Relational Aspects as Tracematches

Eric Bodden, Reehan Shaikh and Laurie Hendren
School of Computer Science
McGill University
Montréal, Québec, Canada

Abstract

The relationships between objects in an object-orientedram
are an essential property of the program’s design and ingoiéemn
tion. Two previous approaches to implement relationshipls as-

pects wereassociation aspectsn AspectJ-based language exten-

sion, and theelationship aspectfibrary. While those approaches
greatly ease software development, we believe that theyatre
general enough. For instance, the library approach onlksvior
binary relationships, while the language extension do¢shaw
for the association of primitive values or values from nogamable
classes. Hence, in this work we propose a generalized atiezn
implementation via a direct reduction to tracematchespguage
feature for executing an advice after having matched a segue
of events. This new implementation scheme yields multigee
fits. Firstly, our implementation is more general than éxgsbnes,
avoiding most previous limitations. It also yields a newdaage
construct, relational tracematches. We provide an effigraple-

mentation based on the AspectBench Compiler, along with tes

cases and microbenchmarks. Our empirical studies showéduh
implementation, when compared to previous approaches, aise
similar memory footprint with no leaking, but the generalif our
approach does lead to some runtime overhead. We believeuhat
implementation can provide a solid foundation for futurserch.

Categories and Subject DescriptorsD.3.2 [Programming Lan-

guage§ Language Classifications—Very high-level languages;

D.3.3 [Programming LanguagésLanguage Constructs and Fea-
tures

General Terms Design, Languages, Performance

Keywords Aspect-oriented programming, inter-object relation-
ships, control-flow abstraction, high-level design

1. Introduction

The relationships between objects are an important prppéeny
object-oriented program and software architecture, dgss of
whether or not aspect-oriented programming is used. Thelae r
tionships exist naturally. They become apparent at thetlatehe
form of design patterns [12] or architectural styles [18].nhost

* An extended technical report version [9] of this paper isilabée at
http://www.aspectbench.org/.

Permission to make digital or hard copies of all or part o thork for personal or
classroom use is granted without fee provided that copesatr made or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

AOSD’08, March 31 — April 4, 2008, Brussels, Belgium.
Copyright(© 2008 ACM 978-1-60558-044-9/08/0003. . . $5.00

programming languages however, such relationships cdenex-
plicitly expressed. They rather have to be encoded viaeatas
between the involved objects. This has a fundamental drekwvba
while a relationship between objects can (and usually Wwiljese-
manticsattached, a simple reference does not. This semantics hence
need to be implemented elsewhere, most commonly in theedass
of the participating objects. This may lead to both scatteand
tangling [23] of the source code for the given relationship.

Researchers have therefore proposed to implement such high
level relationships with aspects [15]. Yet, implementasioesort-
ing to plain AspectJ exhibit one problem. Although it is t&laly
easy to implement thieehaviourof a relationship via advice, pro-
grammers have to keep track of thtateassociated with those rela-
tionships manually. This results in a lot of redundant arittpolate
code that distracts from the actual core logic which theti@iahip
is meant to implement.

Two approachesassociation aspectd 9, 20] and theelation-
ship aspects librany17, 18], hence try to improve on this situ-
ation, via different approaches. Association aspectsempht a
language extension to AspectJ which generates the negésshr
erplate code automatically. Relationship aspects on ther dtand
offer a library of generic abstract aspects that provideugéfim-
plementations for some of the most commonly used relatipash

While we believe that those implementations do ease sadtwar
development, they still carry certain limitations. Assdimn as-
pects, for instance, do not allow the programmer to associties
of a primitive type or objects of non-weavable classes.doismon
practice tsnotweave into the Java runtime library. This implies that
no objects of types from this library can be used in assaiati
However, many of those types represent data values (eiggStr
Integer, Date, ...) and occuaaturally in associations.

The relationship aspects library, on the other hand, onpt su
ports binary relationships. Along with this work we exposeesal
examples that relate more than two objects with each othercé]
we are interested in a more general solution.

Another approach to abstract from object relations exisig-
ever for an entirely different purposg.acematchefl] allow a pro-
grammer to reason about sequences of events which occugduri
program execution and involve a given group of objects. kane
ple, a tracematch may automatically raise an error whereaatdr
for some collection is advanced although the collection lfeen
updated after the iterator’s creation [8]. Our own backgblies
in the design and implementation of a static whole-prograaiya
sis [8] to increase the runtime performance of tracematches

The fact that both, tracematches and language support for im
plementing relations via aspects, have to deal with the gaoie
lem of efficiently associating related state, made us thihkthver
it would not be possible to implement the one approach usieg t
other and whether or not synergistic effects would arisenade

ing so. In this work we show that we can in fact directly impéarh
a variant of association aspects, coirrethtional aspectsusing
tracematches whilst incorporating all of the desired fietunen-
tioned in previous related work. We present such an impléaen
tion and furthermore show that this implementation scheohees
most known limitations of the previous approaches.

Moreover, the careful design of tracematches automaicall
guarantees for the implementation’s memory-safety anddsr
value look-up through optimized indexing. Finally, the iemen-
tation is easily seen to be correct, assuming a correct imgaiea-
tion of tracematches.

On the other hand, tracematches can gain through the alailab
ity of relational aspects. Their combination yields an refyi new
language featureelational tracematchesA relational tracematch
is matched against sequences of events but only takingdotouat
those events that involve objects that have been assoeiétethe
relationship the aspect represents.

Along with this work, we expose a full implementation of rela
tional aspects and relational tracematches using the £8pech
Compiler [3], including a variety of test cases and micrathen
marks. The test cases validate the correctness of the insptem
tion and demonstrate use cases for relational aspects latiomel
tracematches. The benchmarks help us to estimate the easicht
our flexible solution comes. Further, they revealed intérgsn-
sights about the importance of finding an efficient yet flexitior-
age structure. As our results show, our implementation isiamg-
safe. While it is less efficient than those presented inedlatork,
its runtime overhead is still very reasonable. Future opttions
planned for tracematches promise to increase the efficievay to
the same level as for the other approaches.

Contributions To summarize, in this work we present the follow-
ing original contributions:

1. a detailed description of the correspondence betweetwihe
previously existing language features of association@sed
tracematches, and the relationship aspects library,

2. an extension to the AspectBench Compiler implementitay re
tional aspects via tracematches,

3. a full account of the important features that come witls thi
implementation scheme, and

4. the first performance study investigating the relativefque
mance of different approaches in the field, and ours.

We organized the remainder of this paper as follows. In Secti ;
2 we first discuss related work and show how it motivates our ow s
approach, relational aspects. The syntax and semantietatibnal
aspects are given in Section 3, while Section 4 describestaild
theirimplementation via a reduction to tracematches. Astiored
earlier, our implementation exposes many useful featurdogaer-
comes shortcomings of earlier approaches. We discussrtiuis-i
tail in Section 5. One particularly interesting feature hie sup-
port of a new language construct, relational tracematc®estion **
6 discusses their syntax, semantics and applications. dticBe7 ™
we conduct a performance evaluation comparing related wik e

. . 14
ours. We conclude in Section 8. s

16
17

IS

5
6
7
8
9

10

2. Related work

We decided to categorize our related work by the way in which
they implement a simple inter-object relationship, the ésr
pattern [12]. This design exemplifies the case where onecblge
temporarily related with some others. Specificatipserverscan
register with asubjectto be notified whenever the observable state
of the subject changes. The observers in turn can then uputkite
internal representation of the subject accordingly.

2.1 Object-oriented solution by Gamma et al.

The gang-of-four [12] suggested two possible implemeoiatiof
this pattern in an object-oriented programming languageo®s.
Firstly, each subject could store a list of observers thatarrently
registered with it. Whenever an operation changing theesij
observable state is invoked, all those observers are ribtifimany
possible subjects exist but only few of them are observedight
however be too costly to store a list per subject. Hence, anskc
possible implementation was proposed, storing subjesttoier
associations using a hash table.

