IDE 2.0: Collective Intelligence in Software Development

*
Marcel Bruch, Eric Bodden, Martin Monperrus, and Mira Mezini
Software Technology Group
Department of Computer Science
Technische Universitat Darmstadt, Germany
{bruch,bodden,monperrus,mezini}@cs.tu-darmstadt.de

ABSTRACT

Today’s Integrated Development Environments (IDEs) only
integrate the tools and knowledge of a single user and work-
station. This neglects the fact that the way in which we
develop and maintain a piece of software and interact with
our IDE provides a rich source of information that can help
ourselves and other programmers to avoid mistakes in the
future, or improve productivity otherwise. We argue that,
in the near future, IDEs will undergo a revolution that will
significantly change the way in which we develop and main-
tain software, through integration of collective intelligence,
the knowledge of the masses. We describe the concept of an
IDE based on collective intelligence and discuss three exam-
ple instantiations of such IDEs.

1. INTRODUCTION

Under the right circumstances, groups are re-
markably intelligent and are often better than
the smartest person in them.

— James Surowiecki: Wisdom of the Crowds

During the past decades, software systems have grown sig-
nificantly in size and complexity, making software develop-
ment and maintenance an extremely challenging endeavor.
Integrated Development Environments (IDEs) greatly fa-
cilitate this endeavor by providing a convenient means to
browse and manipulate a system’s source code and to obtain
helpful documentation on Application Programming Inter-
faces (APIs). Yet, we argue that there is great space for
improvement by exploiting collective intelligence, the knowl-
edge of the masses.

The leveraging of user data to build intelligent and user-
centric web-based systems, commonly summarized as the
Web 2.0, is the source of our inspiration. A Web 2.0 site al-
lows its users to interact with each other as contributors to
the website’s content, in contrast to websites where users are

*This work was supported by CASED (www.cased.de).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FoSER 2010, November 7-8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

limited to the passive viewing of information that is provided
to them. Web 2.0 examples include web-based communi-
ties, web applications, social-networking sites, video-sharing
sites, wikis, blogs, mashups, and folksonomies.

Amazon, for instance, creates recommendations based on
purchase behaviors of its customers or finds interesting sim-
ilar products based on how customers interact with search
results. Netflix, a video-on-demand service, features a web
application that leverages user ratings on movies to recom-
mend likely interesting movies to other users. These sys-
tems have in common that they leverage crowds to continu-
ously improve the quality of their services, either through
implicit feedback (e.g., user click-through behaviors), ex-
plicit feedback (e.g., ratings for movies) or user-generated
content (e.g., product reviews and movie critics).

Today’s IDEs behave more like traditional “Web 1.0” ap-
plications in the way that they do not enable their users to
contribute and share their knowledge with others, neither
explicitly nor implicitly, and thus hinder themselves to effec-
tively exchange knowledge among developers. What would
it mean to bring collective intelligence into software devel-
opment? Figure la shows the current state of the practice:
software developers use IDEs that are “integrated” only in
the sense that they integrate all tools necessary to browse,
manipulate and build software on a single machine. If a pro-
grammer has a question about a particular piece of code, for
instance an API, she has to browse the web for solutions—
by hand. After she has found the solution and solved her
problem, the newly gained knowledge is usually lost.

Figure 1b shows our vision of the near future: IDEs will
support developers through integration with a global knowl-
edge base. This knowledge base will receive information
from implicit and explicit user feedback. By implicit feed-
back we mean anonymized usage data that the cross-linked
IDEs will send to the knowledge base automatically and
spontaneously (in the figure, we represent such spontaneous
activity through dashed arrows). The knowledge base will
also comprise explicit user feedback in the form of user-
written documentation, error reports, manuals, etc. In this
work, we will show that such data can help, for example, to
improve ranking heuristics, or to focus developer activity.

