
Racer: Effective Race Detection Using AspectJ

Eric Bodden
Sable Research Group

McGill University
Montréal, Québec, Canada

eric.bodden@mail.mcgill.ca

Klaus Havelund
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA, USA

klaus.havelund@jpl.nasa.gov

ABSTRACT
Programming errors occur frequently in large software sys-
tems, and even more so if these systems are concurrent. In
the past researchers have developed specialized programs to
aid programmers detecting concurrent programming errors
such as deadlocks, livelocks, starvation and data races.

In this work we propose a language extension to the aspect-
oriented programming language AspectJ, in the form of three
new pointcuts, lock(), unlock() and maybeShared(). These
pointcuts allow programmers to monitor program events
where locks are granted or handed back, and where val-
ues are accessed that may be shared amongst multiple Java
threads. We decide thread-locality using a static thread-
local objects analysis developed by others. Using the three
new primitive pointcuts, researchers can directly implement
efficient monitoring algorithms to detect concurrent pro-
gramming errors online. As an example, we expose a new
algorithm which we call Racer, an adoption of the well-
known Eraser algorithm to the memory model of Java.

We implemented the new pointcuts as an extension to the
AspectBench Compiler, implemented the Racer algorithm
using this language extension and then applied the algorithm
to the NASA K9 Rover Executive. Our experiments proved
our implementation very effective. In the Rover Executive
Racer finds 70 data races. Only one of these races was
previously known. We further applied the algorithm to two
other multi-threaded programs written by Computer Science
researchers, in which we found races as well.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Monitors

General Terms
Algorithms, Languages, Reliability, Verification

Keywords
Race detection, runtime verification, aspect-oriented pro-
gramming, semantic pointcuts, static analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’08,July 20–24, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-59593-904-3/08/07 ...$5.00.

1. INTRODUCTION
Programming errors occur frequently in software systems

and therefore researchers have spent much effort on develop-
ing methods to detect and remove such errors as easily and
early as possible in the development process. Concurrent
programs are even more likely to suffer from programming
errors, as concurrent programming adds potential sources
of failure. In a concurrent program a programmer has to
make sure to avoid deadlocks, to properly protect shared
state from data races and to protect single threads or pro-
cesses from starvation. Researchers have developed special-
ized static and dynamic analyses to aid programmers with
these tasks [4,5,16,23,28–30,35,42,43].

All these approaches share one common concern. They
identify events of interest, such as the acquisition and release
of locks or the access to shared state. Static approaches
analyze source locations that trigger those events at run-
time. Dynamic approaches instead intercept those runtime
events directly, as the program under test executes. Up to
now, most existing approaches use their own means to detect
those events, through some form of program analysis and,
in the dynamic approach, through program transformation.

In this work we propose an aspect-oriented approach to
the problem, by exposing a language extension to the aspect-
oriented programming language AspectJ. Aspect-oriented
programming allows programmers to use predicates, called
pointcuts, to intercept certain events of interest at runtime.
In AspectJ, the events that can be intercepted are mostly
restricted to method calls, field accesses and exception han-
dling. The language extension which we propose enhances
AspectJ with three new pointcuts, to make available to the
programmer three additional kinds of events: (1) the acqui-
sition of a lock, (2) the release of a lock and (3) the event of
reading from or writing to a field that may be shared among
threads.

For instance, the following pointcut captures the event
of locking on object l: lock() && args(l). A programmer
can capture the converse event of unlocking l by writing
simply writing unlock() && args(l). Setting a potentially
shared field on an object o is captured via the pointcut
set(!static ∗) && target(o) && maybeShared().

Matching the first two pointcuts against a given program
is decidable. The problem of matching the maybeShared()

pointcut is however generally undecidable. We therefore
compute a sound over-approximation using a static thread-
local objects analysis [27]. The approximation assures that
every access to a field that is indeed shared will be matched
by the pointcut. Because of the over-approximation, the

1

pointcut may however also match accesses to fields that are
not actually shared, i.e. are only accessed by a single thread.

Using these three novel pointcuts, programmers can im-
plement bug finding algorithms for concurrent programs very
easily. The lock() and unlock() pointcuts allow a program-
mer to uniformly act on any acquisition and release of a lock
using synchronized blocks and methods in any Java pro-
gram. The programmer can use the maybeShared() point-
cut to gain runtime efficiency by monitoring accesses to only
those fields that may be shared among threads.

To demonstrate the feasibility of the approach, we im-
plemented the three novel pointcuts as an extension to the
AspectBench Compiler [6]. To show how programmers can
make use of this language extension, we adopted a special
version of the Eraser race detection algorithm [36] to Java,
which we call Racer. Both Eraser and Racer detect pro-
gram executions with a very high potential for a data race.
We then applied the aspects implementing the Racer algo-
rithm to a test harness of the NASA K9 rover and two other
multi-threaded programs written by Computer Science re-
searchers. Our results show that the algorithm is effective
in finding data races. In the NASA code Racer found 70
races, 69 of which were previously unknown, although ex-
tensive studies had been performed on the K9 rover code
before. In the other two programs we found, respectively,
six and seven races.

The main contributions of this work are:

• a description of three novel AspectJ pointcuts, lock(),
unlock() and maybeShared(),

• an implementation of these pointcuts in the Aspect-
Bench Compiler, in case of the maybeShared() point-
cut through a static whole-program analysis,

• a novel algorithm for race detection in Java, coined
Racer, and an implementation using the three novel
AspectJ pointcuts, and

• experiments that show that our implementation is ef-
fective in efficiently finding data races in a test harness
of the NASA K9 rover and two other benchmark pro-
grams.

2. EXAMPLE PROGRAM
In Figure 1 we show an example program that exposes

a data race. The class Task holds static fields shared and
shared_protected, as well as an instance field not_shared.
Within its run method each task prints the value of each
field, incrementing its value. The programmer protected
access to the field shared_protected by synchronizing on
the object Task.class. The program’s main method creates
two Task objects and runs each of them in a separate thread.

Both threads execute concurrently, without any synchro-
nization. The program accesses the field shared_protected

correctly because the programmer protected accesses to this
field by consistently locking on the Task.class object. Ac-
cesses to not_shared may occur unprotected because every
thread accesses the field of a different Task instance, and
therefore accesses a memory location different from the one
accessed by the other thread. However, the program ac-
cesses the field shared through both threads thread1 and
thread2, without proper synchronization—a data race.

Algorithms that wish to detect such data races or similar
programming errors in concurrent programs generally need

1 class Task implements Runnable {
2

3 static int shared;
4 static int shared protected;
5 int not shared;
6

7 public void run() {
8 System.out.println(shared++);
9 synchronized(Task.class) {

10 System.out.println(shared protected++);
11 }
12 System.out.println(not shared++);
13 }
14

15 public static void main(String[] args) {
16 Task task1 = new Task();
17 Task task2 = new Task();
18 Thread thread1 = new Thread(task1);
19 Thread thread2 = new Thread(task2);
20 thread1.start ();
21 thread2.start ();
22 }
23 }

Figure 1: Example program exposing a data race

to capture two types of events, (1) locking and unlocking
a particular object, and (2) accesses to fields, particularly
fields that are accessed through different threads. Tradi-
tionally, bug detection tools would instrument the program
under test (e.g. the one from Figure 1) to emit these events
at runtime. A special runtime environment would then mon-
itor the events and a report programming error as the error
is detected. Programming the automated instrumentation
packages that are usually used for those purposes is a tedious
and time consuming task.

