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