Crucially, the knowledge base itself is intelligent: it will
use novel data-mining techniques to integrate the different
sources of information to produce new information that has
added value. For instance, if the knowledge base discovers
that people who write an equals method in Java often write
a hashCode method on the same type at the same time, or do
so after a longer debugging session, then the knowledge base

interact with

search & browse

document

interact with

(a) Presence: Isolated IDEs, manual search

interact with

suggest, notify < \

collect

& make aware /
/
' usage data
S \ search, query,
e vote &
,/ contribute
. i
mine ; Knowledge
1

data | Base --a

' suggest, notify

*. & make aware
\

-y \
\ \
collect Y
document usage data ‘*
!

interact with

(b) Future: An integrated, pro-active knowledge base

Figure 1: Our vision: in the future, IDEs will be linked through global knowledge bases

may be able to discover the important rule that, in Java,
every type that implements equals should also implement
hashCode, and that missing this rule likely causes bugs.
The remainder of this paper is organized as follows. In
Section 2, we materialize IDE 2.0 by discussing example in-
telligent IDE services that leverage implicit and explicit user
feedback to aid programmers in everyday software-develop-
ment tasks. We show that not only feedback data itself but
in particular derived information, obtained through data
mining, has the potential of greatly easing the software-
development process as a whole. Moreover, as the data is
persisted, it will survive over time, unlike today, where much
information gets lost and needs to be re-discovered over and
over again. In Section 3, we materialize IDE 2.0 by drawing
parallels between the main characteristics of IDE 2.0 and
those of Web 2.0. Finally, Section 4 summarizes the paper.

2. FROM IDE 1.0 TOWARDS IDE 2.0

In the following we give three examples of how research in
collective intelligence can improve existing IDE services. We
split the discussion of each example into three sections. IDE
1.0 sections describe the state-of-the-art in today’s IDEs.
Under IDE 1.5, we briefly summarize current research to
improve IDE 1.0 services. IDE 2.0 sections discuss how
collective intelligence could solve some of the issues of these
approaches.

Intelligent Code Completion

IDE 1.0: Code completion is a very popular feature of
modern IDEs, a life without which many developers find
hard to imagine. One major reason for its popularity is
that developers are frequently unaware of what methods
they can invoke on a given variable. Here, code completion
systems (CCSs) serve as an API browser, allowing develop-
ers to browse methods and select the appropriate one from
the list of proposals. However, current completions are ei-

ther computed by rather simplistic reasoning systems or are
simply hard-coded. For instance, for method completion,
CCSs only consider the receiver’s declared type. This often
leads to an overwhelming number of proposals. Trigger-
ing code completion on a variable of javax.swing.JButton
results in 381 method proposals. Clearly, developers only
need a fraction of the proposed methods to make their code
work. Code templates are an example for hard-coded pro-
posals. Templates (like the Eclipse SWT Code Templates)
serve as shortcuts and documentation for developers. Un-
fortunately, manual proposal definitions are labor intensive
and error prone.

IDE 1.5: Researchers have recognized these issues. For
instance, approaches exist that analyze client code to learn
which methods the clients frequently use in certain contexts,
and rearrange method proposals according to this notion
of relevance [4,8,14]. Tools like XSnippet, Prospector and
Parseweb [13,16,18] attempt to solve the issue of hard-coded
code templates by also analyzing source code, identifying
common patterns in code. Although obviously useful, these
systems didn’t make it into current IDEs. We argue that the
primary reason for this is the lack of a continuously growing
knowledge base. To build reliable models, source-code based
approaches require example applications and full knowledge
about the execution environment (i.e., classpath, library ver-
sions etc.). However, finding a sufficiently large set of ex-
ample projects is difficult and tedious, and creating models
for new frameworks is too time-consuming yet. While such
approaches can sufficiently support a few selected APIs, we
argue that they do not scale when tens of thousands of APIs
should be supported.

IDE 2.0: So, how can we build continuously improv-
ing code completion systems then? To solve the scalability
problem, code completion systems must allow users to share
usage information among each other in an anonymized and
automated way—from within the developer’s IDE. This con-

tinuous data sharing allows recommender systems to learn
models for every API that developers actually use. IDEs
are very powerful when it comes to extracting information:
they have access to information about the execution envi-
ronment and about user interactions, even with respect to
certain APIs. But the new, massive data sets derived from
this information pose a challenge. We will likely require new
algorithms to find reliable and valuable patterns in this data.
Whatever means future code completion systems will use to
build better recommendation models, the systems will be
based on shared data. It will be the users who provide this
data, and it is important to realize that, as the user base
grows, the recommendation systems will be able to continu-
ously improve over time, making intelligent completions that
are useful for novice developers and experts alike.

