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Abstract

The relationships between objects in an object-oriented program are an essential property of the
program’s design and implementation. Two previous approaches to implement relationships with aspects
were association aspects, an AspectJ-based language extension, and the relationship aspects library. While
those approaches greatly ease software development, we believe that they are not general enough. For
instance, the library approach only works for binary relationships, while the language extension does not
allow for the association of primitive values or values from non-weavable classes. Hence, in this work
we propose a generalized alternative implementation via a direct reduction to tracematches, a language
feature for executing an advice after having matched a sequence of events. This new implementation
scheme yields multiple benefits. Firstly, our implementation is more general than existing ones, avoiding
most previous limitations. It also yields a new language construct, relational tracematches. We provide an
efficient implementation based on the AspectBench Compiler, along with test cases and microbenchmarks.
Our empirical studies showed that our implementation, when compared to previous approaches, uses a
similar memory footprint with no leaking, but the generality of our approach does lead to some runtime
overhead. We believe that our implementation can provide a solid foundation for future research.

1 Introduction

The relationships between objects are an important property of any object-oriented program and software
architecture, regardless of whether or not aspect-oriented programming is used. These relationships exist
naturally. They become apparent at the latest in the form of design patterns [11] or architectural styles [12].
In most programming languages however, such relationships cannot be explicitly expressed. They rather
have to be encoded via references between the involved objects. This has a fundamental drawback: while
a relationship between objects can (and usually will) have semantics attached, a simple reference does not.
This semantics hence need to be implemented elsewhere, most commonly in the classes of the participating
objects. This may lead to both scattering and tangling [22] of the source code for the given relationship.

Researchers have therefore proposed to implement such high-level relationships with aspects [14]. Yet,
implementations resorting to plain AspectJ exhibit one problem. Although it is relatively easy to implement
the behaviour of a relationship via advice, programmers have to keep track of the state associated with those
relationships manually. This results in a lot of redundant and boilerplate code that distracts from the actual
core logic which the relationship is meant to implement.

Two approaches, association aspects [18, 19] and the relationship aspects library [16, 17], hence try to
improve on this situation, via different approaches. Association aspects implement a language extension to
AspectJ which generates the necessary boilerplate code automatically. Relationship aspects on the other
hand offer a library of generic abstract aspects that provide default implementations for some of the most
commonly used relationships.

While we believe that those implementations do ease software development, they still carry certain
limitations. Association aspects, for instance, do not allow the programmer to associate values of a primitive
type or objects of non-weavable classes. It is common practice to not weave into the Java runtime library.
This implies that no objects of types from this library can be used in associations. However, many of those
types represent data values (e.g. String, Integer, Date, . . . ) and occur naturally in associations.

The relationship aspects library, on the other hand, only supports binary relationships. Along with this
work we expose several examples that relate more than two objects with each other. Hence, we are interested
in a more general solution.

Another approach to abstract from object relations exists, however for an entirely different purpose.
Tracematches [1] allow a programmer to reason about sequences of events which occur during program
execution and involve a given group of objects. For example, a tracematch may automatically raise an
error when an iterator for some collection is advanced although the collection has been updated after the
iterator’s creation [8]. Our own background lies in the design and implementation of a static whole-program
analysis [8] to increase the runtime performance of tracematches.

The fact that both, tracematches and language support for implementing relations via aspects, have to
deal with the same problem of efficiently associating related state, made us think whether it would not be
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possible to implement the one approach using the other and whether or not synergistic effects would arise
when doing so. In this work we show that we can in fact directly implement a variant of association aspects,
coined relational aspects, using tracematches whilst incorporating all of the desired features mentioned in
previous related work. We present such an implementation and furthermore show that this implementation
scheme solves most known limitations of the previous approaches.

Moreover, the careful design of tracematches automatically guarantees for the implementation’s memory-
safety and for fast value look-up through optimized indexing. Finally, the implementation is easily seen to
be correct, assuming a correct implementation of tracematches.

On the other hand, tracematches can gain through the availability of relational aspects. Their combi-
nation yields an entirely new language feature, relational tracematches. A relational tracematch is matched
against sequences of events but only taking into account those events that involve objects that have been
associated with the relationship the aspect represents.

Along with this work, we expose a full implementation of relational aspects and relational tracematches
using the AspectBench Compiler [3], including a variety of test cases and microbenchmarks. The test cases
validate the correctness of the implementation and demonstrate use cases for relational aspects and relational
tracematches. The benchmarks help us to estimate the cost at which our flexible solution comes. Further,
they revealed interesting insights about the importance of finding an efficient yet flexible storage structure.
As our results show, our implementation is memory-safe. While it is less efficient than those presented in
related work, its runtime overhead is still very reasonable. Future optimizations planned for tracematches
promise to increase the efficiency even to the same level as for the other approaches.

Contributions To summarize, in this work we present the following original contributions:

1. a detailed description of the correspondence between the two previously existing language features of
association aspects and tracematches, and the relationship aspects library,

2. an extension to the AspectBench Compiler implementing relational aspects via tracematches,

3. a full account of the important features that come with this implementation scheme, and

4. the first performance study investigating the relative performance of different approaches in the field,
and ours.

We organized the remainder of this paper as follows. In Section 2 we first discuss related work and show
how it motivates our own approach, relational aspects. The syntax and semantics of relational aspects are
given in Section 3, while Section 4 describes in detail their implementation via a reduction to tracematches.
As mentioned earlier, our implementation exposes many useful features and overcomes shortcomings of earlier
approaches. We discuss this in detail in Section 5. One particularly interesting feature is the support of a new
language construct, relational tracematches. Section 6 discusses their syntax, semantics and applications. In
Section 7 we conduct a performance evaluation comparing related work with ours. We conclude in Section
8.

2 Related work

We decided to categorize our related work by the way in which they implement a simple inter-object rela-
tionship, the Observer pattern [11]. This design exemplifies the case where one object is temporarily related
with some others. Specifically, observers can register with a subject to be notified whenever the observable
state of the subject changes. The observers in turn can then update their internal representation of the
subject accordingly.
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2.1 Object-oriented solution by Gamma et al.

The gang-of-four [11] suggested two possible implementations of this pattern in an object-oriented program-
ming language in 1995. Firstly, each subject could store a list of observers that are currently registered
with it. Whenever an operation changing the subject’s observable state is invoked, all those observers are
notified. If many possible subjects exist but only few of them are observed, it might however be too costly
to store a list per subject. Hence, a second possible implementation was proposed, storing subject/observer
associations using a hash table.

Both implementations share the problem that the actual business logic of each subject (which is certainly
not to update its observers) is polluted with code implementing the Observer pattern. While in part this
problem can be solved by having subjects inherit from an abstract Subject class, in languages with single
inheritance this might not be an option.

2.2 AspectJ solution by Hannemann and Kiczales

In 2002, Hannemann and Kiczales [14] demonstrated that this particular design pattern can actually be im-
plemented in a modular way using one single aspect in the aspect-oriented programming language AspectJ.
This implementation eases reasoning about the relationship between registered subjects and observers by
collocating all relevant code in one single unit. However, due to the lack of support for explicitly denot-
ing relations and associations in AspectJ, the aspect still has to keep track of related objects manually.
Hannemann and Kiczales used a hash map for this purpose.

One can argue that from a software-engineering perspective it is desirable to denote relationships between
objects implemented by aspects rather explicitly, eliminating the burden of manual bookkeeping of such
relations. As outlined below, two such approaches have previously been suggested.

