
Clara: a Framework for Partially Evaluating
Finite-state Runtime Monitors Ahead of Time?

Eric Bodden1, Patrick Lam2, and Laurie Hendren3

1 Technische Universität Darmstadt
2 University of Waterloo

3 McGill University

Abstract. Researchers have developed a number of runtime verification
tools that generate runtime monitors in the form of AspectJ aspects. In
this work, we present Clara, a novel framework to statically optimize
such monitoring aspects with respect to a given program under test.
Clara uses a sequence of increasingly precise static analyses to auto-
matically convert a monitoring aspect into a residual runtime monitor.
The residual monitor only watches events triggered by program locations
that the analyses failed to prove safe at compile time. In two-thirds of
the cases in our experiments, the static analysis succeeds on all locations,
proving that the program fulfills the stated properties, and completely
obviating the need for runtime monitoring. In the remaining cases, the
residual runtime monitor is usually much more efficient than a full mon-
itor, yet still captures all property violations at runtime.

1 Introduction

Finite-state properties, also known as typestate [1] properties, constrain the set
of acceptable operations on a single object or a group of objects, depending on
the object’s or group’s history. Many formalisms allow programmers to easily ex-
press typestate properties, including linear temporal logic, regular expressions,
message sequence charts and live sequence charts [2, Chapter 2]. Potential appli-
cations of runtime monitoring include the evaluation of arbitrary queries over the
runtime program state and the enforcement of stated properties. For instance, a
monitor could detect attempts to circumvent an access-control policy and then
either log the attempt or stop the detected unauthorized access. Researchers
have proposed and implemented runtime monitoring tools [3–7] which compile
high-level temporal specifications into monitor implementations.

While runtime monitoring could be useful for finding violations in practice, it
is subject to the same problems as software testing. Runtime monitoring gives no
static guarantees: a particular program run can only prove the presence of prop-
erty violations, not their absence. Hence, developers and testers must exercise
judgment in deciding when to stop monitoring program runs, since exhaustive
testing is generally infeasible. Furthermore, although significant advances have

? This work was supported by NSERC and CASED (www.cased.de).



been made [8–10], runtime monitors can still slow down monitored programs
significantly, sometimes by several orders of magnitude.

In this paper we therefore propose Clara, a framework for partially evaluat-
ing runtime monitors at compile time. Partial ahead-of-time evaluation addresses
all of the problems mentioned above. Clara specializes a given runtime moni-
tor to a program under test. The result is a residual runtime monitor that only
monitors events triggered by program locations that the analyses failed to prove
safe at compile time. In our experiments, Clara’s analyses can prove that the
program is free of program locations that could drive the monitor into an error
state in 68% of all cases. In these cases, Clara gives the strong static guarantee
that the program can never violate the stated property, eliminating the need
for runtime monitoring of that program. In many other cases, the residual run-
time monitor will require much less instrumentation than the original monitor,
therefore yielding a greatly reduced runtime overhead. In 65% of all cases that
showed overhead originally, no overhead remains after applying the analyses.

Clara’s principal design goal is to provide a maximally general framework
for statically analyzing runtime monitors. We anticipate that Clara will appeal
to researchers in runtime verification, as it supports a large variety of runtime
monitoring tools. Researchers in static analysis, on the other hand, can easily
extend Clara with novel static analyses to understand and optimize runtime
monitors even further. How do we achieve this generality? Clara’s design is
based on the crucial observation that most current runtime-verification tools
for Java share two common properties: (1) internally, they use a finite-state-
machine model of the property, and (2) they generate runtime monitors in the
form of AspectJ aspects [11]. Figure 1 shows a state-machine model for the
“ConnectionClosed” property: a disconnected connection should not be written
to, unless the connection is potentially reconnected at some later point. Figure 2
shows a monitoring aspect for this property. The remainder of the paper explains
this aspect and its analysis in more detail. Clara takes such monitoring aspects
as input and weaves the aspects into the program under test. While weaving,
Clara conducts static analyses, suppressing calls to the monitoring aspect when
it can statically prove that these calls are unnecessary.

To perform its static analysis, Clara must understand the monitoring as-
pect’s internal transition structure. Because every aspect-generating monitoring
tool uses a different code-generation strategy, and we wish to be independent
of that strategy, Clara expects the monitoring aspect to carry an annotation

s0 s1 s2

close

reconnect

close, reconnect, write

write

close write

Fig. 1: “ConnectionClosed” typestate property: no write after close.