Example & Code-Snippet Recommendations

IDE 1.0: Source-code examples appear to be highly use-
ful to developers, whenever the documentation of the API
at hand is insufficient [15]. This is evident by the raise of
several code search engines (CSEs) over the last few years,
like Google Codesearch, Krugle, and Koders, just to name a
few. However, current CSEs almost exclusively use standard
information-retrieval techniques that were developed for text
documents. While source code is text, it also bears impor-
tant inherent structure. Disregarding this structure causes
less effective rankings and misleading code summaries.

IDE 1.5: Researchers have presented a number of ap-
proaches [1,5,6,10,11,17,19] that improve certain aspects
of CSEs. All these approaches exploit structure, like inheri-
tance relations, method calls, type usages, control flow and
more, however they face two severe problems. First, source
code provides much more structure than text. Thus, ranking
systems have to take into account many more features when
building the final ranking for a search query. Consequently,
it is hard to derive optimal weights for these features, so
that the resulting scoring function will perform as well as
possible. Often, a fixed scoring system will perform ”well
enough” but not be optimal. Another issue with current
CSEs is that they ignore the personal experience of the user
who issued the query. Many current web search engines now
support “personalized search”, which leverages the personal
background and interests of a user to find documents that
are likely to be interesting for this user, but not necessarily
for others. Current CSEs lack such functionality.

IDE 2.0: How can one improve ranking and realize per-
sonalized search in CSEs? The key to solving both problems
is to leverage implicit user feedback. To solve the manual-
weight-tweaking problem of search engines, recent work [7]
has shown that leveraging observations of how users interact
with the search results can significantly improve the preci-
sion of existing search engines. The authors used the infor-
mation whether or not the user inspects a search result to
automatically adjust feature weights. This produces an op-
timized ranking where all inspected results are listed above
those that the user did not investigate. To implement per-
sonalized code search engines, one can infer the personal
background (or experience) of a developer by the code she
has already written. Then, CSEs could first display code
examples that are similar to examples previously explored
or, on demand, code examples that allow the developer to
learn new information. We are certain that IDE services in

general, not only those that we discussed, can greatly benefit
from leveraging implicit user feedback.

Extended Documentation

IDE 1.0: Software engineers widely accept that document-
ing software is a tedious job. Especially open-source projects
frequently lack sufficient resources to produce comprehen-
sive documentation. Both Sun and the Eclipse Foundation
recently started to address this problem by opening their
documentation platforms to their users. Eclipse asks its
users to provide and update tutorials at the central Eclipse
Wiki. Sun’s “Docweb” allows users to edit Javadoc API
documentation, and to provide code examples or cross ref-
erences to other interesting articles in the web. These tools
aim to leverage a Wikipedia-style approach tailored to soft-
ware documentation. Past experience has shown, however,
that such systems often suffer from a lack of user partici-
pation. We believe that the primary cause for this lack of
participation is the fact that people may not be willing to
document APIs which they have no control over, because
these APIs may change rapidly at any time: they may be
completely outdated in just a few months.

IDE 1.5: Recent research therefore addresses the prob-
lem from another angle, enriching existing documentation
with automatically mined documentation [3,9,12]. Such ap-
proaches identify frequent patterns or interesting relations
in code, and generate helpful guidelines from these relations.
However, generated documentation may not always be help-
ful. Like text mining, documentation mining uncovers any
relation between code elements, no matter whether or not
this relation is useful to consider. The problem is aggravated
by the fact that it is sometimes the surprising relations that
are the most useful. Another drawback of mining approaches
is that they cannot provide rationales for their observations,
leaving it up to the developer to make sense of the data.

IDE 2.0: How could collective intelligence address the
issues mentioned above? The key to a solution is a mixture
of explicit user feedback and user-provided content. In the
future, we expect generated documentation to be judged by
thousands of users, enabling people to evaluate the quality of
their services immediately—tool developers and documenta-
tion providers alike. Furthermore, we expect collective intel-
ligence to enable us to migrate documentation from older to
newer versions more easily. For example, when a new version
of an API becomes available, explicit user feedback will make
apparent which parts of the documentation remain valid for
the newer version and which parts require updating. Ex-
plicit user feedback will also allow users to attach rationale
to mined documentation, allowing the documentation to not
only state that users must follow a certain principle but why.

These examples are just the tip of the iceberg. We are
confident that the software engineering research community
will invent many more interesting techniques to generate,
judge, and complete documentation.

