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ABSTRACT
Typestate analysis determines whether a program violates a
set of finite-state properties. Because the typestate-analysis
problem is statically undecidable, researchers have proposed
a hybrid approach that uses residual monitors to signal prop-
erty violations at runtime.

We present an efficient novel static typestate analysis that
is flow-sensitive, partially context-sensitive, and that gener-
ates residual runtime monitors. Our typestate specifications
can refer to multiple interacting objects. To gain efficiency,
our analysis uses precise, flow-sensitive information on an
intra-procedural level only, and models the remainder of the
program using a flow-insensitive pointer abstraction. Un-
like previous flow-sensitive analyses, our analysis uses an
additional backward analysis to partition states into equiva-
lence classes. Code locations that transition between equiv-
alent states are irrelevant and require no monitoring. This
approach is simpler than previous approaches, nevertheless
yields excellent precision and requires little analysis time.

We proved our analysis correct, implemented the analysis
in the Clara framework for typestate analysis, and applied
it to the DaCapo benchmark suite. In half of the cases, our
analysis determined exactly the property-violating program
points. For another 25%, the analysis reduced the number
of instrumentation points by large amounts, yielding signif-
icant speed-ups during runtime monitoring.
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cation—Validation

General Terms
Algorithms, Experimentation, Performance, Verification

Keywords
typestate analysis, static analysis, runtime monitoring

∗Eric conducted this research as a Ph.D. student at McGill
University, under supervision of Laurie Hendren.

Technical Report Clara-1
September 9th, 2009
http://bodden.de/clara/

connected closed error

close

reconnect

close, reconnect, write

write

close write

Figure 1: Finite-state machine for “Connection” property

1. INTRODUCTION
A typestate property [21] describes which operations are

available on an object or even a group of inter-related ob-
jects, depending on this object’s or group’s internal state,
the typestate. For instance, programmers must not write to
a connection handle that is currently in its “closed” state.
Figure 1 shows a non-deterministic finite-state machine for
this property. It monitors a connection’s “close”, “reconnect”
and“write” events and signals an error at its accepting state.

Typestate properties aid program understanding, and one
can even define type systems [5, 14] that prevent program-
mers from causing typestate errors, or derive static typestate
analyses [16] that try to determine whether a given program
violates typestate properties. Unfortunately, the typestate-
analysis problem is generally undecidable. Researchers have
therefore proposed a hybrid approach [9, 10, 15] that uses
static-analysis results to generate a residual runtime mon-
itor. This monitor captures actual property violations as
they occur, but only updates its internal state at relevant
statements, as determined through static analysis.

A correct runtime monitor must observe events like “close”
and“write” that cause a possible property violation, but also
events like “reconnect” that may prevent the violation from
occurring. Missing the former causes false negatives while
missing the latter causes false positives, i.e., false warn-
ings. Both is unacceptable, as runtime monitors must han-
dle property violations exactly when they occur. A correct
static analysis must therefore determine program locations
that can trigger either kind of such “relevant” events.

In this work we present an efficient novel static typestate-
analysis algorithm called Nop-shadows Analysis1 that uses a
forward and a backward pass to identify provably irrelevant
code locations. For every program statement s of interest,
the forward analysis determines the possible typestates that
can reach s. The additional backward analysis partitions
these states into equivalence classes. A program location

1The aspect-oriented-programming community uses the
term “shadow” [17] to refer to instrumentation points.



that can only transition between equivalent states is irrel-
evant. This eases the burden on the programmer, as the
programmer does not need to consider such irrelevant loca-
tions during manual code inspections. Moreover, we elim-
inate the monitoring instrumentation from these program
locations, speeding up the residual runtime monitor. Our
novel analysis is not only simpler than earlier approaches, it
is also surprisingly precise, yet efficient.

Any precise typestate analysis has to be flow-sensitive and
requires must-alias information: to determine that the code
“c1.reconnect(); c2=c1; c2.write ();”correctly uses the connec-
tion that c1 and c2 refer to, the analysis needs to know that
c1 and c2 must point to the same object, i.e. that c1 and c2

must-alias. Such information is expensive to compute. To
gain efficiency, our analysis computes flow information and
must-alias information on an intra-procedural level only, and
models the remaining program using a carefully designed
flow-insensitive pointer abstraction.

To evaluate our approach, we have implemented our anal-
ysis in the Clara framework for typestate analysis [7] and
applied the analysis to the DaCapo benchmark suite [6].
Our results show that our lightweight abstractions are pre-
cise enough to exactly tell apart property-violating program
points from irrelevant program points in half of the cases.
For these cases, the analysis determines exactly the property-
violating program locations. In another 25% of the cases, the
analysis often identifies and disables large amounts of irrel-
evant program points. This eases manual code inspection
and, as we show, speeds up the resulting residual monitor
significantly. Our modest abstractions restrict the analysis
time to a few minutes in most cases.

We proved our analysis correct. As we found out during
this process, two analyses that we [10] and others [19] pub-
lished previously are unsound. They fail to identify certain
program locations that trigger violation-preventing events
like “reconnect” above. As a consequence, the resulting run-
time monitors may cause false warnings at runtime. This
unsoundness is caused by the fact that traditional typestate
analyses use a forward-analysis pass only and have no notion
of equivalent states like our novel analysis does.

To summarize, this paper presents the following original
contributions:

• a novel flow-sensitive static typestate analysis, called
“Nop-shadows Analysis”, that detects equivalent type-
states to determine all statements that are relevant to
causing or preventing a property violation,

• an implementation of the Nop-shadows Analysis in the
Clara framework that generates efficient residual run-
time monitors,

• a set of experiments that shows that the analysis is
both precise and efficient, and

• an explanation of why some other static analyses that
use a forward-analysis pass only, generate unsound
runtime monitors.