3. ASPECTJ LANGUAGE EXTENSION
Aspect-oriented programming is a programming style that

allows programmers to implement special “crosscutting con-
cerns” in a modular way and then combine these concerns
with a base program through a process called weaving. Re-
searchers have identified [19,38] long ago that runtime mon-
itoring for bug detection is one such crosscutting concern.
Some bug detection tools nowadays therefore instrument
programs by generating aspects in an aspect-oriented pro-
gramming language, for instance AspectJ for Java-based
programs or AspectC for programs written in C. The bug
detection tools then weave these aspects into the program,
using a standard compiler.

Up until now it was however not possible to develop bug
detection tools based on aspects that would detect program-
ming errors related to concurrency. This is because tradi-
tional aspect-oriented programming languages do not allow
a programmer to detect lock and unlock events in their pro-
grams. Therefore, many bug detection tools for concurrent
programming resort to low level bytecode instrumentation
libraries that are relatively cumbersome to use. In this sec-
tion we describe how we extended AspectJ to eliminate this
shortcoming. Further, we describe how to implement and
use another language extension, the maybeShared() point-
cut. This pointcut allows programmers to match on accesses
to fields that are potentially shared amongst threads. This
may in most cases be more efficient than monitoring accesses
to all fields in a program.

2

3.1 The pointcuts lock() and unlock()
When writing a concurrent Java program, a programmer

has nowadays multiple ways to implement a locking pol-
icy. For example with Java 5, Sun introduced the new
library java.util.concurrent, which exposes classes like
ReentrantLock. A programmer locks and unlocks in-
stances of ReentrantLock by invoking methods on the lock
itself. The programmer can easily intercept such events us-
ing AspectJ’s method call pointcuts.

In general, another style of locking is however much more
pervasive: the use of synchronized blocks and methods.
As we showed in lines 9-11 of Figure 1, programmers can
use synchronized blocks to protect a region of code with a
certain object that serves as a lock. Program control only
enters this region when it can successfully acquire a lock on
the given object (in Figure 1 on Task.class). The lock is
automatically released when control leaves the block (either
by throwing an exception or by normal flow). This way,
locks are automatically ensured to be properly nested. For
convenience, programmers can also flag methods with the
synchronized modifier.

Using regular AspectJ, programmers can write pointcuts
to match on method modifiers, and therefore can pick out
calls to synchronized methods. However, it is not possible
to match on the acquisition and release of locks using syn-
chronized blocks. This prevents researchers from using As-
pectJ to implement bug detection algorithms for concurrent
programs. Our proposed lock() and unlock() pointcuts
overcome this shortcoming.

Syntax and semantics.
The pointcut lock() matches whenever the program ac-

quires a lock, by entering either a synchronized block or
method. The pointcut unlock() matches whenever control
flow leaves such a block or method. A programmer can ex-
pose the object that is locked, respectively unlocked by con-
joining the lock(), respectively unlock() pointcut with an
args(..) pointcut. Figure 2 shows two example advice at-
tached to lock() pointcuts that execute before, respectively
after successful acquisition of a lock. The pointcut args(l)
binds the variable l to the object that is locked on. Note
that the declared type of l is TaskQueue. Because of that,
the pieces of advice do not execute if a lock is claimed that is
not of type TaskQueue. Our implementation does not even
insert instrumentation into those places of the program at
all. If the programmer instead wishes to match on any lock
that is acquired or released, regardless of the lock’s type, she
can use the declared type Object, as this is the super-type
of all reference types.

The Technical Report version of this paper [11] gives more
details about our concrete implementation of both lock()

and unlock() pointcuts.

1 before(TaskQueue l): lock() && args(l) {
2 System.out.println(”About to acquire a lock on ”+l);
3 }
4

5 after(TaskQueue l): lock() && args(l) {
6 System.out.println(”Successfully acquired a lock on ”+l);
7 }

Figure 2: Logging lock acquisition with our AspectJ lan-
guage extension

3.2 The pointcut maybeShared()
We named the third and last pointcut of our AspectJ ex-

tension maybeShared(). This is because it matches all field
accesses (reading or writing) that may be shared, i.e. whose
field may be read from or written to by multiple threads.
The word “may” here suggests that the semantic definition
of this pointcut is somewhat fuzzy. This is however not the
case. We can rigorously define the semantics of this pointcut
through the following two invariants.

1. The pointcut maybeShared() matches only field read
or write statements.

2. If a statement reads from a field or writes to a field
and this field is read from or written to by multiple
threads (through this and/or other statements), then
maybeShared() matches this statement.

Note that the second invariant is unidirectional. In other
words, maybeShared() is required to match accesses that are
indeed shared, but it may also match other field accesses.
The crucial point is that this over-approximating definition
enables sound optimizations for many algorithms that at-
tempt to find programming errors in concurrent programs
at runtime.

By the definition of maybeShared(), one sound implemen-
tation of this pointcut would be to match all field read or
write statements in the entire program. Algorithms making
use of the maybeShared() should take this into account and
therefore not rely on certain statements not being matched.
Our Racer algorithm for example (Section 4) works cor-
rectly with such an implementation. However, the purpose
of the maybeShared() pointcut is of course to make it match
only as many statements as necessary but as few statements
as possible. For instance, in our running example (Figure 1),
we would like to match the field accesses in lines 8 and 10 but
not 12, because the field in line 12 is not shared among differ-
ent threads. With such an implementation, a programmer
can conjoin maybeShared() with other pointcuts to gain an
implementation that is automatically optimized by focusing
on shared field accesses. For instance, the following point-
cut, taken from our Racer implementation, is guaranteed
to match all statements where a shared static field is set. It
could further match some write accesses to static fields that
are not shared, i.e. which only one thread accesses.

pointcut staticFieldSet():
set(static ∗ ∗) && maybeShared();

In the following we expose an efficient implementation of the
maybeShared() pointcut that uses a static whole-program
analysis to make it match fewer unshared field accesses than
the unoptimized implementation.

3.2.1 An effective implementation
The implementation of maybeShared() that we expose in

our abc compiler uses a compiler feature called reweaving.
First we use the compiler to weave our Racer implemen-
tation (and/or any other aspects present), containing the
maybeShared() pointcuts, into the program under test. To
prepare the weaving, abc first matches all pointcuts against
all statements in the program and so generates a “weaving
plan”, containing instructions about which aspect code to
weave where. Then abc performs the actual weaving ac-
cording to this plan. In a next step, we analyze all field

3

access statements in this weaving plan using a thread-local
objects analysis of the entire woven program. The thread-
local objects analysis tells us which objects are definitely
thread-local, i.e. not read from or written to by multiple
threads. We then alter the weaving plan to not match the
maybeShared() pointcut at statements which read from or
write to such thread-local objects. In a last step we undo
the initial weaving procedure, i.e. we un-weave the wo-
ven program to restore its original code, and then reweave
the program using the optimized weaving plan. In result,
maybeShared() does not match any field access where our
thread-local objects analysis was powerful enough to prove
thread-locality of the field being accessed.