2.3 Association aspects by Sakurai et al.

In 2004, Sakurai et al. proposed association aspects [18, 19], a language extension to AspectJ, allowing
programmers to associate objects explicitly via an aspect. For that purpose, the signature of an aspect
was extended. While normally AspectJ allows only for per-this, per-target, per-cflow and per-type-within
instantiation of aspects, association aspects allow a programmer to associate an arbitrary vector of objects
with each other and an aspect instance.

1 abstract aspect TimedObserver perobjects(Subject, Observer) {
2 abstract pointcut subjectChanged(Subject s);
3 long lastNotify;
4

5 TimedObserver(Subject s, Observer o) {
6 associate (s , o);
7 }
8

9 after(Subject s, Observer o) :
10 subjectChanged(s) && associated(s,o) {
11 long delta = System.currentTimeMillis() − lastNotify;
12 if (delta>10000) {
13 o.notify(s );
14 lastNotify = System.currentTimeMillis();
15 }
16 }
17 }

Figure 1: Observer pattern as association aspect

Figure 1 shows one implementation of the Observer pattern in an association aspect. In this example,
each observer is to be notified about the update to each associated subject at most once every 10 seconds.
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In line 1, the aspect TimedObserver declares that it relates a Subject to an Observer. In line 2 it declares an
abstract pointcut that will be triggered on any state change to a subject, exposing the subject itself. In line
3, we store a long value that is supposed to hold the time the last notification took place. Lines 5-7 declare
an aspect constructor. Programmers can explicitly call this constructor in AspectJ code. The constructor
invokes the auto-generated method associate (..) , which associates the constructed aspect instance with the
subject and observer. Then in lines 9-16 the aspect declares a piece of advice that is executed whenever the
subject s is changed but only if s is associated with an observer o. The advice then notifies the observer o

about the state change in s, but only if the last notification of this very observer o about an update to this
very subject s was more than 10 seconds ago. To be clear, this means that the field lastNotify is stored per
association.

In order to associate a concrete subject s1 with an observer o1, client code calls new ObserverAspect(s1,o1).
The constructor then establishes the association via the call to associate (..) .

Association aspects are implemented via an extension to the ajc compiler1 for AspectJ. The compiler
reduces association aspects to normal aspects, augmented with additional code to keep track of those rela-
tionships.

We believe that association aspects implement this Observer pattern very nicely. Consequently, the
implementation we propose is very similar in flavour. The contribution of our work is not to improve on the
syntax or semantics of association aspects but rather to demonstrate how a language feature like association
aspects can be more flexibly implemented using tracematches.

This is because association aspects still suffer from one particularly severe limitation. They store asso-
ciations directly via references introduced to the associated objects. This limits the approach to weavable
classes only. It is not possible to relate objects of non-weavable classes, e.g. Strings or any other class of the
Java runtime library which is not normally woven into. Association of primitive values is also not possible.
As we will later show, our tracematch-based implementation does not suffer from such limitations.

2.4 Relationship aspects library by Pearce and Noble

While Sakurai et al. opted for a compilation-based approach to implementing relations via aspects, in 2006
Pearce and Noble [16, 17] addressed the same problem using a library of generic abstract aspects, the rela-
tionship aspects library. It is written in AspectJ5 which supports generic types as defined for Java5 [13].

Pearce and Noble demonstrated very convincingly how such a library can ease and promote the use of
such a technology in actual AspectJ programs. For instance, apart from “standard” directed binary relations,
their library provides symmetric relationships. We believe that no matter what implementation technique is
used to provide relations via aspects in the back-end, such generic aspects can be useful in their own right,
on top of any such implementation.

Unfortunately, however, some limitations of AspectJ prohibit the general applicability of their approach.
For instance, their SimpleStaticRel aspect, an aspect designed for static relationships where objects are meant
to be associated with each other for longer periods of time, uses inter-type declarations to store associations
between objects. If now multiple relationship types, both sub-aspects of SimpleStaticRel, apply to the same
element type, those inter-type declarations will lead to name clashes, triggering a bug in the ajc compiler2.
Furthermore, their library only supports binary relationships, which to us is a potentially severe limitation
that cannot easily be overcome. To allow up to n-ary relations, one would have to implement at least
o(n) different generic aspects in their library. A specialized compiler like the one for association aspects
can generate such code automatically, taking care to avoid name clashes as well. As we show later on, our
tracematch-based approach does not suffer from these kinds of problems.

1ajc compiler: http://www.eclipse.org/aspectj/
2See bug #120015 at https://bugs.eclipse.org/bugs/ for details.

7



1 abstract pointcut subjectChanged(Subject s);
2

3 tracematch(Subject s, Observer o) {
4 sym register observer after returning:
5 call (∗ Subject. register (Observer)) && target(s) && args (o);
6 sym update subject after:
7 subjectChanged(s);
8

9 register observer update subject+ {
10 o.notify(s );
11 }
12 }

Figure 2: Tracematch implementing the Observer design pattern

2.5 Tracematches

In 2005, Allan et al. [1] proposed an AspectJ language extension called tracematches, but for a purpose other
than associations. Tracematches do not abstract over relationships, but rather over the execution history of
a running AspectJ program. They are implemented using the AspectBench Compiler [3].

Figure 2 shows a tracematch implementing the Observer pattern. For simplicity, timing information is
left out. In line 1, we first specify the same abstract pointcut for updates to subjects as before. Line 3 then
starts the actual tracematch declaration, by first specifying that the tracematch is going to reason about
two objects, a Subject s and an Observer o. Lines 4-7 then set up an alphabet of “symbols”, where each
symbol matches an AspectJ joinpoint. The symbol register observer matches whenever any Observer o is
registered with any Subject s. The symbol update subject in turn matches whenever the Subject s is changed,
as specified through the abstract pointcut. Lines 9-11 then finally hold the so-called tracematch pattern and
the body. The pattern is a regular expression over the alphabet of symbols we just defined. Here, we wish
to match whenever any specific Observer o has been registered with a Subject s and afterwards at least one
update to this subject has been seen. The regular expression (line 9) implements this. In the back-end, the
AspectBench Compiler generates a state machine keeping track of the internal tracematch state, in particular
of partial matches. If multiple observers are registered with the same Subject s, a match will occur for all
those observers. The tracematch runtime will execute the tracematch body for any such match, with s and
o bound to the respective objects. The body so notifies the observer of the change in the subject.

Looking at this tracematch specification, at first it seems very different in style compared to the asso-
ciation aspect from Figure 1. While a tracematch specification has a regular expression and symbols, an
association aspect does not. On the other hand, while an association aspect is explicitly being associated
with a certain combination of objects, in a tracematch this association occurs implicitly, through matching
symbols against a stream of events.

Nevertheless, we noted certain important similarities as well: both association aspects and tracematches
relate a vector of objects among one another. In both models, there is a certain event that triggers a body
of code being executed with variables bound to this vector of objects. Further, in our particular example,
in the case of association aspects we only wish to execute the body for updates on subjects with which an
observer has previously registered. In the tracematch, we model this behaviour via prefixing the regular
pattern with register observer .

Those similarities made us wonder whether or not tracematches actually subsume association aspects
and in particular, whether association aspects could not be implemented via a reduction to tracematches. In
the remainder of this paper we will demonstrate such an implementation and in particular we will describe
how it avoids the aforementioned limitations of previous approaches.
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2.6 Other related work

Here we briefly discuss other related work that did not directly influence our approach but motivates its
importance.