Both implementations share the problem that the actuahbasi
logic of each subject (which is certainipt to update its observers)
is polluted with code implementing the Observer patternilgMh
part this problem can be solved by having subjects inhewiinfr
an abstracSubjectclass, in languages with single inheritance this
might not be an option.

2.2 AspectJ solution by Hannemann and Kiczales

In 2002, Hannemann and Kiczales [15] demonstrated thapéris
ticular design pattern can actually be implemented in a dawdu
way using one single aspect in the aspect-oriented progiagnm
language AspectJ. This implementation eases reasoning Him
relationship between registered subjects and observessllogat-
ing all relevant code in one single unit. However, due to tekl|
of support for explicitly denoting relations and associas in As-
pectJ, the aspect still has to keep track of related objeataually.
Hannemann and Kiczales used a hash map for this purpose.

One can argue that from a software-engineering perspetii/e
desirable to denote relationships between objects impledeoy
aspects rather explicitly, eliminating the burden of marhgok-
keeping of such relations. As outlined below, two such apphes
have previously been suggested.

2.3 Association aspects by Sakurai et al.

In 2004, Sakurai et al. proposed association aspects [19a20
language extension to AspectJ, allowing programmers fucaEs
objectsexplicitly via an aspect. For that purpose, the signature of
an aspect was extended. While normally AspectJ allows anly f
per-this, per-target, per-cflow and per-type-within ingig@tion of
aspects, association aspects allow a programmer to agsaeria
arbitrary vector of objects with each other and an aspetames.

abstract aspect TimedObserveperobjects(Subject, Observer)
abstract pointcut subjectChanged(Subject s);
long lastNotify ;

TimedObserver(Subject s, Observer p)
associate (s, 0);

}

after (Subject s, Observer 0) :
subjectChanged(s) &&ssociateds,o) {
long delta = System. currentTimeMillis (}- lastNotify ;
if (delta>10000){
0. notify (s);
lastNotify = System. currentTimeMillis ();
}
}
}

Figure 1. Observer pattern as association aspect

Figure 1 shows one implementation of the Observer pattern
in an association aspect. In this example, each observer bg t
notified about the update to each associated subject at most o
every 10 seconds. In line 1, the asp&ictedObservedeclares that
it relates aSubjectto anObserver In line 2 it declares an abstract

pointcut that will be triggered on any state change to a spje 1 abstract pointcut subjectChanged(Subject s);

exposing the subject itself. In line 3, we store a long vahat ts

supposed to hold the time the last notification took placeesi k .
sym registerobserver after returning :

3
5-7 declare an a}spect constructor. Programmers can elyptiall ‘5‘ call (+ Subject. register (Observer)) &grget(s) && args (0);
this constructor in AspectJ code. The constructor invokesatito- ; sym updatesubject after :
7
8
9

N

tracematch(Subject s, Observer o}

generated methodssociate (..) which associates the constructed subjectChanged(s);
aspect instance with the subject and observer. Then in 8%
the aspect declares a piece of advice that is executed wéretiey
subjects is changedut onlyif sis associated with an observer
The advice then notifies the obserweabout the state change in u }
s, but only if the last notification ofhis very observep about an
update tathis very subject was more than 10 seconds ago. To be Figure 2. Tracematch implementing the Observer design pattern
clear, this means that the fieldstNotify is storedoer association

In order to associate a concrete subjettwith an observer
o1, client code callsew ObserverAspect(s1,01The constructor then execution history of a running AspectJ program. They ardemp
establishes the association via the calbtzociate (..) mented using the AspectBench Compiler [3].

Association aspects are implemented via an extension t@jthe Figure 2 shows a tracematch implementing the Observer pat-
compilef for AspectJ. The compiler reduces association aspects to tern. For simplicity, timing information is left out. In @1, we
normal aspects, augmented with additional code to keeft bBc first specify the same abstract pointcut for updates to stsbjs

registerobserver updatsubject +{
10 0. notify (s);

}

those relationships. before. Line 3 then starts the actual tracematch declaratipfirst

We believe that association aspects implement this Observe specifying that the tracematch is going to reason about bjexts,
pattern very nicely. Consequently, the implementation veppse a Subject sand anObserver oLines 4-7 then set up an alphabet of
is very similar in flavour. The contribution of our work is niat “symbols”, where each symbol matches an AspectJ joinpdime.
improve on the syntax or semantics of association aspettatber symbol registerobserver matches whenever a@bserver ds regis-
to demonstrate how a language feature like associatiorcsspen tered with anySubject s The symbolupdatesubjectin turn matches
be more flexibly implemented using tracematches. whenever theubject ss changed, as specified through the abstract

pointcut. Lines 9-11 then finally hold the so-called tracerhaat-

2.4 Relationship aspects library by Pearce and Noble tern and the body. The pattern is a regular expression oeealth

phabet of symbols we just defined. Here, we wish to match when-
ever any specifi©bserver ohas been registered with Subject s
and afterwards at least one update to this subject has been se
The regular expression (line 9) implements this. In the ke,
the AspectBench Compiler generates a state machine ketepikg

of the internal tracematch state, in particular of partiakeches. If
multiple observers are registered with the sa®abject sa match
will occur for all those observers. The tracematch runtiniléex-
ecute the tracematch body for any such match, wihdo bound

to the respective objects. The body so notifies the obsefviéieo
change in the subject.

Looking at this tracematch specification, at first it seenty ve
different in style compared to the association aspect fragure
1. While a tracematch specification has a regular expressidn
symbols, an association aspect does not. On the other héild, w
an association aspect is explicitly being associated witbréain
combination of objects, in a tracematch this associatioruisc
implicitly, through matching symbols against a stream @frés.

Nevertheless, we noted certain important similarities a#i:w
both association aspects and tracematches relate a véotaeots
among one another. In both models, there is a certain evant th
triggers a body of code being executed with variables boariis
vector of objects. Further, in our particular example, ia tase of
association aspects we only wish to execute the body fortapda
on subjects with which an observer has previously regidtere
the tracematch, we model this behaviour via prefixing theileeg
pattern with registerobserver.

Those similarities made us wonder whether or not traceraatch
actually subsume association aspects and in particulagtheh
association aspects could not be implemented via a redutdio
tracematches. In the remainder of this paper we will denatest
In 2005, Allan et al. [1] proposed an Aspect] language exten- such an implementation and in particular we will describe liio
sion called tracematches, but for a purpose other thaniatisos. avoids the aforementioned limitations of previous appieac
Tracematches do not abstract over relationships, butrratiee the

While Sakurai et al. opted for a compilation-based appraach
implementing relations via aspects, in 2006 Pearce andeN&|
18] addressed the same problem using a library of genertcaabs
aspects, the relationship aspects library. It is writteapectJ5
which supports generic types as defined for Javab [14].

Pearce and Noble demonstrated very convincingly how such a
library can ease and promote the use of such a technologyualac
Aspect] programs. For instance, apart from “standard’ctéce
binary relations, their library provides symmetric redaships. We
believe that no matter what implementation technique isl uee
provide relations via aspects in the back-end, such geaspects
can be useful in their own right, on top of any such implemioa

Unfortunately, however, some limitations of AspectJ pbithi
the general applicability of their approach. For instantesir
SimpleStaticRelaspect, an aspect designed for static relationships
where objects are meant to be associated with each otherfget
periods of time, uses inter-type declarations to storecasons
between objects. If now multiple relationship types, bottb-s
aspects ofSimpleStaticRe) apply to the same element type, those
inter-type declarations will lead to nhame clashes, triggea bug
in the ajc compile?. Furthermore, their library only supports bi-
nary relationships, which to us is a potentially severe thtion
that cannot easily be overcome. To allow upary relations, one
would have to implement at leas¢n) different generic aspects in
their library. A specialized compiler like the one for asstion
aspects can generate such code automatically, takingcareid
name clashes as well. As we show later on, our tracematadbas
approach does not suffer from these kinds of problems.

