Closure Joinpoints: Block Joinpoints without Surprises

Eric Bodden
Software Technology Group, Technische Universitat Darmstadt

Center for Advanced Security Research Darmstadt (CASED)
bodden@acm.org

ABSTRACT

Block joinpoints allow programmers to explicitly mark re-
gions of base code as “to be advised”, thus avoiding the need
to extract the block into a method just for the sake of cre-
ating a joinpoint. Block joinpoints appear simple to define
and implement. After all, regular block statements in Java-
like languages are constructs well-known to the programmer
and have simple control-flow and data-flow semantics.

Our major insight is, however, that by exposing a block
of code as a joinpoint, the code is no longer only called in
its declaring static context but also from within aspect code.
The block effectively becomes a closure, i.e., an anonymous
function that may capture values from the enclosing lexical
scope. We discuss research on closures that reveals several
important design questions that any semantic definition of
closures or block joinpoints must answer. In this paper we
show that all existing proposals for block joinpoints answer
these questions insufficiently, and hence exhibit a semantics
either undefined or likely surprising to Java programmers.

As a solution, we propose a syntax, semantics, and imple-
mentation of Closure Joinpoints, block joinpoints based on
closures. As we show, our design decisions yield a semantics
that follows the principle of least surprise.

Categories and Subject Descriptors

D.3.3 [D.3.3 Language Constructs and Features|: Pro-
cedures, functions, and subroutines; F.3.3 [Studies of Pro-
gram Constructs]: Control Primitives

General Terms
Design, Languages, Theory

Keywords

Language design, Joinpoints, Pointcuts, Lambda expressions,
Closures, Static and dynamic scoping

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

[

© 0w N o o

10
11
12

1. INTRODUCTION

In this work, we introduce Closure Joinpoints for As-
pectJ [6], a mechanism that allows programmers to explicitly
mark any Java expression or sequence of statement as “to
be advised”. Closure Joinpoints are explicit joinpoints that
resemble labeled, instantly called closures, i.e., anonymous
inner functions with access to their declaring lexical scope.

As an example, consider the code in Figure 1, adopted
from Hoffman’s work on explicit joinpoints [24]. The pro-
grammer marked the statements of lines 4-8, with a closure
to be “exhibited” as a joinpoint Transaction so that these
statements can be advised through aspects. Closure Join-
points are no first-class objects, i.e., they cannot be assigned
to function variables. Instead, Closure Joinpoints are always
instantly called: in line 8, the programmer calls the closure
with the argument Level.L1. This will cause the closure
to execute with the formal parameter 1 (line 4) bound to
the value of Level.L1. Aspects advising joinpoints of type
Transaction will intercept this execution.

Explicit joinpoints such as the Closure Joinpoints that
we propose can be useful whenever pointcuts are either not
expressive enough, too awkward, or too concrete to conve-
niently describe exactly which part of the execution should
be advised. For instance, Steimann et al. [37] recently showed
that out of 484 pieces of advice in an aspect-oriented ver-
sion of BerkelyDB [9], 218 applied to some statements in
the middle of a method. Single statements may be hard to
select without explicit joinpoints, yielding bloated and frag-
ile pointcuts. Sequences of statements need to be extracted
into a method so that they can be advised in standard As-
pectJ. Closure Joinpoints make this extraction superfluous
because they instead allow programmers to define an anony-
mous inner method right in place.

class Agent {
final CardProcessor cc = makeCardProcessor();
void createTrip(final Person p, final Flight f, final Hotel h) {
exhibit Transaction(int 1) {
f.reserveSeat(p);
h.reserveRoom(p);
cc.debit(p.getCC(),f. total (), h.total ());
} (Level.L1);
suggestRentalCars(p,f);

Figure 1: Transaction aspect with closure joinpoint

Explicit joinpoints have another advantage over the im-
plicit joinpoints that pointcuts can intercept. Implicit join-
points only expose a set of pre-defined values from the exe-
cution context, via the pointcuts this, target and args or
as special parameters to after-returning or -throwing ad-
vice. In some cases, these arguments may be insufficient for
the aspect to function. For instance, in Figure 1 the value
Level.L1 depends on the particular execution context: Clo-
sure Joinpoints of type Transaction that are declared in
different locations may pass a different actual parameter.
Closure Joinpoints can easily supply such context informa-
tion through parameters.

Another use case for explicit joinpoints often raised by
practitioners is the ability to use aspects to conditionally dis-
able regions of base code. For example, Bruntink et al. [12]
have shown that tracing is not always implementable as an
aspect, as this concern can show high variability. But pro-
grammers have tried to at least use aspects to disable logging
conditionally [30]. Without explicit joinpoints it is impos-
sible to also bypass the code that computed that call’s pa-
rameters, leading to unnecessarily slow code. With explicit
joinpoints, on the other hand, one can bypass calls to the
logging interface with a non-proceeding around advice.

The general idea of explicitly marking code as “to be ad-
vised” is not novel. Other researchers have previously pro-
posed language extensions to AspectJ already that would
implement some kind of “explicit joinpoints” or “block join-
points” [4,24,37]. However, as we argue in this paper, most
existing approaches to such block-based joinpoints come with
an unclear or rather surprising semantics. For instance, con-
sider the code example in Figure 2. The code is adapted from
Steimann et al. [37], who proposed one approach to explicit
joinpoints. The example uses the authors’ syntax, where
joinpoints are explicitly declared first-class objects that can
expose context through fields. The class ShoppingSession
defines a buy method that adds a certain amount of products
of type item to a shopping cart and keeps track of the total
number of items bought. We assume that later on, the com-
pany decided to introduce a “buy two, get one free” policy
for books. The aspect BonusProgram implements this policy:
if the item’s category is BOOK, then the aspect automatically
increments the number of bought items by 50% before pro-
ceeding with the execution of the original joinpoint. In lines
8-11, the base code explicitly “exhibits” the Buying join-
point that the aspect advises, as a block joinpoint, further
exposing the value category.

Clearly, the explicit joinpoint eases aspect-oriented pro-
gramming in this example. Nevertheless, we argue that the
particular language design yields a rather surprising seman-
tics. By assigning a field a new value, as in line 19, the
original joinpoint in lines 8-11 will execute with that as-
signed value. While this is intended in the example (the
add method should add the increased amount to the shop-
ping cart and also the variable totalValue should receive
the increased value), we argue that this semantics is rather
surprising on the base-code side: within the joinpoint, the
variable amount has a value different from the one that it
had when entering the joinpoint, although there is no visi-
ble assignment to amount. The explicit joinpoint therefore
introduces a kind of call-by-reference semantics, which is
rather surprising in a call-by-value language like Java. No
less surprising, the value of amount is even reset to its orig-
inal value once the control flow leaves the explicit joinpoint

class ShoppingSession {
int totalAmount = 0;
ShoppingCart sc = new ShoppingCart();

void buy(Item item, int amount) {
Category category = Database.categoryOf(item);
//assume category==Item.BOOK and amount==2
exhibit new Buying(category, amount) {
sc.add(item, amount); //then here amount==3...
totalAmount += amount;
Y //... and here amount==2 again

}

aspect BonusProgram {
joinpointtype Buying{ Category category; int amount; }
void around(Buying jp) {
if (jp.category == Item.BOOK)
jp.amount += jp.amount / 2;
proceed(jp);

Figure 2: Shopping session with a bonus aspect [37]

again. This second assignment is also hidden in the chosen
syntax. Another potential problem is unstructured control
flow: what if the block joinpoint contained a break or con-
tinue statement with a target outside the block? Exposing
the block as a joinpoint means that the block may execute in
a different context in which these targets are not even on the
execution stack any more. Clearly, a reasonable semantics
for block joinpoints should consider these constraints.