2.6.1 Declarative Object Identity Using Relation Types

Recently, Vaziri et al. [23] reported on the problem of correctly implementing object identity via the methods
equals (..) and hashCode() in Java. As they show in their case study, those methods are hard, if not sometimes
impossible, to implement correctly. As a consequence, they suggest a language feature called relation types
that encodes an equality relationship explicitly and in its own unit of code. The authors suggest a syntax
and semantics very thoroughly tailored to the special purpose of providing a notion of equality. Yet, we
believe that in general this problem could be solved as a special instance of a relational aspect, although
probably not quite as concise. In any case, [23] strongly supports the claim that inter-object relationships
are important in object-oriented programs, equality being one such relationship of special importance.

2.6.2 A relational model of object collaborations

Concurrently, Balzer et al. [6] described a relational model of object collaborations and its use in reasoning
about relationships. The authors do not describe an implementation language for relationships but rather a
specification language that can be used to enforce constraints over those relations. The constraints heavily
rely on member interposition through relations. Interestingly, their “interposed members” are exactly equiv-
alent in semantics to inter-type declarations by (potentially relational) aspects, while their “non-interposed
members” are exactly equivalent to the aforementioned per-association state. Future work could decide
whether their specification formalism can be used to verify constraints over the relational aspects proposed
here.

2.6.3 Dynamic aspect implementation

The aspect-oriented programming community has developed implementations of aspect-oriented program-
ming languages that are more dynamic than AspectJ. JAsCo [21] and CaesarJ [2] are only two examples
of such languages. Composition filters [7] describe a model and language for the dynamic enablement and
composition of aspects. Such dynamic approaches show their strength in providing relatively flexible forms
of aspect deployment and configuration.

3 Syntax and semantics of relational aspects and relational advice

Our syntax and semantics for relational aspects were strongly inspired by the work on association aspects by
Sakurai et al.. Nevertheless, in our approach, we opted for a syntax that is slightly closer to tracematches,
for practical reasons.

3.1 Design decisions with respect to association aspects

Association aspects as proposed by Sakurai et al. introduced the following syntactic and semantic extensions
to AspectJ:

1. Aspect declarations were enhanced to accept a vector of types: A declaration aspect ObserverAspect ...

can be extended to aspect ObserverAspect(Subject,Observer) ... .

2. A new pointcut associated(x 1 ,.., x n) was introduced. This allows to bind the associated objects to
names.
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3. Constructor invocations on aspects were allowed to create an aspect instance and potentially associate
the instance with a vector of objects: new ObserverAspect(s1,o1);

4. An aspect instance is given an implicitly declared delete () method, that revokes the related association.

For relational aspects we chose a style closer to tracematches. In particular, extension (1.) was altered,
so that the aspect header not only takes a list of types but a list of formal parameters, i.e. combinations of
types and names. This comes closer to the syntax and semantics of tracematches, where we have a header
that takes formal parameters which are bound over the lifetime of the tracematch (cf. line 3 of Figure 2).

This way each formal parameter is given a unique name and the associated-pointcut in (2.) becomes
mostly superfluous (see Section 5.8 for details).

Last but not least, we didn’t support the idea of allowing programmers to explicitly call an aspect’s
constructor. This is because in general, AspectJ does not allow to explicitly instantiate aspects. The syntax
and semantics of association aspects break with that convention. We instead opted for a slightly different
approach, using two auto-generated static methods associate (..) and release (..) , as discussed below. These
respectively replace the explicit constructor calls (3.) and the delete () instance method (4.).

In general, however, we wish to emphasize that the focus of this paper is not to discuss the best possible
syntax and semantics for association aspects but their relationship to tracematches.

3.2 Syntax of relational aspects

In summary, relational aspects extend the AspectJ syntax only by two single grammar productions:
extend modifier ::= "relational";

extend aspect declaration ::=
modifiers opt "aspect" "(" formal parameter list ")"
super opt interfaces opt aspect body;

The only newly added syntactic features are the relational modifier and the formal parameter list in the as-
pect declaration. Based on that definition, our parser accepts the relational aspect in Figure 3 as syntactically
correct.

1 relational abstract aspect SimpleObserver(Subject s, Observer o) {
2

3 abstract pointcut subjectChanged(Subject subj);
4

5 relational after(): subjectChanged(s) {
6 o.notify(s );
7 }
8 }

Figure 3: Observer pattern as relational aspect

3.3 Static semantics of relational aspects

Again, this relational aspect implements the Observer pattern. The header hence takes a subject and
an observer as arguments. In contrast to the syntax of association aspects, a relational aspect receives
these arguments directly in the header, as in tracematches. These aspect parameters may be accessed
from any relational advice declaration inside the aspect (and their pointcuts), as if those parameters were
bound variables. (In fact, as the operational semantics will show, we assure that they will be bound when
evaluated.) In the example, the programmer accesses the subject s in the pointcut of the advice. The advice
body accesses both s and any associated observer o. If the programmer needs to access parameter values
from within methods in the aspect, she has to explicitly expose these values to the method, either by passing
them to the method via parameters or by storing them into fields. This scheme allows for automatic garbage
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collection of associated values in cases where their values are not stored by the user (see Section 5.2 for
details).

We extended the type checker to make sure that the keyword relational only occurs in front of aspect
declarations and advice declarations. In addition, we check the following: Relational advice may only occur
inside relational aspects. Parameters may only be given to aspects that are flagged as relational. The
parameter list for a relational aspect may be empty (see Section 5.11 for details). If a relational aspect
extends another aspect, that aspect must also be relational and accept the same parameter types.

Pieces of advice that are not prefixed with the relational modifier use the default semantics for AspectJ.
They may hence not access any aspect parameters.

For any relational aspect RA with parameters (T1 p1 ,..., Tn pn) the compiler declares public static meth-
ods RA.associate(T1 ,..., Tn) and RA.release(T1 ,..., Tn). The first one associates a new vector of objects while
the second one releases it.

The method aspectOf(), as it is usually available for aspects is not available for relational aspects. This
raises the question how a programmer should enumerate all objects bound to a relational aspect and the
aspect instance related to theses objects. Interestingly, the use cases we found so far seem to suggest that in
practice there is no need for such enumeration. Dynamic dispatch on the associated values, as implemented
through relational advice, seems far more important and seems sufficient. Nevertheless, programmers can
opt to simulate explicit look-up methods by implementing special relational advice. We expose an abstract
aspect that implements object look-up this way, along with our implementation.

3.4 Operational semantics of relational aspects

The most interesting question is when exactly a relational advice executes, and if so, under which variable
bindings. Variable names are disambiguated as follows: If a relational advice refers to a name n and there
exists an aspect parameter with the same name, the name represents any value stored in that parameter.
By any we mean that if multiple objects have been associated with that parameter, the advice body will
execute for each such association. Note how this is in sync with the tracematch semantics. If a field of the
same name exists, the programmer has to access this field via explicit qualification with this.

We do not forbid the association of the value null. However, its association will have no effect. To us it
would have no meaning to relate anything to the null value.

Release As mentioned earlier, the programmer further has the possibility to release an association by
calling the release (..) method. If this method is called on a vector v of objects, the association for v (and
all associated aspect state) is dropped. Objects in v can be associated with the same aspect again by calling
associate once again.