Thread-local objects analysis.
The thread-local objects analysis we use is not a contri-

bution of this paper. It was developed by Halpert et al. for
the purpose of component-based lock allocation. In their pa-
per [27], the authors describe the approach in detail (Section
3 there). We here only outline the analysis process.

The thread-local objects analysis runs in different stages.
First, the analysis builds a call graph for the entire program.
It also uses the flow-insensitive points-to analysis in Spark
[33] to build points-to sets. An analysis can use points-to
sets to statically estimate whether two variables may point
to the same objects.

In a second stage, Halpert et al. create information-flow
summaries for every reachable method in the program. The
summaries describe how data, in particular objects, may
flow from a method’s parameters to its return value or to
other methods.

The actual thread-local objects analysis (TLO) then exe-
cutes as a third stage. To quote Halpert et al., “TLO clas-

sifies all fields as either thread-local or thread-shared, where

any field that may be accessed by more than one thread is

thread-shared and all others are thread-local.” The analysis
inspects one thread creation site t at a time. First, the anal-
ysis enumerates all methods that may be executed through t.
Then the analysis flags every field accessed by a method ex-
ternal to t as thread-shared. All other fields are classified as
thread-local. A similar classification applies to method pa-
rameters. If a method outside t calls a method m, then m’s
parameters are considered thread-shared, otherwise thread-
local.

In a next step, the thread-local objects analysis makes
use of the information-flow analysis to propagate informa-
tion about shared fields through methods. Whenever the
information-flow analysis indicates that a shared value may
flow to a field that, until now, was classified as thread-local,
the analysis changes this classification to thread-shared. The
process is then repeated with the new classification until the
analysis reaches a fixed point.

Lastly, an interprocedural stage propagates this informa-
tion along method calls, again until a fixed point is reached.
This stage also combines the information for all the differ-
ent threads to a common data structure. In result, when the
programmer queries the thread-local objects analysis for a
field f , the analysis reports this field as thread-local only if
it has not been classified as thread-shared for any thread.

The thread-local objects analysis is demand-driven; query-
ing it on fewer variables will decrease the analysis time. We
query the analysis for any field access that is matched by a

maybeShared() pointcut, but only after the rest of the point-
cut matching has completed. For instance, the pointcut

set(static ∗ ∗) && maybeShared()

matches only writes to static fields. If the programmer ap-
plies this pointcut to the example program from Figure 1,
then we only query the thread-local objects analysis for the
fields shared and shared_protected because not_shared is
non-static and therefore the value of maybeShared() does
not matter. This “lazy querying” makes the approach rela-
tively efficient, as the thread-local objects analysis may be
queried comparatively sparsely.

4. RACER ALGORITHM
To demonstrate how to use our AspectJ language exten-

sion, we implemented a novel algorithm called Racer, a
variant of the Eraser algorithm for data-race detection by
Savage et al. [36]. The goal of Racer is to detect the poten-
tial for data races at runtime, just as in Eraser. Therefore
Racer has some parts in common with the Eraser algo-
rithm. However, its semantics is closer to Java’s memory
model [26] and, as we will see, Racer therefore can detect
data races in Java programs that Eraser would miss.

4.1 Lock sets
Both algorithms keep lock sets, as follows. The idea is

to maintain for each field f a set of candidate locks L(f).
At each point of a program execution, the set L(f) con-
tains the lock objects that all threads could agree on using
when accessing the field f so far. We qualify a field by its
owner. For a static field f of a class C we maintain a lock
set L(C.f), for an instance field f of an object o we maintain
the set L(o.f). Our implementation uses weak identity hash
maps to implement this mapping. Such maps compare keys
on object reference identity (opposed to equality). This is
necessary because we wish to store different lock sets for dif-
ferent objects, regardless of whether these objects are equal
according to the equals(..) method. Further, these maps
automatically dispose of entries whose key got garbage col-
lected. This is to prevent our implementation from causing
memory leaks. Note that this form of memory management
is sound. If an object o gets garbage collected, no thread
can access its fields any more. Therefore, no field of o can
be part of a race on the remainder of the execution.

As the program under test starts up, lock sets are as-
sumed to hold “all possible objects”. As there is no way
to enumerate all those objects, we use a special marker set
to implement this semantics. Furthermore we maintain one
lock set LT (t) for each thread t. At any time, it holds the
locks currently owned by t. One AspectJ aspect, Locking,
keeps track of these lock sets using a thread-local variable,
as we show in Figure 3. Because Java’s locks are reentrant,
we use a bag instead of a set. In lines 3-6 we declare the
thread-local variable locksHeld and initialize it to an empty
bag. Then, whenever the program claims a lock l, we add
this lock to the bag of the current thread (lines 8-11). When-
ever the program releases a lock l, we remove it from the
bag (lines 13-17). (The conjunct“&& Racer.scope()” avoids
the pointcuts from matching within our own Racer imple-
mentation and therefore avoids potential infinite recursion.)
As the reader can see, this way of implementation is very
direct. No additional instrumentation phase is necessary, as
the AspectJ weaver takes care of the entire weaving process.

4

1 public aspect Locking {
2

3 ThreadLocal locksHeld = new ThreadLocal() {
4 protected synchronized Object initialValue() {
5 return new HashBag();
6 } };
7

8 before(Object l): lock() && args(l) && Racer.scope() {
9 Bag locks = (Bag)locksHeld.get(); //thread−local copy

10 locks .add(l);
11 }
12

13 after(Object l): unlock() && args(l) && Racer.scope() {
14 Bag locks = (Bag)locksHeld.get(); //thread−local copy
15 assert locks .contains(l);
16 locks .remove(l);
17 }
18 }

Figure 3: Aspect bookkeeping thread-local lock sets

An additional advantage of using AspectJ is that we could
easily modify the Locking aspect to take other kinds of lock-
ing into account. For instance, if ReentrantLocks were used
(see Section 3), we could just extend the pointcuts in Figure
3 with an additional conjunct, e.g. replacing line 8 by:

1 before(Object l):
2 (lock() && args(l) ||
3 call(void ReentrantLock.lock()) && target(l))
4 && Racer.scope() { ...

This allows researchers and programmers to be very flexible
in the choice of locks and how they are required.

Whenever the program under test accesses a field, a sec-
ond aspect, Racer, is notified. We show the essential parts of
this aspect in Figure 4. The aspect first declares four differ-
ent pointcuts that match reads and writes from, respectively
to, static fields and instance fields (lines 3-10). Note that
we use the maybeShared() pointcut because we are not in-
terested in accesses to fields that cannot possibly be shared
amongst threads.

Two pieces of advice follow. The first, in lines 12-17, exe-
cutes right before a static field is written to. The advice first
extracts the field’s name, the declaring class and the source
location from the special constant thisJoinPointStatic-

Part. The combination of declaring class and field name
makes up our qualified field name C.f . We use the source
location to be able to tell the programmer where a field was
accessed, if this access is part of a race.