We structured the remainder of this paper as follows. We
start off by giving a brief overview of the Clara framework,
in which we implemented our analysis. In Section 3 we give
an example to illustrate the Nop-shadows Analysis itself.
We explain the full analysis in Section 4, followed by our
experiments in Section 5. In Section 6 we discuss how we
improve over the state of the art. We conclude in Section 7.
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Figure 2: Overview of Clara

2. THE CLARA FRAMEWORK
Clara (CompiLe-time Approximation of Runtime Anal-

yses) is a novel research framework for the implementation
of hybrid typestate analyses. We developed Clara to sup-
port easy implementation of the analysis that we present in
this paper, among others. Clara’s major design goal is to
de-couple the code-generation for efficient runtime monitors
from the static analyses that convert these monitors into
faster, residual monitors. In this work, we can only give an
overview of Clara. The author’s dissertation [7] gives a
more detailed account. Clara is available at:

http://bodden.de/clara/

Figure 2 gives an overview of Clara. With Clara, the
researcher first defines a set of typestate properties, denot-
ing each property as an annotation to an AspectJ [3] aspect
that implements a runtime monitor for the same property.
Annotations directly encode a non-deterministic finite-state
machine, just as the one in Figure 1. In the author’s dis-
sertation [7] we show how researchers can even use runtime-
monitoring approaches like tracematches [2], JavaMOP [13],
and others, to generate these annotated aspects automati-
cally from high-level monitor specifications.

Clara weaves the monitoring aspect into the program
under test and emits helper classes that implement the run-
time monitor as defined by the aspect. Clara extends the
AspectBench Compiler [4] for this purpose. Clara then
invokes its static-typestate-analysis engine. Researchers can
add a number of static analyses to Clara and have them ap-
plied in any order. These analyses obtain, through the finite-
state machine defined in the aspect’s annotation, enough in-
formation about the typestate property to precisely approx-
imate the set of relevant instrumentation points. When an
analysis determines that an instrumentation point is irrele-
vant to a property, i.e., the program can neither violate the
property nor prevent a property violation at this point, then
Clara automatically disables the instrumentation for this
property at this point. The result is an optimized instru-
mented program that updates the runtime monitor only at
program points at which instrumentation remains enabled.
The approach that we present in the following instantiates
Clara’s static-analysis engine with a combination of two
previously published supporting analyses and our novel Nop-
shadows Analysis.

3. ANALYSIS BY EXAMPLE
We motivate our analysis using our running example: it

is an error to write to a connection object that was closed,
unless the connection was re-connected in between. Fig-
ure 1 shows the appropriate non-deterministic finite-state



1 public static void main(String args[]) {
2 Connection c1 = new Connection(args[0]);

3 c1. close ();
· · · · · · · · · · · · · · · · · · · · · · · · · 0 · · {} · · · {0, 1, 2}

4 c1.reconnect();
· · · · · · · · · · · · · · · · · · · · · · · · · 1 · · {} · · · {0, 1, 2}

5 c1. close ();
· · · · · · · · · · · · · · · · · · · · · · · · · 0 · · {} · · · {0, 1, 2}

6 c1. close ();
· · · · · · · · · · · · · · · · · · · · · · · · · 1 · · {} · · · {0, 1, 2}

7 c1.write(args [1]);
· · · · · · · · · · · · · · · · · · · · · · · · · 1 · · {} · · · {1, 2}

8 c1. close ();
· · · · · · · · · · · · · · · · · · · · · · · · · 2 · · {} · · · {2}

9 c1.reconnect();
· · · · · · · · · · · · · · · · · · · · · · · · · 1 · · {}

10 c1.write(args [1]);
· · · · · · · · · · · · · · · · · · · · · · · · · 0 · · {1, 2}

11 }
· · · · · · · · · · · · · · · · · · · · · · · · · 0 · · {2}

Figure 3: Simple example program using a single connection

machine that Clara obtains from parsing the annotation
in the specified aspect. The state machine accepts events of
type“close”, “reconnect”and“write”. When a“write” follows
a “close”, then the state machine moves into its error state.
Clara represents error states as accepting states. Let us
call the language that this state machine accepts L.

Figure 3 shows a simple example program that uses a sin-
gle connection, along with the analysis information that we
compute (explanation follows). To keep the example sim-
ple, this program contains only straight-line code, no out-
going method calls that may change the connection’s type
state, and no aliasing. Our implementation, however, han-
dles complete Java programs, including method calls, recur-
sion, loops, exceptions and aliasing (see Section 4).

Our example program violates the connection property
by closing the connection (even twice, at lines 5 and 6),
and then writing to the connection (line 7). Note, though,
that all other statements in this program are irrelevant to
the property violation. In particular, one does not need to
monitor the “close” and “reconnect” operations at lines 3
and 4 because they precede the violating fragment of the
run. Conversely, the operations at lines 8 to 10 follow this
fragment, and hence do not need to be monitored either. A
little more subtle, even of the the two“close” events at lines 5
and 6, it is correct to omit monitoring one of them. (But not
both!) The static analysis that we present in the following
will eliminate the instrumentation at exactly those shadows
that we just identified as irrelevant—“nop shadows”, as we
call them. Instrumentation will only remain in lines 5 and
7, or 6 and 7—an optimal result for this program.

Example application of analysis algorithm.
For a method containing n shadows, the Nop-shadows

Analysis consists of up to n “rounds”, where each round
identifies a single nop shadow until no further nop shadows
can be identified. Each round consists of a forward and a
backward pass. The forward pass computes for every state-
ment s the typestates that can reach s. The backwards
pass conversely computes classes of states from which the
property state machine can reach a violating state using the
remainder of the program execution that follows s.

The forward pass uses a determinized version of the finite-
state machine from the property specification. Figure 4a
shows this state machine for our example. In the follow-
ing, we will call this state machine Mforward. We number
Mforward’s states for presentation purposes. The forward
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Figure 4: Finite-state machines for Connection example

analysis starts off in this state machine’s initial state 0 and
then updates the state according to the shadows that it en-
counters during analysis. In Figure 3, we show the states
that the forward analysis computes before and after each
statement, next to the downward arrow. For instance, the
“close” statement at line 3 changes the typestate from 0 to
1. Importantly, at property violations, e.g. at line 7, the
analysis will reach the violating state 2.

