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ABSTRACT

Electronic voting systems play a critical role in today’s demo-
cratic societies, as they are responsible for recording and
counting the citizens’ votes. Unfortunately, there is an alarm-
ing number of reports describing the malfunctioning of these
systems, suggesting that their quality is not up to the task.
Recently, there has been a focus on the security testing of
voting systems to determine if they can be compromised in
order to control the results of an election. We have partic-
ipated in two large-scale projects, sponsored by the Secre-
taries of State of California and Ohio, whose respective goals
were to perform the security testing of the electronic voting
systems used in those two states. The testing process identi-
fied major flaws in all the systems analyzed, and resulted in
substantial changes in the voting procedures of both states.
In this paper, we describe the testing methodology that we
used in testing two real-world electronic voting systems, the
findings of our analysis, and the lessons we learned.

Categories and Subject Descriptors: D.4.6 [OPER-
ATING SYSTEMS]: Security and Protection; D.2.5 [SOFT-
WARE ENGINEERING]: Testing and Debugging—Testing
tools (e.g., data generators, coverage testing); D.2.11 [SOFT-
WARE ENGINEERING]: Software Architectures—Domain-
specific architectures

General Terms: Security

Keywords: Voting systems, DREs, Security testing

1. INTRODUCTION

Electronic voting systems have been introduced to improve
the voting process. Since their inception, they have been
controversial, because both the technologists and the general
public realized that they were losing direct control over an
important part of the voting process: counting the votes.
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A quote attributed to Stalin says: “Those who cast the
votes decide nothing. Those who count the votes decide ev-
erything.” It is clear that voting systems represent a critical
component of a democracy. Although the consequences of
a malfunctioning electronic voting system are not as read-
ily apparent as those for air traffic control or nuclear power
plant control systems, they are just as important, because
the well-being of a society depends on them.

While most critical systems are continuously scrutinized
and evaluated for safety and correctness, electronic voting
systems are not subject to the same level of scrutiny. A
number of recent studies have shown that most (if not all)
of the electronic voting systems being used today are fatally
flawed [18, 22, 34] and that their quality does not match the
importance of the task that they are supposed to carry out.

For example, a report published in January 2008 describes
the problems encountered in Sarasota County, Florida, when
counting the votes in the November 2006 Congressional Dis-
trict 13 election [23]. In this case, 17,846 ballots (14.9% of
the total number of votes) cast on electronic voting machines
showed no vote for either candidate in the race. In addi-
tion, the race was determined by only 369 votes. The report
described the system responsible for recording and tallying
the votes as a “badly designed, shoddily-built, poorly main-
tained, aging voting system in a state of critical breakdown.”

Up until recently, electronic voting systems have been cer-
tified by third-party evaluation companies. Most of the time,
these companies test the general functionality of the sys-
tems, their usability, and their accessibility. However, no
substantial security testing was performed in the past to
identify serious, system-wide security flaws.

Recently, a number of states (in particular California,
Ohio, and Florida) have commissioned studies to test the
security of the electronic voting machines to be used in forth-
coming elections.

Our team was involved in the California Top-To-Bottom
Review (TTBR) in July 2007 [31] and in Ohio’s Evaluation
& Validation of Election-Related Equipment, Standards &
Testing (EVEREST) in December 2007 [19]. In the former,
we evaluated the Sequoia voting system, while, in the latter,
we evaluated the ES&S system. Our task was to identify,
implement, and execute attacks that could compromise the
confidentiality, integrity, and availability of the voting pro-
cess. As a result of the security testing performed in these
studies, the systems used in California were decertified and
those used in Ohio were recommended for decertification.
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In this paper, we present the methodology that we devel-
oped in the security testing of these voting machines, the
results of our analysis, and the lessons learned in the pro-
cess of testing real-world voting systems. Electronic voting
systems have peculiar characteristics that make the testing
of their security particularly challenging. We believe that
our experience can help other researchers in this field, as
well as policy makers and certifying organizations, develop
more rigorous procedures for the security testing of voting
systems.

The rest of this paper is structured as follows. In Sec-
tion 2, we provide an overview of electronic voting systems,
and we describe the challenges that one faces when test-
ing the security of real-world voting systems. In Section 3,
we present, in detail, our experience with the security test-
ing of real-world electronic voting systems. In particular,
we present our testing methodology, the testing techniques
and tools that we developed as part of the process, and the
findings of our analysis. Then, in Section 4, we describe the
lessons we learned in the process. Finally, Section 5 presents
related work, and Section 6 briefly concludes.

2. ELECTRONIC VOTING SYSTEMS

Electronic voting systems are complex distributed systems,
whose components range from general-purpose PCs to op-
tical scanners and touch-screen devices, each running some
combination of commercial off-the-shelf (COTS) components,
proprietary firmware, or full-fledged operating systems. In
this section, we present a description of the components
that most frequently are part of an electronic voting system.
Then, we describe what the peculiarities of these systems are
and why testing their security is challenging.

2.1 Components of the system

The components of an electronic voting system are:

• DRE - Direct Recording Electronic voting machine. A
device to record the voter’s choices. This is usually a
touch-screen device where the voter casts his/her vote.

• VVPAT - Voter-Verified Paper Audit Trail. A paper-
based record of the choices selected by the voter. The
VVPAT printer is hooked to the DRE and the paper
record is viewable by the voter, but it is under a trans-
parent cover so that it cannot be modified other than
through the normal voting process.

• EMS - Election Management System. The system re-
sponsible for the initialization of the components that
collect the votes and also for the final tallying of the
votes. The EMS is usually located at election central.

• Optical Scanner. An optical reader that counts votes
cast on paper ballots. There is usually one scanner at
each polling site and one at election central (e.g., for
the counting of absentee ballots).

• DTD - Data Transport Device. Storage devices to
transfer data between different components of the sys-
tems. These devices are used to transport ballot infor-
mation to the DREs and optical scanners at the polling
site and to transport voting results to the EMS.

Prior to the election, ballot information is prepared on the
election management system at election central. This infor-
mation may be directly entered into the DREs and the opti-
cal scanners, or it may be written onto DTDs that are sent

to the polling places, separate from the DREs and scanners.
Paper ballots for each of the polling places are also prepared
at election central.