The constant thisJoinPointStaticPart is generated by
the AspectJ compiler and holds all statically available in-
formation about the intercepted point in program execu-
tion (the joinpoint). Because this information is statically
available, the compiler implements an optimized compilation
strategy to generate this constant. Any use of thisJoin-

PointStaticPart is therefore very efficient. In addition we
wish to note that, although we access information about the
monitored field, we never access the field itself. Therefore,
our own implementation cannot itself cause a data race in
the base program1.

1Our Racer implementation could however have data races
within its own code. We therefore applied a copy of Racer

to Racer itself [10] to validate that there were no races in
our implementation. We found none.

1 aspect Racer {
2

3 pointcut staticFieldSet():
4 set(static ∗ ∗) && maybeShared();
5 pointcut fieldSet(Object owner):
6 set(!static ∗ ∗) && target(owner) && maybeShared();
7 pointcut staticFieldGet():
8 get(static ∗ ∗) && maybeShared();
9 pointcut fieldGet(Object owner):

10 get(!static ∗ ∗) && target(owner) && maybeShared();
11

12 before(): staticFieldSet () && scope() {
13 String id = getId(thisJoinPointStaticPart);
14 Class owner = getDeclaringClass(thisJoinPointStaticPart);
15 SourceLocation loc = getLocation(thisJoinPointStaticPart);
16 fieldSet (owner,id,loc);
17 }
18

19 before(Object owner): fieldSet(owner) && scope() {
20 String id = getId(thisJoinPointStaticPart);
21 SourceLocation loc = getLocation(thisJoinPointStaticPart);
22 fieldSet (owner,id,loc);
23 }
24 ...
25 }

Figure 4: Aspect updating per-field lock sets on field access

We then call the method fieldSet(..) to actually regis-
ter the field write event, as follows. The Racer aspect asks
the Locking aspect for the lock set LT (t) of the currently
executing thread. Then, Racer refines the lock set L(C.f)
of the field with LT (t):

L(C.f) := L(C.f) ∩ LT (t)

This is because, if the programmer uses a lock consistently

to protect the field C.f , meaning it will remain in L(C.f)
during all refinements, then this lock in fact protects all
accesses to C.f .

The second piece of advice in lines 19-23 of Figure 4 per-
forms the same update for instance fields, this time with the
owner as the field’s qualifier instead of the declaring class.
The aspect furthermore contains two other pieces of advice
that register reading field accesses in the very same manner,
with the same updates to the fields’ lock sets (not shown).

Once a lock set for a field becomes empty, this means that
the programmer used no consistent lock for this field over
the entire execution of the program. If the field is shared
among threads, this indicates a high potential for a data
race.

4.2 State machine
The updates to lock sets presented so far are identical to

the updates that Savage et al. described in the Eraser al-
gorithm [36]. As Savage et al. point out however, this simple
locking discipline is too strict. For instance (1) it should be
okay for a variable v’s lock set to become empty if this vari-
able is only ever accessed by one thread. Furthermore (2)
one should not report potential for read-read races, as such
races can never lead to inconsistent visible data. Because
the Eraser algorithm was originally developed for C pro-
grams it even dealt with another idiom, (3) where variables
are frequently initialized without holding a lock (and in C
it is commonly safe to do so).

Savage et al. took care of these constraints by framing
the state machine shown in Figure 5a around the lock set

5

Virginstart

Exclusive-
Modified(t)

Shared

Shared-
Modified

write(t)

read(*)

write(t), read(t)

read(t′), t′ 6= t

write(t′), t′ 6= t

read(*)

read(*), write(*)

write(*)

(a) Eraser state machine

Virginstart

Exclusive(t)

Exclusive-
Modified(t)

Shared

Shared-
Modified

read(t)

write(t)

read(t)

write(t), read(t)

write(t)

read(t′), t′ 6= t

write(t′), t′ 6= t

read(t′), t′ 6= t

write(t′), t′ 6= t

read(*)

read(*), write(*)

write(*)

(b) Racer state machine

Figure 5: Eraser and Racer state machines; dashed states do no lock refinement; double-lined states report race potential

refinement algorithm from Sub-section 4.1. One stores one
instance of this state machine for every monitored variable.
Each variable initially starts in a Virgin state. Once the vari-
able is initialized by a thread t, it is confined to t by moving
into state Exclusive-Modified(t)2. While in this state, the
variable is considered in (3) its initialization phase—t may
write to and read from the variable. Lock sets only begin to
be refined when another thread t′ accesses the variable, en-
tering the state Shared respectively SharedModified, an in-
dication that property (1), single-threaded access, does not
hold. To avoid (2) reporting potential for read-read races
Eraser only signals potential for a race if a lock set be-
comes empty while in state SharedModified, not in Shared.

As noted above, Eraser grants an explicit initialization
phase for each variable—a phase which is assumed safe. This
approach is very reasonable in C. In Java the situation is
different, however. In Figure 6 we give a subtle example
of unsafe un-synchronized field accesses even during object
initialization. We adapted the example from Brian Goetz’s
book on Java concurrency [24]. The class constructor creates
an object of an anonymous inner class which it then regis-
ters as an event listener. The problem is that as soon as
this registration has happened, the doSomething() method
may be executed by the event dispatch thread of Sun’s Ab-
stract Window Toolkit (AWT), as this thread takes care of
notifying event handlers. Furthermore, the method has ac-
cess to its parent ThisEscape object, via an implicit this

reference. However, this object has not yet been fully con-
structed. Therefore, according to the revised Java Memory
Model [26], if this listener were to access for instance the
field i, it would not be clear, which value it would read. We
have just witnessed a very subtle data race. We believe that
in particular such subtle data races are very hard to find
and hence should be reported by our tool, just as any other
race. As our experiments in Section 5 will show, quite many
data races may fall into this category. Because many tools

2This state was called Exclusive in [36] but the name
Exclusive-Modified(t) suits our comparison better.

1 class ThisEscape {
2 int i ;
3

4 ThisEscape(EventSource source) {
5 source. registerListener (
6 new EventListener() {
7 public void onEvent(Event e) {
8 doSomething(e);
9 }

10 }
11);
12 i = 42;
13 }
14 ...
15 }

Figure 6: Constructor letting an implicit reference to this

escape to the AWT event dispatch thread; c.f. [24], page 41

for Java imitate C-based algorithms like Eraser, in some
Java programs such races went undetected for years.

For Racer we therefore decided that we would still like
to refrain from reporting variables that are (1) accessed by
a single thread only, or (2) expose only potential for read-
read races. However, following the Java Memory Model,
we decided to drop property (3), i.e. Racer does not as-
sume a variable’s initialization as safe. Initialization instead
has to occur while holding a suitable lock. In Figure 5b we
show a state machine that follows these design decisions. In
contrast to Eraser, Racer refines lock sets immediately,
not only after a second thread has accessed the variable.
Furthermore, through the new state Exclusive(t), we regard
sequences “read(t) write(t′)” as an indication for a possible
race, because without proper synchronization this sequence
could just as well have been “write(t′) read(t)”, given a dif-
ferent scheduling order. In this case the write performed by
t′ would not necessarily be visible to t. The Exclusive and
ExclusiveModified states take care of (1) single-threaded ac-
cess, while the Shared state again takes care of (2) not re-
porting potential for read-read races, just as in Eraser.