The backward pass, on the other hand, uses a determin-
istic finite-state machine for L’s mirror language L. For
any word w = w1 . . . wn ∈ L, we define the mirror word
w as w := wn . . . w1. The mirror language L is defined
by L := {w | w ∈ L}. While it would be sound for our
backwards pass to use any finite-state machine that accepts
the language L, we specifically use the state machine that
we obtain by (1) inverting Mforward (by flipping all edges
and swapping initial and accepting states), and then (2) de-
terminizing this finite-state machine again. The resulting
state machine is minimal for L [12]. As we will explain in
Section 4, a minimal finite-state machine yields a more pre-
cise analysis result because in this state machine equivalent
states are collapsed into a single state. For our example,
Figure 4b shows the finite-state machine that we obtain this
way. (We omit the “sink” state that represents the empty
state set.) We call this automaton Mbackward. Note that
we labeled each of this automaton’s states with the set of
states of Mforward that this state represents. These labels
are important: our analysis will compare states from the
forward analysis with states from the backward analysis,
and labeling Mbackward’s states with their equivalent states
of Mforward eases this comparison.

According to the semantics of Clara’s state-machine no-
tation, a single program run can cause multiple property
violations. Each violating sub path of the execution path
starts at one of the program’s possible entry points and ends
at what we call a “final shadow”. A final shadow is a shadow
that is labeled with a symbol that leads into an error state,
like “write” in our example. Therefore, in the example, we
apply the backwards analysis two times, starting at both
write statements (lines 10 and 7). In Figure 3, we show
the analysis result for both backwards-analysis runs on the
right-hand side. For instance, the close statement at line 6
changes the typestate from the state labeled with {1, 2} to
the state labeled with {0, 1, 2}. The same statement also
causes the second analysis configuration, holding the sink
state {}, to loop.



Nop-shadow condition. We now explain how we com-
bine the forward and backward-analysis information to iden-
tify nop shadows. Let source(s) be the state that the for-
ward analysis computed just before a statement s, target(s)
the state for the location just after s, and futures(s) the set
of state sets that the backwards analysis computed for just
after s. For instance, for the close statement at line 5 of
Figure 3 we have:

source(line 5) = 0

target(line 5) = 1

futures(line 5) = { {}, {0, 1, 2} }

Because we compute futures(s) using a deterministic finite-
state machine for L, the sets in futures(s) represent equiv-
alence classes. For instance, the set {0, 1, 2} represents the
fact that, using the remainder of the program execution, one
will reach a property violation from Mforward’s states 0, 1 or
2 either way. By using a minimal state machine we assure
optimality: when two states q1 and q2 are equivalent, then
futures(s) will contain a state set Q with {q1, q2} ⊆ Q.

In the following, for two states q1 and q2 we say that q1

and q2 are equivalent and write q1 ≡ q2 if the following holds:

∀Q ∈ futures(s). q1 ∈ Q ↔ q2 ∈ Q

A shadow is a nop shadow when it transitions between states
in the same equivalence class. Let us denote by F the set of
accepting, i.e., violating states of Mforward. Then we call a
shadow at a statement s a “nop shadow” if:

1. source(s) ≡ target(s), and

2. target(s) 6∈ F .

The first case states that the shadow transitions between
states that are in the same equivalence class. Hence, moni-
toring the shadow appears unnecessary. (Note that, as a spe-
cial case, this condition handles looping: when source(s) =
target(s) then Condition 1 holds trivially.) However, there is
one exception that we need to consider, and which we handle
in Condition 2: When target(s) ∈ F , then the shadow di-
rectly triggers the runtime monitor. According to Clara’s
monitoring semantics, a monitor must signal repeated prop-
erty violations every time the violation occurs. (This is use-
ful when the monitor executes error-handling code.) For in-
stance, on “c. close (); c.write (); c.write()” the monitor should
signal a violation after both “write” events. However, the
second “write” event does not change the typestate; we have
source(s) = target(s) = 2. Therefore, Condition 1 holds
although the statement is not a nop shadow. Adding Con-
dition 2 handles this corner case.

Need for re-iteration. The diligent reader may wish to
verify that this condition indeed identifies all the statements
of our example (Figure 3) as nop shadows, except for the
write statement at line 7. This means that it is correct to not
observe any single one of the shadows at these statements.
However, it would be incorrect to state that, for instance,
both the shadows at lines 5 and 6 are irrelevant: one needs
to observe one of these two shadows; otherwise the runtime
monitor will not reach its violating state at line 7. The prob-
lem is that after identifying any particular single shadow as
a nop shadow, by disabling this shadow, we change the pro-
gram’s transition structure. Therefore, after identifying any
shadow at any statement s as a nop shadow, we recompute
both the forward and the backward-analysis information,

this time ignoring the shadow at s. This yields updated
analysis information that is again sound to use for identi-
fying further nop shadows. We re-iterate until we reach a
fixed point, i.e., cannot identify any nop shadow any more.
The number of iterations is bounded by the number of shad-
ows that the current method holds. In our example, the 7th
iteration will expose no further nop shadows, and instru-
mentation will only remain in lines 5 and 7, or 6 and 7—an
optimal result for this program.

4. NOP-SHADOWS ANALYSIS
We next explain how we handle the general analysis prob-

lem, involving loops, outgoing method calls, recursion, ex-
ceptions and aliasing.

4.1 Supporting analyses
We instantiated Clara’s static-analysis engine with a se-

quence of three analysis stages where each stage is strictly
more precise but also more expensive to compute than pre-
ceding stages. Each stage can identify and disable nop shad-
ows and can therefore speed up later stages that do not need
to consider these shadows any more. The stages that we use
are (1) the syntactic Quick Check, (2) the flow-insensitive
Orphan-shadows Analysis, and (3) the novel flow-sensitive
Nop-shadows Analysis that we present in this paper.

The Quick Check [8] is very fast because it uses syntactic
information only. It rules out instrumentation points if cer-
tain automaton symbols match nowhere in the program. For
instance, in our Connection example, if the program never
writes to a connection then the program cannot violate the
property and the Quick Check can disable all instrumenta-
tion. Clara then bypasses the other stages.