On election day, prior to the start of the voting process,
if the DREs and optical scanners were not initialized at the
central location, then they are initialized with the appropri-
ate ballot information at the polling site, using the DTDs
that were sent to the polling place separate from the DREs
and scanners. After the DREs are initialized (or simply pow-
ered up, if they were initialized at election central), they are
tested with sample votes to see if they record everything ac-
curately. The optical scanners are tested in a similar way.
If the DREs and the scanners pass the pre-election testing,
then they are ready to be used for voting.

When a voter comes to the polling place, he/she regis-
ters at a desk. Then, either the voter is given a token (e.g.,
a smart card) to insert into the DRE to start voting, or
the election official carries the token and inserts it into the
DRE on the voter’s behalf. In the case of the voter carrying
the token, he/she removes the token and returns it to the
election official when he/she is finished voting. If the elec-
tion official initiates the voting session, the token is usually
removed before the voter starts to cast his/her ballot. The
voter’s choices are displayed on the DRE screen and are also
printed on the VVPAT.

If paper ballots are used, the voter is given a ballot and
a marking device to cast his/her vote. When the voter is
through, the ballot is handed to an official who inserts it into
the optical scanner to be read and recorded. Some optical
scanners will report an undervote (voting for less than n
choices when n are supposed to be picked) or an overvote
(voting for more than n choices when n is the maximum
number that can be marked). If this is the case, the voter
is given the opportunity to correct his/her vote.

After the election is closed, the results from each of the
DREs and scanners at a polling place are collected on a DTD
and returned to election central, where they are read into
the election management system to produce a tally for the
entire area.

2.2 How voting systems differ from other
systems

Electronic voting systems differ from other types of systems
in a number of ways. An important difference is that their
results are hidden from the user. For instance, if one is inter-
acting with an ATM, the user has the cash disbursed by the
machine along with the receipt to verify that the transac-
tion occurred correctly. With an electronic voting machine,
the most that voters receive is a receipt indicating that they
voted. Of course, the receipt never records a vote, because
if the voter were to receive such a receipt indicating who
he/she voted for, then votes could be purchased or coerced.

Furthermore, with electronic voting systems, failures are
not apparent because the results are hidden from the voter.
That is, even if the system were not behaving maliciously,
the DRE can make mistakes due to configuration problems,
such as an inaccurate touch-screen calibration (i.e., the voter
touches near the desired icon, but the vote is given to the
candidate or party associated with a neighboring icon). This
kind of problems can have an enormous effect on the election
results. Of course, these errors would be indicated on the
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tally screen and on the VVPAT, but experiments have shown
that these summary screens and the VVPAT are seldom
carefully reviewed by the voters [4, 29].

To prevent voting systems from being compromised, phys-
ical security is of great concern. The systems are locked
in warehouses, which often require two-person controls to
enter. In addition, every component of a voting system is
accompanied by a “chain of custody receipt” in order to gen-
erate an audit trail of who had access to which components
at what time. Unfortunately, voting systems are often deliv-
ered to polling places a week or more ahead of election day,
and in the interim are often stored in an insecure environ-
ment, such as a school gym or an election official’s garage.
Such practices represent an obvious “weak link” in the chain
of custody.

In addition to physical security, much of the security of the
voting process is dependent on the poll workers following ex-
plicit procedures. Unfortunately, most of the personnel that
are required to carry out these procedures have very limited
IT training and are not capable of dealing with problems
that may arise when using electronic voting systems. The
solution to this often is to have a representative from the
voting system vendor on site (or at least on call) to deal
with IT problems that may arise.

Since voting machines are so critical to our democracy,
there is a strong desire to assure that they perform correctly.
Currently the assurance of these systems involves a lengthy
certification process. This certification process is a double-
edged sword. Because it takes so long for (re)certification,
vendors are often slow to apply patches to their systems.
The result is that vulnerabilities are not fixed as soon as
they should be, and vulnerable systems are widely deployed.
In a testimony before the U.S. House of Representatives [32],
Wagner presented a number of problems with the certifica-
tion process: there is a conflict of interest, because the re-
quired certification process performed by testing authorities
is paid for by the vendors; there is a lack of transparency,
since the reports are generally not publicly available; certifi-
cation does not include the testing and enforcing of required
standards; and there is a lack of a clear decertification path
for systems that fail testing.

Certification standards have their own set of problems:
they lack a clear system and threat model, they often pro-
pose seemingly arbitrary specifications, and sometimes they
mandate impossible features [2].

2.3 Security testing of voting systems

Security testing is generally an overlooked and under-appre-
ciated part of the testing process as a whole. The reason for
this deficiency stems from many factors. First, the major-
ity of software developers are not security experts, or even
security-aware. This leads to software with “bolted-on” se-
curity, poorly implemented security, or no security whatso-
ever. Second, software testing engineers and the organiza-
tions that employ them are concerned with proper execution
in response to use-cases and the advertised functionality of
a product. Exceptional and hostile environments are usu-
ally not considered in the testing process; therefore, security
holes are not discovered. Finally, the security of large sys-
tems with many developers is often hard to assess, because
it requires knowledgeable individuals who are able to un-
derstand how one could leverage the complex interactions

between the components to bring the system into an unin-
tended and vulnerable state.

The aforementioned characteristics of voting systems im-
ply three important consequences that necessitate proper
design and security evaluation. First, the presence of sen-
sitive election information makes the threat of well-funded
and motivated attackers a real concern. Second, the dis-
tributed nature, complex design, and reliance on proper ex-
ecution of operational procedures all serve to create a wide
and varied attack surface. Finally, the public’s relation to
voting systems, both in their use and in their effect on the
future direction of society, makes public perception and con-
fidence of primary importance when testing these systems.
All of these factors, combined with historical implementa-
tion issues, set the testing requirements for electronic voting
systems apart from the testing of other systems.

In order to ensure the public’s confidence in a voting sys-
tem, a rigorous, objective, and publicly accessible test pro-
cedure and report must be developed. Reassurance by the
vendor is necessary, but cannot be considered sufficient in
this case. Instead, the system of checks and balances that
are important in any public arena should also be applied
here.

Although the certification process can help validate the
proper functioning of a voting system under ideal conditions,
real-world deployments often rely on operational procedures
for this assurance. However, these operational procedures
cannot be the only measure guaranteeing security. Instead,
there should be safeguards built-in at both the software and
physical layers for cases in which these procedures are not
carried out correctly or in good faith. For these reasons, the
relationship between the operational procedures, their effect
on information flow, and the overall security of the system
must be carefully analyzed.