1 aspect ConnectionClosed {
2 Set closed = new WeakIdentityHashSet();
3

4 dependent after close(Connection c) returning:
5 call(∗ Connection.disconnect()) && target(c) { closed.add(c); }
6

7 dependent after reconn(Connection c) returning:
8 call(∗ Connection.reconnect()) && target(c) { closed.remove(c); }
9

10 dependent after write(Connection c) returning:
11 call(∗ Connection.write (..)) && target(c) {
12 if (closed .contains(c))
13 error(”May not write to ”+c+”: it is closed !”); }
14

15 dependency {
16 close , write, reconn;
17 initial s0: close −> s0, write −> s0, reconn −> s0, close −> s1;
18 s1: reconn −> s0, close −> s1, write −> s2;
19 final s2: write −> s2;
20 } }

Fig. 2: “ConnectionClosed” aspect with Dependency State Machine.

encoding the monitor’s transition structure explicitly—a Dependency State Ma-
chine. Figure 2 shows this annotation in lines 15–20. Most runtime verification
tools can easily generate such a state-machine annotation because they internally
use a state-machine model of the monitored property. For our experiments, we
extended the implementation of tracematches [3] to generate the annotations
automatically; we are currently talking to the developers of JavaMOP about
extending their tool to generate annotations, too.

In this paper we present the following original contributions:

– We present Clara, an extensible open framework to evaluate AspectJ-based
finite-state runtime monitors ahead of time.

– We explain the syntax and semantics of Dependency State Machines, Clara’s
mechanism to interface with existing runtime-monitoring tools.

Further, we summarize Clara’s three predefined static analyses and show
through a large set of experiments that, in many cases, these analyses can eval-
uate runtime monitors ahead of time, either largely reducing runtime overhead
or entirely obviating the need for monitoring at runtime.

2 The Clara framework

Clara targets two audiences: researchers in (1) runtime verification and (2)
static typestate analysis. Clara defines clear interfaces to allow the two com-
munities to productively interact. Developers of runtime verification tools simply



Clara

abc compiler

abc compiler,
JavaMOP, . . .

tracematches,
PTLTL, FTLTL,

ERE, . . .

compile & weave

program
AspectJ aspects annotated

with Dependency
State Machines

specification compiler

finite-state specification

static analysis engine

partitioning

ranking heuristics

optimized instru-
mented program

collaborative optimized
instrumented program

potential failure
points (ranked)

programmer

component designer,
QA engineer, . . .

runtime
monitor

test-run

inspect

hand-write

define

Fig. 3: Overview of Clara

generate AspectJ aspects annotated with semantic meaning, in the form of De-
pendency State Machines. Static analysis designers can then create techniques
to reason about the annotated aspects, independent of implementation strategy.

Figure 3 gives an overview of Clara. A software engineer first defines (top
right of figure) finite-state properties of interest, in some finite-state formal-
ism for runtime monitoring, such as Extended Regular Expressions or Linear-
Temporal Logic, e.g. using JavaMOP or tracematches. The engineer then uses
some specification compiler such as JavaMOP or the AspectBench Compiler [12]
(abc) to automatically translate these finite-state-property definitions into As-
pectJ monitoring aspects. These aspects may already be annotated with appro-
priate Dependency State Machines: we extended abc to generate annotations au-
tomatically when transforming tracematches into AspectJ aspects. Other tools,
such as JavaMOP, should also be easy to extend to generate these annotations.
If the specification compiler does not yet support Dependency State Machines,
the programmer can easily annotate the generated aspects by hand.

Clara then takes the resulting annotated monitoring aspects and a program
as input. Clara first weaves the monitoring aspect into the program. The De-
pendency State Machine defined in the annotation provides Clara with enough
domain-specific knowledge to analyze the woven program. We will further ex-
plain Clara’s predefined analyses in Section 4. The result is an optimized in-
strumented program that updates the runtime monitor at fewer locations. Some-
times, Clara optimizes away all updates, which proves that the program cannot
violate the monitored property.



Clara also supports Collaborative Runtime Verification, which distributes
instrumentation overhead among multiple users; and ranking heuristics, which
aid programmers in inspecting remaining instrumentation manually [13] [2, Ch.
6 & 7]. Space limitations preclude us from discussing ranking and Collaborative
Runtime Verification here.

Clara is freely available as free software at http://bodden.de/clara/,
along with extensive documentation, the first author’s dissertation [2], which
describes Clara in detail, and benchmarks and benchmark results.

We next describe the syntax and semantics of Dependency State Machines,
the key abstraction of Clara. This abstraction allows Clara to decouple run-
time monitor implementations from static analyses.

3 Syntax and Semantics of Dependency State Machines

Dependency State Machines extend the AspectJ language to include semantic
information about relationships between different pieces of advice. Runtime ver-
ification tools which generate AspectJ aspects can use this extension to produce
augmented aspects. Clara can reason about the augmented aspects to prove
that programs never violate monitored properties or to generate optimized code.