2.5 Tracematches

2.6 Other related work

! ajc compiler:http://wiw.eclipse.org/aspectj/ Here we briefly discuss other related work that did not diyect
2See bug #120015 attps://bugs.eclipse.org/bugs/ for details. influence our approach but motivates its importance.

2.6.1 Declarative Object Identity Using Relation Types

Recently, Vaziri et al. [24] reported on the problem of cothgim-
plementing object identity via the methoelguals (..)andhashCode()
in Java. As they show in their case study, those methods ade ha
if not sometimes impossible, to implement correctly. As ase
quence, they suggest a language feature cadliadion typesthat
encodes an equality relationship explicitly and in its ownit wf
code. The authors suggest a syntax and semantics very tdyou
tailored to the special purpose of providing a notionegtiality.
Yet, we believe that in general this problem could be solved a
a special instance of a relational aspect, although prgbabl
quite as concise. In any case, [24] strongly supports thiencla
that inter-object relationships are important in objedéated pro-
grams, equality being one such relationship of special apace.

2.6.2 A relational model of object collaborations

Concurrently, Balzer et al. [6] described a relational madeb-
ject collaborations and its use in reasoning about relakigs. The
authors do not describe an implementation language fotioata
ships but rather apecificationlanguage that can be used to en-
force constraints over those relations. The constrairasilyerely
on member interpositiothrough relations. Interestingly, their “in-
terposed members” are exactly equivalent in semanticsdoiype
declarations by (potentially relational) aspects, whileit “non-
interposed members” are exactly equivalent to the aforé&oresd
per-association state. Future work could decide whetteér shec-
ification formalism can be used to verify constraints over tbla-
tional aspects proposed here.

2.6.3 Dynamic aspect implementation

The aspect-oriented programming community has developed i
plementations of aspect-oriented programming languaussare

1 relational abstract aspect SimpleObserver(Subject s, Observer)

2
3 abstract pointcut subjectChanged(Subject subj);

4

5
6
7

!

relational after (): subjectChanged(s§
0. notify (s);

}

Figure 3. Observer pattern as relational aspect

aspect parameters may be accessed fronmedational advice dec-
laration inside the aspect (and their pointcuts), as if éhpsram-
eters were bound variables. (In fact, as the operationabhstos
will show, we assure that thayill be bound when evaluated.) In
the example, the programmer accesses the subjedhe pointcut
of the advice. The advice body accesses lo#nd any associ-
ated observeo. If the programmer needs to access parameter val-
ues from within methods in the aspect, she has to explicihpose
these values to the method, either by passing them to theotheth
parameters or by storing them into fields. This scheme alfows
automatic garbage collection of associated values in cabese
their values ar@ot stored by the user (see Section 5.2 for details).
We extended the type checker to make sure that the keyword
relational only occurs in front of aspect declarations and advice
declarations. In addition, we check the following: Relatibadvice
may only occur inside relational aspects. Parameters migyben
given to aspects that are flagged as relational. The parafistfer
a relational aspect may be empty (see Section 5.11 for getHil
a relational aspect extends another aspect, that aspetataobe
relational and accept the same parameter types.
Pieces of advice that are not prefixed with tléational mod-
ifier use the default semantics for AspectJ. They may hente no

more dynamic than AspectJ. JAsCo [22] and CaesarJ [2] age onl access any aspect parameters.

two examples of such languages. Composition filters [7] rilesc

For any relational aspe&A with parametergT1 pl ,..., Tnpn)

a model and language for the dynamic enablement and composi-the compiler declares public static metheus associate (T1 ..., Tn)

tion of aspects. Such dynamic approaches show their stréngt
providing relatively flexible forms of aspect deploymentiaon-
figuration.

3. Syntax and semantics of relational aspects and
relational advice

Our syntax and semantics for relational aspects were dyromg
spired by the work on association aspects by Sakurai et evemN
theless, in our approach, we opted for a syntax that is glightiser
to tracematches, for practical reasons.

3.1 Syntax of relational aspects

In summary, relational aspects extend the AspectJ syntigxibgn
two single grammar productions:

extend modifier ::="relational";

extend aspeaotieclaration
modifiersopt "aspect" "(" formalparametefist ")"
superopt interfacesopt aspecbody;
The only newly added syntactic features are tietional modifier
and the formal parameter list in the aspect declaratione@as
that definition, our parser accepts the relational aspeEtgare 3
as syntactically correct.

3.2 Static semantics of relational aspects

Again, this relational aspect implements the ObserveepatThe
header hence takes a subject and an observer as argumeuts: In
trast to the syntax of association aspects, a relationataspceives
these arguments directly in the header, as in tracemat@hese

andRA.release(T1 ,..., Tn)The first one associates a new vector of
objects while the second one releases it.

The methodaspectOf), as it is usually available for aspects is
not available for relational aspects. This raises the durestow a
programmer should enumerate all objects bound to a retdtas:
pect and the aspect instance related to theses objecteditimgly,
the use cases we found so far seem to suggest that in prawtiee t
is no need for such enumeration. Dynamic dispatch on the asso
ciated values, as implemented through relational advesems far
more important and seems sufficient. Nevertheless, prageam
can opt to simulate explicit look-up methods by implemenmgpe-
cial relational advice. We expose an abstract aspect thdé¢ments
object look-up this way, along with our implementation.

3.3 Operational semantics of relational aspects

The most interesting question is when exactly a relatiodsica
executes, and if so, under which variable bindings. Vaeialalmes

are disambiguated as follows: If a relational advice retera
namen and there exists an aspect parameter with the same name,
the name represents any value stored in that parameteany

we mean that if multiple objects have been associated wih th
parameter, the advice body will exectite eachsuch association.
Note how this is in sync with the tracematch semantics. Ifld B¢

the same name exists, the programmer has to access thisiéield v
explicit qualification withthis.

Release As mentioned earlier, the programmer further has the
possibility to release an association by calling theease (..)
method. If this method is called on a vectoof objects, the asso-
ciation forv (and all associated aspect state) is dropped. Objects in

v can be associated with the same aspect again by caliisgriate 1 aspect SimpleObservef
once again. 2 abstract pointcut subjectChanged(Subject subj);

3
Instance fields As in association aspects, we define that instance tracematch(Subject s, Observer of
fields of the aspect exigler associationThis means that for every s sym associate after :
object vectomw associated with a relational aspect, this aspect wills call (x SimpleObserver. associate (..)) &#gs(s,0);
have a copy of each field for each suclStatic fields on the other 7 sym release after :

: . 8 call (x SimpleObserver.release (..)) &&gs(s,0);
hand are unique, because they are members of the underlgsgy ¢ . sym action after . subjectChanged(s);

This concludes our description of the semantics of relation o
aspects. Let us now get to the crux of this paper, where weilesc associate action {
how this semantics can quite easily be implemented via acteau *° 0.update(s);
to tracematches. vy }

4. Implementation via tracematches 16 public void associate (Subject s, Observex p)

In the semantics section we noted that a vector of objecis g } public void release (Subject s, Observer{p)

associated with a relational asperA if associate®) has been

called one or more times, and the last such call was not felbw Figure 4. Tracematch implementing the Observer pattern, trans-
by a call to release ¢). For somebody familiar with tracematches, lated from the relational aspect in Figure 3

this immediately reads like a tracematch pattern, becausani
be described by a regular expression over the program’siggac

1. The compiler generates an empty tracematch with the same

history. formal parameters (line 4) as the surrounding relationageis
4.1 Afirst, simple translation declaration.

In the following we give a first, simple translation that isesldy 2. Itthen adds the generic definitions for the two symtasisociate
almostcomplete. The only feature missing will be the one of per- and release(lines 5-8), where thargs-pointcut holds the names
association fields. We will get back to this feature in thessujuent of the tracematch parameters.

section. 3. The symbolaction (line 9) is added with the appropriate advice
Symbol definitions Let us assume that we are given a relational ~ specification from the original advice and with the original
after-advice with a pointcutc (..). Then we can define a symbol pointcut (in our example, thafter -advice).