One of the biggest frustrations to the potential testing of
current electronic voting systems is that they are propri-
etary in both hardware and software. In many cases, this
makes obtaining source code, documentation, and build en-
vironments very hard. In addition, the technologies that are
used can be very old and outdated, making the reproduc-
tion of a suitable test environment nearly impossible. For
these reasons, the resources that are available to a potential
objective tester are usually severely constrained, enabling
only black-box testing where white-box or gray-box testing
is appropriate.

3. EXPERIENCE IN TESTING
REAL-WORLD VOTING SYSTEMS

In our experiments, we tested the security of two electronic
voting systems: the Sequoia system for the California TTBR
and the ES&S system for the Ohio EVEREST project. The
two vendors have their own proprietary name for each com-
ponent of the system. However, to avoid unnecessary con-
fusion, we will refer to each of them using the general ter-
minology introduced in Section 2.

In the following, we first introduce the general methodol-
ogy we used in our analysis. Then, we focus on the tools
we developed to cope with some of the problems that char-
acterize the testing of electronic voting machines. Finally,
we present some examples of the vulnerabilities we found in
our experiments.
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3.1 Security Testing Methodology

In this section, we present a five-step testing methodology
that can help security engineers in designing experiments to
evaluate the security of an electronic voting system. This is a
high-level approach that focuses on finding bugs and design
errors that can potentially be exploited by an attacker to
violate the integrity, confidentiality, and availability of the
voting process.

Step 1. Information gathering
The first step consists of collecting all the available informa-
tion on the system under test and preparing the environment
in which the testing will be performed. In particular, it is
important to obtain the following resources:

• A copy of each of the machines that are part of the
voting system. Even though some previous analyses of
electronic voting systems [9, 18, 25] were based solely
on the source code, the availability of the actual hard-
ware greatly increases one’s confidence in the results
and allows the tester to actually implement and verify
the effectiveness of each attack.

• A copy of both the source code and binaries for each
software component installed on the voting machines.
This is not strictly required in order to test the vot-
ing system, but it can help to reduce the amount of
reverse engineering required and simplify the vulnera-
bility analysis.

• A copy of all the available documentation (e.g., soft-
ware user manuals, hardware schematics, and descrip-
tion of the voting procedures) and the results of past
testing experiments (if any) performed by other teams
on the same voting system. Many of these documents
are publicly available on the Internet.

• Vendor support in terms of the training required to
properly operate each hardware or software compo-
nent. In addition, a step-by-step example of a com-
plete election process can be very useful to quickly un-
derstand all the involved procedures and the interac-
tion between the different components. This informa-
tion can be extracted from the documentation or from
the analysis of each module. However, the involvement
of the vendor can simplify this task.

In our experiments (and therefore in the rest of the pa-
per), we assume that the testers have full access to all of the
aforementioned resources. It is important to note that even
though this can greatly improve the quality of the testing,
previous studies have shown that an attacker can success-
fully find exploitable vulnerabilities with very limited access
to the hardware/software infrastructure.

Step 2. System analysis and identification of the infor-
mation flow
The goal of this phase is to model the input/output interface
of each hardware and software component.

First of all, it is important to inspect the hardware and
list every input/output channel such as serial ports, memory
card slots, or wireless interfaces. For example, even though
a DRE is usually not equipped with a keyboard, opening its
case can reveal an internal keyboard port that can be very
useful for debugging and testing.

The best way to reconstruct the information flow between
the different components is through a precise analysis of the

source code. However, in order to avoid problems in the rest
of the experiments, it is a good practice to initially verify
that the source code obtained in the previous step corre-
sponds to the actual software installed on the various ma-
chines. Unfortunately, the use of proprietary (or no longer
available) build environments can complicate this operation,
sometimes making a precise verification impossible.

During this phase, the testers must precisely identify which
data is exchanged between the different components, what
protocol and data format is used in the communication, and
which physical medium carries the information (e.g., an Eth-
ernet cable, a phone line, or a compact flash card).

In addition, it is important to understand how each com-
ponent authenticates and validates the data it receives and
how the information is protected from external analysis,
eavesdropping, man-in-the-middle attacks, tampering, and
replay attacks. For example, it may be possible for an at-
tacker to use the same credentials to vote twice or to sniff
the communication containing the voting results.

If the data is encrypted, it is important to understand
the way in which the encryption key has been shared be-
tween the sender and the receiver. For example, if the key is
transmitted on the same medium, the security of the com-
munication can be easily compromised.

Finally, the analysis of the source code can reveal other
valuable information, such as undocumented features or the
presence of debug functionalities that can be exploited to
subvert the voting system.

Step 3. Identification of threats and attack exposures

Once all the details of each component have been collected,
the tester can draw a global picture representing the interac-
tion and the information flow between the devices involved
in the voting process. Before starting to look for vulnera-
bilities, it is important to add one last piece to the puzzle:
the voting procedures. Voting procedures are a set of rules
and best practices that regulate how a real election must be
executed, describing, for example, who is in charge of each
operation, who is going to operate the voting devices, and
how the devices will be operated.

Taking into account the procedures is very important in
designing realistic attack scenarios. However, it is also very
important to remember that a procedure cannot be the only
defense mechanism against an attacker. For example, if
there is a button on the side of an electronic voting machine
to reset the system, assuming that a poll worker can check
during the election that nobody presses that button is not
a solution to the problem. For this reason, it is important
to also devise experiments to test the cases in which some
of the procedural assumptions are violated, intentionally or
not.

Finally, at this stage it is important to define a precise
threat model, which is a model of the possible attackers,
their motivations, capabilities, and goals. For instance, an
attacker can be interested in deleting or altering the results,
in preventing other people from voting, or in discovering the
identity of previous voters. Categorizing the attackers is also
very important. Given the critical tasks performed by these
devices and the amount of money involved in a real election,
insiders, as well as outsiders (e.g., regular voters), can be
interested in attacking the system. Poll workers and election
officials can be bribed, or they may have personal interests
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in affecting the results of an election. Even malicious vendor
employees must be taken into consideration, especially given
their access to the low-level voting infrastructure.