3.1 Syntax

Our extensions modify the AspectJ grammar in two ways: they add syntax for
defining Dependent Advice [14] and Dependency State Machines. The idea of
Dependent Advice is that pieces of monitoring advice are often inter-dependent
in the sense that the execution of one piece of advice only has an effect when
executing before or after another piece of advice, on the same objects. Depen-
dency State Machines allow programmers to make these dependencies explicit
so that static analyses can exploit them. Our explanations below refer to the
ConnectionClosed example in Figure 2.

The dependent modifier flags advice to Clara for potential optimization;
such advice may be omitted from program locations at which it provably has no
effect on the state of the runtime monitor. Dependent advice must be named.
Lines 4, 7 and 10 all define dependent advice.

The Dependency State Machines extension enables users to specify state
machines which relate different pieces of dependent advice. Dependency State
Machine declarations define state machines by including a list of edges between
states and an alphabet; each edge is labelled with a member of the alphabet.
Clara infers the set of states from the declared edges. Line 16 declares the
state machine’s alphabet: {disconn, write, reconn}. Every symbol in the al-
phabet references dependent advice from the same aspect. Lines 17–19 enumer-
ate, for each state, a (potentially empty) list of outgoing transitions. An entry
“s1: t -> s2” means “there exists a t-transition from s1 to s2”. Users can
also mark states as initial or final (error states). Final states denote states

http://bodden.de/clara/


in which the monitoring aspect “matches”, i.e., produces an externally visible
side effect like the error message in our example (line 13, Figure 2).

The first author’s dissertation [2, page 134] gives the complete syntax for De-
pendency State Machines and also explains sanity checks for these annotations;
e.g., each state machine must have initial and final states. Note that these checks
are minimal and support a large variety of state machines so that Clara can
support many different runtime verification tools. For instance, we allow multiple
initial and final states and we allow the state machine to be non-deterministic.

3.2 Semantics

The semantics of a Dependency State Machine refine the usual advice-matching
semantics of AspectJ [15]. In AspectJ, pieces of advice execute at “joinpoints”,
or intervals of program execution. Programmers use “pointcuts”, predicates over
joinpoints, to specify the joinpoints where advice should apply. In Figure 2, the
expression call(∗ Connection.disconnect()) && target(c) is a pointcut that picks
out all method calls to the disconnect method of class Connection. When the
pointcut applies, it binds the target object of the call to variable c.

Let A be the set of all pieces of advice and J be the set of all joinpoints that
occur on a given program run. We model advice matching in AspectJ as follows:

match : A× J → {β | β : V ⇀ O} ∪ {⊥}.

Given advice a ∈ A and a joinpoint j ∈ J , match(a, j) is ⊥ when a does not
execute at j. If a does execute, then match(a, j) yields a variable binding β,
which maps a’s formal parameters to objects.

Our formal semantics for Dependency State Machines will provide a replace-
ment for match, called stateMatch, that determines the cases in which a depen-
dent piece of advice needs to execute: informally, a dependent advice a must
execute when (1) AspectJ would execute a and (2) when not executing a at
j would change the set of joinpoints for which the Dependency State Machine
reaches its final state for a binding compatible with β. (We define “compatible”
later.) An optimal implementation, which determines exactly all cases in which a
dependent advice does not need to execute, is un-computable, as it would have to
anticipate the future behaviour (and inputs) of the program. The trick is there-
fore to implement statically computable approximations to stateMatch. At the
end of this section, we will present a soundness condition for stateMatch. This
condition uses the set of possible future behaviours to describe the permissible
(sound) implementations of stateMatch.

Semantics by example. Figure 4 contains a small example program that helps ex-
plain the intuition behind our semantics. The program triggers joinpoints which
the ConnectionClosed aspect monitors. AspectJ calls a program point that trig-
gers a joinpoint j the “joinpoint shadow” of j, or just “shadow” [16] for short.



1 public static void main(String args[]) {
2 Connection c1 = new Connection(args[0]),
3 c2 = new Connection(args[1]);
4 c1.write(args [2]); // write(c1): irrelevant shadow−stays in same state
5 c1. close (); // close(c1)
6 c1. close (); // close(c1): also irrelevant
7 c1.write(args [2]); // write(c1): violation−write after close on c1
8 c1. close (); // close(c1): irrelevant−no subsequent writes on c1
9 c2.write(args [2]); // write(c2): write, but on c2, hence incompatible with 8

10 }

Fig. 4: Example program

Formal semantics. Our semantics of Dependency State Machines describe the
set of program traces which cause the state machines to reach their final states.
Note, however, that there is a mismatch between the usual semantics for 1) state
machines and 2) program traces: state machines are not aware of variable bind-
ings. We will call the traces that arise from program executions parameterized
traces [17]. To apply Dependency State Machines to parameterized traces, we
project a parameterized trace onto a set of ground traces, which the Depen-
dency State Machine can process, obtaining one ground trace for every variable
binding.