6

5. CASE STUDY
We applied Racer to an experimental planetary rover

controller, named the K9 Executive, for a rover named K9
developed at NASA Ames Research Center. In the following,
we briefly introduce this application, followed by the results
of applying Racer.

5.1 The K9 Rover and Executive
The K9 Rover is an experimental hardware platform for

autonomous wheeled rovers, targeted for the exploration of
a planetary surface such as Mars. K9 is specifically used to
experiment with new autonomy software. Rovers are tra-
ditionally controlled by low-level commands uploaded from
Earth. The K9 Executive, a software module, provides a
more flexible means of commanding a rover through the use
of high-level plans in a domain specific programming lan-
guage. High-level plans can for example be generated by an
on-board AI-based planner. The Executive is essentially an
interpreter for the plan language.

The Executive is multi-threaded. In Figure 7 we show the
threads relevant for the presentation in this paper as boxes.
All threads are started from a main program in the class
Main. The RuntimeExecutive thread is responsible for the
overall execution of plans. The interpretation of a primi-
tive plan element, a task, causes the RuntimeExecutive to
ask the ActionExecution thread to command the vehicle
to perform the task’s action. The ActionExecution thread
subsequently is responsible for commanding the vehicle and
reporting back the status. The ActionExecution thread up-
dates a database whenever the status of a vehicle component
changes. The ExecCondChecker (composed of two separate
threads) monitors changes in the database (DbMonitor), pri-
oritizes the changes and signals back the RuntimeExecutive
through Filter.

Figure 7: The K9 Executive and 4 of its 68 unprotected
fields

The Rover is programmed in almost seven thousand lines
of Java and is an abstracted version of 35 thousand lines
of C++, originally controlling the rover, also developed at
NASA Ames Research Center. Of the 35 Kloc C++ code,
9.6 Kloc are related to core functionality and the rest is for
data structure manipulation (modules for specific rovers and
science instruments) and research-related extensions. Here
the main focus is on the core functionality. The Java version
of this code was developed specifically for use in an evalu-
ation of Java verification tools conducted at NASA Ames
Research Center, as described in [14]. These tools included

the Java PathExplorer [30], which contained an earlier im-
plementation of the Eraser algorithm for Java, see Section
7. Researchers further used this code to evaluate the Java
PathFinder model checker [41], which also contained a ver-
sion of Eraser; a static analysis tool for C (for a C version
of the code), and temporal logic specification monitoring.
To evaluate these tools, a control team seeded errors in the
code, and different groups of people were tasked with detect-
ing the errors using different tools. After this experiment
the code was augmented with additional code to evaluate a
deadlock analysis tool. From [14] we can cite: “A total of

12 bugs were extracted from the CVS logs, of which 5 were

deadlocks, 2 were data races, and 5 were plan-related. One

of the deadlock bugs was given as an example during train-

ing on the tools, and one of the data races was unreachable

in the code that was eventually analyzed – thus leaving only

10 seeded errors”. This suggests that the code contains one
data race, and in fact before our experiments the developers
of this code were only aware of this single race.

5.2 Application of Racer
At first, we were therefore surprised to see that running

Racer on the K9 Executive revealed 70 data races. These
races can be categorized into three classes:

• 1 known data race on ActionExecution.status.

• 2 data races on variables syncNum and syncNumOpt in
Main, which had been just recently introduced.

• 67 data races on various variables initialized in con-
structors, which went undetected for a long time.

The last group contains two pairs of races which occur
on the same field each. This means that the K9 Executive
accesses a total of 68 fields without proper protection.

5.2.1 The Race on ActionExecution.status
Racer issues the following message to indicate a data race

on a variable status in class ActionExectution:

Race condition found!

Field ’int ActionExecution.status’

is accessed unprotected.

Owner object: 6171853

--

Read at ActionExecution.java:233:5

Read at ActionExecution.java:244:12

Write at ActionExecution.java:370:4

This is a race caused by the ActionExecution thread and
the RuntimeExecutive thread both accessing this variable
without both first acquiring a common lock. This is exactly
the error planted in the code during the original verification
experiment [14].

5.2.2 The Races on syncNum and syncNumOpt
For reasons of brevity we will not show the error mes-

sages from Racer for the remaining data races. The two
data races mentioned in this section stem from an experi-
ment performed with the K9 Executive (after the case study
from [14]) in order to determine the efficiency with which a
static analysis algorithm could reduce the number of lock-
ing operations needed to be monitored dynamically in order
to detect a deadlock. For this purpose two integer counters

7

1 void initConditionChecker() {
2 conditionSetChanged = false; // access variable
3 checkerDBChanged = false;
4 savedWakeupStruct = null;
5 }
6

7 public ExecConditionChecker(
8 Database xdb, Executive xexec,
9 ExecHasThreadedComponents xparent

10)
11 {
12 checkerThread =
13 new ExecConditionCheckerThread(this,null);
14 dbThread =
15 new ExecDBMonitorThread(this, null);
16 db = xdb;
17 exec = xexec;
18 initConditionChecker(); // accesses variable
19 checkerThread.start(); // accesses variable
20 dbThread.start();
21 }

Figure 8: Data race in ExecCondChecker

were introduced in the Main class: numSync (number of syn-
chronizations executed in total) and numSyncOpt (number
of synchronizations executed after optimization). It turned
out that these two counters were updated by the different
threads, not protected by any lock.

5.2.3 Constructor Initializations and Threads
Racer reports a data race on conditionSetChanged in

the class ExecCondChecker. The code in Figure 8 shows the
declarations of the function initConditionChecker and the
constructor ExecConditionChecker to illustrate this situa-
tion. The constructor calls initConditionChecker, updat-
ing the variable, and then starts a checkerThread, which
accesses conditionSetChanged (not shown). The problem
is that the changes done to the fields within the construc-
tor are not necessarily visible to the checkerThread without
proper synchronization. If conditionSetChanged had been
final, then its value would have been guaranteed to be visi-
ble at least after execution of the constructor (Section 17.5
of the Java Language Specification [26]). However, since the
thread is started from within the constructor, the access to
this field through the other thread would have been unsafe
in this situation nevertheless. Starting threads from a con-
structor is very often unsafe for exactly this reason. The
situation here reflects a bug pattern very similar to the one
we saw in Section 4, Figure 6 under the name ThisEscape.
There are 66 more similar races reported for this code. They
are all caused by an assignment within a constructor.

False positives.
We wish to note that we could find only two false positives.

All were in the third category of 67 races. In these cases, a
final variable was initialized within an object’s constructor
by one thread and then accessed by another thread, without
synchronization, but after execution of the constructor had
finished. As noted above, such access is safe.

We could have excluded final variables from monitoring,
simply by conjoining the pointcuts in our Racer aspect with:

!set(final ∗ ∗) && !get(final ∗ ∗)

However, there can still be races involving final variables, for
instance if a constructor itself starts a thread. We therefore
opted to monitor final fields as well.