The Orphan-shadows Analysis [8] performs a similar anal-
ysis separately for each abstract object (or combination of
such objects), where we model abstract objects through ob-
ject representatives [11]2. For instance, consider a program
that connects and closes connections but never writes to
some of those. Because the program cannot violate the con-
nection property at places that provably only refer to such
“read-only” connections, the Orphan-shadows Analysis re-
moves instrumentation from these program locations.

These first two analysis stages disable shadows that are
obviously irrelevant. Clara applies the Nop-shadows Anal-
ysis to all interesting cases, i.e., the ones in which shadows
remain enabled after applying these first two stages. The
Nop-shadows Analysis is strictly more precise than stages
(1) and (2) because it uses flow-sensitivity and must-alias
information. Both are necessary for precise typestate anal-
ysis but also expensive to compute. We therefore designed
the Nop-shadows Analysis to compute must-alias informa-
tion and flow information on an intra-procedural level only.
One may think that such an analysis would have to be quite
imprecise, but before we designed our analysis, we manu-
ally investigated the instrumentation points that remained
active after the flow-insensitive Orphan-shadows Analysis
had already been applied to our benchmarks. We found
that, in most cases, when paired with coarse-grain inter-
procedural summary information that the Orphan-shadows

2Object representatives combine flow-insensitive whole-
program points-to sets with intra-procedural flow-sensitive
alias information. We compute points-to sets with Sridharan
and Bod́ık’s context-sensitive points-to analysis [20].



Analysis had already computed anyway, intra-procedural
analysis information was sufficient to determine irrelevant
instrumentation points. The results that we present in Sec-
tion 5 confirm these findings.

4.2 Actual Nop-shadows analysis
The Nop-shadows Analysis identifies nop shadows on a

per-method, per-property basis. For each statement s in
the current method, the forward analysis computes the pos-
sible states source(s) and target(s). The backward analysis,
on the other hand, computes futures(s). The forward and
backward analysis are virtually dual instances of a general
worklist algorithm that propagates “configurations” through
the method’s control-flow graph. In our implementation, a
configuration c = (Q, b) combines an automaton-state set Q

with a variable binding b. When c is associated with a state-
ment s, then the state set Q holds all possible typestates just
before executing s. The binding b describes the object(s) to
which this state set belongs. In our connection example,
for any given statement s there could exist multiple connec-
tions that are in different typestates when s executes. The
variable bindings help distinguish these different typestates.
A variable binding maps one or more variables from the
typestate specification to object representatives that model
the runtime objects that these variables are bound to. The
treatment of variable bindings is quite intricate, but other
aspects of our analysis are more interesting. Hence, we de-
cided to ease our presentation by abstracting from variable
bindings and instead assuming that we perform typestate
analysis only for one single object representative. For the
remainder of this paper we therefore assume that a configu-
ration is just a set of automaton states, without any binding.
The author’s dissertation [7] gives a complete treatment in-
cluding variable bindings, with proof.

The Nop-shadows Analysis propagates configurations for
both the forward and backward analysis using a general
worklist algorithm that we show as Algorithm 1. In this
algorithm, the syntax f [x 7→ y] denotes the function that
is equal to f on all values v, except for x, in which case it
returns y:

f [x 7→ y] := λv

(

y if v = x

f(v) otherwise

The algorithm first initializes a worklist wl , which is es-
sentially a set of “jobs”, where each job is an entry (stmt , cs),
with stmt a statement and cs is a set of configurations, i.e.,
a set of set of automaton states. The algorithm further ini-
tializes two mappings before and after that store the config-
urations that have been computed so far before, respectively
after each statement. These sets allow us to perform a ter-
minating fixed point iteration.

Next the algorithm iterates through its worklist. For ev-
ery job (stmt , cs), the algorithm first updates stmt ’s before-
set. Then, when a statement holds no shadow, we just
leave the configurations unchanged (line 6 in Algorithm 1).
Otherwise, we compute (line 7), for every new configura-
tion c ∈ cs and shadow at stmt , successor configurations
using the supplied transition function δ. To compute the
transition, the algorithm accesses the shadows’s unique la-
bel label(shadow). (In our running example, this label could
be “close”, “reconnect” or “write”.) To allow the analysis to
later-on compare state labels of Mforward with the state-set

Algorithm 1 worklist(initial, succcfg , succext , δ)

1: wl := initial

2: before := after := λstmt . ∅
3: while wl non-empty do

4: pop job (stmt , cs) from wl

5: before := before[stmt 7→ before(stmt) ∪ cs]

6: cs′ :=

(

cs if shadows(stmt) = ∅

∅ otherwise

7: for c ∈ cs, shadow ∈ shadows(stmt) do

8: c′ :=
[

q∈c

{ δ(q, label(shadow)) }

9: cs ′ := cs ′ ∪ {c′}
10: end for

11: csnew := cs′ − after(stmt)
12: if csnew non-empty then

13: after := after [stmt 7→ after(stmt) ∪ csnew ]
14: for stmt ′ ∈ succcfg(stmt) do

15: wl := wl ∪ {(stmt ′, csnew)}
16: end for

17: for stmt ′ ∈ succext (stmt) do

18: wl := wl [stmt ′ 7→ wl(stmt ′) ∪
reaching(csnew , relatedShadows(stmt))]

19: end for

20: end if

21: end while

labels that Mbackward uses, we determinize state machines
on-the-fly: line 8 computes the unique set of successor states.

The algorithm then updates stmt ’s after set and associates
new jobs with two different kinds of successor statements.
First, in lines 14–16, the algorithm adds new jobs containing
the successor configurations csnew for any statement that is
a successor of stmt in m’s control-flow graph (as determined
by succcfg). Lines 17–19 handle inter-procedural control flow
through an “external-successor function” succext . After all,
the typestate of objects that the current method m refers to
may also be changed by methods other than m.