We will also define the semantics of Dependency State Machines in terms of
“events”, not joinpoints. A joinpoint describes a time interval, while an event is
an atomic point in time. Events simplify reasoning by prohibiting nesting.

Event. Let j be an AspectJ joinpoint. Then j induces the pair of events
jbefore and jafter, which occur at the beginning and end of j. For any set J of join-
points we define the set E(J ) of all events of J as: E(J ) :=

⋃
j∈J {jbefore, jafter}.

We write E instead of E(J ) when J is clear from context.
For any declaration of a Dependency State Machine, the list of dependent

advice names forms an alphabet Σ. For instance, the alphabet for Connection-
Closed from Figure 2 is Σ = {disconn,write, reconn}.

Parameterized events. Let e ∈ E be an event and Σ be the alphabet of
advice references in the declaration of a Dependency State Machine. We define
the parameterized event ê as follows:

ê :=
⋃
a∈Σ
{(a, β) | β = match(a, e) ∧ β 6= ⊥}.

Here, match(a, e) is AspectJ’s matching function, lifted to events; it therefore
maps advice/event pairs to variable bindings, returning parameterized events.
We label the set of all possible parameterized events Ê . Projection maps param-
eterized event traces (Ê∗) to “ground traces” (Σ∗).

Projected event. For every parameterized event ê ∈ Ê and binding β we
may project ê with respect to β:

ê ↓ β := {a ∈ Σ | ∃(a, βa) ∈ ê such that compatible(βa, β)},



where compatible means that β1 and β2 agree on their joint domains:

compatible(β1, β2) := ∀v ∈ (dom(β1) ∩ dom(β2)) : β1(v) = β2(v).

In this predicate, dom(βi) denotes the domain of βi, i.e., the set of variables
where βi is defined.

Parameterized and projected event trace. Any finite program run in-
duces a finite parameterized event trace t̂ = ê1 . . . ên ∈ Ê∗. For any variable
binding β we define a set of projected traces t̂ ↓ β ⊆ Σ∗ as follows. t̂ ↓ β is the
smallest subset of Σ∗ for which:

∀t = e1 . . . en ∈ Σ∗ : if ∀i ∈ N with 1 ≤ i ≤ n : ei ∈ êi ↓ β then t ∈ t̂ ↓ β

We call such traces t, which are elements of Σ∗, “ground” traces; parameterized
traces are instead elements of Ê∗.

A Dependency State Machine will reach its final state (and the related aspect
will have an observable effect, e.g., will issue an error message) whenever a prefix
of one of the ground traces of any variable binding is in the language described
by the state machine. This yields the following definition.

Set of non-empty ground traces of a run. Let t̂ ∈ Ê∗ be the parame-
terized event trace of a program run. Then we define the set groundTraces(t̂) of
non-empty ground traces of t̂ as:

groundTraces(t̂) :=

⋃
β∈B

t̂ ↓ β

 ∩Σ+

We intersect with Σ+ to exclude the empty trace, which contains no events and
hence cannot cause the monitoring aspect to have an observable effect.

The semantics of a Dependency State Machine. We define the seman-
tics of Dependency State Machines as a specialization of the AspectJ-inspired
predicate match(a, e), which models the decision of whether or not the depen-
dent advice a ∈ A matches at event e ∈ E , and if so, with which variable binding.
We call our specialization stateMatch and define it as follows:

stateMatch : A× Ê∗ × N → {β | β : V ⇀ O} ∪ {⊥}
stateMatch(a, t̂, i) :=

let β = match(a, e) in{
β if β 6= ⊥ ∧ ∃t ∈ groundTraces(t̂) such that necessaryShadow(a, t, i)

⊥ otherwise

Note that stateMatch considers the entire parameterized event trace t̂, plus the
current position i in that event trace. In particular, the trace t̂ contains future
events. The function stateMatch is therefore under-determined. This is inten-
tional. Even though it is impossible to pass stateMatch all of its arguments,
static analyses can approximate all possible future traces.

We have left a parameter necessaryShadow in the definition of stateMatch.
This parameter may be freely chosen, as long as it meets the soundness condition
defined below. A static optimization for Dependency State Machines is sound if
it meets the soundness condition.



Soundness condition. The soundness condition requires that an event be mon-
itored if we would miss a match or obtain a spurious match by not monitoring
the event. A Dependency State Machine M matches, i.e., causes an externally
observable effect, after every prefix of the complete execution trace that is in
L(M), the language that M accepts.