Observations
We confirmed all races that we found with the original de-
velopers of the code. Researchers analyzed this code ear-
lier [14] but detected only the data race described in Sub-
section 5.2.1. The errors described in Sub-section 5.2.2 were
introduced at a later point and could therefore not be found
at the time. However, the 67 data races described in Sub-
section 5.2.3 all existed at the time. They were not detected
due to way the initialization phase of the Eraser algorithm
was implemented, regarding constructor execution as safe
and not taking into account the Java memory model, as we
explained in Section 4. Because Eraser does not refine lock
sets in Exclusive states the races went unnoticed. This was
the case also for the version of the Eraser algorithm im-
plemented in the Java PathFinder model checker [41] and in
Java PathExplorer [30] which were used in the earlier exper-
iments. We conclude that the Racer algorithm or variants
of it might be better suited for Java programs than Eraser

because it follows Java’s memory model more closely.

6. FURTHER EXPERIMENTS
In addition to our in-depth case study, we further applied

Racer to two more, smaller benchmarks taken from [27].
This was to find out whether our results gained from the
case study could be generalized to other programs as well.
The two benchmarks are roller and bank. The benchmark
roller simulates a roller coaster where “7 passenger threads

compete for 7 seats in 1 roller coaster thread” [27]. This
benchmark exposes very high contention. bank is a little
banking application by Doug Lea [32]. It starts eight threads
which each make a random transaction from one account
to another and then call Thread.yield(). We note that
both benchmarks were written by researchers in the field of
concurrent programming. Nevertheless, using our Racer

implementation we could find races in these programs as
well.

Table 1 shows our experimental results for these two bench-
marks and, to make the picture complete, additional num-
bers for our rover case study. Of each benchmark we present
two versions: one without optimization of the maybeShared()
pointcut and one where these optimizations are enabled.

We compiled the benchmarks on a Java HotSpot(TM) 64-
Bit Server VM (build 1.6.0-rc-b104, mixed mode), but linked
the benchmarks to Sun’s JDK version 1.4.2 12, which we
also used to run the benchmarks (with default heap space).
Our machine used an AMD Athlon 64 X2 Dual Core Pro-
cessor 3800+.

Compilation time.
The compilation time is low without optimization, gener-

ally below two minutes. The static whole-program optimiza-
tion adds about one and a half minutes of compilation time
to our smaller benchmarks. In case of the K9 rover how-
ever, compilation takes almost an hour to complete with op-
timizations enabled. We conjecture that this is partly due to
Halpert et al.’s unoptimized implementation of the thread-
local objects analysis and partly due to the programming
style present in the rover code.

8

roller roller-opt bank bank-opt rover rover-opt unit

compilation time 0:36 2:10 0:32 2:14 1:24 59:28 m:ss
no instrumentation 31 31 22 22 2 2 s

with instrumentation 334 332 535 538 2 2 s
last race detected after 0.07 0.07 0.07 0.07 0.78 0.78 s

instrumented fields 9 8 16 15 260 169
with reported races 6 6 7 7 68 68

with actual races 6 6 7 7 66 66
reported races 6 6 7 7 70 70

actual races 6 6 7 7 68 68
races due to initialization 5 5 5 5 65 65

regular un-synchronized access 1 1 0 0 3 3
un-synchronized use of mutators 0 0 2 2 0 0

false positives 0 0 0 0 2 2

Table 1: Experimental results

Runtime.
The next section of Table 1 shows the runtimes for the dif-

ferent configurations. In case of the two small benchmarks,
our instrumentation adds around 11-fold (roller) and 24-
fold (bank) overhead. Through profiling we determined that
much of this slowdown is caused by contention. Both bench-
marks spend around 70% of their time waiting on a lock.
When our instrumentation monitors a field access through a
thread t, and this field access is within a synchronized region,
then this forces t to reside longer in this region, to execute
the instrumentation code. All other threads have to wait
for t to finish in the meantime. This naturally increases
the overall wait time. The code of the K9 rover does not
show such high contention and indeed, in this benchmark we
could perceive no overhead. The table further shows that in
all three benchmarks, Racer reported all races within the
first second of execution (we only report each race once).
This suggests that even when the runtime overhead is quite
high, this overhead might not actually cause any problems
in practice. In addition, the programmer can opt to restrict
instrumentation caused by Racer, simply by modifying the
scope() pointcut used in Figures 3 and 4, e.g. to:

pointcut scope(): !within(package.with.no.monitoring.∗);

Instrumented fields.
Next we comment on the number of fields instrumented.

The purpose of optimizing the maybeShared() pointcut was
to reduce the number of instrumented fields by restrict-
ing the instrumentation only to fields that may be shared
among threads. In roller and bank this was not very effec-
tive, since in both benchmarks all but one field indeed are
shared. Therefore, the optimization was ineffective and the
runtime was not improved. In case of the rover code, about
one third of the 260 fields were detected as thread-local and
not instrumented in the optimized version. However, since
the rover code finished execution after two seconds already,
there was no perceivable improvement in runtime either.

Detected races.
In roller, the Racer algorithm reported six races on six

fields. There were no false positives. Five of the six races
were due to the unprotected initialization anti-pattern which
we saw already in the rover code. The remaining race oc-
curred because of a field accidentally being accessed just be-
fore a synchronized block instead from within. In the bank

benchmark seven races were reported, all valid, with five
occurring through unprotected initialization and two oth-

ers through a similar pattern. In these two cases, a setter
sets a field in one thread and then another thread uses this
field without synchronization. In Section 5 we already com-
mented on the races in the Rover Executive.

7. RELATED WORK
The original Eraser data race algorithm [36] was im-

plemented in Compaq’s Visual Threads tool [28], now of-
fered and maintained by HP. Programmers can use Visual
Threads with any application that uses a POSIX threads
library, which includes common implementations of Java.
Visual Threads analyzes multi-threaded applications for po-
tential logic and performance problems. The tool visual-
izes state changes and provides automated dynamic analysis
algorithms to diagnose common problems associated with
multi-threading, including deadlock, data protection, per-
formance, and programming errors. Visual Threads uses
the object code instrumentation tool ATOM [21]. Attempts
have been made to improve the accuracy of the Eraser algo-
rithm [35,42]. In [29] we describe our first implementation of
the Eraser algorithm for Java, guiding the Java PathFinder
(JPF) model checker [41] to confirm the warnings discovered
by the much faster potential-analysis. We instrumented the
programs under test by modifying the Java Virtual Machine
of JPF. The algorithm was later re-implemented and elabo-
rated in the Java PathExplorer (JpaX) tool [30], which used
the Jtrek bytecode instrumentation tool [17] and later the
BCEL bytecode instrumentation tool [18]. With the As-
pectJ language extension proposed in this paper, the use of
Jtrek or BCEL becomes obsolete.