“ action” as follows: 4. Further, the compiler adds the generic pattesssbeiate action™

symaction after : pc (..); as well as the original advice body, which now becomes the

-) . tracematch body (lines 11-13).
In addition, we define two more symbolsssociateand release that

match calls to the respective methods of the relationalcspe The definition of the abstract pointcut remains untouched, a
sym associateafter : call (+ RA.associate (..) &&args(x.y); do aII_ non-relational members of the aspect (line 2). Thae, t
symrelease after: call(+ RA.release (..)) &&args(x.y): following steps are executed for each relational aspect.

Herex,y is the vector of variable names induced by the parameter 1 The aspect parameters are removed, as isdgonal modi-
definition in the header of the relational aspect. fier.

Regular expression Those three symbols define the alphabet 2. All original definitions of relational advice are remoyed now

{ action, associaterelease} for the regular expression of the trace- equivalent tracematches reside in the aspect.

match. We claim that the following regular expression oves t

alphabet implements our desired semantics for relatiahate. 3. Last but not least, thassociateand releasemethods are added.

Note that the body of those methods in 3. can be empty. The
methods are just required to provide the programmer withnaena
This is because the pattern matches whenever the origimat po that she can call and which the symbols can match on.
cut of the relational advice would have matched (via théion Observe how similar this tracematch implementation is ® th
symbol), but only if a call toassociatewas seen before, with no one we showed earlier in Figure 2. In fact, it is almost exeitte
call to releasein between. Note that also traces like the following same. The only differences are that in Figure 2 we did not take
are matched, whereeleaseoccursbefore associate into account de-association via callsrtgease and that in the case
of the relational aspect, the observer registers itselfi wisubject
by a call to the appropriate aspect, not to the subject dyrélhis

This is because the tracematch semantics define that thiaregu strong correspondence demonstrates that each relatigpedtchas
pattern is matched against eanlffixof the execution trace (see [1] ~ @natural counterpart in the world of tracematches.

for details). Here, the suffix &ssociate actichis matched by the To be clear, we wish to point out that it f®t our intent to
pattern, hence we match after the last action. generate those tracematches and then present them to tife/nse

. then would have to weave them in turn). We rather implemented

Tracematch variables The tracematch formal parameters are the g transformation directly inside the AspectBench Cderpso
same as the ones originally given to the relational aspect. that it is hidden from the user. The programmer hence doesewnt
Generic Translation Figure 4 shows the tracematch generated to know anything about tracematches to use relational &spec
from the simple observer in Figure 3. We describe the getrams-
lation process while referring to the above example, thigsviig
the reader to get a concrete sense of the process itself. The translation we gave so far is very straightforward arawsh

First, the compiler executes the following steps for eaollsi a beautiful, complete correspondence between relaticszecis
relational advice. and tracematches. However, there is one language feathieh w

associate action+

action associate release associate associate action

4.2 The issue of storing state per association

we consider as crucial, that has not yet at all been handled: T
possibility of storing state per association.

In our introduction of association aspects we pointed oat th
these allow to store values per association. In Figure 1astamp
was stored, remembering the last time whepecificobserver was
notified about an update to specificsubject. In our operational
semantics we defined that relational aspects should be @hbiset
the same feature as well. Every instance field needs a distipy
per association. This is not yet satisfied by our transla8mfar,
we left all non-relational members of the aspect untouclséace
the resulting aspect is a singleton, there will be exactly copy of
each instance field.

To correct this, we need to make sure that (1.) we can create
aspect instances on-the-fly, (2.) the correct aspect iost@asso-
ciated with each association and (3.) we delegate all agsdss
this aspect instance that would otherwise have gone to ttie”“
receiver.

4.2.1 Creation of aspect instances

In order to create an aspect instance per association, weellae

previously empty body of thessociate (..)method to the following

definition.

public static SimpleObserver associate (Subject s, Observef 0)
return new SimpleObserver();

}

Note that the creation of an aspect instance via a constraatb

is not actually allowed in Aspect]. Hence, the above codedvou

not compile with a normal AspectJ compiler. However, thelenp

mentation of theassociate (..)method is never exposed to the user.

Instead, this transformation is done purely in our complilack-

end, which is naturally free to generate such code.

The resulting aspect instance can then be captured by thee tra
match. The code for the observer tracematch is changed folthe
lowing:
tracematch(Subject s, Observer o, SimpleObserver o)

sym associateafter returning (so):

call (x SimpleObserver. associate (..)) &&gs(s,0);
sym associateagain after returning :

call (x SimpleObserver. associate (..)) &&gs(s,0);
sym start before:

execution(public static void main(String []));

(start | release) actiom associate (associatgain action)+ {

We add an additional tracematch parameterOn association,
this parameter is bound to the return value of tsociate (..)
method—the newly created aspect instance. We only wantgo ca
ture the aspect instance on tfirst call to associate (..)after pro-
gram start or after a call teelease (..)(on the same values). To
do so, we define an auxiliary symbaksociateagain that is similar

) Association| Relationship| Relational
Feature (Section) Aspects Aspects Aspects
implementation combiler librar compiler/
approach P y tracematcheg
storage of ITDs/ .
association (5.2) ITDs Hash maps| Constraints
thread
safety (5.1) no no yes
memory
safety (5.2) yes no yes
non-weavable
objects (5.3) no yes yes
primitive-value
binding (5.4) no yes yes
per-thread
association (5.5) no no yes
fast looku
by indexing @.6) yes yes yes
per-association os - o
state (5.7) y y y
associated(..)
pointcut (5.8) yes no no
sharing (5.9) yes no no
n-ary
associations (5.10 yes no yes
dynamic aspect
engblement 5.11 no no yes

*to be done manually by the programmer

Table 1. Features of the three different implementation strategies
(ITD = inter-type declaration)

all calls to instance methods and all accesses to instarids fie
by calls to the aspect instance (in the example, to the objgct
The AspectBench Compiler uses an internal representatitbedc
Jimple, with which we were able to implement this modificatio
in a straightforward way. More details are given in the Techin
Report version of this paper [9].

5. Feature comparison

In this section we comment on the benefits of implementing-rel
tional aspects not directly, but rather through a transétiom into
tracematches. As we show here, the resulting implementatito-
matically inherits a wealth of features directly from traches.
Consequently, the implementation is more general thartiegis
ones. Table 1 gives an overview of those features and in tlosvfo

to associatebut ignores the returned aspect instance, and a seconding sections, we discuss each feature in detail. As the tdiwwas,

auxiliary symbol start, that matches the program start. In result,
the regular expression

(start | release) actiom associate (associatgainx action)+

then leads to the tracematch body being executed whemetien
occurs, but only on thirst aspect instance that was associated with
the given variable binding aftestart or release

4.2.2 Look-up of the correct aspect instance

The correct aspect instance is looked up automaticallyplgitoy
the definition of the tracematch semantics. In the above ioveed
code, it would automatically be bound to the variade

4.2.3 Delegating to the aspect instance

In order to make the tracematch body access the looked uptaspe
instance instead of the defaulthfs” receiver, we must replace

two features of association aspects are currently not stggpoy
our solution; we comment on those as well.

5.1 Thread safety

Neither association aspects nor relationship aspecthisad safe,
as none of them use any synchronization feature. As a coesegu
if any association is updated by multiple threads, this tliggd to
undefined behaviour using either approach.

The implementers of tracematches, however, spent a lotwt ef
on making their implementation not only thread safe but gmes
a fine-grained locking scheme that allows for a large amofint o
parallelism. Our implementation of relational aspecteiits this
feature. A relational aspect can hence safely and effigicel
updated by multiple threads. As our benchmark section Wwils
providing thread safety comes at a cost, as there is a ndiginég
runtime overhead associated with locking.

5.2 Memory safety via leak elimination

Apart from thread safety, memory safety is also an imporisnt
sue. What should happen if an object that is associated wittes
aspect becomes subject to garbage collection? Should sbeias
tion be released, allowing the object to be discarded? Qirlgtibe
association be strong in the sense that it keeps the objeePal

We argue that associations should haveeak semantics. If
an object becomes subject to garbage collection this isuseci
is not any more strongly reachable by any code in the program.
Consequently, in the remainder of the execution no joirtpmald
ever be triggered involving the object in question. Henberé is
no point in keeping the object alive, simply because thene iway
of ever referring to it again.