3. FROM WEB 2.0 TO IDE 2.0

We have used the analogy to “Web 2.0” to indicate that
this new generation of web applications and our view of fu-
ture IDEs have something in common. In the following,
we discuss the similarities between Web 2.0 and IDE 2.0 to
make this analogy more concrete.

We define a set of principles that we expect successful
IDE 2.0 services to follow. Some of the concepts are para-

phrased from Tim O’Reilly’s principles for successful Web
2.0, described in his article “What is Web 2.07”.

1. The Web as Platform. The web as platform is the
core concept of Web 2.0. In various ways, clients and servers
share data over the web. We expect the same to hold for
future collaborative IDE 2.0 services. These services rely on
client-side usage data and thus, the web is also fundamental
to them. A notable difference between IDE 2.0 and Web 2.0
is that IDEs offer a much larger spectrum of data and also
allow for client-side pre-processing of data like static analy-
sis code analysis. Such pre-processing may even be crucial
to allow for proper privacy. Furthermore, one needs to dis-
tribute to clients recommendation models that are built on
the server-side. Local databases or caches can increase the
scalability of these systems; crucial, when dealing with mil-
lions of request per day. Whatever the particular technology
may be, the web will be the platform for IDE 2.0.

2. Data is key. Data is key to any IDE 2.0 service.
However, here we fundamentally differ from Tim O’Reilly’s
understanding of who owns this data. In Web 2.0, data
is the key factor for the success of an application over its
competitors. In contrast, we strongly believe in Open Data:
all collected data is publicly available. This fosters a vi-
tal ecosystem around the concepts of IDE 2.0 and enables
sustainable research. Successfully IDE 2.0 services will use
both raw data and derived knowledge and will facilitate in-
novation instead of locking in data or users.

3. Harnessing Collective Intelligence. Leveraging
the wisdom of the crowds is the third fundamental concept
of successful Web 2.0 applications—and same holds for IDE
2.0. The examples introduced in the previous section used
either user-provided content (like source code, updated doc-
umentation or code snippets), implicit feedback (like user
click-through data used to improve rankings), or explicit
feedback (like ratings for judging the quality of relevance
of generated documentation) to build new kind of services.
It is important to recognize that, while individuals may be
able to build these services, these services cannot unleash
their potential without the crowds sharing their knowledge.
Only with collective intelligence, IDE services like intelli-
gent code completion, example recommenders or even smart
documentation systems become possible. Yochai Benkler’s
work about commons-based peer production [2] gives inter-
esting insights into what motivates individuals to contribute
to projects like IDE 2.0.

4. Rich User Experiences. The appearance of AJAX
gave web applications a new look and feel, bringing web ap-
plications much closer to desktop applications than ever be-
fore. In the context of IDE 2.0, intelligent, context-sensitive
recommender systems will evolve that recommend relevant
APIs or documentation where appropriate and help to re-
duce the clutter in IDEs at the same time. However, provid-
ing rich user experiences is fundamental for users to accept
such services. Similar to Google Search, simple and intuitive
interfaces seamlessly integrated into existing IDE concepts
like code completion, quick fixes etc. are the major key to
success.

5. Lightweight Programming Models. In web 2.0,
mashups (applications that combine several other (web) ap-
plications to build new services on top of existing ones)
evolved, building new services the application developers
never considered. Excellent IDE 2.0 services will encour-
age others to build their services on top of existing ones by

providing public and easy-to-use APIs. Clearly, in the early
days we expect such services to be data-driven, i.e., they
will leverage the same data for enhancing several aspects
of current IDEs or to port existing services to other IDEs.
Note that Open Data is necessary to enable such services.
However, over time, services will use other services to build
what we call IDE mashups.

4. SUMMARY

The concepts behind Web 2.0 are a great fit for future
IDE services and we expect future services to meet at least
one if not almost all of these properties.

However, the Software Engineering research community
has to play a key role in unleashing the full power of the
crowds. First, and most importantly, it has to provide an
appropriate environment for building and evaluating IDE
2.0 services. Strong partners like the Eclipse Foundation
or Sun/Oracle already support and promote such new IDE
concepts today, and their help will be crucial to providing
access to large user communities in the future. But there
is an incentive for these partners: they will profit from new
ezciter features, making the IDE itself appear very innova-
tive.