Other kinds of dynamic race analysis tools have been de-
veloped, which are characterized by detecting potentials for
errors, like the Eraser algorithm, rather than directly de-
tecting the occurrence of errors. Artho et al. proposed a
high-level data race algorithm [4] which detects inconsisten-
cies in which collections of variables are access protected by
locks. If for example two variables x and y are accessed
in one single synchronized block in one part of the pro-
gram and in separate synchronized blocks in another part
of the program, the algorithm considers this an inconsistent
use, and issues a warning suggesting that the latter use is
potentially unsafe. The algorithm is also called the view
consistency algorithm, since it attempts to detect view in-
consistencies during runtime. The absence of low-level and
high-level data races still allows for other concurrency er-
rors. Related to high-level data races are atomicity viola-
tions as detected by the tools in [5, 23, 43]. An example

9

is a thread that reads a shared variable into a local vari-
able, updates the local variable, and then writes back to the
shared variable. The local variable may at some point be-
come stale (out of date) if some other thread updates the
shared variable. jPredictor [16] extracts a causality relation
from the execution trace, sliced using static analysis and re-
fined with lock-atomicity information. Two common types
of errors are investigated in [16]: data races and atomic-
ity violations. jPredictor’s program instrumentor is built
on top of the Soot [37] Java bytecode engineering package.
The AspectBench Compiler used for our language extension
uses Soot internally, to conduct the weaving process. How-
ever, the language extension hides these internals from the
programmer behind a visually appealing syntax.

Programmers can also effectively use dynamic analyses
to find potential for deadlocks. As mentioned, the Visual
Threads tool detects deadlock potentials, essentially by de-
tecting cycles in a lock graph. Bensalem and Havelund [9],
and Agrawal et al. [1] improved this algorithm to reduce false
positives. Agrawal et al. further suggest the use of deadlock
types during a static analysis phase to reduce overhead dur-
ing dynamic deadlock analysis by identifying synchroniza-
tions that can be regarded safe, and hence do not need to
be monitored/recorded. This is similar to our static opti-
mization of maybeShared() in that it tries to remove unnec-
essary monitoring overhead through an analysis at compile
time. Concurrent programs may be modified by inclusion
of wait statements or modifications to schedulers, so that
a fuller range of non-deterministic behaviours are exhibited
during testing. Such modifications can be combined with
predictive analysis [8,22].

All mentioned algorithms work without the need for the
user to provide a specification. Several systems have been
developed to monitor program executions against user pro-
vided formal specifications. The runtime verification com-
munity is concerned with program correctness. An example
of such a system is Eagle [7]. Tracematches’s [2] answer pro-
vides an efficient implementation of runtime monitoring with
object bindings as a language extension to AspectJ. Bodden
et al. [12, 13] used tracematches to prove Java and AspectJ
programs partially correct. Tracematches can directly use
the three novel pointcuts proposed here.

Apart from tracematches however, the typical scenario for
the building of the above tools in the case of Java is the use
of bytecode instrumentation tools. Examples are Jtrek [17],
BCEL [18], Soot [37], and ASM [15]. Similar tools for other
languages include Valgrind [40], ATOM [21], and the C
source code instrumentation and analysis tool CIL [34]. Pro-
grammers can however further instrument programs through
debugging interfaces, modification of the runtime system or
virtual machine (as in the case of the Java PathFinder),
or through operating system or middle-ware services. At-
tempts have been made to develop higher level libraries on
top of the low level instrumentation packages. In previous
work, for example, we developed the jSpy tool [25], which
instruments Java byte-code, but using a higher level of prim-
itives compared to what is offered by the low-level bytecode
instrumentation tools. A jSpy instrumentation specification
consists of a set of rules, each of which consists of a con-
dition on byte-code and an instrumentation action stating
what to report when byte-codes satisfying the condition are
executed. The reported events are then picked up by moni-
tors that in turn check for various user provided properties.

The tool is oriented towards monitoring rather than func-
tionality modification. Another high-level instrumentation
tool is Sofya [31].

The main observation is that most, if not all, of the dy-
namic analysis tools described above all use low level instru-
mentation tools that are more or less difficult to use. An as-
pect oriented programming language with synchronization
pointcuts makes this part of the work much simpler.

Since quite a while now, the community around aspect-
oriented programming has been calling for more “seman-
tic pointcuts” (e.g. [3, 20]), which allow programmers not
to match on a program’s structure like a call to a method
foo(), but on more semantic properties. Generally we agree
with this point of view. We therefore implemented the
maybeShared() pointcut as an answer to that call. How-
ever, an implementation of such pointcuts that is efficient
for arbitrary base programs is still out of sight and therefore
we encourage further research in this area.

8. CONCLUSION AND FUTURE WORK
In this work we have proposed a language extension to the

aspect-oriented programming language AspectJ. We extend
AspectJ with three new pointcuts lock(), unlock() and
maybeShared(). These pointcuts allow researchers to easily
implement bug finding algorithms for concurrent programs.
As an example, we have implemented Racer, an adaption
of the Eraser race detection algorithm to the Java memory
model. We found that using our AspectJ extension we were
able to implement Racer very easily, in just two aspects
with a small set of supporting classes.

The Racer algorithm is different from C-based race detec-
tion algorithms like Eraser in the way that it treats object
initialization. Eraser is very forgivable to programmers in
an object’s initialization phase. Racer on the other hand
detects and reports also races that comprise the initialization
of an object. This revealed 70 data races in program code of
the NASA K9 Rover Executive, 69 of which went previously
undetected, although extensive studies of this code had al-
ready been performed at a time where 67 of these undetected
races were already present.

In future work we plan to reduce the compile time over-
head caused by the thread-local objects analysis that we use
to implement the maybeShared() pointcut. Furthermore it
would be interesting to see if the Racer algorithm could be
extended to take more synchronization primitives into ac-
count, for instance the method Thread.join(). The use of
our AspectJ language extension makes our implementation
very flexible in that respect.

Acknowledgements & Program download.
We thank Clark Verbrugge for helping us validate some

of the data races we found in the K9 rover executive. Also
we are grateful to him, Richard Halpert, and Chris Pick-
ett for making their thread-local objects analysis and their
benchmarks available to us. We thank Stefan Savage for pro-
viding clarifications on Eraser. Part of the work described
in this paper was carried out at the Jet Propulsion Labo-
ratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.
Our Racer implementation and compiler are available at:

http://www.aspectbench.org/

10

9. REFERENCES

[1] R. Agarwal, L. Wang, and S. D. Stoller. Detecting potential
deadlocks with static analysis and run-time monitoring. In Ur
et al. [39], pages 191–207.

[2] C. Allan, P. Avgustinov, A. S. Christensen, L. J. Hendren,
S. Kuzins, O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam,
and J. Tibble. Adding trace matching with free variables to
AspectJ. In R. Johnson and R. P. Gabriel, editors, OOPSLA,
pages 345–364. ACM, 2005.

[3] T. Aotani and H. Masuhara. Compiling conditional pointcuts
for user-level semantic pointcuts. In Software-Engineering
Properties of Languages and Aspect Technologies (SPLAT),
March 2005.

[4] C. Artho, K. Havelund, and A. Biere. High-level data races.
Software Testing, Verification and Reliability, 13(4):207–227,
2003.

[5] C. Artho, K. Havelund, and A. Biere. Using block-local
atomicity to detect stale-value concurrency errors. In F. Wang,
editor, ATVA, volume 3299 of LNCS, pages 150–164. Springer,
2004.

[6] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
J. Lhoták, O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam,
and J. Tibble. abc: An extensible AspectJ compiler. In AOSD
conference, pages 87–98. ACM Press, 2005.