Fortunately, because of the way we implemented our relaltion
aspect to tracematch transformation, we get this weak séraan
for free. In recent work, Avgustinov et al. [5] proposed atimza-
tion technique called leak elimination. This techniqueraddes the
problem of garbage collecting internal tracematch statmigh the
automaticuse of weak references. Their leak elimination algorithm
performs a static analysis of the tracematch state macteter-
mining for each state which variables must be bound at thit st
and which variables must be rebound before reaching a fiatd st
from this state. Using this information, weak referencesteaid to
objects at all places where it is allowed by the semantidsog
references are still sometimes necessary, e.g. if a valuseid in
the tracematch body and is not guaranteed to be reboundebefor
hitting a final state.) We designed our transformation gediy in
such a way that no additional strong references to assdoiatees

are created.
@—>EI;EEI
()
&

association aspects

relationship aspects
(SimpleStaticRel)

relationship aspects
(SimpleHashRel)

relational aspects

Figure 5. Storage organization for the Observer pattern (s = sub-
ject, o = observer, ¢ = constraint, d = disjunct, a = aspetainte);
dashed arrow depicts weak reference

Figure 5 shows the storage organization for our subjectfoles
example, in all three approaches: association aspecasiorehip
aspects and our implementation of relational aspectsaRakhip

aspects provide different means of implementing associstsim-
pleStaticReandSimpleHashRél In order to understand the ratio-
nale for this storage structure, let us reconsider the gbsadvice,
here in the syntax of association aspects:
after (Subject s, Observer o) :
subjectChanged(s) &&ssociateds,o) {...}

Note that the pointcut itself binds the valsieTherefores does not
need to be looked up; it is directly available. However, tingle-
mentationdoesneed to look up all associated observersn as-
sociation aspects, the compiler hence generates a hasthwiiap,

is stored as a field in the typBubjectvia an inter-type declara-
tion [16]. This hash map has observers as keys. For eachvelnser
it looks up the associated aspect instance. Note that tiplemen-
tation is memory-safe. ¥ ever becomes subject to garbage collec-
tion, it can be collected, because no additional referetwesre
created. When this happens, all (strong) referencesdd in the
association list are collected as well. The obsereem the other
hand, may not be collected as long as another associatedcsubj
slis present. This is becausesdf is updated, observersought

to be notified. The implementation of association aspeatecty
satisfies those constraints.

In relationship aspects, things look a little different.|®i®n-
ship aspects are implemented via a library. As opposed todime
piler for association aspects, this library can have no kedge
about the direction of look-up that is neededSimpleStaticRdak
used, it soundly over-approximates, providing look-uglifées in
bothdirections. This is convenient, however, it implies thabsg
references to bothando exist. As a consequendagthhave to be-
come subject to garbage collection so thay of them can actually
be collected. In particular, a subject can only be collectden
all associated observers are collected. As our benchméiks, s
this can lead to a significant increase in memory usage. &urth
more, this problem is not easily solvable with a library aygmh.
The SimpleHashRalses strong references, which is obviously not
memory-safe. Note that just usinganpleHashRetith weak keys
and values would not suffice, as observers ought to be refeden
with strong references. A map with weak keys could do thelab,
making such a choice demands quite a bit of insight from tte si
of the programmer.

The storage organization for relational aspects looksnagj&i
ferent. The automaton state for thetion holds a constraint, which
can be seen as a set of so-called disjuncts. Due to the leakah
tion analysis, the disjunct class is generated in such a atyetich
disjunct holds a weak reference to subjects but a strongerate to
observers (for the same reasons as noted above). Hencabiegats
becomes subject to garbage collectiomaihbe collected, yielding
a disjunct with an empty slot fa. The next time any transition on
this state is made, the tracematch implementation willlsaiest slot
has become empty and hence discard the entire disjunctingdele
all strong references to associated observers. As our bearkb
confirm, this process makes the tracematch-based implatrmnt
just as memory-safe as the one of association aspects.

5.3 Association of objects of non-weavable classes

The storage organization depicted in Figure 5 exposes one se
rious implication of the way both association aspects arel th
SimpleStaticRel of relationship aspects organize their storage of
associations. Both implementations introduce fields #e&nd o.
But what if the typessubjector Observerare not weavable? Usually,
all types in the Java runtime library are not woven into. Tikia
frequently recurring issue. In association aspects, itstaut that
there is no way of associating objects from such classeseAfsad
with their developers, if one tries to associate a non-walawaass,
e.g. a String value, BoSuchFieldError is thrown at runtime.
Relationship aspects implement the second relationstige, ty

SimpleHashRelespecially for the purpose of associating objects of
non-weavable types. This relationship aspect would stsseca-
tions as mappings from subjects to observers (and the otagr w
around). However, again, this is not memory-safe.

As Figure 5 shows, our implementation of relational aspects
does not introduce any new fields ort@r o. Hence, neither the
type Subjectnor Observemeed to be weavable. Objects of any type
can be associated with relational aspects.

5.4 Associating primitive values

Because of the same reason, it is no problem to associata-a rel
tional aspect with primitive values such as booleans, intsflbats.
Very much from the beginning, tracematches [1] already sttpgd

the binding of primitive values. The semantics are basedoom-c
parison by value, not by reference. In fact, there is no esiee.
Because the code for all disjuncts in tracematches is gekima
strongly typed way, the generated code uses those printyies
directly. In particular, it does not box the values into aitge This
implies that primitive values cannot be garbage colleckela-
tional aspects directly inherit this useful feature. In teehnical
report version of this paper [9] we give an example of how a re-
lational aspect might use primitive value bindings to inmpéant
caching.

Because no fields can be introduced to primitive valuesheeit
association aspects nor tigmpleStaticRelof relationship aspects
can bind primitive values. ThgimpleHashRehowever, is perfectly
suited for this purpose.

5.5 Per-thread and global association

By default, tracematches are instantiated globally. Tlaeyatso be
instantiated per-thread using therthread modifier. If this is the
case, they only execute if the observed events executedeoarwh
the same thread. This way, each execution gets its own thoeatl
scope, which might be useful for some relational aspects.

Neither association aspects nor relationship aspectostypgr-
thread state directly as a language feature.

5.6 Fast look-up through optimized indexing

In more recent work Avgustinov et al. proposed [4, 5], twoi-opt
mization techniques for tracematches, implementing amreced
code generation. The first of those techniques is calledxinde

It addresses the issue of fast access to the stored tradestate.
Depending on which symbols are most likely to occur on the exe
cution trace, it might be more beneficial to index on certeéice-
match variables than on others.

Some other implementations of runtime monitoring [10] use
multiple (i.e. all possible) indexing structures to look wgriable
values, similar to the relationship aspects library. Hosvethis
naturally increases the memory footprint of the runninggpam.
In [5], the authors propose a heuristic that selects va&libr
indexing automatically. However, since it is a heuristicjaes not
always yield optimal results. Yet, the algorithm can be giaeclue
in the form of an annotation, with the keywairdquent, as to which
symbols are believed to occur frequently on the executiacetr

Luckily, for tracematches implementing relational aspettie
place where such an annotation should go is very clear.attien
symbol will, in virtually all cases, be much more likely to toh
than the symbolsassociateand release Hence, we simply add the
following line to the tracematch definition, giving the cltieat
actions occur more frequently than other symbols:

frequent action ;

Association aspects also choose their indexing structased
on the look-up direction. Consequently, look-up is gusadtto be

fast. A field load to retrieve the hash map, followed by a hasp m

look-up is all that is needed to look up the correct aspecaimts.
Relationship aspects provide equally fast look-up, by lsimi

means. The only difference is that look-up data structuresept

in memory for both look-up directions. Although there is eeany

look-up from observers to subjects, this association issstired.