The key insight of this paper is that a block of code, when
being exhibited as a joinpoint, effectively becomes a closure.
As we show, by providing a language design for closures that
is tailored towards the particular programming language at
hand and yields a semantics that follows the principle of
least surprise, one can automatically obtain a language se-
mantics for Closure Joinpoints that has the same favorable
property. To obtain such a design, we discuss several current
proposals for adding closures to the Java language. Based on
this discussion, we propose a design for Closure Joinpoints
that yields a syntax and semantics easy to understand for
Java programmers. We further expose an implementation of
Closure Joinpoints on top of the AspectBench Compiler [7].

To summarize, this paper presents the following original
contributions:

e the idea to consider block joinpoints as special cases
of method-execution joinpoints over closures,

e a careful analysis of the semantic tradeoffs that sur-
round control-flow and data-flow of closures,

e a detailed assessment of the design decisions taken in
related work on block joinpoints and on closures,

e a syntax, semantics and an implementation for Closure
Joinpoints, close to the Java programming language.

We structure the remainder of this paper as follows. In
Section 2, we explain why a language design for explicit
joinpoints should follow the same arguments about design
decisions as for closures. In Section 3 we give background
information on lambda expressions and closures and sum-
marize different proposals for including closures in the Java

language, plus the tradeoffs involved. We propose our solu-
tion, Closure Joinpoints, in Section 4, discuss further related
work in Section 5 and conclude in Section 6.

2. WHY EXPLICIT JOINPOINTS SHOULD
BE CLOSURES

All related work defines explicit joinpoints as explicitly
named block statements that allow programmers to mark
the block as “to be advised”. At first, such “block joinpoints”
may appear simple to define and implement. After all, reg-
ular block statements in Java-like languages are constructs
well-known to the programmer and have simple control-flow
and data-flow semantics. In Java, wrapping a sequence of
statements s into a block statement, yielding {s}, has only
scoping implications: if s contains local-variable declarations
then the scope of these declarations will now be constrained
to the block. Introducing a block, however, does not in any
way alter the execution semantics of s: the control flow and
data flow into, within, and out of s remains unchanged. This
includes unstructured control-flow through break, continue
or return statements or exceptions, or assignments within
s to variables declared outside of s. This simple semantics
makes blocks so convenient to use that many programmers
even use blocks simply to enhance readability, for instance
in if-then-else constructs.

2.1 Blocks are confined to their lexical scope

However, one key insight of this paper is that the execu-
tion semantics of blocks is only so simple only because the
execution of a block is, by definition, confined to the block’s
own lexical scope. The block executes when the program
counter reaches the beginning of the block (and only then)
and at this point in time the entire declaring execution con-
text is known and accessible. But now consider the situation
in which the programmer decides to “exhibit” the block as
a joinpoint. This novel change does have wide-ranging se-
mantic implications: the block of code can now execute in
different contexts. It can still execute in its original declar-
ing context, but in addition, the block can be called through
the proceed-call of an around advice. In this situation, it is
not clear how the block joinpoint would obtain access to val-
ues from its declaring scope. In an extreme case, the advice
could proceed-call the joinpoint in a separate thread. For
instance, Figure 3 shows an aspect that schedules advised
joinpoints for execution by the AWT Event Thread. (This
way, an aspect can implement thread-safe updates to Swing-
based user interfaces [27].) In this case, either thread has
no access to the other thread’s execution stack and the lo-
cal variables declared there. (As we will discuss later, some
approaches avoid this problem by implicitly allocating local

void around() : methodsUsingSwing() {
Runnable worker = new Runnable() {
public void run() {
proceed(); //executes in another thread
b
java.awt.EventQueue.invokeLater (worker);
}

Figure 3: Synchronization aspect for Swing/AWT

variables like on the heap. Accesses to these variables can
then lead to subtle data races, though.)

But not only may data flow cause problems at the join-
point boundary, the same holds for control flow, too. As-
sume, for instance, that the advised block contains a return
statement. When executed in the context of the declaring
scope, this statement would cause the program to return
from the declaring method. If executed in the context of
an aspect, however, the statement would cause the program
to return from the joinpoint’s block instead. While com-
piler tricks could be used [4] to return to “further up” the
call chain in a single-threaded setting, this approach would
fail in the situation mentioned above, where an advice “pro-
ceeds” in another thread. All these problems originate from
the fact that blocks, unlike methods, are no modular unit
of execution: their semantics is fundamentally tied to the
scope in which they are declared.

One may argue that complications we described originate
from the fact that we are discussing around-advice. After
all, a before or after-advice cannot issue a proceed-call,
and would therefore prevent the block joinpoint from exe-
cuting anywhere but at the position at which is was declared.
However, block joinpoints are really mostly! useful in com-
bination with an around-advice in the first place. If only
before or after-advice were to be used then one could use
an “atomic” explicit joinpoint instead, i.e., a joinpoint that
takes no block as argument and therefore resembles a point
and not region in time [31]. In Section 5, we will discuss
related work [24] that defines such more lightweight explicit
joinpoints without blocks, avoiding many complications.

It is also worthwhile noting that the constraints that we
described do not only apply to explicit block joinpoints but
to any joinpoint that resembles a sequence of statements
which can include an assignment, or a break, continue or
return statement. The only exception are joinpoints that
resemble the execution of an entire method. (Because, as
mentioned above, a method is a modular unit of execution.)
Most of AspectJ’s built-in “kinded” pointcuts only match
single statements that may be none of the above, or match
an entire method body. There are some exceptions, how-
ever: handler pointcuts, for instance, match a catch block.
Such catch blocks can, in principle, contain unstructured
control-flow statements and also assignments to outside the
try/catch block. And indeed, for this reason, AspectJ com-
pilers do not support around advice for handler joinpoints.
In Section 5 we will discuss other proposals for pointcuts
that match sequences of statements, and show that they
pose similar challenges.

2.2 From blocks over methods to closures

From the above findings we conclude that the syntax and
semantics of traditional Java block statements are not the
best starting point for defining block-like joinpoints for an
aspect-oriented programming language. In this paper we
hence propose to instead model explicit joinpoints as syn-
chronous calls to closures, i.e., to anonymous methods with
access to the enclosing lexical scope. Methods are modu-
lar units of execution that can execute in different contexts.

! Another possible use would be in combination with an af-
ter-advice. This combination would cause the advice to ex-
ecute whenever control leaves the block joinpoint, no matter
if the block is left after having executed its last statement,
through an explicit return or by throwing an exception.

Their semantics in terms of control flow and data flow is well
understood: input data is passed through parameters (incl.
“this”), output data as a return value and unstructured con-
trol flow through break, continue and return statements is
always confined to the execution of the method itself.

Because of the lack of block joinpoints in plain Aspectd,
programmers frequently use the following workaround. They
extract the block to be advised into a method m and then
advise the execution of m. Considering our insights from
above, this appears to be not a bad solution at all. However,
also this approach yields several drawbacks:

1. The extracted method is callable from different con-
texts, not only from advising pieces of advice. This
may be undesired from a maintenance perspective.

2. The extracted method has no implicit access to lo-
cal variables defined in the lexical scope that enclosed
the original block before extraction. All such variables
must be explicitly assigned through parameters. This
may be awkward in practice.

In this paper, we therefore propose Closure Joinpoints, an
approach to block joinpoints based on lambda expressions
and closures. In the context of Java, lambda expressions
resemble anonymous methods. Because the methods are
anonymous, they can only be referenced through a first-class
reference. We will define lambda expressions in such a way
that no such references can be created; instead the expres-
sions are always called at the site of their definition, and
only there. This solves Problem 1. Our expressions are also
closures: they can implicitly reference values from their en-
closing lexical scope, which solves Problem 2.

In the following Section we discuss lambda expressions
and closures in detail and also discuss multiple approaches to
introducing these language features into Java. In Section 4
we will then return to the problem of explicit joinpoints and
explain our design of Closure Joinpoints.

3. DESIGN TRADEOFFS FOR CLOSURES
IN JAVA

In the following, we first give background information
on lambda expressions and closures and then discuss sev-
eral language designs that researchers and practitioners have
proposed for introducing lambda expressions and closures
into the Java programming language. Some of these pro-
posals allow closures to be very powerful programming con-
structs, however they come at the significant cost of a com-
plex semantics that can sometimes be surprising, especially
to Java programmers. Nevertheless, a thorough discussion
of the tradeoffs involved builds a strong motivation for our
design of Closure Joinpoints.