4.2.1 The external-successor function
Figure 5 visualizes both successor functions. We show

the current method m as a box. The method contains
two invoke statements. The first statement resembles a
potentially-recursive call, the second one a provably non-
recursive call. The dashed arrows denote the successor func-
tion succcfg , which is given by m’s control-flow graph. In
addition, the solid arrows show the second, inter-procedural-
successor function, succext . During the execution of m, in-
voke expressions within m may cause methods to be called.
These calls either can or cannot transitively perform a re-
cursive call back into m. When the call may be recursive,
then configurations that we computed for this call site can
reach m’s entry statement, see arrow (1). Conversely, for
configurations that we computed for any of m’s exit state-
ments, we need to propagate these configurations back to
any potentially-recursive call site within m, see (2). At com-
pile time, we can usually only determine that a method call
may be recursive, not that it must be. Hence, we also need
to propagate configurations from the call site to after it-
self, see (3a). For calls that are provably not recursive (as
determined by a call graph), it suffices to propagate config-
urations past the call site itself, see (3b). Lastly, we need to
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Figure 5: Functions succcfg (dashed) & succext (solid)

take into account the case in which method m returns (ei-
ther normally or by throwing an exception—succcfg handles
both cases), and then re-executes. To model this case we
propagate configurations from m’s exit(s) to its entry, (4).

In line with Figure 5, we define succext as follows. Let
heads(m) be the set of entry statements of m, and tails(m)
the set of m’s exit statements3. Further, let recCall(m)
be the set of potentially-recursive invoke statements of m,
and nonRecCall(m) the set of provably non-recursive invoke
statements respectively. Then:

succext :=

λs.

8

>

>

>

<

>

>

>

:

succcfg(s) if s ∈ nonRecCall(m)

heads(m) ∪ succcfg(s) if s ∈ recCall(m)

succcfg(recCall(m)) ∪ heads(m) if s ∈ tails(m)

∅ otherwise

When propagating configurations along a succext -edge, it
is not correct to just copy the configurations from the edge’s
source to it’s target. Note that between any two execu-
tions of m, other methods may execute and cause transi-
tions in the monitoring state machine. To soundly model
these potential transitions by “other methods”, Algorithm 1
associates in line 18 with any inter-procedural successor not
just the set of new configurations csnew but instead the
set of configurations reaching(csnew, relatedShadows(stmt)).
reaching computes successor configurations in a very effi-
cient, flow-insensitive way. Let cs be a set of configurations,
ss a set of shadows and l := {label(s) | s ∈ ss}. We define
reaching(cs, ss) as the smallest set for which holds that:

• cs ⊆ reaching(cs, ss), and

• ∀c ∈ reaching(cs, ss) ∀a ∈ l :
{δ(q, a) | q ∈ c} ∈ reaching(cs, stmt).

Hence, reaching computes the configurations that one can
reach from cs by executing zero or more shadows from ss.

The function relatedShadows(stmt), that the Algorithm
further uses in line 18, computes the set of all shadows re-

3Usually, heads(m) will be a singleton set but because our
backwards analysis operates on a reversed control-flow graph
where heads become tails and tails become heads, heads(m)
can contain more than one element in this setting.

lated to stmt . We define this set as follows. For any in-
voke statement stmt (potentially recursive or not), the set
relatedShadows(stmt) contains all shadows in all methods
transitively reachable through stmt , except for the ones in m

itself. After all, these are all the shadows that one can reach
before reaching m’s entry statement again. Otherwise, i.e., if
stmt is a head or tail of m, then relatedShadows(stmt) con-
tains all shadows in the program, except for the ones in m.
(Our implementation further narrows down related shadows
by comparing each shadow’s variable binding to the binding
stored in the configuration.)

It is worthwhile noting that, because we compute the
expression reaching(csnew , relatedShadows(stmt)) for each
statement separately, we gain a certain amount of context-
sensitivity. While shadows inside a certain method m′ (with
m′ 6= m) may be relevant to one statement of m they may
be irrelevant to other statements in m, and by recomputing
the above function we properly distinguishes such cases.

4.2.2 Initializing the worklist algorithm
We next explain how we initialize the worklist algorithm.

The initialization depends on whether we perform a forward
or backwards analysis. In forward-analysis mode, succcfg is
simply the successor function of m’s control-flow graph, and
succext is the inter-procedural successor function as defined
above; the function δ is the transition function of Mforward.
For the backwards analysis we simply reverse both successor
functions and the transition function, flipping their edges.

We determine the set initial, which Algorithm 1 uses to
initialize its worklist in line 1, as follows. Let q0 be the initial
state of Mforward. Assume we analyze method m, and let
otherShadows be the set of shadows outside of m. For the
forward analysis, we define initial as:
˘

(h, reaching({q0}, relatedShadows(h))) | h ∈ heads(m)
¯

This set of initial jobs associates with m’s entry statement
all configurations that are reachable from the initial con-
figuration {q0} by executing every possible method, except
m itself. (Note that our inter-procedural-successor function
succext already handles the case where m re-executes.)

We generate initial jobs for the backwards analysis in a
similar but not identical way. A violating trace can only
start at the beginning of the program, but it can end (caus-
ing a violation) in the current method m itself, or in another
method (either with m on the call stack or not). We gen-
erate initial jobs to cover these three cases. Due to space
limitations we give a formal definition in the accompanying
dissertation [7, Section 5.2.3.4].

4.2.3 Removing nop shadows
The analysis information directly provides us with source,

target and futures for every statement. We use this infor-
mation to identify and disable a nop shadow if possible, and
then re-iterate until we can find no further nop-shadows for
this method. In our benchmark set we had to iterate ten
times or less for all but four methods. When we reach the
fixed point, we proceed with the next method. When all
methods are processed, we apply the flow-insensitive Orphan-
shadows Analysis again and then re-iterate the whole Nop-
shadows Analysis. This is because disabling a shadow in one
method may render shadows in other methods irrelevant. It
seems to be always sufficient to iterate this outer loop two to
three times. When this loop reaches a fixed point we stop.



5. EXPERIMENTS
To validate our approach, we verified a set of twelve type-

state properties over ten benchmark programs of the Da-
Capo benchmark suite [6]. This lead to 120 property/bench-
mark combinations. 43 of these combinations (36%) were
“interesting”to us in the sense that instrumentation remained
after applying the first two, previously published, analysis
stages. The 43 combinations comprised eight out of the orig-
inal twelve properties. Table 1 explains these properties. We
applied the Nop-shadows Analysis to these 43 combinations.