Matching prefixes of a word. Let w ∈ Σ∗ and L ⊆ Σ∗. Then the matching
prefixes of w (with respect to L) are the set of prefixes of w in L:

matchesL(w) := {p ∈ Σ∗ | ∃s ∈ Σ∗ such that w = ps} ∩ L

Soundness condition. For any sound implementation of necessaryShadow
we require:

∀t = t1 . . . ti . . . tn ∈ Σ+. ∀i ≤ n ∈ N.
matchesL(M)(t1 . . . ti−1titi+1 . . . tn) 6= matchesL(M)(t1 . . . ti−1ti+1 . . . tn)

=⇒ necessaryShadow(ti, t, i)

The soundness condition hence states that, if we are about to read a symbol
ti, and the monitoring aspect hits the final state when processing the complete
trace t but not when processing the partial trace which omits ti, or the other
way around, then we must monitor ti.

Note that Clara’s semantics assume that the advice associated with De-
pendency State Machines implement the monitor’s transition structure. In par-
ticular, any dependent advice which does anything beyond computing a state
transition must be marked final. Tools which generate Dependency State Ma-
chines, or programmers who write them, must take this semantics into account.

4 Clara as a framework

Version 1.0 of Clara includes three sound static analyses which eliminate irrel-
evant shadows. Recall from Figure 3 that Clara executes these analyses imme-
diately after weaving; the analyses plug into its static analysis engine. Analyses
may access all declared Dependency State Machines and the woven program.
The analyses also receive a list of joinpoint shadows.

For every shadow s, Clara exposes the following pieces of information:

– The dependent piece of advice a that s invokes, along with the name of a
and a list of variables that a binds.

– The source code position of s.

– The dynamic residue of s, which abstractly represents the runtime check that
determines whether a will actually execute. A static analysis can disable s
by setting its residue to the constant “NeverMatch”.

– A mapping from the variables that a binds at s to a points-to set [18] that
models all objects that these variables could possibly point to.



Clara comes pre-equipped with three analyses that all aim to determine
“irrelevant shadows”. Such shadows must return false for necessaryShadow;
in other words, disabling an irrelevant shadow must preserve the behaviour of
the runtime monitor. An analysis disables a shadow by modifying its dynamic
residue to never match.

The Quick Check [14], Clara’s first analysis stage, quickly computes
whether all shadows for a particular property are irrelevant because they do
not suffice to reach a final state; if so, it removes all of the shadows for that
property. The second analysis stage, the Orphan Shadows Analysis [14] takes
pointer information into account to find more specific sets of shadows, related
by pointer information, which can all be disabled. Clara uses a flow-insensitive
and context-sensitive, demand-driven, refinement-based pointer analysis [18] to
determine which events may occur on which groups of compatible variable bind-
ings. The third stage, the Nop Shadows Analysis [19], explicitly takes the
program’s control flow into account. Using a backwards pass, the Nop Shad-
ows Analysis first determines for every shadow s a tri-partitioning of automaton
states: states from which the remainder of the program execution will, may, or
won’t reach the final state. Next, the Nop Shadows Analysis uses a forward pass
to determine the possible automaton states at s. If s may only transition between
states in the same equivalence class, then the analysis can soundly disable s.

We described all of three analyses in earlier work in [2,14,19]; the dissertation
also includes soundness proofs. In this paper, however, we describe for the first
time the common framework that makes these analyses accessible to various
AspectJ-based runtime monitoring tools.

Adding analyses to Clara

Clara allows researchers to add their own static analyses to the static analysis
engine at any point. The Clara website provides an empty skeleton exten-
sion for researchers to fill in. Analyses execute, in sequence, immediately after
weaving. Clara executes the three default analyses in the order in which we
described them above: quick ones first, more complex ones later. In many cases,
even simple analyses like the Quick Check are already powerful enough to rec-
ognize all shadows as irrelevant, which obviously simplifies the task of the more
complicated analyses.

Programmers can insert their own analysis at any point in the sequence, as a
so-called re-weaving pass. As the name suggests, a pass participates in a process
called re-weaving [20]: just after having woven the monitoring aspects into the
program, the AspectBench Compiler that underlies Clara executes the given
sequence of passes. Each pass may modify the so-called “weaving plan”, e.g., by
modifying the residues of joinpoint shadows. After all passes have finished, the
compiler then restores the original un-woven program version and re-weaves the
program using this new plan, this time then with fewer joinpoint shadows when
the analysis passes succeeded.



5 Experimental results

In this section we explain our empirical evaluation and our experimental results.
Due to space limitations, we can only give a summary of those results. The first
author’s dissertation [2] gives a full account.

Although one can apply Clara to any AspectJ-based runtime monitor, we
decided to restrict our experiments to monitors generated from tracematch spec-
ifications. This does not limit the generality of our results: in earlier work [14]
we showed that the relative optimization effects of our static analyses are largely
independent of the concrete monitoring formalism.