To summarize, the system analysis describes how the vot-
ing system works, the operational procedures describe how
humans are supposed to interact with the system, and the
threat model describes the possible goals and resources of
various attacker categories. Combining these three pieces
of information allows the security engineers to identify the
possible attack scenarios. For instance, if the component
analysis reveals that the smart card tokens are not crypto-
graphically signed and the procedures state that voters are
given tokens to manually insert into the DRE, then it is pos-
sible to devise an attack scenario in which a user can switch
the smart card provided by the poll worker with a malicious
one, thus providing erroneous data to the DRE.

One can visualize the voting process as a chain of trust
and information that links together all the machines and the
people involved in the voting system. At the beginning, the
election officials prepare the ballot definition. The definition
is saved into some devices that are then used to initialize the
electronic voting machines. At the end of the election, the
votes stored in the machines are collected and sent back to
the election management system to be tallied.

This process has a circular structure, where the input of
a step in the process is the output of the previous step.
Enumerating all the attack scenarios means enumerating all
the possible ways in which an attacker can compromise a
component involved in the process and break the circle.

Step 4. Breaking the circle: attacking a component of
the voting process

The objective of this phase is twofold. First, the tester must
perform a vulnerability analysis to identify any bug or flaw
in the system design that can be exploited to realize one of
the attack scenarios that has been identified in the previous
step.

When a vulnerability is discovered in one of the compo-
nents, the second step consists of developing an attack that
successfully exploits the vulnerability. Compared with other
security testing experiments, this task presents interesting
and novel difficulties. First, due to the intrinsic character-
istics of the voting environment (see Section 2.3 for more
details), it is often necessary to develop a number of ad hoc
tools in order to interact with the voting devices.

Second, the stealthiness of the attack can be a very im-
portant point. Even though a simple exploit that crashes
a DRE can be an effective denial of service attack, more
advanced attacks that aim at affecting the results of the
election need to go unnoticed. This is particularly difficult,
because most election systems are designed to identify and
audit any error and suspicious condition; often, they rely on
a Voter-Verified Paper Audit Trail (VVPAT), which can be
very difficult to modify.

Examples of tools and techniques that can be used to cir-
cumvent these limitations are presented in Section 3.2.

Step 5. Closing the circle: compromising the entire vot-
ing system

In the previous step, the testers develop attacks that can be
used to compromise a single component of the voting system.

In this last phase, the focus shifts from the single component
to the entire voting system. In particular, it is now impor-
tant to evaluate how a compromised component can take
advantage of the legitimate information flow to take control
of other devices, with the goal of eventually controlling the
entire voting infrastructure.

The idea is to use a combination of the attacks developed
in the previous step to inject a virus-like malicious software
that is programmed to automatically spread to as many vot-
ing machines as possible. This can be achieved by copying
the virus onto media devices (DTDs) that are later inserted
into other components where the malicious data can trig-
ger a local vulnerability. If the virus can reach and infect
election central (where components for all of the precincts
are initialized and the votes are tallied), the entire voting
process can be compromised.

3.2 Techniques and Tools

In this section, we describe some of the techniques and tools
we used to apply our methodology. Because electronic vot-
ing systems are implemented using specialized hardware,
custom tools are often needed. The type of tools required
depends on the type of firmware the voting machine utilizes.
Therefore, we first review the different firmware types and
discuss how they influence the testing process.

Types of Voting Machine Firmware

The firmware of the voting machines we analyzed can be
classified in three different types, based on the amount of
COTS components they utilize. The first group of voting
system firmware utilizes a COTS operating system and all
voting-specific code is run as processes within the operating
system. The second class of firmware utilizes a COTS BIOS.
In this case, the voting system firmware includes functional-
ity normally performed by the operating system, but utilizes
the BIOS for most I/O operations and boot time initializa-
tion. The third class of voting system firmware does not rely
on any third-party components. This type of voting system
firmware runs completely standalone.

Depending on the class of firmware, the type of analysis
tools needed for the evaluation differs. For systems utilizing
a COTS operating system, the operating system tools and
services can be leveraged to perform the analysis. For in-
stance, most operating systems include tools to perform file
operations (e.g., a command shell) that can be leveraged in
order to replace the voting-system-specific code. In addition,
many operating systems include functionality to support the
debugging of user-level processes. This debugging function-
ality is very useful when crafting exploits. Finally, an OS
provides process isolation; therefore, if an attack causes the
voting system process to crash, the operating system would
keep running and allow for uninterrupted debugging sup-
port.

Systems that rely on a COTS BIOS but do not run in an
operating system require radically different analysis method-
ologies. This class of voting system firmware does not in-
clude all the services normally provided by an operating sys-
tem. None of the systems we analyzed contained function-
ality for attaching a debugger to the voting application pro-
cess or for manipulating files. Another challenge with these
systems is that they have very limited I/O capabilities. A
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common debugging technique is to create a debug program
trace by printing to the console as the program execution
progresses. This technique is complicated by the fact that
none of the voting machines has a built-in console that could
be printed to. In addition, the voting systems we analyzed
of this type were designed so that if the process running
the voting system software crashes, then the whole system
halts. This complicated the process of doing a post-mortem
analysis of failed exploits.

Voting systems that are completely standalone have all
the challenges of OS-free voting systems, in addition to some
specific challenges that the lack of a BIOS causes. One of
the main tasks of the BIOS is to facilitate the boot process.
The normal boot sequence of a system with a BIOS begins
with the processor jumping to a specific address within the
BIOS where it starts executing. The BIOS initializes some
of the hardware and loads the boot block from the boot
drive. The boot block in turn loads the operating system
from disk. The operating system is often contained in a
regular file on the boot file system. In a BIOS-free system,
however, the boot process works differently. The processor
starts executing at a specific address after a reset. Since
there is no BIOS in the system, the voting system code must
be located where the BIOS would be in a COTS system.
This means that the voting system code cannot be stored in
a file on a file system, but, instead, has to be stored on a
ROM or EPROM chip. This fact complicates the analysis.
In a BIOS-based system, it is easy to read and replace the
voting system firmware since it is located in a regular file
on a flash card and hardware adapters to access flash cards
are readily available. The BIOS-free systems we analyzed
all required specialized and less available hardware in order
to read and write the EPROM chips. In addition, in one of
the systems we analyzed, the EPROM was soldered on the
board and it could not be removed without unsoldering it.