Table 2 summarizes our analysis results. The table reports
the fraction of “final shadows” that the analysis identified as
nop shadows. A shadow is final if it can complete a prop-
erty violation. For instance, in the Connection example, the
final shadows are exactly all “write” shadows. The number
of final shadows thus corresponds to the number of program
points that may trigger property violations. The fraction of
shadows that our analysis identified as nop shadows appears
in white. In gray we show the fraction of shadows which are
known to trigger actual violations at runtime. The remain-
ing black slice represent shadows that remain active even
after analysis, either due to analysis imprecision or due to
actual property violations.

For 18 out of these 43 combinations (41%), our novel Nop-
shadows Analysis was able to identify all shadows as irrele-
vant and therefore proved that the program cannot violate
the stated property. These cases appear as all white circles.
In four other cases, shadows remained enabled, but only
because they do trigger a property violation. These cases
appear as gray circles. In other words, the analysis gave
exactly the correct result, with no false positives, in half of
the cases. In eleven cases, the analysis was unsuccessful and
did not identify any nop shadow (black circles).

In the remaining ten cases, the analysis removed a some-
times significant amount of shadows. This may speed up
runtime monitoring for these cases, depending on whether
the test run exercises these shadows a lot. For our exper-
iments we used monitoring aspects generated from trace-
matches [2]. Table 2 gives qualitative information about
the residual monitor’s runtime overhead through the ring
that surround each circle. (The dissertation [7] gives the full
data.) Interestingly, the number of remaining shadows does
not necessarily correspond directly to the resulting runtime
overhead. For instance, a single shadow remains in antlr-
Writer, but this one shadow executes so often that it causes a
runtime overhead of more than 15%. chart-FailSafeIterMap,
on the other hand, contains 38 residual shadows (no im-
provement), but there is no observable overhead. This is
an ideal candidate for residual runtime monitoring. Alto-
gether, after applying the Nop-shadows Analysis, only nine
combinations remain that have a significantly perceivable
overhead of more than 15%. Most combinations show zero
overhead, five combinations show an overhead of below 15%,
which we think is negligible at least at development time.

Our analysis works well on the antlr, fop, hsqldb, luin-
dex, lusearch and xalan benchmarks. Most of the potential
false positives (black in the figure) appear only because the
benchmarks use reflection. Due to a known deficiency [1],
Java’s Cloneable interface contains no public declaration
of a clone() method. Therefore, Java’s type system may
prevent clients from calling clone() even on Cloneable ob-
jects. chart uses reflection to call the clone() method on
objects that implement the Cloneable interface. Because

FailSafeEnum do not update a vector while iterating
over it

FailSafeEnumHT do not update a hash table while iter-
ating over its elements or keys

FailSafeIter do not update a collection while iter-
ating over it

FailSafeIterMap do not update a map while iterating
over its keys or values

HasNextElem always call hasMoreElements before
nextElement on an Enumeration

HasNext always call hasNext before calling next
on an Iterator

Reader do not use a Reader after its Input-
Stream was closed

Writer do not use a Writer after its Output-
Stream was closed

Table 1: Relevant typestate properties and their names

chart clones collections, our points-to analysis has to safely
assume that the collections could be of any type, including
EmptySet, which, as a singleton object, is stored in a static
field, causing our analysis to loose all context information.
bloat, jython and pmd cause similar problems.

There appear to be only few cases where our analysis
is too imprecise because of its design. For example, two
actually irrelevant final shadows remain enabled in hsqldb
with Reader and Writer. These false positives occur be-
cause xalan uses different methods to open, close and write
to streams. A fully inter-procedural analysis could rule out
possible violations in these cases. However, we found that,
due to its intra-procedural nature, the Nop-shadows Analy-
sis has an interesting property: the analysis revealed miss-
ing pre-conditions on xalan’s methods. For instance, the
write-calling method is missing the pre-condition that the
argument file should not be in state “closed”. In future work
we plan to use this information to support program under-
standing and to further enhance precision.

Detected property violations. When manually in-
specting the remaining shadows, we found several actual
property violations. bloat violates Writer because it con-
tains a method that writes to a file handle that it then
closes. When called multiple times, this method will violate
the property. We could not confirm whether certain runs of
bloat may actually call this method multiple times. jython
sometimes violates Reader by closing a stream prematurely.
jython then catches the resulting exception and returns null.
xalan violates HasNextElem by calling nextElement with-
out a preceding call to hasMoreElements. Nevertheless, the
program is safe because it checks the size of the underly-
ing vector to assure that the calls are legal. The property
specification is too simplistic in this setting. Several bench-
marks violate FailSafeEnum and FailSafeEnumHT. These
benchmarks do indeed modify vectors (or hash tables) while
iterating over them. This can lead to unexpected behavior.
With iterators this does not usually happen because itera-
tors have fast-fail semantics and will throw a Concurrent-

ModificationException in such situations. luindex violates
the FailSafeIter pattern. This error probably remained un-
detected because it only occurs on quite unlikely execution
paths. The author’s dissertation [7] provides more details.

Analysis time. Our analysis time is clearly dominated
by the time it takes to compute the supporting analyses
that the Nop-shadows Analysis requires. Constructing a call
graph and context-sensitive points-to sets took about two
and a half minutes on average. The Nop-shadows Analysis



antlr bloat chart fop hsqldb jython luindex lusearch pmd xalan

FailSafeEnum 0

1

1

1

2

2

0

1

0

2

FailSafeEnumHT 6

6

1

1

9

24

0

4

0

2

FailSafeIter
259

259

38

38

4

4

0

6

5

10

90

90

FailSafeIterMap
258

258

38

38

4

4

32

32

HasNextElem 0

41

0

4

0

3

14

26

0

8

0

3

0

3

1

2

HasNext
163

266

4

38

0

3

9

14

0

6

0

10

51

98

Reader
0

4

1

1

1

1

0

5

Writer 1

3

1

1

1

1

0

2

Table 2: Final shadows that may violate a property. White slices represent shadows that the Nop-shadows Analysis identified
as irrelevant. Black slices represent shadows that we fail to identify as irrelevant, due to analysis imprecision or an actual
violation. Gray slices represent actual property violations that we found through manual inspection. The outer rings represent
the residual monitor’s runtime overhead. Solid: overhead ≥ 15%, dashed: overhead < 15%, dotted: no overhead.

itself took under 50 seconds on average. This time includes
all re-iterations of the Orphan-shadows Analysis and Nop-
shadows Analysis that Clara performs. In 90% of the cases,
the analysis finished in under one minute. By far the worst
case was bloat-FailSafeIter, for which this analysis stage took
19 minutes. bloat is notoriously hard to analyze [8, 9, 19].