3.1 Lambda expressions vs. Closures

Lambda expressions originate from Church’s 1932 work on
the lambda calculus [16]. Lambda expressions define anony-
mous functions where variables prefixed with a A are bound
in the subsequent expression. Such variables are effectively
parameters to the anonymous function. For instance, the
expression “Az . x - x” is a lambda expression denoting the
square function. This expression is said to be “closed”, as all
its variables are bound through lambdas. Conversely, “open”
lambda expressions have free variables. For instance, the
expression “Ax . x - y” is the function that will multiply its

parameter x with the free variable y. Note that one cannot
reduce such an open lambda expression to a ground value.
To allow reduction, one needs to close the open lambda ex-
pression, i.e., to bind its free variables. One way to close
open lambda expressions is, as the name suggests, a closure.

Closures [28] combine a function with free variables with
an environment that assigns values to these variables. In the
following, we will say that the closure “captures” the variable
in the environment. The choice of environment can vary but
the most widespread [32,38] use of the term closure refers to
the case where free variables are bound by the lexical scope
in which the closure was declared.?

According to Landin [28], only open lambda expressions,
paired with an environment, are actually closures, closed
lambda expressions are just simple anonymous functions.
Conversely, closures do not necessarily have to be anony-
mous. For example, one can regard Java’s inner classes as
an awkward notation for closures; they can capture fields
and (final) local variables defined in their enclosing lexical
scope. Figure 4 defines an anonymous inner class capturing
the local variable result.

3.2 The design space for closures in Java

As Figure 4 shows, inner classes (even anonymous ones)
can be quite heavyweight: instead of being able to just de-
fine a lambda-expression, one has to define an anonymous
class, which itself has to adhere to some pre-defined interface
(here Runnable) and therefore must define a named method
(here run), as specified by that interface. If that interface is
unsuitable for the usage context at hand, further complica-
tions arise. In our example, Runnable defines a run method
with return type void, preventing the call to syncExec from
passing values back to the calling context. Further, inner
classes in Java may only access those local variables from
the lexical scope that are declared as final. This, paired
with Java’s pass-by-value semantics, prevents programmers
from passing back the return value through a simple variable
assignment. The only way for the programmer to “return” a
value in this situation is therefore to construct a box object,
or an array as in the example.?

To avoid such awkward syntax in the future, several par-
ties have issued proposals to add a syntax for closures to

2Other possible semantics include instead using the scope in
which the closure is invoked. This yields dynamic-scoping
semantics [19].

3As we will see later, though, there is a good reason for the
restriction to final variables. Local variables are allocated
on the stack, which precludes access to values of non-final
local variables from other threads. The user-define array is
allocated on the heap, which both the environment declaring
the inner class and the one executing it can access.

final boolean|] result = new boolean(] { false };
display .syncExec(new Runnable() {
public void run() {
result [0] =
MessageDialog.openQuestion(shell, title, message);

}
}i

return result [0];

Figure 4: Use of anonymous inner class within class
ProgressTask of the Android SDK [1]

version 8 of the Java language. All of these proposals ap-
pear to restrict themselves to introducing syntactic enhance-
ments that can be compiled to Java bytecode that pre-
dates Java 8 and therefore require no changes to the virtual-
machine specification. Nevertheless, full closures provide
features that can have wide-ranging semantic implications.
Next, we will discuss some of these features and their im-
plications here. In the Java context, most proposals talk of
closures although they actually define lambda expressions
that may be closures when capturing variables from their
enclosing lexical scope. To ease our presentation, in the fol-
lowing we will mostly use the term closure, too.

We discuss three proposals to closures in Java, widely
known by the names of BGGA, FCM and CICE:

BGGA is named after the proposal authors Gilad Bracha,

Neal Gafter, James Gosling, and Peter von der Ahé [11].

Until Version 0.5 of their proposal, BGGA presented
full closures, supporting full access to variables from
the lexical scope and non-local transfer of control (see
below). Recently, this proposal was split into two,
separating a restricted form of closures targeting end-
users (Version 0.6a) from a form of full closures tar-
geting language experts (0.6b).

FCM stands for First Class Methods, an approach pro-
posed by Stephen Colebourne and Stefan Schulz [18].
FCM extends the idea of BGGA by introducing func-
tion types and pointers as a general concept to Java.
Both can be used for named functions as well as lambda
expressions. Unlike in BGGA, the closures that Cole-
bourne and Schulz propose restrict variable capture
and do not allow for non-local transfer of control.

CICE is an acronym for Concise Instance Creation Expres-
sion and is put forward by Bob Lee, Doug Lea, and
Joshua Bloch [29]. CICE provides syntactic sugar for
creating anonymous inner classes based on interface
types that only define a single method. This makes
the approach restricted but very lightweight.

Kreft and Langer provide a very helpful comparison [26].

3.2.1 Non-local transfer of control

BGGA first introduced the idea of closures mostly to facil-
itate an abstraction of commonly used control flow. As an
example, consider Figure 5, which defines a foreach loop

public static <T> void
foreach (Iterable <T> seq, {T => void } fct) {
for (T elm : seq)
fct .invoke(elm);

}

public static void main(String[] args) {
{Integer => void } print =
{ Integer arg ==>
//if (arg == 3) return;
System.out.println(arg);

}7
foreach(new int [|{1,2,3,4,5}, print);

}

Figure 5: Implementing a foreach loop through BGGA clo-
sures, after [26]

1
2
3
4
5
6
7
8
9

using BGGA closures. First, lines 1-5 define the method
foreach, which takes an Iterable object and a block of code
as argument. The block has the declared type {T => void}.
The body of foreach then invokes the body for every argu-
ment in the Iterable. The main method assigns a lambda
expression to the function variable print, and then passes
this variable to the foreach method. The program from
Figure 5 will therefore print the values 1 to 5.

Next, consider the case, though, in which line 10 in this
example is not commented out. The crucial question is,
which scope the execution of the return statement will re-
turn from; will it return from the body of the closure or from
the enclosing lexical scope? According to the semantics of
“full” BGGA closures, break, continue and return state-
ments are bound to their lexical scope: the modified pro-
gram would print the values 1 and 2 and then exit, because
the return statement at line 10 will return from main, not
the closure. While this semantics may appear surprising to
many Java programmers, BGGA argue that this semantics
aids the refactoring of existing code into closures [11, v0.5]:

“One purpose for closure literals is to allow
a programmer to refactor common code into a
shared utility, with the difference between the
use sites being abstracted into a closure literal by
the client. The code to be abstracted sometimes
contains a break, continue, or return statement.
This need not be an obstacle to the transforma-
tion. One implication of the specification is that
a break or continue statement appearing within
a closure literal’s body may transfer to a match-
ing enclosing statement. A return statement al-
ways returns from the nearest enclosing method
or constructor. A function may outlive the target
of control transfers appearing within it.”

For control abstraction, non-local transfer of control can
sometimes be very useful. For instance consider the code
from Figure 6. Readers familiar with aspect-oriented soft-
ware development will easily identify that the use of explicit
locks is scattered through the implementation of the stack
class, and tangled with the code that implements the stack’s

class Stack {

void push(int elm) {
lock.lock ();
try {
arr [ent++4] = elm;
} finally {
lock . unlock();

}

int pop() {
lock.lock ();
try {
return arr[——cnt];
} finally {
lock . unlock();

Figure 6: Use of explicit locks in a Java program

© W N ok W N e

T
(S

1

13
14

15

-
=

18
19
20

<T> T withLock(Lock lock, { => T} block) {
lock.lock ();

try {
return block.invoke();

} finally {
lock . unlock ();
}

}

void push(int elm) {
withLock(lock) {
arr [ent++4] = elm;

}
}
int pop() {
withLock(lock) {
return arr[——cnt]; //return from pop!
}

Figure 7: Encapsulating locking with BGGA closures, af-
ter [26]

actual functionality. While control abstraction cannot avoid
scattering or tangling, it can reduce the amount of scattered
code. Consider the code in Figure 7. This code uses BGGA
closures to encapsulate the locking-related code within the
method withLock. The methods push and pop can call this
method with a block of code as argument, yielding a rather
declarative syntax. Importantly, note that the return state-
ment in line 18 causes the code to not only return from the
closure but also from the pop method; the return binds to
the enclosing lexical scope, not the closure.