Instance fields As in association aspects, we define that instance fields of the aspect exist per association.
This means that for every object vector v associated with a relational aspect, this aspect will have a copy
of each field for each such v. Static fields on the other hand are unique, because they are members of the
underlying class.

This concludes our description of the semantics of relational aspects. Let us now get to the crux of
this paper, where we describe how this semantics can quite easily be implemented via a reduction to trace-
matches.

4 Implementation via tracematches

In the semantics section we noted that a vector of objects v is associated with a relational aspect RA if
associate (v) has been called one or more times, and the last such call was not followed by a call to release (v).
For somebody familiar with tracematches, this immediately reads like a tracematch pattern, because it can
be described by a regular expression over the program’s execution history.
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4.1 A first, simple translation

In the following we give a first, simple translation that is already almost complete. The only feature missing
will be the one of per-association fields. We will get back to this feature in the subsequent section.

Symbol definitions Let us assume that we are given a relational after-advice with a pointcut pc (..) . Then
we can define a symbol “action” as follows:

sym action after: pc (..);

In addition, we define two more symbols, associate and release , that match calls to the respective methods
of the relational aspect.
sym associate after: call(∗ RA.associate (..)) && args(x,y);
sym release after: call(∗ RA.release (..)) && args(x,y);

Here x,y is the vector of variable names induced by the parameter definition in the header of the relational
aspect.

Regular expression Those three symbols define the alphabet {action,associate , release} for the regular ex-
pression of the tracematch. We claim that the following regular expression over this alphabet implements
our desired semantics for relational advice.

associate action+

This is because the pattern matches whenever the original pointcut of the relational advice would have
matched (via the action symbol), but only if a call to associate was seen before, with no call to release in
between. Note that also traces like the following are matched, where release occurs before associate :

action associate release associate associate action

This is because the tracematch semantics define that the regular pattern is matched against each suffix of
the execution trace (see [1] for details). Here, the suffix “associate action” is matched by the pattern, hence
we match after the last action.

Tracematch variables The tracematch formal parameters are the same as the ones originally given to the
relational aspect.

Generic Translation Figure 4 shows the tracematch generated from the simple observer in Figure 3. We
describe the generic translation process while referring to the above example, thus allowing the reader to get
a concrete sense of the process itself.

First, the compiler executes the following steps for each single relational advice.

1. The compiler generates an empty tracematch with the same formal parameters (line 4) as the sur-
rounding relational aspect declaration.

2. It then adds the generic definitions for the two symbols associate and release (lines 5-8), where the
args-pointcut holds the names of the tracematch parameters.

3. The symbol action (line 9) is added with the appropriate advice specification from the original advice
and with the original pointcut (in our example, the after-advice).

4. Further, the compiler adds the generic pattern “associate action+” as well as the original advice body,
which now becomes the tracematch body (lines 11-13).
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1 aspect SimpleObserver{
2 abstract pointcut subjectChanged(Subject subj);
3

4 tracematch(Subject s, Observer o) {
5 sym associate after:
6 call(∗ SimpleObserver.associate (..)) && args(s,o);
7 sym release after:
8 call(∗ SimpleObserver.release (..)) && args(s,o);
9 sym action after: subjectChanged(s);

10

11 associate action+ {
12 o.update(s);
13 }
14 }
15

16 public void associate(Subject s, Observer o){}
17 public void release(Subject s, Observer o){}
18 }

Figure 4: Tracematch implementing the Observer pattern, translated from the relational aspect in Figure 3

The definition of the abstract pointcut remains untouched, as do all non-relational members of the aspect
(line 2). Then, the following steps are executed for each relational aspect.

1. The aspect parameters are removed, as is the relational modifier.

2. All original definitions of relational advice are removed, as now equivalent tracematches reside in the
aspect.

3. Last but not least, the associate and release methods are added.

Note that the body of those methods in 3. can be empty. The methods are just required to provide the
programmer with a name that she can call and which the symbols can match on.

Observe how similar this tracematch implementation is to the one we showed earlier in Figure 2. In
fact, it is almost exactly the same. The only differences are that in Figure 2 we did not take into account
de-association via calls to release , and that in the case of the relational aspect, the observer registers itself
with a subject by a call to the appropriate aspect, not to the subject directly. This strong correspondence
demonstrates that each relational aspect has a natural counterpart in the world of tracematches.

To be clear, we wish to point out that it is not our intent to generate those tracematches and then present
them to the user (who then would have to weave them in turn). We rather implemented this transformation
directly inside the AspectBench Compiler, so that it is hidden from the user. The programmer hence does
not need to know anything about tracematches to use relational aspects.

4.2 The issue of storing state per association

The translation we gave so far is very straightforward and shows a beautiful, complete correspondence
between relational aspects and tracematches. However, there is one language feature, which we consider as
crucial, that has not yet at all been handled: The possibility of storing state per association.

In our introduction of association aspects we pointed out that these allow to store values per association.
In Figure 1 a time stamp was stored, remembering the last time when a specific observer was notified about
an update to a specific subject. In our operational semantics we defined that relational aspects should be
able to use the same feature as well. Every instance field needs a distinct copy per association. This is not
yet satisfied by our translation. So far, we left all non-relational members of the aspect untouched. Since
the resulting aspect is a singleton, there will be exactly one copy of each instance field.
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To correct this, we need to make sure that (1.) we can create aspect instances on-the-fly, (2.) the correct
aspect instance is associated with each association and (3.) we delegate all accesses to this aspect instance
that would otherwise have gone to the “this” receiver.

4.2.1 Creation of aspect instances

In order to create an aspect instance per association, we change the previously empty body of the associate (..)

method to the following definition.
public static SimpleObserver associate(Subject s, Observer o) {

return new SimpleObserver();
}

Note that the creation of an aspect instance via a constructor call is not actually allowed in AspectJ. Hence,
the above code would not compile with a normal AspectJ compiler. However, the implementation of the
associate (..) method is never exposed to the user. Instead, this transformation is done purely in our compiler
back-end, which is naturally free to generate such code.

The resulting aspect instance can then be captured by the tracematch. The code for the observer
tracematch is changed to the following:
tracematch(Subject s, Observer o, SimpleObserver so) {

sym associate after returning(so):
call(∗ SimpleObserver.associate (..)) && args(s,o);

sym associate again after returning:
call(∗ SimpleObserver.associate (..)) && args(s,o);

sym start before:
execution(public static void main(String[]));

...
( start | release ) action∗ associate (associate again∗ action)+ {

We add an additional tracematch parameter so. On association, this parameter is bound to the return value
of the associate (..) method—the newly created aspect instance. We only want to capture the aspect instance
on the first call to associate (..) after program start or after a call to release (..) (on the same values). To
do so, we define an auxiliary symbol associate again that is similar to associate but ignores the returned
aspect instance, and a second auxiliary symbol start , that matches the program start. In result, the regular
expression

( start | release ) action∗ associate (associate again∗ action)+

then leads to the tracematch body being executed whenever action occurs, but only on the first aspect
instance that was associated with the given variable binding after start or release .

4.2.2 Look-up of the correct aspect instance

The correct aspect instance is looked up automatically, simply by the definition of the tracematch semantics.
In the above mentioned code, it would automatically be bound to the variable so.