Limitations and threats to validity.
We identified the following limitations of our approach.

All DaCapo benchmarks load classes using reflection. Static
analyses like ours have to be aware of these classes so that
they can construct a sound call graph. We wrote an As-
pectJ aspect that would print at every call to forName and
a few other reflective calls the name of the class that this
call loads and the location from which it is loaded. We fur-
ther double-checked with Ondřej Lhoták, who compiled such
lists of dynamic classes earlier. We then provided Soot [22]
(which is part of Clara) with this information. The result-
ing call graph is sound for the program runs that DaCapo
performs. Obtaining a call graph that is sound for all runs
may be challenging for programs that use reflection.

For eclipse we were unable to determine where dynamic
classes are loaded from. eclipse loads classes not from JAR
files but from “resource URLs”, which eclipse resolves inter-
nally, usually to JAR files within other JAR files. Soot cur-
rently cannot load classes from such URLs and that is why
we omit eclipse in our experiments. The jython benchmark
generates code at runtime, which it then loads. We did not
analyze this code and so made the unsafe assumption that
this code would not cause any typestate changes.

Otherwise, the internal validity of our experiments is high
because we directly measure the number of final shadows be-
fore and after the analysis. The final shadows are exactly the
points that programmers would first inspect when checking
possible property violations. Hence, reducing the number
of final shadows will reduce the burden on the programmer.
This is especially true when eliminating all final shadows,
thus proving that the program cannot violate the property.

To measure the runtime overheads precisely, we extended
the DaCapo harness with a custom driver class. With this
driver class, DaCapo first executes a warm-up run and then
re-runs the benchmark multiple times until the relative stan-

dard deviation of the determined runtimes drops below 3%
(but at least 5 times and at most 20 times). Then we re-
port the arithmetic mean of these runs. DaCapo’s stan-
dard driver only measures a single benchmark run, which
has caused misleading results for us in the past.

The external validity is limited by our choice of bench-
marks. However, the DaCapo benchmarks are a realistic,
representative set of medium-sized to large-scale applica-
tions. The suite contains both “well-behaved” benchmarks
that are free of reflection and benchmarks that are harder to
analyze due to reflection. Our analysis excels on the former,
however, further work is required to handle the latter more
effectively. We plan to address these problems by simulating
reflection in a more fine-grained manner.

6. RELATED WORK
Strom and Yemini [21] were the first to suggest the concept

of typestate analysis. In the last few years, researchers have
presented several new approaches with varying cost/preci-
sion trade-offs. In the following we describe the approaches
that are most relevant to our work. We distinguish type-
system based approaches, static verification approaches and
hybrid verification approaches.

Type-system based approaches.
Type-system based approaches define a type system and

implement a type checker. This is to prevent programmers
from compiling a potentially property-violating program in
the first place and gives the advantage of strong static guar-
antees. On the other hand, the type checker may reject
useful programs that statically appear to violate the stated
property but will not actually violate the property at run-
time. Our approach allows the programmer to define a pro-
gram that may violate the given safety property. Our analy-
sis then tries to verify that the program is correct, and when
this verification fails it delays further checks until runtime.

Bierhoff and Aldrich [5] present an intra-procedural type-
system based approach that enables the checking of type-
state properties in the presence of aliasing. The author’s ap-
proach aims at being modular, and therefore abstains from
potentially expensive whole-program analyses like ours. To



1 void foo(Connection c) {
2 c. close ();
3 if (?) {
4 c.reconnect();
5 }
6 c.write (..);
7 }

(a)

c. close ()

if (?)

c.reconnect()

c.write (..)

(b)

Figure 6: Example exposing unsoundness in earlier hybrid
typestate analyses

be able to reason about aliases nevertheless, Bierhoff and
Aldrich associate special access permissions with references.
Access permissions allow the type checker to reason about
a reference locally. The author’s current approach assumes
that a program contains information about access permis-
sions and also typestate changes in the form of special pro-
gram annotations. Our approach does not require any pro-
gram annotations; it is fully automatic.

DeLine and Fähndrich’s approach [14] is similar in flavor
to Bierhoff and Aldrich’s but uses a more restrictive abstrac-
tion of aliases that allows for less flexible calling conventions
for typestate-changing methods. The authors implemented
their approach in the Fugue tool for specifying and check-
ing typestates in .NET-based programs. As in Bierhoff and
Aldrich’s approach, DeLine and Fähndrich assume that a
programmer (or tool) has annotated the program under test
with information about how calls to a method change the
typestate of the objects that this method references.

Static analysis approaches.
In this section we describe approaches that, unlike type

systems, perform a whole-program analysis and, unlike hy-
brid approaches, have no runtime component.

Fink et al. present a static analysis of typestate proper-
ties [16]. Their approach, like ours, uses a staged analysis
which starts with a flow-insensitive pointer-based analysis,
followed by flow-sensitive checkers. The authors’ analyses al-
low only for specifications that reason about a single object
at a time, while we allow for the analysis of multiple inter-
acting objects. Fink et al.’s algorithms only determine“final
shadows” that complete a property violation (like “write” in
our example) but not shadows that initially contribute to a
property violation (e.g. “close”) or can prevent a property
violation (e.g. “reconnect”). Therefore, these algorithms are
unsuitable for generating residual runtime monitors.

Hybrid analysis approaches.
In own previous work [10] we presented a hybrid type-

state analysis that was, like the Nop-shadows Analysis, also
flow-sensitive on an intra-procedural level only, and used a
flow-insensitive abstraction of the remainder of the program.
However, unlike the Nop-shadows Analysis, the earlier anal-
ysis used a forward-analysis only. A forward analysis can
only approximate the possible source and target states of a
statement s but not the futures.