[7] H. Barringer, A. Goldberg, K. Havelund, and K. Sen.
Rule-based runtime verification. In B. Steffen and G. Levi,
editors, VMCAI, volume 2937 of Lecture Notes in Computer
Science, pages 44–57. Springer, 2004.

[8] S. Bensalem, J.-C. Fernandez, K. Havelund, and L. Mounier.
Confirmation of deadlock potentials detected by runtime
analysis. In PADTAD ’06: Proceeding of the 2006 workshop
on Parallel and distributed systems: testing and debugging,
pages 41–50, New York, NY, USA, 2006. ACM.

[9] S. Bensalem and K. Havelund. Dynamic deadlock analysis of
multi-threaded programs. In Ur et al. [39], pages 208–223.

[10] E. Bodden, F. Forster, and F. Steimann. Avoiding infinite
recursion with stratified aspects. In R. Hirschfeld, A. Polze, and
R. Kowalczyk, editors, GI-Edition Lecture Notes in
Informatics ”NODe 2006 GSEM 2006”, volume P-88, pages
49–64. Gesellschaft für Informatik, Bonner Köllen Verlag, 2006.

[11] E. Bodden and K. Havelund. Racer: Effective race detection
using AspectJ (extended version). Technical Report abc-2008-1,
http://www.aspectbench.org/, 05 2008.

[12] E. Bodden, L. J. Hendren, and O. Lhoták. A staged static
program analysis to improve the performance of runtime
monitoring. In E. Ernst, editor, ECOOP, volume 4609 of
Lecture Notes in Computer Science, pages 525–549. Springer,
2007.

[13] E. Bodden, P. Lam, and L. Hendren. Static analysis techniques
for evaluating runtime monitoring properties ahead-of-time.
Technical Report abc-2007-6, http://www.aspectbench.org/, 11
2007.

[14] G. P. Brat, D. Drusinsky, D. Giannakopoulou, A. Goldberg,
K. Havelund, M. R. Lowry, C. S. Pasareanu, A. Venet,
W. Visser, and R. Washington. Experimental evaluation of
verification and validation tools on martian rover software.
Formal Methods in System Design, 25(2-3):167–198, 2004.

[15] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A code
manipulation tool to implement adaptable systems. In
Adaptable and Extensible Component Systems, Grenoble,
France, November 2002. http://asm.objectweb.org.

[16] F. Chen, T. F. Şerbănuţă, and G. Roşu. jPredictor: A
predictive runtime analysis tool for Java. In International
Conference on Software Engineering (ICSE’08). ACM press,
2008. To appear.

[17] S. Cohen. Jtrek. Compaq. No longer maintained.

[18] M. Dahm. BCEL. http://jakarta.apache.org/bcel.

[19] M. d’Amorim and K. Havelund. Event-based runtime
verification of Java programs. In WODA ’05: Proceedings of
the third international workshop on Dynamic analysis, pages
1–7, New York, NY, USA, 2005. ACM Press.

[20] M. Eichberg, M. Mezini, and K. Ostermann. Pointcuts as
functional queries. In W.-N. Chin, editor, APLAS, volume 3302
of Lecture Notes in Computer Science, pages 366–381.
Springer, 2004.

[21] A. Eustace and A. Srivastava. ATOM: a flexible interface for
building high performance program analysis tools. In Technical
Conference Proceedings on USENIX 1995, pages 25–25,
Berkeley, CA, USA, 1995. USENIX Association.

[22] Y. Eytani, K. Havelund, S. D. Stoller, and S. Ur. Towards a
framework and a benchmark for testing tools for multi-threaded
programs: Research articles. Concurrency and Computation:
Practice and Experience, 19(3):267–279, 2007.

[23] C. Flanagan and S. Freund. Atomizer: A dynamic atomicity
checker for multithreaded programs. SIGPLAN Notices,
39(1):256–267, 2004.

[24] B. Goetz. Java concurrency in practice. Addison Wesley, 2006.

[25] A. Goldberg and K. Havelund. Instrumentation of Java
bytecode for runtime analysis. In Fifth ECOOP Workshop on
Formal Techniques for Java-like Programs (FTfJP’03), July
2003. Darmstadt, Germany.

[26] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java(TM)
Language Specification. Addison-Wesley Professional, 2005.

[27] R. L. Halpert, C. J. F. Pickett, and C. Verbrugge.
Component-based lock allocation. In PACT’07: Proceedings of
the 16th International Conference on Parallel Architectures
and Compilation Techniques, pages 353–364, Sept. 2007.

[28] J. Harrow. Runtime checking of multithreaded applications
with visual threads. In K. Havelund, J. Penix, and W. Visser,
editors, SPIN Model Checking and Software Verification,
volume 1885 of Lecture Notes in Computer Science, pages
331–342. Springer, 2000.
http://h30097.www3.hp.com/dtk/visualthreads_ov.html.

[29] K. Havelund. Using runtime analysis to guide model checking
of Java programs. In SPIN Model Checking and Software
Verification, volume 1885 of Lecture Notes in Computer
Science, pages 245–264. Springer, 2000.

[30] K. Havelund and G. Rosu. An overview of the runtime
verification tool Java PathExplorer. Formal Methods in
System Design, 24(2):189–215, 2004.

[31] A. Kinneer, M. B. Dwyer, and G. Rothermel. Sofya:
Supporting rapid development of dynamic program analyses for
java. In ICSE COMPANION ’07: Companion to the
proceedings of the 29th International Conference on Software
Engineering, pages 51–52, Washington, DC, USA, 2007. IEEE
Computer Society.

[32] D. Lea. Concurrent Programming in Java: Design Principles
and Patterns. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1996.

[33] O. Lhoták and L. Hendren. Scaling Java points-to analysis
using Spark. In G. Hedin, editor, Compiler Construction, 12th
International Conference, volume 2622 of LNCS, pages
153–169, Warsaw, Poland, April 2003. Springer.

[34] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL:
Intermediate language and tools for analysis and
transformation of C programs. In R. N. Horspool, editor, CC,
volume 2304 of Lecture Notes in Computer Science, pages
213–228. Springer, 2002.

[35] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race
detection. In ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP’03), pages
167–178, 2003.

[36] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: a dynamic data race detector for
multithreaded programs. ACM Transactions on Computer
Systems, 15(4):391–411, 1997.

[37] Soot website. http://www.sable.mcgill.ca/soot/.

[38] V. Stolz and E. Bodden. Temporal assertions using AspectJ.
Electr. Notes in Theor. Computer Science, 144(4):109–124,
2006.

[39] S. Ur, E. Bin, and Y. Wolfsthal, editors. Hardware and
Software Verification and Testing, First International Haifa
Verification Conference, Haifa, Israel, November 13-16, 2005,
volume 3875 of Lecture Notes in Computer Science. Springer,
2006.

[40] Valgrind. http://valgrind.org.

[41] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda.
Model checking programs. In 15th IEEE International
Conference on Automated Software Engineering, volume 10,
pages 203–232, 2003.

[42] C. von Praun and T. R. Gross. Object race detection. In
OOPSLA, pages 70–82, 2001.

[43] L. Wang and S. D. Stoller. Run-time analysis for atomicity.
Electronic Notes in Theoretical Computer Science, 89(2),
2003.

11