4.2.3 Delegating to the aspect instance

In order to make the tracematch body access the looked up aspect instance instead of the default “this”
receiver, we must replace all calls to instance methods and all accesses to instance fields by calls to the aspect
instance (in the example, to the object so). On the Java source level, this would be very awkward to do
because we would first have to resolve which accesses and calls are made to “this”(they do not even have to
be prefixed by the qualifier) and then we would have to replace the qualifier accordingly. Instead we opted for
an easier way. The AspectBench Compiler uses an internal representation called Jimple. In Jimple, all field
accesses and method calls are performed only on local variables. A method call foo() is modelled by a load of
the predefined constant @this into a local variable l this , followed by a call to l this . foo(). Furthermore, the
compiler contains a refactoring that assures that only one such variable exists for the entire method body
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and that this variable is initialized in the first line of Jimple code. Hence, all we have to do is apply this
refactoring and then replace the assignment

l this = @this;

by:

l this = so;

The value of so is received from the tracematch implementation, more exactly, the disjunct that holds the
final variable mapping with which the body is to be executed (see [1] and Section 5.2 for details on disjuncts).
That way, any method call or field access that previously would have been performed on the “this” receiver,
is now performed on the associated aspect instance.

5 Feature comparison

In this section we comment on the benefits of implementing relational aspects not directly, but rather through
a transformation into tracematches. As we show here, the resulting implementation automatically inherits
a wealth of features directly from tracematches. Consequently, the implementation is more general than
existing ones. Table I gives an overview of those features and in the following sections, we discuss each
feature in detail. As the table shows, two features of association aspects are currently not supported by our
solution; we comment on those as well.

5.1 Thread safety

Neither association aspects nor relationship aspects are thread safe, as none of them use any synchronization
feature. As a consequence, if any association is updated by multiple threads, this might lead to undefined
behaviour using either approach.

The implementers of tracematches, however, spent a lot of effort on making their implementation not
only thread safe but present a fine-grained locking scheme that allows for a large amount of parallelism. Our
implementation of relational aspects inherits this feature. A relational aspect can hence safely and efficiently
be updated by multiple threads. As our benchmark section will show, providing thread safety comes at a
cost, as there is a non-negligible runtime overhead associated with locking.

5.2 Memory safety via leak elimination

Apart from thread safety, memory safety is also an important issue. What should happen if an object that
is associated with some aspect becomes subject to garbage collection? Should the association be released,
allowing the object to be discarded? Or should the association be strong in the sense that it keeps the object
alive?

We argue that associations should have a weak semantics. If an object becomes subject to garbage
collection this is because it is not any more strongly reachable by any code in the program. Consequently, in
the remainder of the execution no joinpoint could ever be triggered involving the object in question. Hence,
there is no point in keeping the object alive, simply because there is no way of ever referring to it again.

In seldom cases where a relational aspect would still like to strongly reference an associated object, it
can do so by manually storing a strong reference within the aspect. This is much easier than the other way
around, where strong references would be the default and the user would then manually have to resort to
using the java.lang. ref .WeakReference class of the JDK.

Fortunately, because of the way we implemented our relational aspect to tracematch transformation, we
get this weak semantics for free. In recent work, Avgustinov et al. [5] proposed an optimization technique
called leak elimination. This technique addresses the problem of garbage collecting internal tracematch state

15



Association Relationship Relational
Feature (Section)

Aspects Aspects Aspects

implementation compiler/
approach

compiler library
tracematches

storage of ITDs/
association (5.2)

ITDs
Hash maps

Constraints

thread
safety (5.1)

no no yes

memory
safety (5.2)

yes no yes

non-weavable
objects (5.3)

no yes yes

primitive-value
binding (5.4)

no yes yes

per-thread
association (5.5)

no no yes

fast lookup
by indexing (5.6)

yes yes yes

per-association
state (5.7)

yes yes* yes

associated(..)
pointcut (5.8)

yes no no

sharing (5.9) yes no no

n-ary
associations (5.10)

yes no yes

dynamic aspect
enablement (5.11)

no no yes

*to be done manually by the programmer

Table I: Features of the three different implementation strategies (ITD = inter-type declaration)
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through the automatic use of weak references. Their leak elimination algorithm performs a static analysis of
the tracematch state machine, determining for each state which variables must be bound at this state and
which variables must be rebound before reaching a final state from this state. Using this information, weak
references are held to objects at all places where it is allowed by the semantics. (Strong references are still
sometimes necessary, e.g. if a value is used in the tracematch body and is not guaranteed to be rebound
before hitting a final state.) We designed our transformation specifically in such a way that no additional
strong references to associated values are created.

association aspects

relationship aspects
(SimpleStaticRel)

relationship aspects
(SimpleHashRel)

relational aspects

Figure 5: Storage organization for the Observer pattern (s = subject, o = observer, c = constraint, d =
disjunct, a = aspect instance); dashed arrow depicts weak reference

Figure 5 shows the storage organization for our subject/observer example, in all three approaches: as-
sociation aspects, relationship aspects and our implementation of relational aspects. (Relationship aspects
provide different means of implementing associations, SimpleStaticRel and SimpleHashRel.) In order to un-
derstand the rationale for this storage structure, let us reconsider the observer advice, here in the syntax of
association aspects:

after(Subject s, Observer o) :
subjectChanged(s) && associated(s,o) {...}

Note that the pointcut itself binds the value s. Therefore s does not need to be looked up; it is directly
available. However, the implementation does need to look up all associated observers o. In association
aspects, the compiler hence generates a hash map, which is stored as a field in the type Subject via an inter-
type declaration [15]. This hash map has observers as keys. For each observer, it looks up the associated
aspect instance. Note that this implementation is memory-safe. If s ever becomes subject to garbage
collection, it can be collected, because no additional references to s are created. When this happens, all
(strong) references to o held in the association list are collected as well. The observers o, on the other
hand, may not be collected as long as another associated Subject s1 is present. This is because if s1 is
updated, observers o ought to be notified. The implementation of association aspects correctly satisfies
those constraints.

In relationship aspects, things look a little different. Relationship aspects are implemented via a library.
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As opposed to the compiler for association aspects, this library can have no knowledge about the direction of
look-up that is needed. If SimpleStaticRel is used, it soundly over-approximates, providing look-up facilities
in both directions. This is convenient, however, it implies that strong references to both s and o exist.
As a consequence, both have to become subject to garbage collection so that any of them can actually be
collected. In particular, a subject can only be collected when all associated observers are collected. As our
benchmarks show, this can lead to a significant increase in memory usage. Furthermore, this problem is
not easily solvable with a library approach. The SimpleHashRel uses strong references, which is obviously
not memory-safe. Note that just using a SimpleHashRel with weak keys and values would not suffice, as
observers ought to be referenced with strong references. A map with weak keys could do the job, but making
such a choice demands quite a bit of insight from the side of the programmer.

The storage organization for relational aspects looks again different. The automaton state for the action

holds a constraint, which can be seen as a set of so-called disjuncts. Due to the leak elimination analysis, the
disjunct class is generated in such a way that each disjunct holds a weak reference to subjects but a strong
reference to observers (for the same reasons as noted above). Hence, if a subject becomes subject to garbage
collection, it can be collected, yielding a disjunct with an empty slot for s. The next time any transition on
this state is made, the tracematch implementation will see that a slot has become empty and hence discard
the entire disjunct, deleting all strong references to associated observers. As our benchmarks confirm, this
process makes the tracematch-based implementation just as memory-safe as the one of association aspects.
However, in contrast, the tracematch-based implementation may need two rounds of garbage collection, with
an intervening automaton transition, in order to free all possible memory. As [5] showed, the negative effects
of this fact are negligible, though.