For our experiments we wrote a set of twelve tracematch [3] specifications for
different properties of collections and streams in the Java Runtime Library. Ta-
ble 1 gives brief descriptions for each of these properties. We selected properties
of the Java Runtime Library due to the ubiquity of clients of this library. Our
tracematch definitions are available at http://bodden.de/clara/benchmarks/.

property name description
ASyncContainsAll synchronize on d at calls to c.containsAll(d) for synchronized collections c, d
ASyncIterC only iterate a synchronized collection c when owning a lock on c

ASyncIterM only iterate a synchronized map m when owning a lock on m

FailSafeEnum do not update a vector while iterating over it
FailSafeEnumHT do not update a hash table while iterating over its elements or keys
FailSafeIter do not update a collection while iterating over it
FailSafeIterMap do not update a map while iterating over its keys or values
HasNextElem always call hasMoreElements before calling nextElement on an Enumeration
HasNext always call hasNext before calling next on an Iterator
LeakingSync only access a synchronized collection using its synchronized wrapper
Reader do not use a Reader after its InputStream is closed
Writer do not use a Writer after its OutputStream is closed

Table 1: Monitored specifications for classes of the Java Runtime Library

We used Clara to instrument the benchmarks of version 2006-10-MR2 of
the DaCapo benchmark suite [21] with these runtime monitors. DaCapo contains
eleven different workloads of which we consider all but eclipse. Eclipse uses re-
flection heavily, which Clara still has trouble dealing with. For our experiments,
we used the HotSpot Client VM (build 1.4.2 12-b03, mixed mode), with its stan-
dard heap size on a machine with an AMD Athlon 64 X2 Dual Core Processor
3800+ running Ubuntu 7.10 with kernel version 2.6.22-14 and 4GB RAM. We
summarize our results in Table 2.

As the table shows, instrumenting 109 out of the 120 cases require at least
one instrumentation point for runtime monitoring. (We mark other cases with
“-”.) Clara was able to prove (X) for 74 out of these 109 cases (68%) that the
program cannot violate the property on any execution. In these cases, monitoring
is unnecessary because Clara removes all instrumentation. 37 of the original
109 combinations showed a measurable runtime overhead. After applying the

http://bodden.de/clara/benchmarks/


antlr bloat chart fop hsqldb
before after before after before after before after before after

ASyncContainsAll - - 0 0 X 0 0 X - - - -
ASyncIterC - - 140 0 X 0 0 X 5 0 X 0 0 X
ASyncIterM - - 139 0 X 0 0 X 0 0 X 0 0 X

FailSafeEnumHT 10 4 0 0 X 0 0 X 0 0 X 0 0
FailSafeEnum 0 0 X 0 0 X 0 0 X 0 0 0 0 X

FailSafeIter 0 0 X >1h >1h 8 8 14 0 X 0 0 X
FailSafeIterMap 0 0 X >1h 22027 0 0 7 MEM 0 0 X

HasNextElem 0 0 X 0 0 X - - 0 0 X 0 0 X
HasNext - - 329 258 0 0 0 0 X 0 0 X

LeakingSync 9 0 X 163 0 X 91 0 X 209 0 X 0 0 X
Reader 30218 0 X 0 0 X 0 0 X 0 0 X 0 0
Writer 37862 36 229 228 0 0 X 5 0 X 0 0

jython luindex lusearch pmd xalan
before after before after before after before after before after

ASyncContainsAll 0 0 0 0 X 0 0 X 0 0 X - -
ASyncIterC 0 0 0 0 X 0 0 X 28 0 X - -
ASyncIterM 0 0 0 0 X 0 0 X 35 0 X - -

FailSafeEnumHT >1h >1h 32 0 X 0 0 X 0 0 X 0 0 X
FailSafeEnum 0 0 30 0 X 18 0 X 0 0 0 0 X

FailSafeIter 0 0 5 0 X 20 0 2811 524 0 0 X
FailSafeIterMap 13 13 5 0 X 0 0 X >1h >1h 0 0 X

HasNextElem 0 0 12 0 X 0 0 X 0 0 0 0
HasNext 0 0 0 0 X 0 0 X 70 64 - -

LeakingSync >1h 0 34 0 X 365 0 X 16 0 X 0 0 X
Reader 0 0 0 0 X 77 0 X 0 0 0 0 X
Writer 0 0 0 0 X 0 0 X 0 0 0 0 X

Table 2: Effect of Clara’s static analyses; numbers are runtime overheads in
percent before and after applying the analyses; X: all instrumentation removed,
proving that no violation can occur; >1h: run took over one hour

static analysis, measurable overhead only remained in 13 cases (35%). These
cases often show significantly less overhead than without optimization.