Second, the Software Engineering research community is
the connective link between practitioners and researchers
in machine learning. Most IDEs only contain instances of
rather primitive machine-learning algorithms. It will be our
job to identify the problems that developers face in their
day-to-day work, to provide appropriate data as input for
machine learners, and to evaluate and reintegrate these re-
sults into IDEs. Thus, IDE 2.0 research will create new
fascinating and challenging applications of machine learning
aside the current markets.

To sum up, IDE 2.0 services have much potential to im-
prove developer productivity and provide a fantastic play-
ground for new algorithms. They bring together several re-
search communities at the same time, to solve a new gener-
ation of challenges in software engineering. When tackling
the problem now and in a farsighted, IDE 2.0 will be one of
the major research areas of the near future.

S. REFERENCES

[1] Sushil Bajracharya, Joel Ossher, and Cristina Lopes.
Searching api usage examples in code repositories with
sourcerer api search. In Workshop on Search-driven
Development: Users, Infrastructure, Tools and
Evaluation (SUITE). ACM, 2010.

[2] Yochai Benkler. The Wealth of Networks: How Social
Production Transforms Markets and Freedom. Yale
University Press, 2006.

[3] Marcel Bruch, Mira Mezini, and Martin Monperrus.
Improving the quality of framework subclassing
directives. In Working Conference on Mining Software
Repositories (MSR), 2010.

[4] Marcel Bruch, Martin Monperrus, and Mira Mezini.
Learning from examples to improve code completion
systems. In Symposium on the Foundations of
Software Engineering (FSE), pages 213-222, 2009.

[5] Raphael Hoffmann, James Fogarty, and Daniel S.
Weld. Assieme: finding and leveraging implicit
references in a web search interface for programmers.

10

[11]

[12]

In Annual Symposium on User Interface Software and
Technology (UIST), pages 13-22. ACM, 2007.

Reid Holmes and Gail C. Murphy. Using structural
context to recommend source code examples. In
International Conference on Software Engineering
(ICSE), pages 117-125, 2005.

Thorsten Joachims. Optimizing search engines using
clickthrough data. In International Conference on
Knowledge Discovery and Data Mining (KDD), pages
133-142, 2002.

Mik Kersten and Gail C. Murphy. Using task context
to improve programmer productivity. In Symposium
on the Foundations of Software Engineering (FSE),
pages 1-11, 2006.

Jinhan Kim, Sanghoon Lee, Seung won Hwang, and
Sunghun Kim. Towards an intelligent code search
engine. In AAAI Conference on Artificial Intelligence,
2010.

Otévio Augusto Lazzarini Lemos, Sushil Krishna
Bajracharya, and Joel Ossher. Codegenie: a tool for
test-driven source code search. In International
Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA),
pages 917-918. ACM, 2007.

Erik Linstead, Sushil Bajracharya, Trung Ngo, Paul
Rigor, Cristina Lopes, and Pierre Baldi. Sourcerer:
mining and searching internet-scale software
repositories. Data Min. Knowl. Discov., 18(2), 2009.
Fan Long, Xi Wang, and Yang Cai. API hyperlinking
via structural overlap. In Symposium on the
Foundations of Software Engineering (FSE), pages
203-212, 2009.

(13]

(14]

(15]

(16]

(17]

(18]

(19]

David Mandelin, Lin Xu, Rastislav Bodik, and Doug
Kimelman. Jungloid mining: helping to navigate the
api jungle. In Conference on Programming Language
Design and Implementation (PLDI), pages 4861,
2005.

R. Robbes and M. Lanza. How program history can
improve code completion. In International Conference
on Automated Software Engineering (ASE), pages
317-326, 2008.

Martin Robillard. What makes APIs hard to learn?
the answers of developers. IEEE Software,
26(6):27-34, 2009.

Naiyana Sahavechaphan and Kajal Claypool.
Xsnippet: Mining for sample code. In International
Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA),
pages 413-430, 2006.

Renuka Sindhgatta. Using an information retrieval
system to retrieve source code samples. In
International Conference on Software Engineering
(ICSE), pages 905-908. ACM, 2006.

Suresh Thummalapenta and Tao Xie. Parseweb: a
programmer assistant for reusing open source code on
the web. In International Conference on Automated
Software Engineering (ASE), pages 204-213, 2007.
Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong
Mei. MAPO: Mining and recommending API usage
patterns. In Furopean Conference on Object-Oriented
Programming (ECOOP), pages 318-343, 20009.