Tools

During the testing process, we implemented a number of
tools in order to perform the required analysis. First, we
developed tools for performing low-level reconnaissance and
vulnerability analysis. These tools allowed us to, for in-
stance, extract and replace firmware images, dynamically
inspect and modify runtime state, and read or write DTDs.
Next, additional tools to facilitate system exploitation were
developed; an example presented is that of a firmware patch-
ing framework.

Firmware reader/writer. For the voting machines that
had firmware stored on an EPROM chip, we needed a way
to read and modify the contents of the chip. While commer-
cial EPROM readers are readily available, they did not suit
our needs. EPROM readers require the chip to be extracted
from the circuit and inserted into the reader. The voting
machines we analyzed had the chips soldered onto a circuit
board, and removing them would have been cumbersome.
Fortunately, the processors used in the voting machines with
ROM chips all had built-in JTAG [12] support, which could
be leveraged to access the EPROM chips. JTAG is a hard-
ware debugging interface. It allows, among other things, the
tester to completely bypass the processor logic and control
the logic state of the processor’s pins directly. By changing
the logic state of the processor’s pins in a carefully con-
trolled pattern, the EPROM can be accessed through the

JTAG port. Unfortunately, we could not find an affordable
JTAG tool that supported the particular processor used by
the voting device. We ended up extending an open source
JTAG tool designed for ARM processors (OpenOCD [24])
to work with the voting machines’ processors.

Debugger. One of the most important tools needed to
write a functioning exploit is a debugger. The debugger al-
lows the tester to inspect the memory contents of the voting
machines, set breakpoints, and single step through the sec-
tions of code that contain vulnerabilities. Since none of the
DREs we analyzed had built-in support for debugging, we
had to add this functionality. We chose to implement GNU
debugger (GDB) support over a serial line. This technique
allows the tester to attach a debugging computer to the vot-
ing machine using a serial cable. The debugging computer
runs the GDB application and provides the tester with full
debugging support of the target voting machine. In order
to implement this functionality, a debugging stub has to be
installed on the voting machine.

We were not able to compile the firmware of any of the
voting machines we tested because we were not provided
with a functional build system. This forced us to binary-
patch in the debugging stub. The debugging stub we used
was based on a stub shipped with GDB. We modified the
stub in order to make it self-contained, since we could not
rely on operating system services to access the serial port.
After compiling the stub, we copied the binary stub to an
unused area of the voting machine’s ROM. For the stub to
work, it needs to be hooked into the voting machine’s in-
terrupt table. We located the interrupt table of the voting
machine by disassembling the binary. The interrupt table
can easily be found by looking for the assembly instruction
used to load the interrupt table. After identifying the loca-
tion of the interrupt table, we modified the table to point at
our debugging stub. By performing these modifications, the
code running on the voting machine could be debugged.

DTD reader/writer. Most voting machines we analyzed
utilized some kind of data transport device (DTD) or hard-
ware token for access control and voting machine initializa-
tion. The DTDs stored a sizeable amount of data that was
read into the voting machine during the authentication and
initialization processes. Since the voting machine was read-
ing data from these tokens, they represented an interesting
attack vector. In order to explore this vector, we developed
tools to perform low-level reads and writes of the data con-
tained in the DTDs. This allowed us to create tokens that
contained illegal or unusual data.

Firmware patching framework. After identifying a vul-
nerability and creating a working exploit, the next step was
to modify the firmware and cause it to behave in a mali-
cious way. Since we were not able to compile the source
code, we could not just modify the source and compile a
malicious firmware version. Instead, we had to modify the
firmware by binary-patching in the new functionality. Man-
ually performing the binary-patching can be time consuming
and error-prone. Therefore, we designed a patching frame-
work that allowed us to write extensions to the firmware in
C and link these extensions to the original firmware. Two
types of linking were needed. First, the extensions needed
to be able to call functions in the original firmware. Second,
the extensions needed to be able to hook themselves into
the original firmware so that the original firmware would
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call the extensions at an arbitrary location. The framework
consisted of two jump tables and a patching script. The two
jump tables processed the two kinds of links and allowed the
extension to call functions in the original firmware normally.
The patching script concatenated the original firmware and
the extensions and created a new binary. In addition, the
patching script overwrote interesting function calls in the
original firmware and diverted the function calls to the ex-
tension.

3.3 Findings

Security evaluations of both the Sequoia and ES&S voting
systems resulted in the discovery of a number of previously-
unknown vulnerabilities. In the following sections, we de-
scribe a representative sample of the vulnerabilities found
and discuss several possible attack scenarios.

EMS vulnerabilities

Tests of both vendors’ election management systems (EMS)
revealed numerous flaws. Perhaps the most troubling find-
ing was the presence of exploitable software defects allowing
the execution of arbitrary code of an attacker’s choosing.
For instance, buffer overflows were present throughout the
source code for ES&S’ EMS, indicating a pervasive igno-
rance or dismissal of basic security awareness and defensive
programming techniques. In one case, a working exploit was
developed for a buffer overflow in ES&S’ election results pro-
cessing code that allows an attacker to gain full control of
the EMS.

Another area of significant concern was the general lack
or misuse of cryptographic techniques to authenticate users
of the voting system or to ensure the integrity of critical
election data. For instance, asymmetric cryptography was
completely eschewed in favor of secret keys, which in many
cases were hard-coded into a component’s software with no
apparent strategy for key revocation in the event of a com-
promise. Additionally, although election data was in some
cases protected by a checksum, these were easily forged and,
invariably, no cryptographically-strong signing mechanism
was used. These oversights allow an attacker, for instance,
to forge authentication tokens and election results, in some
cases for entire precincts.

A third area in which vulnerabilities were found is that of
incomplete specification of system requirements and miscon-
figuration of system environments. Both vendors support
the option of deploying their EMS on customer-provided
hardware; in this case, however, documentation relating to
proper system configuration and security hardening is of-
ten misleading or incomplete, resulting in potentially serious
vulnerabilities. For instance, Sequoia’s EMS was configured
with the Windows “autorun” feature enabled for removable
media, allowing an attacker to compromise the machine via
the simple insertion of a flash drive or CD-ROM. The EMS
also allowed remote users to not only connect to its back-end
database as the database administrator, but also allowed re-
mote users to execute arbitrary commands using database
extensions that could have been easily disabled. Finally,
ES&S’ EMS shipped with a version of the Java Runtime
Environment that includes a known vulnerability in its im-
age processing code. Clearly, a coherent, pellucidly artic-
ulated set of configuration procedures and system require-
ments would largely mitigate such vulnerabilities.