Consider the property-violating program in Figure 6a. Re-
member that a correct runtime monitor must not only ob-
serve events at property-violating shadows like the “close”

shadow at line 2 and the “write” shadow at line 6, but also
at shadows that may prevent a violation, like the“reconnect”
shadow at line 4. A design flaw caused our earlier forward
analysis to mistakenly disable certain violation-preventing
shadows like the reconnect shadow in this example. To de-
termine relevant shadows, this earlier analysis used what we
called a “shadow history”. The shadow history at a state-
ment s is the set of all shadows on the control flow that
reaches s. When determining that the program may reach an
error state at s, the analysis would then commit the shadow
history at s to a global set of “relevant shadows” that need
to be monitored at runtime.

In Figure 6b we show the control-flow graph for the exam-
ple program. As the graph shows, due to the if statement,
the analysis will reach the write statement along two differ-
ent branches. Along the left branch, the analysis determines
that the connection is in its “connected” state when being
written to, and therefore no shadow history is committed, as
no violation can occur. Along the right branch, the analysis
determines that the connection will be in state“closed”when
reaching the write at line 6. Hence, the analysis will com-
mit the shadow history. However, the shadow history along
this branch contains the disconnect and write statements
only, because the reconnect occurs on the other branch! The
residual runtime monitor for this property will therefore miss
any possible reconnect events, and may therefore signal false
runtime warnings. We proved that our novel Nop-shadows
Analysis causes neither false warnings nor missed violations.

Compared to the earlier analysis, the Nop-shadows Anal-
ysis uses an entirely different design, introducing the notion
of equivalent states. This has several advantages. Firstly,
by using a backward analysis, we obtain directly at every
statement s exactly the necessary information that is nec-
essary to decide whether s is relevant. Secondly, the result-
ing analysis is simpler, which greatly eased our soundness
proofs. Further, the new analysis is more efficient: because
we abstain from using a shadow history we obtain a smaller
abstraction. The new abstraction only associates states with
bindings, while the old analysis further associated this infor-
mation with sets of shadows. Its smaller abstraction helps
our new analysis to a faster-terminating fixed-point itera-
tion.

Naeem and Lhoták present a fully context-sensitive and
flow-sensitive inter-procedural whole-program analysis for
typestate-like properties of multiple interacting objects [19].
The analysis that Naeem and Lhoták present can be seen
as a generalized version of our own earlier analysis [10].
Naeem and Lhoták’s analysis is fully inter-procedural. This
can yield enhanced precision in cases where combinations of
objects that are relevant to a given specification are used
by multiple methods. Our benchmark set showed some in-
stances where this additional information would have been
helpful, but not many. It even holds that, although our anal-
ysis is intra-procedural only, there are some instances where
our analysis is more precise than Naeem and Lhoták’s. This
is due to the highly context-sensitive points-to sets that we
compute. It is important to note that Naeem and Lhoták
also use shadow histories to determine relevant instrumen-
tation points. Unfortunately, their analysis therefore suf-
fers from the same unsoundness problem that we described
above. Naeem and Lhoták had proven their entire analysis
sound except for the use of shadow histories [18].

It is due to this unsoundness problem that we did not



compare our results to these of Naeem and Lhoták or to
our own earlier results. The results would be incomparable:
an unsound analysis could appear more effective by falsely
ruling out shadows that are actually relevant. It would be
interesting to use Naeem and Lhoták’s abstractions to deter-
mine equivalent states like we do. This would be non-trivial
because in our approach we re-compute all intra-procedural
analysis information after disabling any single shadow. In
an inter-procedural setting this would be too expensive.

Dwyer and Purandare use existing typestate analyses to
specialize runtime monitors [15]. Their work identifies “safe
regions” in the code using a static typestate analysis. Safe re-
gions can be methods, single statements or compound state-
ments (e.g. loops). A region is safe if its deterministic tran-
sition function does not drive the typestate automaton into
a final state. A special case of a safe region would be a region
that does not change the automaton’s state at all—an “iden-
tity region”. For regions that are safe but no identity regions,
the authors summarize the effect of this region and change
the program under test to update the typestate with the
region’s effects all at once when the region is entered. This
has the advantage that the analyzed program will execute
faster because it will execute fewer transitions at runtime.
However, unlike our approach, the author’s analysis does
not aid programmers who wish to inspect their code man-
ually. The fact that the author’s transformation changes
the points at which transitions occur makes it even harder
for programmers to manually inspect these program points.
Dwyer and Purandare’s approach is, although hybrid, not
based on shadow histories and hence we have no reason to
believe that it is unsound. The approach cannot generally
handle groups of multiple interacting objects.

Summary. To summarize, to the best of our knowledge,
our work is the first to present the notion continuation-
equivalent states and an efficient algorithm to computing
such equivalencies. Further, our algorithm is the first sound
static-analysis algorithm that supports combinations of mul-
tiple objects and residual runtime monitors.

7. CONCLUSION
We have presented a precise flow-sensitive and partially

context-sensitive typestate analysis that can handle type-
state specifications that refer to multiple interacting objects,
and which generates residual runtime monitors. Using an
additional backwards pass, the analysis computes classes
of equivalent states and disables transitions between such
states. This two-pass approach allows for precise local rea-
soning directly at relevant program points. Although the
analysis is lightweight and efficient, it is also precise, exactly
telling apart property-violating program locations from ir-
relevant locations in more than half of the cases.
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analysis of multiple interacting objects. In OOPSLA, pages
347–366, October 2008.

[20] Manu Sridharan and Rastislav Bod́ık. Refinement-based
context-sensitive points-to analysis for Java. In PLDI,
pages 387–400, June 2006.

[21] R. E. Strom and S. Yemini. Typestate: A programming
language concept for enhancing software reliability. TSE,
12(1):157–171, January 1986.

[22] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie
Hendren, Patrick Lam, and Vijay Sundaresan. Soot - a java
bytecode optimization framework. In CASCON, page 13.
IBM Press, 1999.