Jython causes trouble for Clara because of its heavy use of reflection and
dynamic class loading. Due to these features, the pointer analysis that Clara
uses has to make conservative assumptions, yielding imprecise results. Clara
also performs less well on Iterator-based properties than on others. Because Java
programs usually create all iterator objects through the same new statement,
Clara requires context information to distinguish different iterators statically.
Our pointer analysis sometimes fails to generate enough context information,
leading to imprecision. For fop/FailSafeIterMap, our analysis ran out of memory,
despite the fact that we allowed 3GB of heap space.

The first author’s dissertation [2] presents detailed experiments and results.

6 Related Work

Clara’s static analyses can be considered to be typestate analyses. Strom and
Yemini [1] were the first to suggest the concept of typestate analysis. Recently,



researchers have presented several new approaches with varying cost/precision
trade-offs. We next describe the approaches most relevant to our work. We dis-
tinguish work in type systems, static verification and hybrid verification.

Type-system based approaches. Type-system based approaches define a type sys-
tem and implement a checker for that system. The checker prevents program-
mers from compiling potentially property-violating programs and gives strong
static guarantees. However, the type checker may reject useful programs which
statically appear to violate the stated property but never actually violate the
property at runtime.

DeLine and Fähndrich [22] as well as Bierhoff and Aldrich [23] present type
systems for object-oriented languages with aliasing. Bierhoff and Aldrich’s type
system is generally more permissive than DeLine and Fähndrich’s. To enable
modular analyses, both of these approaches require annotations in the target
program indicating state transitions and aliasing relationships. We do not require
annotations in the program; our approach infers state changes from advice.

Static analysis approaches. Unlike type systems, such approaches perform whole-
program analysis and, unlike hybrid approaches, have no runtime component.

Fink et al. present a static analysis of typestate properties [24]. Their ap-
proach, like ours, uses a staged analysis which starts with a flow-insensitive
pointer-based analysis, followed by flow-sensitive checkers. The authors’ analy-
ses allow only for specifications that reason about a single object at a time, while
we allow for the analysis of multiple interacting objects. Fink et al.’s algorithms
only determine “final shadows” that complete a property violation (like “write”
in our example) but not shadows that initially contribute to a property violation
(e.g. “close”) or can prevent a property violation (e.g. “reconnect”). Therefore,
their algorithms cannot generate residual runtime monitors.

Hybrid analysis approaches. Naeem and Lhoták present a fully context-sensitive,
flow-sensitive, inter-procedural whole-program analysis for typestate-like prop-
erties of multiple interacting objects [25]. Naeem and Lhoták’s analysis is fully
inter-procedural. Unfortunately, Naeem and Lhoták based parts of their analy-
sis on earlier work of ours [26] that turned out be unsound [19]. All of Clara’s
analyses provides have been proven sound [2].

Dwyer and Purandare use existing typestate analyses to specialize runtime
monitors [27]. Their work identifies “safe regions” in the code using a static
typestate analysis. Safe regions can be single statements, compound statements
(e.g. loops), or methods. A region is safe if its deterministic transition function
does not drive the typestate automaton into a final state. For such regions, their
analyses summarize the effect of this region and change the program under test
to update the typestate with the region’s effects all at once when the region is
entered. Because these specializations change the points at which transitions oc-
cur, they can make it harder for programmers to understand monitor behaviour.
Further, their approach cannot generally handle groups of multiple interacting
objects, while ours can.



7 Conclusion

We have presented Clara, a framework for partially evaluating finite-state run-
time monitors ahead-of-time using static analysis. Clara is compatible with any
runtime monitor that is expressed as an AspectJ aspect. To make any such aspect
analyzable by Clara, users need only ensure that the aspect is annotated with
a Dependency State Machine, a textual finite-state-machine representation of
the property being verified. Dependency State Machines function as an abstract
interface, allowing researchers in runtime verification to implement monitor op-
timizations on one side of this interface and static-analysis researchers to imple-
ment static analyses on the other side. This way, Clara allows researchers from
two communities to integrate their approaches with each other.We have pre-
sented the syntax and semantics of Dependency State Machines and Clara’s
extensible static analysis engine, along with three analyses that we provide with
Clara. Through experiments with the DaCapo benchmark suite, we have shown
that Clara’s static analysis approach can greatly reduce the amount of instru-
mentation necessary for runtime monitoring in most Java programs. Our exper-
iments further revealed that this reduced amount of instrumentation yields a
largely reduced runtime overhead in many cases.

Clara is available as free, open-source software. We hope that other re-
searchers will soon be joining us in using Clara, and that its availability will
foster progress in the field of typestate analysis.