5.3 Association of objects of non-weavable classes

The storage organization depicted in Figure 5 exposes one serious implication of the way both association
aspects and the SimpleStaticRel of relationship aspects organize their storage of associations. Both imple-
mentations introduce fields into s and o. But what if the types Subject or Observer are not weavable? Usually,
all types in the Java runtime library are not woven into. This is a frequently recurring issue. In association
aspects, it turns out that there is no way of associating objects from such classes. As verified with their
developers, if one tries to associate a non-weavable class, e.g. a String value, a NoSuchFieldError is thrown
at runtime.

Relationship aspects implement the second relationship type, SimpleHashRel, especially for the purpose
of associating objects of non-weavable types. This relationship aspect would store associations as mappings
from subjects to observers (and the other way around). However, again, this is not memory-safe.

As Figure 5 shows, our implementation of relational aspects does not introduce any new fields onto s or
o. Hence, neither the type Subject nor Observer need to be weavable. Objects of any type can be associated
with relational aspects.

5.4 Associating primitive values

Because of the same reason, it is no problem to associate a relational aspect with primitive values such as
booleans, ints and floats. Very much from the beginning, tracematches [1] already supported the binding
of primitive values. The semantics are based on comparison by value, not by reference. In fact, there is
no reference. Because the code for all disjuncts in tracematches is generated in a strongly typed way, the
generated code uses those primitive types directly. In particular, it does not box the values into objects.
This implies that primitive values cannot be garbage collected. Relational aspects directly inherit this useful
feature.

Figure 6, for instance, shows the implementation of a cache for values of type List, indexed by values of
the primitive type long. A non-relational advice is triggered after a return from a call to factorization (..) ,
which is assumed to take a long time to execute. It captures the return value, a list of long values. This list
is associated with the input number by invoking associate (k,v).
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If factorization (..) is called with a number already assigned, the relational around advice will apply
instead, because the argument then matches the stored key. In this case, we just return the associated
return value. Due to the advice ordering and AspectJ precedence rules and because there is no proceed()

statement, the original joinpoint (the lenghty computation) is not executed and neither is the first piece of
advice.

1 relational aspect LongCache(long key, List value) {
2

3 after(long k) returning(List v):
4 call(∗ Factorization . factorize (long)) && args(k) {
5 associate (k,v);
6 }
7

8 relational Object around(key):
9 call(∗ Factorization . factorize (long)) && args(key) {

10 return value;
11 }
12 }
13 class Factorization {
14 static List factorize (long l) {
15 /∗ compute list of factors ... ∗/
16 return factors;
17 }
18 }

Figure 6: Relational aspect for caching of long values

Because no fields can be introduced to primitive values, neither association aspects nor the SimpleStaticRel

of relationship aspects can bind primitive values. The SimpleHashRel however, is perfectly suited for this
purpose.

5.5 Per-thread and global association

By default, tracematches are instantiated globally. They can also be instantiated per-thread using the
perthread modifier. If this is the case, they only execute if the observed events executed on one and the
same thread. This way, each execution gets its own thread-local scope, which might be useful for some
relational aspects.

Neither association aspects nor relationship aspects support per-thread state directly as a language
feature.

5.6 Fast look-up through optimized indexing

In more recent work Avgustinov et al. proposed [4, 5], two optimization techniques for tracematches, imple-
menting an enhanced code generation. The first of those techniques is called indexing. It addresses the issue
of fast access to the stored tracematch state. Depending on which symbols are most likely to occur on the
execution trace, it might be more beneficial to index on certain tracematch variables than on others.

Some other implementations of runtime monitoring [9] use multiple (i.e. all possible) indexing structures
to look up variable values, similar to the relationship aspects library. However, this naturally increases the
memory footprint of the running program. In [5], the authors propose a heuristic that selects variables for
indexing automatically. However, since it is a heuristic, it does not always yield optimal results. Yet, the
algorithm can be given a clue in the form of an annotation, with the keyword frequent, as to which symbols
are believed to occur frequently on the execution trace.

Luckily, for tracematches implementing relational aspects, the place where such an annotation should go
is very clear. The action symbol will, in virtually all cases, be much more likely to match than the symbols
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associate and release . Hence, we simply add the following line to the tracematch definition, giving the clue
that actions occur more frequently than other symbols:

frequent action;

Association aspects also choose their indexing structure based on the look-up direction. Consequently,
look-up is guaranteed to be fast. A field load to retrieve the hash map, followed by a hash map look-up is
all that is needed to look up the correct aspect instance.

Relationship aspects provide equally fast look-up, by similar means. The only difference is that look-up
data structures are kept in memory for both look-up directions. Although there is never any look-up from
observers to subjects, this association is still stored. As our benchmarks show, this leads to increased memory
usage.

5.7 Per-association state

In Figure 5 we can clearly see that association aspects as well as our relational aspects associate a unique
aspect instance with each single association. This allows for storage of per-association state. Through the
indexing structures, look-up of such state virtually comes for free in terms of runtime.

Relationship aspects support per-association state as well, but in a manner which requires some effort
from the programmer. Some relationships may be given a third parameter, a class which essentially holds
the state of a given association.

5.8 Symmetric look-up

Association aspects allow for a unique feature, the associated-pointcut. This pointcut allows for symmetric
look-up of associated objects. If a pointcut

target(x) && (associated(x,y) || associated(y,x))

is attached to an advice, this advice is executed multiple times, for all cases where x is associated on the
right-hand side or left-hand side of the association aspect.

This feature is currently not supported by our implementation of relational aspects (nor by the rela-
tionship aspects library). However, as Pearce and Noble showed [16], symmetric relationships can simply be
programmed by automatically associating a tuple (y,x) via an advice, whenever associate (x,y) is called by the
programmer. While this comes at a cost of using additional memory for storage, it retains the functionality
of symmetric look-up. We expose such an implementation in the download package for our compiler.

5.9 Sharing

As Sakurai et al. note in [19], association aspects use sharing for look-up tables: If there are two uses of the
associated(..) pointcut which access the same parameters at the same positions, one single look-up suffices
for the evaluation of both pointcuts. Our tracematch-based relational aspects unfortunately do not support
such sharing yet. If the same relational aspect contains n pieces of advice, on a call to associate, association
will happen n times. Further, if different pieces of relational advice share the same joinpoints as actions, at
such a joinpoint, the related aspect instance is looked up multiple times, one time for each match.

We believe that sharing would in fact be very appealing. Indeed, we thought about sharing before, on
the general level of tracematches. Tracematch definitions that share common joinpoints could be evaluated
in common by merging their finite state machines. As so often, the devil is in the details and such sharing
would largely complicate the tracematch code generation. Hence, we leave this feature to future work.
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5.10 n-ary associations

The relationship aspects library does not support general n-ary relations for n 6= 2. This is likely due to
the fact that one would have to implement at least o(n) different generic aspects in their library in order to
allow up to n-ary relations. Since the implementations of both association aspects and relational aspects are
based on code generation, such scalability issues do not exist. The appropriate data structures are generated
for any n > 0.

5.11 Dynamically enabled aspects via nullary associations

A special case is the nullary association. At AOSD 2005, there was a “Birds of a Feather” session on per-
instance aspects, where the issue was raised that at the very least, AspectJ should have a means of enabling
or disabling aspects at runtime3. Right now, AspectJ does not support dynamic enablement of advice. This
shortcoming is frequently being worked around by guarding all pointcuts of pieces of advice that should be
dynamically enabled with a prefix “ if (b) &&” where b is a static boolean field.