Although non-local transfer of control can be quite pow-
erful, it also introduces several pitfalls. If no proper care
is taken, control flow may become hard to reason about.
Especially, multi-threaded execution of closures raises ques-
tions. Similar to the aspect from Figure 3, imagine a func-
tion asyncExec that passes a body of code for execution by
another thread. When invoking asyncExec with a closure
¢ declared within a method m, then it may happen that m
returns long before ¢. But which version of m should an ex-
plicit return from c then jump to? BGGA call this the case
of an “unmatched” non-local transfer of control. For lack
of a meaningful semantics of such a situation, the authors
propose to throw an exception in case the situation arises.

Note that the same problem can arise even in a single-
threaded setting: if a closure can be stored in a field or
returned from its declaring scope then it may be invoked
after the program returned from this scope. The problem is
known as the “upward FUNARG problem” [32].

To maintain simplicity, the FCM and CICE approaches
do not allow for non-local transfer of control; here break
and continue statements are only allowed within a closure
if their control-flow target is part of the closure as well.
Likewise, return statements return from the closure, not
the enclosing lexical scope. Despite compelling examples
such as the locking examples above, the complexity of non-
local transfer of control has provoked much criticism from
the Java community. Hence, Gafter and von der Ahé have
recently split their proposal into two parts: normal clo-
sures are now “restricted”, which means that they follow the
control-transfer semantics of FCM and CICE; programmers
can, however, use a specialized syntax defined in the second

part to declare unrestricted closure with non-local transfer
of control for the purpose of control abstractions.

3.2.2 Variable capture

A problem closely related to non-local transfer of control is
the problem of non-local transfer of data. As we explained
above, closures “close” open expressions by assigning free
variables values from the enclosing lexical scope: the vari-
ables are captured in this scope. In many situations, this
is unproblematic. For instance, in our inner-class example
from Figure 4, even if the Java Language Specification [21]
had not required the variable result to be final, the as-
signment to result would still have had a well-defined se-
mantics, due to the fact that the run method executes syn-
chronously right in its lexical scope. In fact, loosening the
restriction that the result be final would have provided for
a simpler syntax in this case: instead of having to declare
a single-value heap-allocated array, the programmer could
simply have used a primitive boolean variable instead. Af-
ter all, as long as the closure is guaranteed to execute in the
control flow of its declaring scope, the captured variables
do not necessarily need to be heap-allocated because they
are guaranteed to be on the stack at every access, although
possibly a few frames further up.

As we can see, unrestricted access to variables from the
lexical scope can be quite useful. However, how about situa-
tions where closures outlive the execution of their enclosing
lexical scope? In general, this situation cannot be avoided,
and when the situation arises, what semantics should ac-
cesses to this scope follow? Most closure proposals by now
adopt a semantics where variables accessed through a clo-
sure must either be explicitly declared as final, or implicitly
get final-semantics. (The latter approach is taken in C#.)
This means that the closure receives copies of the variables
from the lexical scope at the time the closure is captured,
not at the time at which it is invoked. Because the variables
are final, the closure cannot assign them. This trades flex-
ibility for a rather straightforward semantics. Unrestricted
BGGA closures use a semantics in which closures can read
from and write to captured variables at will. Write accesses
generate a warning unless the variable written to is anno-
tated with @Shared. However, version 0.6a of the BGGA
proposal now also adopts the more restricted semantics that
only final variables may be accessed.

We will discuss more approaches to closures in our Related
Work section, Section 5. As our discussion showed, the de-
sign space for closures strongly aligns with the design space
for block joinpoints. It hence follows naturally to consider
defining and implementing block joinpoints as closures.

4. CLOSURE JOINPOINTS

As we saw, the existing proposals for lambda expressions
and closures in Java mainly differ in the amount kinds of
control- and data transfer that they allow. In this section, we
present our proposal for Closure Joinpoints. We first discuss
the execution semantics of Closure Joinpoints with respect
to data flow and control flow using our ShoppingSession
example. We then describe in full generality our proposed
syntax of Closure Joinpoints (which is a matter of taste and
hence open for debate), how to type check programs in our
language extension, and an implementation based on the
AspectBench Compiler [7].

1
2
3

© 0 N o ook

4.1 Closure Joinpoints by example

In our proposal, Closure Joinpoints are expressions of the
following syntax:

exhibit ID([FormalParamList]) Block ([ActualParamList])

The block effectively defines a lambda expression, while the
formal-parameter list defines its A-bound variables. Op-
posed to regular lambda expressions, however, a Closure
Joinpoint must be followed by an actual-parameter list: the
closure is always immediately called, and cannot be assigned
to function variables.

Figure 8 shows the shopping-session example from Fig-
ure 2 adopted to the proposed syntax. The aspect in lines
17-24 first declares a type signature for an explicit joinpoint
type called Buying. Note that, unlike a named pointcut
declaration, because a joinpoint declaration defines an ex-
pression type, it comprises a return type (int). The advice
that follows declares to advise joinpoints of this type. Note
that, opposed to the approach taken by Steimann et al.,
which we discussed in the introduction, the syntax for ad-
vice bodies remains completely the same as in AspectJ. In
particular, our joinpoints do not carry context information
as re-assignable fields but rather expose context to pieces
of advice by binding advice parameters, just as in regular
AspectJ. This makes it immediately clear that the values
of amt and cat are visible in this particular piece of advice
only, and that advice parameters are allocated on the stack,
not the heap, and are therefore not subject to data races.

The explicit joinpoint in the base code (lines 9-13) was
adapted to the syntax of Closure Joinpoints. As in Figure 2,
the base code declares to exhibit a joinpoint of type Buying.
However, the header of the exhibit-clause now contains a
formal-parameter list. The actual-parameter list from Fig-
ure 2 follows the joinpoint body. Figure 9 shows the general
syntax as a syntactic extension to AspectJ (shown in gray).
Note that Closure Joinpoints can appear as StmtEzpr, in
which case their return value (if any) is discarded.

import static BonusProgram.Buying;
class ShoppingSession {
int totalAmount = O;
ShoppingCart sc = new ShoppingCart();

void buy(final Item item, int amount) {
Category category = Database.categoryOf(item);
//changes start here
totalAmount = exhibit
Buying(Category c, int amount) {
sc.add(item, amount);
return totalAmount + amount;
} (category,amount);
}
}

aspect BonusProgram {
joinpoint int Buying(Category cat, int amount);
int around Buying(Category cat, int amt) {
if (cat==Item.BOOK)
amt += amt / 2;
return proceed(cat, amt);

}

Figure 8: Example from Figure 2 with Closure Joinpoints

Ezpr == ... | ClosureJoinpoint.

StmtEzpr == ... | ClosureJoinpoint.

ClosureJoinpoint ::=
“exhibit” /D “(” [ParamList] “)” Block
“Q [ArgList])7 |

“exhibit” /D Block.

AspectMember == ... | JoinpointDecl.
JoinpointDecl ::=

“joinpoint” Type ID “(” [ParamList] “)” [ThrowsList].
AdviceDecl == ... | CJPAdviceDecl.
CJPAdviceDecl ::=

[Modifiers] CJPAdviceSpec [ThrowsList] Block.
CJPAdviceSpec ::=

Type “before” ID “(” [ParamList])7 |
Type “after” ID “(” [ParamList])7 |
Type “aftexr” ID “(” [ParamList] “)”
“returning” [“(” [Param])7] |
Type “after” ID “(” [ParamList] “)”
“throwing” [“(" [Param] “)”] |
Type “around” 1D “(” [ParamList] “)”.