As our benchmarks show, this leads to increased memory usage

5.7 Per-association state

In Figure 5 we can clearly see that association aspects dsasvel
our relational aspects associate a unique aspect instaticeagh
single association. This allows for storage of per-assiotistate.
Through the indexing structures, look-up of such stateuslty
comes for free in terms of runtime.

Relationship aspects support per-association state dshueél
in a manner which requires some effort from the programmer.
Some relationships may be given a third parameter, a clashwh
essentially holds the state of a given association.

5.8 Symmetric look-up

Association aspects allow for a unique feature, tsociated
pointcut. This pointcut allows for symmetric look-up of esmted
objects. If a pointcut

target (x) && (associatedx,y) || associatedy,x))

is attached to an advice, this advice is executed multiptegi for
all cases where is associated on the right-hand side or left-hand
side of the association aspect.

This feature is currentlyot supported by our implementation
of relational aspects (nor by the relationship aspectanyjr How-
ever, as Pearce and Noble showed [17], symmetric relaijpsishn
simply be programmed by automatically associating a tgyple)
via an advice, whenevexssociate (x,y)s called by the programmer.
While this comes at a cost of using additional memory foragder
it retains the functionality of symmetric look-up. We expasuch
an implementation in the download package for our compiler.

5.9 Sharing

As Sakurai et al. note in [20], association aspects userghéor
look-up tables: If there are two uses of thesociated(..) point-

cut which access the same parameters at the same positiens, o
single look-up suffices for the evaluation of both pointci@sir
tracematch-based relational aspects unfortunately dsuggport
such sharing yet. If the same relational aspect contaipseces

of advice, on a call to associate, association will happeaimes.
Further, if different pieces of relational advice shareghme join-
points as actions, at such a joinpoint, the related aspstdrine is
looked up multiple times, one time for each match.

We believe that sharing would in fact be very appealing. In-
deed, we thought about sharing before, on the general ldvel o
tracematches. Tracematch definitions that share commuaugivits
could be evaluated in common by merging their finite state ma-
chines. As so often, the devil is in the details and such sbari
would largely complicate the tracematch code generati@ncd,
we leave this feature to future work.

5.10 n-ary associations

The relationship aspects library does not support geneeal re-
lations forn # 2. This is likely due to the fact that one would
have to implement at leasi(n) different generic aspects in their
library in order to allow up ta-ary relations. Since the implemen-
tations of both association aspects and relational aspeetsased
on code generation, such scalability issues do not exigt apjpro-
priate data structures are generated formany 0.

5.11 Dynamically enabled aspects via nullary associations

1
A special case is the nullary association. At AOSD 2005 gheas z
a “Birds of a Feather” session on per-instance aspects,enther
issue was raised that at the very least, Aspect] should haeaas s
of enabling or disabling aspects at runtim®ight now, Aspect] s
does not support dynamic enablement of advice. This shoitmp ~ *
is frequently being worked around by guarding all pointcots 3
pieces of advice that should be dynamically enabled withefi>pr
“if (b) && " where b is a static boolean field.

Relational aspects allow for dynamic disablement by aasoci
ing/releasing the empty object vector of length 0. By déatpa
relational aspect with an empty parameter list, one getsspaca
in which all relational advice are disabled by default. Afiecall to
associate ()all those pieces of advice are enabled, a calétease ()
disables them again. In this case, instance fields of thechape
tomatically exist exactly once, as is usually the case fqoeks]
aspects that are declaredsasgleton (the default in AspectJ).

Association aspects do not allow for the association of aptgm
vector. Theycannotdo so because associations are stored on ob-
jects. If there is a nullary association, which object sHdahk asso-
ciation be stored on? In relational aspects, the assogiatistored
in the disjunct, as implemented by the standard operat&erabn-
tics for tracematches [1]. Since the relationship aspéatarly only
allows for binary relations, it also has no support for dyieaity
enabled aspects.

This concludes our feature comparisons of relational dspec
with previous approaches. As we saw, many synergistic tsffec
arise from implementing relational aspects via tracemegciield-
ing a plethora of useful features and immense flexibility. wies
show now, we can even define a new language featustational
tracematchthat combines the possibility of explicit object associ-
ation with the usual benefits of trace matching.

10

17

6. Relational tracematches

We wish to motivate relational tracematches by an example- A
sume we wish to write a relational tracematch that implesment
cache. The cache can associate key/value pairs. Furtberatihe
can be invalidated by calling a methaavalidate (). This clears the
cache, freeing its memory.

This situation can be expressed as a tracematch patternavife w
to return a cached object if (1) it has been cached beforet ()
about to be computed/created again and (3) in between, the ca
has not been invalidated. Figure 6 shows a relational tratgm
that makes use of this observation. It caches String creat#othe
flyweight pattern [12]. For the sake of simplicity we hereuass
that the String constructor takes a single argument thatuety
defines the String’s content.

Line 1 holds the header of a relational aspect declaringithat
associates an object (the parameter) with a String value.ndh-
relational advice in lines 3-6 implements the associatiecessary
for the cache: Whenever a String is created, this Stringdecs
ated with the parameter that was passed into the construtgor
mentioned before, the programmer should be able to invalitie
cache. Hence, we provide a method stimbalidate () in line 8.
Lines 10-16 finally hold the actual relational tracematchc&use
its last symbol is an around-symbol, it declares a reture typ
String— in line 10. Note that, also in line 10, it declanmes in-
put parameters. This is because the relational aspect pteesiey
and value are already visible in the tracematch and no other val-
ues need to be accessed. Line 11 declares the symimidate
matching calls to the respective method. Line 12 declaresym-

3See Adrian Colyer's blog ahttp://www.aspectprogrammer.org/
blogs/adrian/2005/03/perinstance_asp.html for more details.

relational aspect Cache(Object key, String valuef)

after (Object k) returning (String v):
call (String .new (..)) &&args(k) {
associate (k,v);

}

static void invalidate () {}

relational String tracematch() {
sym invalidate before: call (void Cache. invalidate ());
sym create around(key): call (String .new (..)) &&args(key);
create {

return value;

}

}

}

Figure 6. Aspect with relational tracematch caching String cre-
ation, allowing for invalidation

bol create matching the actual String creation. This symbol will
only be matched if the argument at that joinpoint was alrezsly
sociated akey. The tracematch body is defined in lines 13-15. It
simply states that when a create occurs (on associatedsijpive
return the appropriate value.

6.1 Semantics of relational tracematches

The semantics of relational tracematches naturally foftmm the
ones of tracematches and relational advice. A relatioaakmatch
executes whenever its non-relational counterpart exechitgonly
if all bound values have actually previously been assotiate

While a non-relational tracematch is evaluated over eafftxsu
of the entire execution trace, a relational aspect, assatigith an
object vectow, is evaluated on the sub-trace starting at the first call
to associate), and ending at the first call teelease ¢) thereafter.

6.2

The implementation of relational tracematches is a geizatain
of the one of relational advice. A relational tracematcheiduced
to a non-relational one by the following steps:

Implementation

e Add to the tracematch parameters the parameters of therdecla
ing relational advice. Further, add the auxiliary paraméte
holding per-association state.

e Add symbolsassociate associateagain, releaseand start in the
same way as for relational advice.

e For eacharound-symbols, add abefore-symbol nameds_before
with the same pointcut.

o If r is the original regular expression of the relational trace-
match, replace as follows.

1. Letrs be theshuffleof r and associateagain=, i.e. the copy
of r where any primitive symbos$ in r was replaced by
* associateagain* s".

. Let rs.na be the copy ofrs where every occurrence of an
around-symbols was replaced by before (see above).

. Let symsna be the disjunction of all symbols of the non-
relational tracematch’s pattern, again wittound-symbols
sreplaced bys before.

. Let skip be the disjunction of all other declared symbols of
the non-relational tracematch.

. Then finally replace by the following regular expression:
(start | release | skip) symsna« associate (rsa) rs

©® N b W NR

33

e Transform the tracematch body to refer to the auxiliaryestat
variable instead ofthis”, as before for relational advice.