Relational aspects allow for dynamic disablement by associating/releasing the empty object vector of
length 0. By declaring a relational aspect with an empty parameter list, one gets an aspect in which all
relational advice are disabled by default. After a call to associate (), all those pieces of advice are enabled, a
call to release () disables them again. In this case, instance fields of the aspect automatically exist exactly
once, as is usually the case for AspectJ aspects that are declared as singleton (the default in AspectJ).

Association aspects do not allow for the association of an empty vector. They cannot do so because
associations are stored on objects. If there is a nullary association, which object should the association be
stored on? In relational aspects, the association is stored in the disjunct, as implemented by the standard
operational semantics for tracematches [1]. Since the relationship aspects library only allows for binary
relations, it also has no support for dynamically enabled aspects.

This concludes our feature comparisons of relational aspects with previous approaches. As we saw,
many synergistic effects arise from implementing relational aspects via tracematches, yielding a plethora
of useful features and immense flexibility. As we show now, we can even define a new language feature, a
relational tracematch, that combines the possibility of explicit object association with the usual benefits of
trace matching.

6 Relational tracematches

We wish to motivate relational tracematches by an example. Assume we have a caching concern, similar to
the one addressed in Figure 6. The cache in that figure is very basic. Every key/value pair that is cached
until the program shuts down. However, in many applications a cache might have to be invalidated, e.g.
because the cached computation depends on some globally accessible value that recently changed.

This situation can be expressed as a tracematch pattern. We want to return a cached object if (1) it
has been cached before, (2) it is about to be computed/created again and (3) in between, the cache has not
been invalidated. Figure 7 shows a relational tracematch that makes use of this observation. It caches String
creation via the flyweight pattern [11]. For the sake of simplicity we here assume that the String constructor
takes a single argument that uniquely defines the String’s content.

Line 1 holds the header of a relational aspect declaring that it associates an object (the parameter)
with a String value. The non-relational advice in lines 3-6 implements the association necessary for the
cache: Whenever a String is created, this String is associated with the parameter that was passed into the
constructor. As mentioned before, the programmer should be able to invalidate the cache. Hence, we provide
a method stub invalidate () in line 8. Lines 10-16 finally hold the actual relational tracematch. Because its
last symbol is an around-symbol, it declares a return type —String— in line 10. Note that, also in line 10,
it declares no input parameters. This is because the relational aspect parameters key and value are already

3See Adrian Colyer’s blog at http://www.aspectprogrammer.org/blogs/adrian/2005/03/perinstance_asp.html for more

details.
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1 relational aspect Cache(Object key, String value) {
2

3 after(Object k) returning(String v):
4 call(String.new(..)) && args(k) {
5 associate (k,v);
6 }
7

8 static void invalidate() {}
9

10 relational String tracematch() {
11 sym invalidate before: call(void Cache.invalidate());
12 sym create around(key): call(String.new(..)) && args(key);
13 create {
14 return value;
15 }
16 }
17 }

Figure 7: Aspect with relational tracematch caching String creation, allowing for invalidation

visible in the tracematch and no other values need to be accessed. Line 11 declares the symbol invalidate

matching calls to the respective method. Line 12 declares the symbol create matching the actual String
creation. This symbol will only be matched if the argument at that joinpoint was already associated as key.
The tracematch body is defined in lines 13-15. It simply states that when a create occurs (on associated
values!) we return the appropriate value.

6.1 Semantics of relational tracematches

The semantics of relational tracematches naturally follow from the ones of tracematches and relational
advice. A relational tracematch executes whenever its non-relational counterpart executes, but only if all
bound values have actually previously been associated.

While a non-relational tracematch is evaluated over each suffix of the entire execution trace, a rela-
tional aspect, associated with an object vector v, is evaluated on the sub-trace starting at the first call to
associate (v), and ending at the first call to release (v) thereafter.

6.2 Implementation

The implementation of relational tracematches is a generalization of the one of relational advice. A relational
tracematch is reduced to a non-relational one by the following steps:

• Add to the tracematch parameters the parameters of the declaring relational advice. Further, add the
auxiliary parameter for holding per-association state.

• Add symbols associate , associate again , release and start in the same way as for relational advice.

• For each around-symbol s, add a before-symbol named s before with the same pointcut.

• If r is the original regular expression of the relational tracematch, replace r as follows.

1. Let rs be the shuffle of r and associate again∗, i.e. the copy of r where any primitive symbol s in
r was replaced by “associate again∗ s”.

2. Let rs na be the copy of rs where every occurrence of an around-symbol s was replaced by s before

(see above).

3. Let syms na be the disjunction of all symbols of the non-relational tracematch’s pattern, again
with around-symbols s replaced by s before .
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4. Let skip be the disjunction of all other declared symbols of the non-relational tracematch.

5. Then finally replace r by the following regular expression:
( start | release | skip) syms na∗ associate (rs na)∗ rs

• Transform the tracematch body to refer to the auxiliary state variable instead of “this”, as before for
relational advice.

Step 1 takes care of properly ignoring redundant associations of already associated values. Step 2 establishes
a necessary invariant for around-symbols (see [1]): An around-symbol must only occur in the final position
of a regular expression. Step 4 is necessary to allow spurious events between start or reset and the first
association thereafter. Figure 8 shows the non-relational aspect induced by the relational aspect in Figure
7.

Because of the tracematch’s scope, a call to invalidate () indeed invalidates the cache in our example. For
instance, assume that a program calls this method after an association, and then triggers “create”. This
would give us the following trace.
{start}
{associate , associate again}
{ invalidate}
{create , create before}

Note that the regular expression does not match any suffix of this trace, with no variable binding. Now
assume that the program performs another association, followed by another “create” event. This leads the
new trace:
{start}
{associate , associate again}
{ invalidate}
{create , create before}
{associate , associate again}
{create , create before}

Note now that the regular expression matches the partial suffix trace
invalidate create before associate create .

6.3 Relational advice are special relational tracematches

It is interesting to note that in the same way as an advice is a special case of a (very simple) tracematch,
a relational advice is a special case of a relational tracematch. Indeed, our compiler extension implements
relational advice not quite as previously stated in Section 4 but rather by first converting the relational
advice into an equivalent relational tracematch that has only one symbol, action, and a regular expression
of the form “action”. This relational tracematch is then converted using the above mentioned procedure.

7 Performance Evaluation

After we realized how much flexibility we could gain by implementing relational aspects via tracematches,
we were naturally interested in the question at which cost this level of flexibility would come. As we saw
in Section 5, most flexibility comes from the unique storage organization that is intrinsic to tracematches.
However, this storage organization uses more indirections than the ones of the other two existing approaches.
Therefore we would assume an increased runtime cost.