Figure 9: Syntax for Closure Joinpoints, as a syntactic ex-
tension to AspectJ (shown in gray)

Certainly, our syntax is more verbose than it would have
to be. However, due to the verbosity, it is close to the syntax
of Java, which is similarly verbose in itself. A different syn-
tax may be advisable in connection with other languages.
Note, though, that we do provide “exhibit ID Block” as a
shorthand for “exhibit ID() Block ()”. With this shorthand
syntax, a closure joinpoint appears just as a block joinpoint,
but with a quite restrictive semantics: as we explain below,
the joinpoint has only access to fields and final local vari-
ables and may not have any non-local transfer of control.

4.2 Data-flow semantics

The formal-parameter list of the Closure Joinpoint de-
clares local names for the variables that this joinpoint ex-
poses. Through this syntax, it is immediately clear to Java
programmers that variables from this formal-parameter list
shadow variable definitions from the enclosing scope. For
instance, within the Closure Joinpoint of Figure 8, the vari-
able references to amount (lines 11 and 12) bind to the for-
mal parameter of the Closure Joinpoint, not to the second
parameter of buy. This, in turn, indicates that the values
of the variables of the formal-parameters list may change,
should the Closure Joinpoint be advised; programmers are
used to parameters being assigned different values in differ-
ent execution contexts. We conclude that the introduction
of a formal-parameters provides a syntax and semantics that
should appear more natural to Java programmers than the
approach taken e.g. by Steimann et al.: the data flow is more
obvious and helps to avoid unwanted surprises.

Not all Closure Joinpoints are closed lambda expressions.
As the name suggest, and our example shows, they can be
closures: in the example, line 12 captures the field total-
Amount. After our initial discussion, the reader may want to
know whether we allow programmers to capture non-final

AW e

® N o o

local variables. Although there are compelling use cases for
this feature, supporting it would require implicit heap allo-
cation, and we argue that implicit heap allocation is dan-
gerous. Particularly, it is not uncommon to execute join-
points by “proceeding” in other threads: both Laddad [27]
and Kienzle [25] independently advocate this mechanism
for implementing transactions with aspects, and we our-
selves used such asynchronous execution of joinpoints for
N-Version Programming [10]. Multi-threaded execution eas-
ily causes races on unprotected heap-allocated objects. We
hence feel that programmers should be required to heap-
allocate objects explicitly, if desired, to make them aware of
the risk of races. We therefore disallow Closure Joinpoints
to write to captured local variables. Nevertheless, as shown
in the example, we do allow access to fields of any kind; fields
are heap-allocated anyway and Java programmers therefore
know that accessing them may require synchronization.

Because we force Closure Joinpoints to be called right at
the place of their declaration, we can give them the seman-
tics of proper expressions, allowing them to return a value.
In our example, the joinpoint returns the properly updated
value of totalAmount, which the enclosing scope then as-
signs to the appropriate variable. In case an around advice
decides to defer execution of the joinpoint by scheduling it
for execution in another thread, the body of the around ad-
vice will have to return a value nevertheless. Consider Fig-
ure 10: because the aspect “proceeds” in a separate thread, it
cannot return the return value of this proceed-call but must
return some made-up return value instead. In our example,
this does not really make sense: it is impossible to come up
with a sensible return value before the proceed-call returns;
deferred execution is just no option for this particular join-
point. But at least, our syntax and semantics make the pro-
grammer aware of this fact. Compare this to the approach
taken by Steimann et al.: there, block joinpoints are block
statements and not expressions, and therefore do not have
an explicit return value. Instead, their block joinpoints pass
values to the declaring scope through assignments to heap-
allocated, captured variables. But in our example, these
assignments would be deferred with the proceed-call, and
therefore yield a subtle data race.

4.3 Control-flow semantics

As we saw in Section 3.2.1, non-local transfer of control
can be useful in certain situations, for instance for “hiding”
explicit locks behind a withLock closure which to the pro-
grammer appears just like a synchronized block (Figure 7).
Aspects, to a certain extent, also fulfil the purpose of en-
capsulating control structures into a separate module. In
fact, both practitioners and researchers have used aspects
to address concerns like multi-threaded dispatch or trans-

aspect Scheduler {
int around BonusProgram.Buying(int amt, Category cat) {
new Thread() {
public void run() { proceed(amt,cat); }
}.start ();
return 0; //always returned
}
}

Figure 10: Aspect deferring execution of a Closure Joinpoint

actions [25,27]. Therefore, the prospect of allowing explicit
joinpoints non-local transfer of control may seem appealing.
However, already at the beginning of the paper we ar-
gued for a semantics that follows the principle of least sur-
prise: many programmers already perceive regular AspectJ
as rather complex, and adding closures to Java (or AspectJ
for that matter) will increase complexity even more. We
therefore argue for a rather simplistic approach, even though
this may result in a somewhat more verbose syntax. For Clo-
sure Joinpoints, we therefore disallow non-local transfer of
control. This means that break and continue statements
are only allowed within a joinpoint’s block if they bind to
targets within the same block. Further, return statements
return from the joinpoint, not the enclosing lexical scope.

Exceptions. Exceptions are another possible way to intro-
duce unstructured control-flow into a Java program. None of
the closures proposals that we mentioned in Section 3 treats
exceptions in a special way. If a closure raises an exception
then this exception will propagate up the call stack, i.e., into
the calling scope, not the declaring lexical scope. Handling
exceptions is therefore up to the environment that calls the
closure, not to the one that declares it. The same semantics
apply to Closure Joinpoints, too. For checked exceptions, we
demand that they be declared in the definition of the join-
point type (note the optional ThrowsList for JoinpointDecl
in Figure 9). Once declared, we check that all contexts that
may call Closure Joinpoints of this type do in fact handle or
explicitly propagate exceptions of this type.

4.4 Type checking Closure Joinpoints

Due to the fact that Closure Joinpoints rely on the well-
known notion of closures, and closures are special methods,
type checking Closure Joinpoints is quite similar to type
checking method definitions and calls. However, since we
use a joinpoint declaration both for type checking closures
and calls to those closures, unlike for method calls we can-
not allow covariant return types nor contravariant argument
types. This problem is well known for around advice and can
be alleviated by resorting to more elaborate typing annota-
tions, such as proposed in StrongAspectJ [20].

For an Aspect]J program using Closure Joinpoints to be
well-typed, it must obey the following rules:

e [f a piece of advice a declares to advise a Closure Join-
point j then j must be declared and a and j must have
the same return type and parameter types.

e A Closure Joinpoint ¢ of declared type j may only
return a value if j’s return type r is not void. ¢ must
then return a value v on all paths, with the type of v
a sub-type of r. The return type of ¢ is the declared
return type r. j must have the same formal-parameter
types as ¢. The actual parameters passed to ¢ must be
of sub-types of the respective formal parameters.

e A Closure Joinpoint may access its formal parameters
and final local variables and fields from the enclosing
lexical scope.

e A Closure Joinpoint declared in a static method may
only access members from the enclosing scope that are
also static. It has no access to “this”.

e A Closure Joinpoint must not contain break or con-
tinue statements whose targets are not part of the
same joinpoint.

e If an advice a advises Closure Joinpoints of type j
which declares to throw checked exceptions of type e
then a must either catch exceptions of this type or
declare to propagate them. Similarly, all call sites of
Closure Joinpoints of declared type j must handle or
propagate these exceptions.4

4.5 Argument binding and reflection

Since pieces of advice reference Closure Joinpoints explic-
itly and not through a pointcut, there are no this, target
or args pointcuts. Similarly, reflective access via thisJoin-
Point returns null for these bindings. If a Closure Joinpoint
wishes to expose “this” to an aspect, it can do so via an ex-
plicit joinpoint parameter. An after returning advice can
capture the return value of the Closure Joinpoint and an
after throwing advice can capture exceptions escaping the
closure’s execution respectively.