References

1. Strom, R.E., Yemini, S.: Typestate: A programming language concept for enhanc-
ing software reliability. IEEE Transactions on Software Engineering (TSE) 12(1)
(January 1986) 157–171

2. Bodden, E.: Verifying finite-state properties of large-scale programs. PhD thesis,
McGill University (June 2009) Available through ProQuest.

3. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding Trace Matching with
Free Variables to AspectJ. In: OOPSLA. (October 2005) 345–364

4. Bodden, E.: J-LO - A tool for runtime-checking temporal assertions. Master’s
thesis, RWTH Aachen University (November 2005)

5. Chen, F., Roşu, G.: MOP: an efficient and generic runtime verification framework.
In: OOPSLA. (October 2007) 569–588

6. Maoz, S., Harel, D.: From multi-modal scenarios to code: compiling LSCs into As-
pectJ. In: Symposium on the Foundations of Software Engineering (FSE). (Novem-
ber 2006) 219–230

7. Krüger, I.H., Lee, G., Meisinger, M.: Automating software architecture explo-
ration with M2Aspects. In: Workshop on Scenarios and state machines: models,
algorithms, and tools (SCESM). (May 2006) 51–58

8. Avgustinov, P., Tibble, J., de Moor, O.: Making trace monitors feasible. In:
OOPSLA. (October 2007) 589–608

9. Chen, F., Meredith, P., Jin, D., Roşu, G.: Efficient formalism-independent moni-
toring of parametric properties. In: ASE. (2009) 383–394



10. Dwyer, M.B., Diep, M., Elbaum, S.: Reducing the cost of path property monitoring
through sampling. In: ASE, Washington, DC, USA (2008) 228–237

11. AspectJ team: The AspectJ home page, http://eclipse.org/aspectj/ (2003)
12. Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, J., Lhoták, O.,

de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: abc: An extensible AspectJ
compiler. In: AOSD. (March 2005) 87–98

13. Bodden, E., Hendren, L., Lam, P., Lhoták, O., Naeem, N.A.: Collaborative runtime
verification with tracematches. Journal of Logics and Computation (November
2008) doi:10.1093/logcom/exn077.

14. Bodden, E., Chen, F., Roşu, G.: Dependent advice: A general approach to opti-
mizing history-based aspects. In: AOSD. (March 2009) 3–14

15. Hilsdale, E., Hugunin, J.: Advice weaving in AspectJ. In: AOSD. (March 2004)
26–35

16. Masuhara, H., Kiczales, G., Dutchyn, C.: A compilation and optimization model for
aspect-oriented programs. In: International Conference on Compiler Construction
(CC). Volume 2622 of LNCS., Springer (April 2003) 46–60

17. Chen, F., Roşu, G.: Parametric trace slicing and monitoring. In: International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Volume 5505 of LNCS., Springer (March 2009) 246–261

18. Sridharan, M., Bod́ık, R.: Refinement-based context-sensitive points-to analysis
for Java. In: Conference on Programming Language Design and Implementation
(PLDI). (June 2006) 387–400

19. Bodden, E.: Efficient hybrid typestate analysis by determining continuation-
equivalent states. In: ICSE ’10: Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, New York, NY, USA, ACM (2010) 5–14

20. Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, J., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Optimising AspectJ. In:
Conference on Programming Language Design and Implementation (PLDI). (June
2005) 117–128

21. Blackburn, S.M., Garner, R., Hoffman, C., Khan, A.M., McKinley, K.S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.,
Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanovic, D., VanDrunen, T.,
von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks: Java benchmarking
development and analysis. In: OOPSLA. (October 2006) 169–190

22. DeLine, R., Fähndrich, M.: Typestates for objects. In: ECOOP. Volume 3086 of
LNCS., Springer (June 2004) 465–490

23. Bierhoff, K., Aldrich, J.: Modular typestate checking of aliased objects. In: OOP-
SLA. (October 2007) 301–320

24. Fink, S., Yahav, E., Dor, N., Ramalingam, G., Geay, E.: Effective typestate verifi-
cation in the presence of aliasing. In: International Symposium on Software Testing
and Analysis (ISSTA). (July 2006) 133–144

25. Naeem, N.A., Lhoták, O.: Typestate-like analysis of multiple interacting objects.
In: OOPSLA. (October 2008) 347–366

26. Bodden, E., Lam, P., Hendren, L.: Finding Programming Errors Earlier by Eval-
uating Runtime Monitors Ahead-of-Time. In: Symposium on the Foundations of
Software Engineering (FSE). (November 2008) 36–47

27. Dwyer, M.B., Purandare, R.: Residual dynamic typestate analysis: Exploiting
static analysis results to reformulate and reduce the cost of dynamic analysis. In:
ASE. (May 2007) 124–133

http://eclipse.org/aspectj/

	Clara: a Framework for Partially Evaluating Finite-state Runtime Monitors Ahead of Time