Step 1 takes care of properly ignoring redundant assongtid
already associated values. Step 2 establishes a neceseagrit
for around-symbols (see [1]): Araround-symbol must only occur
in the final position of a regular expression. Step 4 is nergd®
allow spurious events betweenart or resetand the first associa-
tion thereafter. Figure 7 shows the non-relational aspetttaed by
the relational aspect in Figure 6.

Because of the tracematch’s scope, a calint@lidate ()indeed
invalidates the cache in our example. For instance, asshateat
program calls this method after an association, and thggers
“creaté’. This would give us the following trace.

{ start}

{ associate , associatgain }
{ invalidate }

{create, creatbefore}

Note that the regular expression does not match any suffikisf t
trace, with no variable binding. Now assume that the program
performs another association, followed by anotheréte’ event.
This leads the new trace:

{ start}

{ associate , associatgain }
{ invalidate }

{create, creatbefore}

{ associate , associatgain }
{create, creatbefore}

Note now that the regular expression matches the partif@t stzce
invalidate creatdefore associate create .

aspect Cach¢

after (Object k) returning (String v):
call (String .new (..)) &&args(k) {
associate (k,v);

}

static void invalidate () {}

String tracematch(Object key, String value

sym associate after :

call (x SimpleObserver. associate (..)) &&gs(s,0);
sym associateagain after returning :

call (x SimpleObserver. associate (..)) &&gs(s,0);
sym start before:

execution(public static void main(String []));
sym release after :

call (x SimpleObserver. release (..)) &&gs(s,0);
sym invalidate before:

call (void Cache. invalidate ());
sym create around(key):

call (String .new (..)) &&args(key);
sym createbefore before ():

call (String .new (..)) &&args(key);
(start | release | invalidate) createbeforex
associate (associatgainx createbefore ¥
associateagain= create {

return value;

}
}

[
}

Figure 7. Non-relational aspect induced by relational aspect with
relational tracematch from Figure 6 (auxiliary state Vialéaand
frequent-annotation omitted)

©® N G A W N R

definition of methods associate / release omittdd

6.3 Relational advice are special relational tracematches

Itis interesting to note that in the same way as an advicepgeaial
case of a (very simple) tracematchiegational advice is a special
case of aelational tracematch. Indeed, our compiler extension im-
plements relational advice not quite as previously stateskiction

4 but rather by first converting the relational advice intcegpiv-
alent relational tracematch that has only one symadlon, and a
regular expression of the formattion”. This relational tracematch
is then converted using the above mentioned procedure.

7. Performance Evaluation

After we realized how much flexibility we could gain by imple-
menting relational aspects via tracematches, we werealbtim-
terested in the question at which cost this level of flexipilvould
come. As we saw in Section 5, most flexibility comes from the
unique storage organization that is intrinsic to tracemadc How-
ever, this storage organization uses more indirectionstti@ones

of the other two existing approaches. Therefore we wouldrass
an increased runtime cost.

We conducted the following experiment to determine the run-
time cost and memory efficiency that is induced by each of the
three implementations, association aspects, the retdtipraspect
library and relational aspects using tracematches. Becalithe
different limitations of the various approaches depictadier in
Figure 1, we had to choose a simple example aspect that cambe i
plemented with all three approaches. In [19, 20], Sakural.aise
anEqualityrelation (originally pointed out by [21] as a concern for
systems integration) that keeps two Bit objects equal bycats
ing them with a special instance of the aforementioned Qiser
aspect. Aset (), respectivelyclear () operation is invoked on the
one bit whenever the other one is set/cleared. Althoughishés
easy aspect which can be implemented in association aspatts
our relational aspects, it cannot easily be implementedgutie
relationship aspects library because it uses per-as&otistate.

A Boolean flag is set whenever a particular association was up
dated, to break an otherwise possibly infinite recursioth@ligh
this could be manually worked around with the relationssipezts
library, we thought that this would have been an unfair carspa.
Hence, we opted for an easier aspect that only propagateditgqu
from the left to the right, having only the right associatédiot as

an observer of the left associated bit. Figure 8 shows tladioekl
aspect implementing this functionality.

relational aspect Equality (Bit b1, Bit b2){
relational after (): call (public void Bit. set ()) && target(bl) {
b2.set ();

¥
relational after (): call (public void Bit. clr ()) && target(bl) {
b2. clr ();

Figure 8. Relational aspect implementing “directed equality”

Because of its simplicity, this benchmark might seem not rep
resentative for large programs. However, we wish to notettiis
benchmark excessively exercises the dispatch of reldtauhéce,
which we consider the main functionality of relational asfgeas-
sociation aspects and the relationship aspects libraopdftook a
larger program as a benchmark, the relative overhead oflikis
patch would certainly be smaller, not larger.

Our benchmark driver class first tests the correct functityraf
the advice implementation by associating three differétstgith
the aspect and then updating and checking their valueseit th
executes 100,000 warm-up rounds. In each round, each ket is s
and then cleared again (and the aspect propagates thoggeshan

the associated bits). We then execute the same loop 30 tivhed tracematches use. After all, tracematches were not debigita
gives us 30 different timing values. relational aspects in mind.

To measure the memory consumption, we then associate 10,000 Despite the fact that our approach executes around 10 times
auxiliary bits with the aspect, on its left-hand side. Thdses slower than association aspects, it still executes vetyXaxe that
actually only need weak references. Hence, they shouldllysua 100,000 rounds of six relational advice executions eackxaitute
not lead to increased memory consumption. We then execute thein under one second! This means that even with locking edahé&e

previous loop another 30 times.

Experiments were performed on an AMD Athlon(tm) 64 X2
Dual Core Processor 3800+ with 4GB RAM. For execution we used
the Java HotSpot(TM) 64-Bit Server VM (build 1.6.0-rc-b) 04
mixed mode and with standard heap size.

As mentioned in Section 5.1, our relational aspects arerthe o
thread-safe approach because it is the only one that usdsdoc
This locking comes at a cost. To measure the amount of runtime
overhead caused by our locking scheme, we ran our implementa
tion twice, one time with a special version of our runtimerdity
that uses no locking, and one time with our normal runtimealia
For the relationship aspect library we used gimpleStaticRel In
[17] it was shown that it is generally faster thaimpleHashRel

ms
1,000

800
600
400

200

nom [

aanormal aaauxiliary ralnormal ral auxiliary raj raj auxiliary rajnormal rajauxiliary
objects objects normal, no objects, no objects
locking locking

Figure 9. Running times in milliseconds for association aspects
(aa), relationship aspect library (ral) and relationakesp(raj, with
and without locking)

7.1 Runtime overheads

Figure 9 shows the running times of the entire benchmark. ¥e a
eraged over the last 20 of each 30 rounds. The error bars $teow t
95% confidence intervals. The Figure shows four groups of two
bars. Each two bars reflect the measurement without and heth t
10,000 auxiliary bit objects present. As we can see, assotias-
pects are fastest with the relationship aspects libranygslightly
slower. Our own tracematch-based implementation is weligtfar

off. Without locking it is almost 10 times slower than assicin
aspects, with locking about 14 times. As we can see, locldrani
important factor, however larger runtime also arises witHock-
ing.

We did some profiling to find out why this is so. We found
that about 25% of all our runtime overhead is spent in calls to
Reference . get Jwhich is due to our uses of weak references. How-
ever, as we showed in Section 5.3, the use of such weak reéen
is the only way to implement a memory-safe storage modellfer o
jects of non-weavable classes. We conclude that at leastriount
of overhead is the necessary cost one has to pay for an apghzdc
offers such a degree of flexibility. The rest of the overheadue
to the more general and hence more complicated storagésgsc

cost of one single relational advice dispatch and execusiamly
slightly above 16 microseconds. We believe that any ovetliea
this order of magnitude is negligible for a programming laage

feature residing on such a high level of abstraction.