We conducted the following experiment to determine the runtime cost and memory efficiency that is
induced by each of the three implementations, association aspects, the relationship aspect library and rela-
tional aspects using tracematches. Because of the different limitations of the various approaches depicted
earlier in Figure I, we had to choose a simple example aspect that can be implemented with all three ap-
proaches. In [18, 19], Sakurai et al. use an Equality relation (originally pointed out by [20] as a concern
for systems integration) that keeps two Bit objects equal by associating them with a special instance of the
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1 aspect Cache {
2

3 after(Object k) returning(String v):
4 call(String.new(..)) && args(k) {
5 associate (k,v);
6 }
7

8 static void invalidate() {}
9

10 String tracematch(Object key, String value) {
11 sym associate after:
12 call(∗ SimpleObserver.associate (..)) && args(s,o);
13 sym associate again after returning:
14 call(∗ SimpleObserver.associate (..)) && args(s,o);
15 sym start before:
16 execution(public static void main(String[]));
17 sym release after:
18 call(∗ SimpleObserver.release (..)) && args(s,o);
19 sym invalidate before:
20 call(void Cache.invalidate());
21 sym create around(key):
22 call(String.new(..)) && args(key);
23 sym create before before():
24 call(String.new(..)) && args(key);
25 ( start | release | invalidate ) create before∗
26 associate (associate again∗ create before )∗
27 associate again∗ create {
28 return value;
29 }
30 }
31

32 /∗ definition of methods associate/release omitted ∗/
33 }

Figure 8: Non-relational aspect induced by relational aspect with relational tracematch from Figure 7
(auxiliary state variable and frequent-annotation omitted)
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aforementioned Observer aspect. A set(), respectively clear () operation is invoked on the one bit whenever
the other one is set/cleared. Although this is an easy aspect which can be implemented in association aspects
and our relational aspects, it cannot easily be implemented using the relationship aspects library because it
uses per-association state. A Boolean flag is set whenever a particular association was updated, to break an
otherwise possibly infinite recursion. Although this could be manually worked around with the relationship
aspects library, we thought that this would have been an unfair comparison. Hence, we opted for an easier
aspect that only propagates equality from the left to the right, having only the right associated bit act as
an observer of the left associated bit. Figure 9 shows the relational aspect implementing this functionality.

1 relational aspect Equality(Bit b1, Bit b2) {
2 relational after(): call(public void Bit.set()) && target(b1) {
3 b2.set ();
4 }
5 relational after(): call(public void Bit.clr()) && target(b1) {
6 b2.clr ();
7 }
8 }

Figure 9: Relational aspect implementing “directed equality”

Because of its simplicity, this benchmark might seem not representative for large programs. However, we
wish to note that this benchmark excessively exercises the dispatch of relational advice, which we consider
the main functionality of relational aspects, association aspects and the relationship aspects library. If one
took a larger program as a benchmark, the relative overhead of this dispatch would certainly be smaller, not
larger.

Our benchmark driver class first tests the correct functionality of the advice implementation by associating
three different bits with the aspect and then updating and checking their values. It then executes 100,000
warm-up rounds. In each round, each bit is set and then cleared again (and the aspect propagates those
changes to the associated bits). We then execute the same loop 30 times, which gives us 30 different timing
values.

To measure the memory consumption, we then associate 10,000 auxiliary bits with the aspect, on its left-
hand side. Those bits actually only need weak references. Hence, they should usually not lead to increased
memory consumption. We then execute the previous loop another 30 times.

Experiments were performed on an AMD Athlon(tm) 64 X2 Dual Core Processor 3800+ with 4GB RAM.
For execution we used the Java HotSpot(TM) 64-Bit Server VM (build 1.6.0-rc-b104) in mixed mode and
with standard heap size.

As mentioned in Section 5.1, our relational aspects are the only thread-safe approach because it is the
only one that uses locking. This locking comes at a cost. To measure the amount of runtime overhead caused
by our locking scheme, we ran our implementation twice, one time with a special version of our runtime
library that uses no locking, and one time with our normal runtime library. For the relationship aspect
library we used the SimpleStaticRel. In [16] it was shown that it is generally faster than SimpleHashRel.

7.1 Runtime overheads

Figure 10 shows the running times of the entire benchmark. We averaged over the last 20 of each 30 rounds.
The error bars show the 95% confidence intervals. The Figure shows four groups of two bars. Each two bars
reflect the measurement without and with the 10,000 auxiliary bit objects present. As we can see, association
aspects are fastest with the relationship aspects library being slightly slower. Our own tracematch-based
implementation is relatively far off. Without locking it is almost 10 times slower than association aspects,
with locking about 14 times. As we can see, locking is an important factor, however larger runtime also
arises without locking.

We did some profiling to find out why this is so. We found that about 25% of all our runtime overhead
is spent in calls to Reference.get(), which is due to our uses of weak references. However, as we showed in
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Figure 10: Running times in milliseconds for association aspects (aa), relationship aspect library (ral) and
relational aspects (raj, with and without locking)

Section 5.3, the use of such weak references is the only way to implement a memory-safe storage model for
objects of non-weavable classes. We conclude that at least this amount of overhead is the necessary cost one
has to pay for an approach that offers such a degree of flexibility. The rest of the overhead is due to the
more general and hence more complicated storage structures tracematches use. After all, tracematches were
not designed with relational aspects in mind.

Despite the fact that our approach executes around 10 times slower than association aspects, it still
executes very fast. Note that 100,000 rounds of six relational advice executions each all execute in under
one second! This means that even with locking enabled the cost of one single relational advice dispatch and
execution is only slightly above 16 microseconds. We believe that any overhead in this order of magnitude
is negligible for a programming language feature residing on such a high level of abstraction.
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Figure 11: Memory consumption in Kilobytes for association aspects (aa), relationship aspect library (ral)
and relational aspects (raj, with and without locking)
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7.2 Memory consumption

Figure 11 shows the maximal memory consumption for the same eight runs. Association aspects use about
184Kb. The relationship aspects library uses about 192Kb without the auxiliary 10,000 bits present. This
slightly higher overhead is caused by the bidirectional storage organization as it was shown in Figure 5.
Our own implementation using tracematches uses again slightly more memory, around 250Kb in total. The
increased usage is here due to the fact that the tracematch state machine has to store disjuncts.

The only real reason to worry is however the fourth bar, showing the overhead for the relationship aspects
library with auxiliary bits present. As anticipated, the implementation is not memory-safe. Although no
external strong references to the auxiliary bit objects exist, those objects cannot be garbage collected, neither
can their association. This quickly fills up memory.

Discussion We conclude that although relational aspects are slower than existing approaches they seem
fast enough. The implementation proves memory-safe.

A full implementation of our approach is available at

http://www.aspectbench.org/

along with all raw data, test cases and benchmarks that we used.

8 Conclusions

In this work we presented relational aspects, a new AspectJ language extension. Their semantics are very
similar to related work on association aspects. However, the implementation we present is based on a
reduction to tracematches, another AspectJ language extension, designed for matching on a program’s
execution history.

As we showed, this implementation scheme yields several benefits over existing implementations. It is the
only one that combines important features of thread safety, memory safety, per-association state and binding
of primitive values or values of non-weavable classes. Furthermore, our implementation yields a new high-
level language feature, relational tracematches. On the other hand, one feature present only in association
aspects, sharing of look-up structures, was identified as a useful future optimization for tracematches and
our implementation of relational aspects.

Several benchmarks allowed us to compare previous approaches by other researchers with each other and
with our own one. Profiling allowed us to give a detailed account about the reasons for relative slowdowns
and increases in memory use. The results showed that, quite naturally, the increased flexibility does come
at some runtime cost. Yet, we conclude that the resulting implementation is efficient enough for production
use.

We believe that our implementation provides a solid foundation for future research in the field, by
ourselves and others. In particular, we are interested in a large-scale case study for future work.
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