DRE vulnerabilities

In our evaluations, the vendors’ respective DRE products
suffered from classes of vulnerabilities similar to those found
in the election management systems. Both DREs contained
multiple buffer overflows in their handling of election data,
and working exploits were developed for overflows in ballot-
loading code for each machine. Generally speaking, each of
the vendors’ source code bases were written without regard
to modern security engineering practices, such as avoiding
the usage of unsafe string handling functions or performing
rigorous input validation checks.

The design of both DREs also exhibited the same igno-
rance or misapplication of cryptography as in the case of the
EMS, with similar implications. During our evaluations, it
was trivial for an attacker to forge authentication tokens as
well as modify or simply create election data. This critical
lack of cryptographic protection allows a malicious person
to impersonate an election official or vendor technician, vote
multiple times, perform unauthorized reconfiguration, or in-
troduce exploits into the system.

A particularly disquieting finding was the presence, in
both products, of backdoors or expressly-prohibited features
in the source code. In the case of Sequoia’s DRE, its firm-
ware contained a full-fledged interpreter for a scripting lan-
guage allowing a user to set the “tamper-proof” protective
counter of the machine, set the machine’s serial number,
overwrite arbitrary files (including election data, the firm-
ware, or audit log) on the internal compact flash drive, and
reboot the machine.1 The source code for ES&S’ DRE like-
wise recognized special “initialization” and“factory” authen-
tication tokens that allow one to, for instance, reset or by-
pass system passwords and erase election and audit data.

Finally, contrary to the claims of the vendors, the physi-
cal seals protecting access to critical components of the DRE
were, in almost all cases, not tamper-proof or even tamper-
evident. In many cases, the seals could be removed without
evidence or bypassed altogether by simply removing a small
number of screws and disassembling the chassis of the DRE.
The lack of physical security allows an attacker to access
sensitive poll worker controls and I/O ports during an elec-
tion, or to directly access the system firmware, election data,
and audit logs.

Optical scanner vulnerabilities

Evaluations of the various optical scanners offered by both
vendors followed much the same pattern of the previous
voting system components. A patent disregard for cryp-
tographic authentication and integrity checks allows attack-
ers to overwrite a system’s firmware with malicious versions
and modify or construct election data to be processed by
an EMS. Physical security measures were also lacking. In
particular, the ES&S scanner lock was easily picked with a
paper clip during our tests, while the “unpickable” lock on
the Sequoia scanner was bypassed by removing a few screws
and pulling out the lock cylinder from the scanner’s chassis
by hand. In both cases, this allows an attacker to access
machine internals to potentially execute arbitrary code.

1“Self-modifying, dynamically loaded or interpreted code is pro-
hibited, except under the security provisions outlined in section
7.4.” [30, Sec. 5.2.2]
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Attack scenarios

The vulnerabilities that pervade each vendor’s voting system
allow a multitude of serious attacks to be executed under
several threat models. Taken in isolation, these vulnerabili-
ties constitute a sobering threat to the successful execution
of a fair election. Clearly, the ability to run arbitrary code
on the election management system of a county, or directly
modify election data from a high-speed optical scanner that
processes tens of thousands or more votes during a single
election, is a cause for alarm. When these vulnerabilities are
considered in the context of the system as a whole, however,
even more alarming attack scenarios present themselves. To
illustrate this point, we discuss a class of attacks that was
successfully demonstrated on both vendors’ voting system:
a voting system virus.

Sequoia virus attack. In a Sequoia voting system deploy-
ment, an attacker first obtains access to a county elections
office.2 The attacker surreptitiously drops a maliciously
crafted USB flash drive into the pool of drives used to ini-
tialize authentication token programmers. When this drive
is inserted into the computer hosting the EMS, Windows au-
torun automatically executes a Trojan hidden on the drive
that contains the virus.

The virus silently installs itself and begins monitoring the
host for removable media insertion and removal events. Any
flash drive inserted into the EMS is infected with a copy of
the virus. In addition, results cartridges are modified to
contain an exploit for a buffer overflow in the DRE’s ballot-
loading code as well as a copy of the virus.

Infected results cartridges are subsequently used to initial-
ize DREs prior to the election. The exploit silently executes
during ballot loading and installs a malicious firmware on
the DRE. The malicious firmware acts normally during pre-
election logic and accuracy testing by taking advantage of
existing variables that indicate whether the DRE is being
tested.

On election day, the malicious firmware begins to execute
various vote stealing attacks. Examples of these attacks in-
clude:

• Modifying the ballot such that the favored candidate
is voted for even if not selected.

• Modifying uncompleted ballots when the voter has fled3.
• Printing a ballot summary and indicating that voting

is complete, waiting until the voter has left, voiding
the requested selections, and then casting a modified
version.

• Simply casting a modified ballot that disagrees with
the paper audit trail.

Note that in some of these attacks the VVPAT will be
consistent with the number of votes recorded internally by
the DRE. Therefore, they will pass consistency checks. In
addition, attacks that insert additional votes (in both the
VVPAT trail and the memory of the DREs) are still feasible
because, in most cases, the election officials cannot deter-
mine which votes have been forged and they will have to
either accept all the votes or throw away the election alto-
gether.

ES&S virus attack. In an ES&S voting system deploy-
2Note that if the attacker is an insider, such as an elections official,
they already have access to the election office.
3A “fleeing voter” is a voter that has only partially completed the
voting process and has left the voting station.

ment, an attacker with access to a DRE loads a malicious
firmware containing the virus into the machine either by
exploiting a vulnerability or by directly modifying the on-
board flash memory. When a master DTD is inserted into
the DRE to initialize it for the election, the malicious firm-
ware installs a copy of the virus on the DTD itself. Sub-
sequent uses of the DTD to initialize other DREs result in
those machines being infected through a ballot-loading ex-
ploit.

During pre-election logic and accuracy tests, the firmware
behaves as expected. During the election, however, the ma-
licious firmware carries out vote stealing attacks similar to
those described in the previous scenario.

After the election has ended, a master DTD is used to
collect the votes from each DRE. During this operation, the
malicious firmware infects the DTD with a copy of the virus,
if it is not already infected. The DTD is then transported by
an elections official to the county elections office, where the
votes are transferred into the EMS. During this operation,
a vulnerability in the EMS is exploited such that the virus
is installed in the EMS, allowing the possibility of further
attacks against the election.