Kb

6,000

5,000

4,000

3,000

2,000

1,000

o, 1 £ /43

aanormal aaauxiliary ralnormal ral auxiliary
objects objects

- /= == =

raj raj auxiliary rajnormal raj auxiliary
normal, no objects, no objects
locking locking

Figure 10. Memory consumption in Kilobytes for association as-
pects (aa), relationship aspect library (ral) and relai@spects
(raj, with and without locking)

7.2 Memory consumption

Figure 10 shows the maximal memory consumption for the same
eight runs. Association aspects use about 184Kb. The oakitip
aspects library uses about 192Kiithoutthe auxiliary 10,000 bits
present. This slightly higher overhead is caused by thedmtional
storage organization as it was shown in Figure 5. Our owneémpl
mentation using tracematches uses again slightly more mygemo
around 250Kb in total. The increased usage is here due tathe f
that the tracematch state machine has to store disjuncts.

The only real reason to worry is however the fourth bar, shgwi
the overhead for the relationship aspects library with laanyi bits
present. As anticipated, the implementation is not mensaife-
Although no external strong references to the auxiliaryobjects
exist, those objects cannot be garbage collected, neidretheir
association. This quickly fills up memory.

Discussion We conclude that although relational aspects are
slower than existing approaches they seem fast enough.rithe i
plementation proves memory-safe.

A full implementation of our approach is available at

http://www.aspectbench.org/
along with all raw data, test cases and benchmarks that vie use

8. Conclusions

In this work we presented relational aspects, a new Aspact] |
guage extension. Their semantics are very similar to rehatark
on association aspects. However, the implementatepresent is
based on a reduction to tracematches, another Aspecthigagu-
tension, designed for matching on a program’s executicioiyis

As we showed, this implementation scheme yields several ben
efits over existing implementations. It is the only one tlmahbines
important features of thread safety, memory safety, pgoaation
state and binding of primitive values or values of non-wééva
classes. Furthermore, our implementation yields a new-leiggl
language feature, relational tracematches. On the othwet, ltame
feature present only in association aspects, sharing d-upo
structures, was identified as a useful future optimizatmrirface-
matches and our implementation of relational aspects.

Several benchmarks allowed us to compare previous appgsach
by other researchers with each other and with our own onéil-Pro
ing allowed us to give a detailed account about the reasanelfo
ative slowdowns and increases in memory use. The resuligesho
that, quite naturally, the increased flexibility does comes@ne
runtime cost. Yet, we conclude that the resulting impleragon is
efficient enough for production use.

We believe that our implementation provides a solid fouiotat
for future research in the field, by ourselves and othersalttiqu-
lar, we are interested in a large-scale case study for futork.

Acknowledgements We thank Kouhei Sakurai and his colleagues
for fruitful discussions and for clarifications they proed about
association aspects. Further we express our gratitude wd Da
J. Pearce and James Noble for making their implementation of
relationship aspects available. Equally, we thank theakt$te abc
group for making their implementation of tracematcheslatée.
Julian Tibble from Oxford University provided helpful conemts

on how to structure the regular expressions generated|&dimeal
tracematches.

References

[1] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren Ksizins,
O. Lhotak, O. de Moor, D. Sereni, G. Sittampalam, and J. [Eibb
Adding Trace Matching with Free Variables to AspectJ. Inh
Conference on Object-Oriented Programming, Systems, lages,
and Applications (OOPSLApages 345-364. ACM Press, 2005.

I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. Areoview
of caesarj. Lecture Notes in Computer Science : Transactions on
Aspect-Oriented Software Developmeridges 135-173, 2006.

P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzihd, hotak,
O. Lhotak, O. de Moor, D. Sereni, G. Sittampalam, and J. [Eibb
abc An extensible AspectJ compiler. Int. Conference on Aspect-
Oriented Software Development (AOSpages 87—98. ACM Press,
2005.

P. Avgustinov, J. Tibble, E. Bodden, O. Lhotak, L. Heedy

0. de Moor, N. Ongkingco, and G. Sittampalam. Efficient tnawmm-
itoring. Technical Report abc-2006-Http: //www.aspectbench.
org/, March 2006.

P. Avgustinov, J. Tibble, and O. de Moor. Making trace ribors
feasible. InInt. Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSRAEBM press, 2007.
To appear.

2

—

[3

—

[4

[l

5

—

6

—

S. Balzer, T. R. Gross, and P. Eugster. A relational maxfel
object collaborations and its use in reasoning about oslshiips.
In Ernst [11], pages 323-346.

L. Bergmans and M. Aksit. Composing crosscutting consarsing
composition filters. Communications of the ACMI4(10):51-57,
2001.

E. Bodden, L. J. Hendren, and O. Lhotak. A staged statig@mm
analysis to improve the performance of runtime monitoring.
Ernst [11], pages 525-549.

E. Bodden, R. Shaikh, and L. Hendren. Relational aspects
as tracematches. Technical Report abc-200E+4p: //www.
aspectbench.org/, 10 2007.

[7

—

8

—

[9

—

[10] F. Chen and G. Rosu. MOP: An Efficient and Generic Ruatim
Verification Framework. Irint. Conference on Object-Oriented
Programming, Systems, Languages, and Applications (O@PSL
ACM press, 2007. To appear.

E. Ernst, editorECOOP 2007 - Object-Oriented Programming, 21st
European Conference, Berlin, Germany, July 30 - August 8720
Proceedingsvolume 4609 ofLecture Notes in Computer Science
Springer, 2007.

E. Gamma, R. Helm, R. Johnson, and J. Vlissidessign Patterns:
Elements of Reusable Object-Oriented Softwakeldison Wesley,
1995.

D. Garlan and M. Shaw. An introduction to software atetiure.
In V. Ambriola and G. Tortora, editorsAdvances in Software
Engineering and Knowledge Engineerjmgages 1-39, Singapore,
1993. World Scientific Publishing Company.

[14] J. Gosling, B. Joy, G. Steele, and G. Brachdava Language
Specification, Third Edition: The Java Seri¢&entice Hall, 2005.

[15] J. Hannemann and G. Kiczales. Design pattern impleatient
in Java and Aspect]. lint. Conference on Object-Oriented
Programming, Systems, Languages, and Applications (O@RSL
pages 161-173. ACM press, 2002.

[16] R. Laddad.AspectJ in ActionManning, 2003.

[17] D. J. Pearce and J. Noble. Relationship aspectstiConference on
Aspect-Oriented Software Development (AQ$ages 75-86. ACM
Press, 2006.

[18] D. J. Pearce and J. Noble. Relationship aspectsEurmpean
Conference on Pattern Languages of Programs (EuroPL@&jyes
531-546. Universitatsverlag Konstanz, 2006.

[19] K. Sakurai, H. Masuhara, N. Ubayashi, S. Matsuura, arkiogiya.
Association aspects. In K. Lieberherr, editbnt. Conference on
Aspect-Oriented Software Development (AQ$ages 16-25. ACM
press, 2004.

K. Sakurai, H. Masuhara, N. Ubayashi, S. Matsuura, ardogiya.
Design and implementation of an aspect instantiation nrésha
Transactions on Aspect-Oriented Software Developm&&80:259—
292, 2006.

K. Sullivan, L. Gu, and Y. Cai. Non-modularity in aspewiented
languages: integration as a crosscutting concern for A3pen
Int. Conference on Aspect-Oriented Software Developn&DED)
pages 19-26. ACM Press, 2002.

D. Suvée, W. Vanderperren, and V. Jonckers. Jascepacaoriented
approach tailored for component based software developnien
AOSD '03: Proceedings of the 2nd international conferenoe o
Aspect-oriented software developmepages 21-29, New York,
NY, USA, 2003. ACM.

K. G. van den Berg and J. M. Conejero. A conceptual foizatibn

of crosscutting in AOSD. IDesarrollo de Software Orientado a
Aspectos (DSOA2005), Granada, Spaiolume 24/05, pages 46-52.
Universidad de Extremadura, September 2005.

M. Vaziri, F. Tip, S. Fink, and J. Dolby. Declarative eloj identity
using relation types. In Ernst [11], pages 54-78.

(11]

[12]

[13]

[20]

[21]

[22]

[23]

[24]