4.6 Implementation

We implemented Closure Joinpoints as an extension to the
AspectBench Compiler (abc) [7]. First, we type-checking
each Closure Joinpoint j for conformity with its joinpoint
declaration. Here we also check whether all context explic-
itly handle all declared checked exceptions. We then re-use
an existing rewrite [36] in the JastAdd front-end to add for
every j a private method m (to j’s declaring class) whose
signature comprises j’s declared return type, its declared
checked exceptions, its declared formal parameters and addi-
tional formal parameters for referenced local variables. The
rewrite automatically replaces j by a call to m with the ap-
propriate arguments. We tag this method call with a special
internal annotation telling the compiler that this method call
originated from a Closure Joinpoint. The tag also carries
the joinpoints fully qualified name. Pieces of advice that
reference Closure Joinpoints are implicitly assigned a spe-
cial pointcut. This pointcut only matches method calls that
carry a tag with the fully qualified name of the correct join-
point type. The actual advice weaver remains unchanged.
Our implementation, along with many test cases, is available
as open source at: http://bodden.de/research/cjp/

S. RELATED WORK

We first discuss other approaches to explicit joinpoints.
Further, we discuss different approaches to expressive point-
cuts that can match statement sequences, context-oriented
programming and closures in Scala, C# and Java.

5.1 Explicit joinpoints

Steimann et al. propose explicit, block-based joinpoints in
combination with a sub-typing relationship for joinpoints in
general, to increase modularity when using implicit invoca-
tion with implicit announcement (IIIA) [37]. Allowing for
sub-typing of joinpoints appears highly useful, as it allows

“When defining this rule, we discovered a bug in the stan-
dard AspectJ compiler ajc: the compiler allows a before
advice advising a handler joinpoint to throw checked ex-
ceptions even when the lexical scope of this joinpoint is not
prepared to handle these exceptions. (see https://bugs.
eclipse.org/bugs/show_bug.cgi?id=326399 for details)

pieces of advice that were designed for one joinpoint type to
be re-used for other joinpoint types. In Figure 8, the piece
of advice is strongly coupled with the joinpoint type Buy-
ing. Sub-typing would allow the same piece of advice to be
reused for all subtypes of Buying as well. While we strongly
encourage the use of such a joinpoint type hierarchy, and
will investigate such a mechanism in future work, Steimann
et al. used a semantics for their block joinpoints that we
find a sub-optimal fit for Java. As we already showed in
Section 1, the author’s joinpoints introduce a surprising se-
mantics with respect to variable bindings where variables are
implicitly assigned values through around advice, but only
for the duration of the block’s execution. Further, pieces of
advice receive joinpoints as objects that hold context infor-
mation as fields. While users can declare some of these fields
as final, pieces of advice can re-assign the other fields. To
lower the barrier of adoption, we instead opted to leave the
syntax for context access and proceed-calls unchanged. The
only drawback of this syntax is that our explicit joinpoints
can only return a single value to their lexical scope, whereas
the explicit joinpoints from IITA could “return” multiple val-
ues by assigning multiple fields. But this design saves us
from having to allocate captured variables on the heap. As
we discussed, heap allocation can cause subtle data races.
Further, the authors do not discuss the semantics of un-
structured control flow through break and continue state-
ments and exceptions and the semantics that such control
flow should have. As we showed in Section 2, the question
of control flow is non-trivial and the semantics of control
flow should be well defined. To summarize, we believe that
a combination of the joinpoint types from Steimann et al.
with our Closure Joinpoints would yield a powerful aspect-
oriented language. Sub-typing for joinpoints would increase
re-use, while Closure Joinpoints would likely lower the bar-
rier of entry for Java programmers.

The idea of allowing base code to expose joinpoints ex-
plicitly pre-dates the work by Steimann et al. To the best
of our knowledge, Hoffmann and Eugster were the first to
propose explicit joinpoints as a language extension to As-
pectJ [24]. Interestingly, the authors propose two different
kinds of joinpoints in their approach. Their regular explicit
joinpoints resemble atomic events, syntactically similar to
calls to static methods. Such joinpoints have no duration, as
they do not enclose any base-program statements. Instead,
they merely mark a location in the code. Such joinpoints
presumably only make sense in combination with before or
after advice, as there is no execution to replace using an
around advice. Hoffmann and Eugster hence additionally in-
troduce “scoped joinpoints” as their version of explicit block
joinpoints. Similar to Steimann et al. also Hoffmann and
FEugster do not discuss the problem of unstructured control
flow. Regarding variable capture, the authors write:

“Scoped EJPs [...] can access and modify
local variables in all visible outer scopes, method
signatures can remain unchanged and concerns
can be added or removed simply by wrapping or
unwrapping a block of code within a scope.”

This suggests that the authors ignore (or are unaware of) the
fact that, through this semantics, captured values need to be
heap-allocated, and the problems that this may introduce.
On the other hand, the authors do discuss an interesting
feature that we did not consider: in their approach, aspects

http://bodden.de/research/cjp/
https://bugs.eclipse.org/bugs/show_bug.cgi?id=326399
https://bugs.eclipse.org/bugs/show_bug.cgi?id=326399

can “promise” to handle certain types of checked exceptions
for certain types of scoped explicit joinpoints. If an aspect
handles checked exceptions of type e for joinpoint type e
then explicit joinpoints of type j may use code that can raise
e without having to catch or forward the exception. In our
eyes, such a feature appears very useful for certain aspects
and would be a useful addition to the IIIA type system.

@Java [13] is a research project that aims at introducing
Java 5 annotations in locations in which they are, accord-
ing to the current Java Language Specification [21], not al-
lowed. Specifically, programmers can add annotations to
single statements, to independent blocks of code and to
expressions. @AspectJ [15,35] is a related project by the
same authors that extends AspectJ with a mechanism such
that the newly annotated syntactic elements can be advised.
There is no semantic definition of @AspectJ and the work
on @AspectJ does not mention any of the semantic compli-
cations that we discuss in this paper.

5.2 Pointcuts matching statement sequences

We next discuss approaches that introduce new pointcuts
to the AspectJ language and match implicit joinpoints com-
prising multiple statement of a base program. In these ap-
proaches, the base code remains oblivious to being advised.

Akai et al. propose region pointcuts for AspectJ [4,5]. Re-
gion pointcuts consist a “region match pattern” over regular
AspectJ pointcuts. This allows programmers to select re-
gions, i.e., periods of time that start when matching one
regular AspectJ pointcut and end when matching another.
Region pointcuts are quite powerful in that they give aspect
programmers very fine-grained control about which state-
ments exactly constitute a joinpoint. On the other hand,
region joinpoints may aggravate the problem of fragile point-
cuts: because region pointcuts are very explicit about syn-
tactic constructs of the base program, and even the order in
which they occur, they may introduce tight coupling to the
particular base code at hand. Explicit joinpoints circum-
vent this problem by assuming that the base-code program-
mer is aspect-aware and includes appropriate joinpoints in
the base code. Although region pointcuts pick out implicit
regions of the base code, these regions are nevertheless sub-
jects to the very control-flow and data-flow constraints that
we discussed. Akai et al. propose to handle assignments
to captured variables through heap allocation. This results
in assignment semantics similar to those of IITA, with the
same tradeoffs. Interestingly, the authors propose to handle
unstructured control flow in a similar way [5]:

“If there are jumps whose targets are outside
of the region, [after weaving] their targets will be
in another method. Since JVM dose not support
such a inter-method jumps, these jumps will fail.
To solve this problem, we assign identification
(id) numbers to each jump to the outside. Next,
each jump is replaced by the following instruc-
tions: 1. Save the id into a local variable (jump
id variable) 2. Jump to the tail of the region.
After the execution of the region, the jump id
variable is checked, and then the thread jumps
to the target specified by the jump id variable.”

This solution may be possible when the around advice pro-
ceeds synchronously, i.e., executes in the control flow of its
declaring context. However, the proposed solution will fail

10

when the advice defers execution of the original joinpoint
by passing a proceed-call to another thread (Figure 10). In
such cases, jumps would have to raise an exception as was
proposed in the original draft for BGGA closures (c.f. Sec-
tion 3.2.1). The proposal for region pointcuts does not alter
the syntax or semantics for pieces of advice.