After the tallying and reporting process has completed,
the virus remains dormant on the EMS host until the next
election. At this time, the virus will infect the master DTD
that is programmed to initialize the DREs for that jurisdic-
tion, and the cycle will continue.

Discussion

In both of these scenarios, analysis of the information flow
of the voting system along with the capabilities of each in-
dividual attack discovered allowed for the identification of
large-scale threats against the voting systems that would
not have been recognized in a piecewise analysis. Virus-
style attacks clearly pose a greater threat to fair elections
than attacks against single components, since they are per-
sistent between elections, and a greater number of votes can
be affected.

Additionally, the wide variety and large number of vul-
nerabilities discovered resulted in many vectors for the in-
troduction of such a virus. For instance, in the case of the
Sequoia voting system, the virus could be introduced by ex-
ploiting a remote vulnerability in the back-end database of
the EMS. Similarly, for ES&S, the virus could be introduced
into the system by exploiting the EMS during the tallying
process for the preceding election.

Finally, we want to stress that these scenarios have been
implemented and tested against real, certified voting sys-
tems that are in use today. Far from being the purview of
the mythical uber-hacker, our findings indicate that large-
scale exploitation of electronic voting systems is well within
the capabilities of “persons having ordinary skill in the art.”

4. LESSONS LEARNED

As we have shown above, the electronic voting systems that
we have reviewed are neither secure nor well-designed. In
this section, we summarize what we found to be the major
pitfalls of both systems.

Poor integration leads to insecurity. One of the prob-
lems with most of the electronic voting systems that are
being used today is that these systems are put together by

244



integrating election components created by different com-
panies/groups. As a consequence, often there is no overall
system design and no coherent structure. In fact, one of the
reviewed systems was a mishmash of legacy software. The
EMS was written using at least four different programming
languages. To make matters worse, almost every module
was using its own database, often storing duplicate data,
and had its own authentication system, if any. While each
of the languages used unquestionably has its own benefits
and can be the more appropriate choice in a particular sit-
uation, the use of a variety of languages in a single system
component complicates its analysis and creates a larger at-
tack space. In fact, a thorough analysis of such a system, or
even of its data flow, is close to impossible. If reuse of a piece
of code is proved to be necessary or helpful, the whole-system
design should be taken into account.

Cryptography is hard to get right. One of the major
areas of concern was the use of cryptography. In both sys-
tems we found that most uses of cryptographic techniques
could be classified into three main categories: naive use,
wrong use, or no use at all. For example, in one of the
analyzed systems, data on a DTD was protected via en-
cryption using a strong symmetric block cipher algorithm,
but the encryption key was stored in the clear on the same
media. In other cases, when election data was protected by
a checksum, the checksum could be changed to match the
maliciously modified data. Even worse, in both systems, no
cryptographically-strong signing mechanisms were used to
protect the integrity of sensitive data. A mindful usage of
strong encryption algorithms with strong well-protected keys
along with data signing are a must for building secure voting
systems.

Unfounded trust assumptions enable compromise.
Another major problem with both reviewed systems was a
lack of mechanisms allowing one to check the origin of data
along with a lack of appropriate input validation. In fact,
most of the components that we reviewed assumed that in-
put data came from a specific system component, disregard-
ing the fact that in many cases it could easily be forged.
For example, checksums were often taken as proof of data
origin. Also, data that was expected to come from other
components (for example, data on a DTD that was sup-
posed to be generated by an EMS) was often unchecked for
boundary cases. Many such cases resulted in exploitable vul-
nerabilities. It is well-known in the security community that
the lack of input validation is one of the major premises for
the existence of vulnerabilities. One of the main premises
for building a secure voting system is the absence of any un-
founded assumptions and mindful checks of all inputs.

Certification and standards that are currently used
are not enough for security. Both of the systems an-
alyzed were certified, and their source code was officially
compliant with at least one of the standards in use today.
Nevertheless, both systems were inherently insecure. The
problem is that currently used source code standards are not
security-oriented, and even if they were, a simple checklist-
based verification would not be enough. For instance, to
prevent buffer overflows, a standard could require that any
use of a function writing data to a buffer should be preceded
with a boundary check of input size against the size of the
destination buffer. In this case, while the standard would
enforce the usage of checks before each case, it would still

fail to guarantee that the checks were correct. In fact, one
of the exploitable buffer overflows that we found was a re-
sult of a mistake in a similar check. Also, during the review,
we found that systems are not as compliant with standards
as they claim to be. A more thorough and security-oriented
certification process for evaluating voting systems is needed.

Logic and accuracy testing gives a false sense of se-
curity. One of the selling points of both systems was the
fact that they provide a built-in way of testing their systems
for accuracy, which can be done right before an election. In
practice, from a security perspective we found the tests to
be completely useless, since testing was done only while in
a special testing mode, which was enabled through a switch
in the system’s firmware. Clearly, since the system itself
is aware of the testing mode, any malicious code that was
implanted into the firmware could easily pass the accuracy
tests. Interestingly enough, one of the vendors seemed to
have a strong belief that their logic and accuracy test is ca-
pable of identifying malicious code. The only way to make
logic and accuracy tests realistic is to, at the very least, have
the firmware totally unaware of any testing mode.

COTS components are difficult to configure in a se-
cure way. We found that the use of COTS components in
some cases made the voting systems more vulnerable. The
main problem is that COTS components often come with a
lot of functionality and can be hard to configure in a secure
way. For example, the EMS for both systems was based
on the Windows operating system, which is a very complex
system of its own, with a large number of pre-configured
settings. Adequate hardening of such a system requires a
high level of expertise. Nevertheless, the systems that were
given to us came mostly with default configurations and no
specification on how to configure each system’s security was
given in either case. The “autorun” vulnerability presented
in Section 3.3 is one example of this problem. When COTS
components are used, vendors should either provide a de-
tailed specification of how the systems should be configured
or provide pre-configured systems.