Harbulot and Gurd propose an AspectJ language exten-
sion called LoopsAJ [23]. With LoopsAlJ, the authors add a
primitive pointcut loop that can match loops in the program
and can expose values such as the minimal and maximal
value of the loop-iteration counter and its stride. LoopsAJ’s
performs loop matching on a best-effort basis: because it
attempts to recognize loops on the bytecode level, LoopsAJ
can recognize reducible (i.e., well-structured) loops only [3].
Interestingly, though, such loops that are recognized auto-
matically fulfill the data-flow and control-flow constraints
that we mentioned. In particular, LoopsAJ will never match
loops that break or continue to outside the loop or return
abruptly. Similarly, LoopsAJ only matches loops that have
a single assignment that is not loop-invariant. By defini-
tion, this assignment is the increment of the loop counter.
If the loop assigns any other variable, e.g., a variable from
the enclosing lexical scope, then the loop will simply not
be matched. While such semantics seem reasonable for the
special case of matching loops, they would certainly be un-
reasonable for explicit block joinpoints: an explicit joinpoint
is, by definition, supposed to be advised. Hence, the decision
of whether or not an advice will advise an explicit joinpoint
should not depend on subtle control-flow and data-flow rules.
Our type checks prevent programmers from violating such
rules in the first place.

One particularly useful extension to AspectJ appears to
be the notion of a joinpoint for synchronized blocks. As
Xi et al. show [40,41], joinpoints for synchronized blocks
can allow programmers to implement different synchroniza-
tion schemes in a truly modular fashion. Unfortunately,
the authors do not address (nor even mention) the control-
flow and data-flow constraints that we discuss in this paper.
This causes unclear semantics, in particular for the multi-
threaded programs that the authors consider.

Table 1 summarizes our comparison with other proposals
for block-based joinpoints and pointcuts.

5.3 Joinpoint matching through Blueprints

Cazzola and Pini propose “The Blueprint Approach” for
matching on joinpoints [14]. In this approach, the authors
provide an AspectJ-like programming language with a high-
level pattern-based join point model, where join points are
described by join point blueprints, graphical representations
of behavioral patterns describing where join points should
be matched. Although the project’s main goal is to make
pointcut definitions more robust with respect to code evolu-
tion, the behavioral patterns that the blueprints also appear
more expressive than regular AspectJ pointcuts. It therefore
appears that blueprints could replace explicit joinpoint def-
initions at least in some situations where regular AspectJ
pointcuts would fail.

5.4 Context-oriented programming

As Clarke et al. [17] define, Context-oriented program-
ming treats execution context explicitly and provides means
for context-dependent adaptation at runtime. In their pa-
per, the authors address the semantic problem of closures

Approach Joinpoints Kind
IITA [37] explicit stmt
Explicit Joinpoints [24] explicit stmt
Region Pointcuts [4, 5] implicit stmt
LoopsAJ [24] implicit stmt
Sync.-block Joinpoints [40, 41] implicit stmt ?
Closure Joinpoints (this paper) | explicit expr

Captured variables
locals & fields (heap-allocated) 7
locals & fields (heap-allocated) ?
locals & fields (heap-allocated)
restricted (data-flow analysis)

final locals & fields

Jump targets

lexical scope
restricted (control-flow analysis)
o

local

Table 1: Comparison of related work with Closure Joinpoints

that escape the control flow of their enclosing lexical scope.
As we mentioned, the semantics of executing such a closure
not obvious. Clarke et al. discuss several different possi-
ble semantics for such an out-of-context closure execution,
but leave the ultimate answer of the “best semantics” open.
Indeed, it appears impossible to favor one semantics over
another in all situations: a semantics close to dynamic scop-
ing may appear natural in a dynamically scoped language
like LISP, while programmers working with statically scoped
languages like Scheme or Java would probably prefer the se-
mantics that we propose. Costanza provides an excellent
discussion of dynamic scoping in LISP, and even shows that
one can implement dynamically scoped [39] advice in LISP
by simply lifting dynamic scoping to function calls [19].

5.5 Closures in Scala, C# and Java

Lambda expression and closures are at the heart of the
Scala programming language [33]. Scala satisfies some of
the control-flow constraints that we mentioned by forbidding
break and continue statements. The ambiguity of return
statements is resolved as follows: by default, closures im-
plicitly return the value of the last evaluated expression.
Executing an explicit return statement, on the other hand,
will cause the program to return from the enclosing lexi-
cal scope. Closures in Scala can read and write captured
variables; they are heap-allocated. As we mentioned, this
increases the risk for data races. In Scala, many program-
mers use actors, though, instead of explicit threads, which
alleviates this problem again [22].

The C# programming language supports lambda expres-
sions since version 3. Lambda expressions in C# follow
a more conservative design than those in Scala. return
statements return from the closure, not the enclosing lexical
scope. goto, break or continue statements within closures
are only allowed to bind to targets that reside in the closure
itself. To ensure that read accesses to variables from the lex-
ical scope can read a well-defined value, lambda expressions
can only read such variables that are definitely assigned be-
fore the declaration of that expression [2, §7.4.14]. As in
Scala, captured variables are heap-allocated.

In Section 3 we already discussed three quite prominent
but informal approaches to adding lambda expressions and
closures to Java. With JavaQ [8], Bellia and Occhiuto pro-
pose a formal approach to enhancing Java with method
types and pointers in general, and closures in particular.
Control-flow semantics coincide with C#. With respect to
data flow, users must explicitly choose: users can use final
variables but can also annotate local variables with shared.
This causes them to be heap-allocated, so that closures can
write to them from any execution context. Closures cannot
access variables that are neither final nor shared.

With JavaX [34], Pliimicke provides an approach to for-
malizing the existing proposals for adding lambda expres-

11

sions to Java. Currently, though, the work formalizes the
sub-typing relationship between lambda expressions only.

6. CONCLUSION AND FUTURE WORK

We have introduced Closure Joinpoints, a design for ex-
plicit block joinpoints that yields a syntax and semantics
close to the Java programming language. We have dis-
cussed several important design questions for closures, and
explained how these play into our design for Closure Join-
points. Further, we have shown that most existing proposals
for block-like joinpoints (both explicit or implicit) answer
these questions insufficiently. Closure Joinpoints provide a
comparatively clear and simple syntax and semantics.

In future work, we plan to combine Closure Joinpoints
with sub-typing for joinpoints, as proposed by Steimann
et al. Further, we will propose an integration of Closure
Joinpoints into the Eclipse AspectJ project. To support
programmers in writing Closure Joinpoints, we propose to
implement an “extract joinpoint” refactoring, similar to the
traditional “extract method” refactoring.

Acknowledgements.

We are very grateful to Max Schéfer, who contributed
a great deal to our implementation by providing his refac-
toring package for JastAdd. We thank Lucas Satabin for
helping us clarify the semantics of closures in Scala, and
Friedrich Steimann for extensive discussions on the topic.
Andreas Sewe and Jan Sinschek provided helpful feedback
on a draft of this paper. We also thank the anonymous
reviewers for their helpful comments. This work was sup-
ported by CASED (www.cased.de).

7. REFERENCES

[1] Android software development kit.
http://source.android.com/.

[2] C# version 3.0 specification, September 2005.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: principles, techniques, and tools.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1986.

[4] Shumpei Akai and Shigeru Chiba. Extending AspectJ
for separating regions. In GPCE, pages 45-54. ACM,
20009.

[6] Shumpei Akai, Shigeru Chiba, and Muga Nishizawa.
Region pointcut for Aspectd. In ACP4IS ’09:
Proceedings of the 8th workshop on Aspects,
components, and patterns for infrastructure software,
pages 43-48. ACM, 2009.

[6] The AspectJ home page, 2003.

[7] Pavel Avgustinov, Aske Simon Christensen, Laurie
Hendren, Sascha Kuzins, Jennifer Lhotdk, Ondfej
Lhoték, Oege de Moor, Damien Sereni, Ganesh

http://source.android.com/

10

[11]

[12]

[13]

[14]

[15]

16

[17]

Sittampalam, and Julian Tibble. abc: An extensible
AspectJ compiler. In AOSD, pages 87-98. ACM Press,
March 2005.

Marco Bellia and M. Eugenia Occhiuto. Java): The
structures and the implementation of a preprocessor
for Java with m and mc parameters. Fundamenta
Informaticae, 93(1-3):45-64, 2009.

Oracle Berkeley DB, 2010. http://www.oracle.com/
technetwork/database/berkeleydb/.

Eric Bodden. AspectJ aspects for n-version
programming, November 2007.
http://www.bodden.de/tools/.

Gilad Bracha, Neal Gafter, James Gosling, and Peter
von der Ahé. BGGA closure proposal for Java, 2010.
http://wuw.javac.info/.

Magiel Bruntink, Arie van Deursen, Maja D’Hondt,
and Tom Tourwé. Simple crosscutting concerns are
not so simple: analysing variability in large-scale
idioms-based implementations. In AOSD, pages
199-211. ACM, 2007.

Walter Cazzola, Emanuele Debenedett, Federico
Pedemonte, Roberto Bentivogli, and Marco Poggi.
@Java - a Java annotation extension. http:
//homes.dico.unimi.it/"cazzola/atjava.html.
Walter Cazzola and Sonia Pini. On the footprints of
join points: The blueprint approach. Journal of Object
Technology, 6(7):167-192, August 2007.
Aspect-Oriented Modeling.

Walter Cazzola and Marco Poggi. @AspectJ - a
fine-grained AspectJ extension. http:
//homes.dico.unimi.it/"cazzola/ataspectj.html.
Alonzo Church. A set of postulates for the foundation
of logic. The Annals of Mathematics, 33(2):pp.
346-366, 1932.

Dave Clarke, Pascal Costanza, and Eric Tanter. How
should context-escaping closures proceed? In COP
’09: International Workshop on Context-Oriented
Programming, pages 1-6. ACM, 2009.

Stephen Colebourne and Stefan Schulz. First class
methods for Java, 2007.
http://jroller.com/scolebourne/.

Pascal Costanza. Dynamically scoped functions as the
essence of aop. SIGPLAN Notices, 38(8):29-36, 2003.
Bruno De Fraine, Mario Siidholt, and Viviane
Jonckers. Strongaspectj: flexible and safe
pointcut/advice bindings. In AOSD, pages 60-71.
ACM, 2008.

James Gosling, Bill Joy, Guy Steele, and Gilad
Bracha. The Java™ Language Specification, 3rd
edition. Addison-Wesley Professional, 2005.

Philipp Haller and Martin Odersky. Scala actors:
Unifying thread-based and event-based programming.
Theoretical Computer Science, 2008.

Bruno Harbulot and John R. Gurd. A join point for
loops in Aspectd. In AOSD ’06: Proceedings of the 5th
international conference on Aspect-oriented software
development, pages 63—-74. ACM, 2006.

Kevin Hoffman and Patrick Eugster. Bridging Java
and AspectJ through explicit join points. In PPPJ,
pages 63-72. ACM, 2007.

12

[25]

[26]

27]

(28]

29]

(30]

(31]

(32]

(33]

34]

(35]

(36]

37]

(38]

39]

(40]

[41]

Jorg Kienzle and Samuel Gélineau. Ao challenge -
implementing the ACID properties for transactional
objects. In AOSD, pages 202-213. ACM, 2006.

Klaus Kreft and Angelika Langer. Understanding the
closures debate, June 2008. http://www.javaworld.
com/javaworld/jw-06-2008/jw-06-closures.html.
Ramnivas Laddad. AspectJ in Action: Practical
Aspect-Oriented Programming. Manning Publications
Co., Greenwich, CT, USA, 2003.

P. J. Landin. The mechanical evaluation of
expressions. The Comp. Journal, 6(4):308-320, 1964.
Bob Lee, Doug Lea, and Josh Bloch. Concise instance
creation expressions for Java, 2007.
https://docs.google.com/View?docid=k73_1ggr36h.
Philip Lee. pointcut to detect String concatenation at
invocation of Log4j? aspectj-users mailing list,
November 2004. http:
//dev.eclipse.org/mhonarc/lists/aspectj-users/.
Hidehiko Masuhara, Yusuke Endoh, and Akinori
Yonezawa. A fine-grained join point model for more
reusable aspects. In Programming Languages and
Systems, volume 4279 of LNCS, pages 131-147.
Springer, 2006.

Joel Moses. The function of FUNCTION in LISP or
why the FUNARG problem should be called the
environment problem. SIGSAM Bulletin, (15):13-27,
1970.

Martin Odersky, Lex Spoon, and Bill Venners.
Programming in Scala: A Comprehensive Step-by-step
Guide. Artima Incorporation, USA, 2008.

Martin Pliimicke. Formalization of the Java\ type
system. Technical Report tr_1010,
Christian-Albrechts-Universidt zu Kiel, 2010. 27.
Workshop der GI-Fachgruppe 2.1.4
“Programmiersprachen und Rechenkonzepte”.

Marco Poggi. Qaspectj — an extension to the aspectj
join point selection mechanism to support @java
annotation meta-facility (in italian). Master’s thesis,
Universita di Genova, 2009.

Max Schifer, Mathieu Verbaere, Torbjorn Ekman, and
Oege de Moor. Stepping stones over the refactoring
rubicon. In ECOOP, pages 369-393, 2009.

Friedrich Steimann, Thomas Pawlitzki, Sven Apel,
and Christian Késtner. Types and modularity for
implicit invocation with implicit announcement.
TOSEM, 20(1):1-43, 2010.

Gerald J. Sussman and Guy L. Steele, Jr. An
interpreter for extended lambda calculus. Technical
report, Massachusetts Institute of Technology,
Cambridge, MA, USA, 1975.

Eric Tanter, Johan Fabry, Rémi Douence, Jacques
Noyé, and Mario Siidholt. Expressive scoping of
distributed aspects. In AOSD, pages 27-38. ACM,
20009.

Chenchen Xi, Bruno Harbulot, and John R. Gurd. A
synchronized block join point for AspectJ. In FOAL,
pages 39-39. ACM, 2008.

Chenchen Xi, Bruno Harbulot, and John R. Gurd.
Aspect-oriented support for synchronization in parallel
computing. In LATE, pages 1-5. ACM, 2009.

http://www.oracle.com/technetwork/database/berkeleydb/
http://www.oracle.com/technetwork/database/berkeleydb/
http://www.bodden.de/tools/
http://www.javac.info/
http://homes.dico.unimi.it/~cazzola/atjava.html
http://homes.dico.unimi.it/~cazzola/atjava.html
http://homes.dico.unimi.it/~cazzola/ataspectj.html
http://homes.dico.unimi.it/~cazzola/ataspectj.html
http://jroller.com/scolebourne/
http://www.javaworld.com/javaworld/jw-06-2008/jw-06-closures.html
http://www.javaworld.com/javaworld/jw-06-2008/jw-06-closures.html
https://docs.google.com/View?docid=k73_1ggr36h
http://dev.eclipse.org/mhonarc/lists/aspectj-users/
http://dev.eclipse.org/mhonarc/lists/aspectj-users/

	Introduction
	Why explicit joinpoints should be closures
	Blocks are confined to their lexical scope
	From blocks over methods to closures

	Design tradeoffs for closures in Java
	Lambda expressions vs. Closures
	The design space for closures in Java
	Non-local transfer of control
	Variable capture

	Closure Joinpoints
	Closure Joinpoints by example
	Data-flow semantics
	Control-flow semantics
	Type checking Closure Joinpoints
	Argument binding and reflection
	Implementation

	Related work
	Explicit joinpoints
	Pointcuts matching statement sequences
	Joinpoint matching through Blueprints
	Context-oriented programming
	Closures in Scala, C# and Java

	Conclusion and future work
	References