Voting procedures underestimate the power of po-
tential adversaries. Another common problem that we
found is that the security and integrity of both systems
often depend on poll workers following an explicit set of
procedures. In fact, we found that the physical security of
most components depended more on compliance with a set
of procedures than on strong physical guards. Often the
seals that were used to protect critical system components
could be easily bypassed. Interestingly, vendors seem to fail
to realize that procedures do not substitute for built-in sys-
tem security and can be easily violated, intentionally or not.
In fact, one of the vendors’ rebuttals to a discovered secu-
rity problem was that the problem cannot occur because it
violates the procedures. Procedures should never be relied
upon as the only guarantee of system security; rather, each
component of a system should implement a complete set of
security mechanisms necessary for its protection.

Security training of developers is not sufficient. One
of the most frustrating discoveries that we made is the ap-
parent lack of adequate security training of the voting sys-
tem developers. For example, it was often the case that code
written in C consistently used the infamous strcpy() func-
tion without checking the size of the copied data against
the size of the destination buffer, which is one of the most
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common causes of buffer overflows. Even more surprisingly,
we found cases when the more secure strncpy() function was
used incorrectly; the size of the input was checked against
itself rather than against the destination buffer. Knowledge
of basic security concepts, their application, and defensive
programming practices should be prerequisites for the devel-
opers of critical systems such as an electronic voting system.

To summarize, we found that, in both systems, security
was not a part of the design and often security features were
added to the systems in an ad hoc way. In our opinion,
the “security through obscurity” principle was often used as
one of the main protection mechanisms. While undoubt-
edly the proprietary nature of the voting software makes it
harder for an attacker to develop a working exploit for the
system, we have shown that it does not make a system com-
pletely secure. Given sufficient time and determination, an
attacker can successfully reverse-engineer a system, starting
with very little information. In fact, the only way to make
electronic voting systems secure is to build security in from
the very beginning of the development process.

5. RELATED WORK

The first analysis of a major electronic voting system was
performed in 2003, when Bev Harris discovered that the
source code repository of the Diebold system, precompiled
binaries, and other documents were stored on a publicly ac-
cessible FTP server [9]. After downloading the files and
testing the system, in particular the EMS, she discovered
various ways to change votes, bypass passwords, and alter
audit logs [10].

The same Diebold repository was also analyzed by a team
of researchers from Johns Hopkins and Rice Universities [18,
25]. Their analysis, which focused on the source code of
the voting terminal, found serious and wide-reaching prob-
lems and concluded that the system was “far below even the
most minimal security standards applicable in other con-
texts.” Subsequent studies taking into account the actual
hardware, election procedures, and environment confirmed
the main results of the Hopkins-Rice study [27, 33].

The first independent security assessment of a complete
voting system, including both the hardware and the soft-
ware components, is due to Feldman et al. [5]. The Prince-
ton team obtained the system from an undisclosed “pri-
vate party,” proved that malicious code could be easily in-
stalled on the machine to undetectably steal votes and mod-
ify records and audit logs, and developed a virus with the
capability of spreading from one machine to another. They
also uncovered several problems with the physical security
of the terminal [6].

More recently, as access to electronic voting equipment
has increased either through officially sponsored initiatives
or unofficial channels [1], assessments of their security fea-
tures have also become more common. Available studies
demonstrate that problems are present in most systems, in-
dependent of the specific system’s vendor. For example,
Gonggrijp and Hengeveld reported a number of weaknesses
in the Nedap ES3B system, used in Holland [8]; Proebstel et
al. discovered several exploitable issues in Hart’s eSlate sys-
tem [22]; Ryan and Hoke discussed problems with Diebold’s
GEMS software [26]; Yasinsac et al. discovered several soft-
ware vulnerabilities in ES&S’ iVotronic [34].

Furthermore, problems are not limited to one category of
electronic voting technology. While most of the studies have
been directed at DRE systems, optical scanners are not free
of security-relevant defects [11, 16, 17].

Internet-based voting systems have also received great
scrutiny and showed similarly severe security issues. For
example, the SERVE system was designed to allow US over-
seas voters and military personnel to vote in the 2004 pri-
mary and general elections, but was canceled after a study
uncovered a number of critical flaws [13, 14].

Finally, the flaws discovered through testing and other
analysis techniques in current voting systems have stimu-
lated a number of research efforts to improve the design of
voting machines [28, 35], to ameliorate security primitives,
such as the storage of votes [3, 20] and auditing [7], or to
propose novel voting protocols with desirable characteris-
tics, such as verifiable voting in absence of trusted compo-
nents [15] and privacy against adversaries with unbounded
computational resources [21].

This paper differs from the aforementioned studies in sev-
eral significant aspects. With respect to earlier efforts, the
reviews in which we participated had a much broader scope:
we had (almost) full access to source code, documentation,
actual voting machines, and procedure descriptions used in
real elections. We also had the opportunity to test com-
plete voting systems rather than single pieces of equipment.
These factors allowed us to test the security of the system
more thoroughly (e.g., confirming vulnerabilities detected
through source code analysis by developing actual, working
exploits) and to assess the security implication of combining
several vulnerable components (e.g., showing how a virus
could spread from the EMS to the DRE components).

The systems we tested were used in contexts where the act
of casting a vote and the transmission of ballots over a net-
work (e.g., the Internet) was prohibited by law. Therefore,
we did not have a chance to explore problems arising in this
situation. However, some of the components we reviewed
could be interconnected by an internal network, physically
separated and disconnected from external networks. We in-
vestigated this scenario and documented the corresponding
threats.

Finally, the contributions of this paper do not consist
of a novel voting technique or system. Instead, this pa-
per provides a comprehensive review of the methodology,
techniques, and tools we developed and used in our testing
experiences, and a summary of the lessons learned during
our studies.

6. CONCLUSIONS

Electronic voting systems have been proposed to make the
voting process faster and more reliable. Unfortunately, all
voting systems recently analyzed by independent security
testers have been found to contain fatal security flaws that
could compromise the confidentiality, integrity, and avail-
ability of the voting process.

In this paper, we presented our experience with the se-
curity testing of real-world electronic voting systems. We
presented the methodology we used, the tools we developed,
and the lessons we learned.

Our experience suggests that there is a need for a drastic
change in the way in which electronic systems are designed,
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developed, and tested. Researchers, practitioners, and pol-
icy makers need to define novel testing approaches that take
into account the peculiar information flow of these systems,
as well as the combination of computer security mechanisms
and physical procedures necessary to provide a high level of
assurance.

Unless electronic voting systems are held up to standards
that are commensurate with the criticality of the tasks they
have to perform, the very core of our democracy is in danger.
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