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ABSTRACT

We present a case study in which a team of test engineers at
Microsoft applied a feedback-directed random testing tool
to a critical component of the .NET architecture. Due to
its complexity and high reliability requirements, the compo-
nent had already been tested by 40 test engineers over five
years, using manual testing and many automated testing
techniques.

Nevertheless, the feedback-directed random testing tool
found errors in the component that eluded previous testing,
and did so two orders of magnitude faster than a typical
test engineer (including time spent inspecting the results of
the tool). The tool also led the test team to discover errors
in other testing and analysis tools, and deficiencies in pre-
vious best-practice guidelines for manual testing. Finally,
we identify challenges that random testing faces for con-
tinued effectiveness, including an observed decrease in the
technique’s error detection rate over time.

Categories and Subject Descriptors

Software Engineering [Testing and Debugging]

General Terms

Reliability

Keywords

Random testing

1. INTRODUCTION
Testing software is expensive. Estimates in the literature

put the cost of testing at approximately half of the total
development cost of software [3]. At Microsoft, for exam-
ple, there is approximately one tester for every developer.
In addition to being expensive, testing software can be te-
dious and error-prone. A significant portion of a test en-
gineer’s work consists in constructing test inputs that run

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’08, July 20–24, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-050-0/08/07 ...$5.00.

the software under different scenarios. Since it is impossi-
ble to exercise software under every possible scenario, test
engineers must craft a small number of test inputs that re-
veal as many defects as possible. As the size and complexity
of software increases, it becomes more difficult to cover all
possible scenarios, and easier to miss test inputs that could
have revealed an error.

Random testing [16, 12, 9, 6, 7, 22, 11] helps a test en-
gineer create error-revealing test inputs, by mechanically
and randomly sampling a program’s input space. The ef-
fectiveness of random testing is an unresolved question in
the testing community. Some studies [8, 15, 25, 4] sug-
gest that random testing is not as effective as other test
generation techniques such as chaining, bounded exhaus-
tive testing, symbolic execution or model checking. Other
studies [13, 18, 11, 22] suggest the opposite: that random
testing’s speed, scalability, and unbiased search make it an
effective error-detection techniques and able to outperform
many of the above techniques. For example, in previous
work we described an experiment in which feedback-directed
random testing [22], a variant of random testing, finds er-
rors in many software libraries while model checking finds
none, and achieves higher coverage than model checking and
symbolic execution.

However, the real assessment of a test generation tech-
nique’s effectiveness is its performance in the real world.
Do previous evaluations of random testing measure the rel-
evant variables? In an industrial setting, testing techniques
are used under a very different set of constraints from a re-
search setting. Practicing test engineers have tight deadlines
and large amounts of code to test. For an automated test
generation tool to succeed in this environment, it must re-
veal errors important enough to be fixed and it must reveal
these errors in a cost-effective way, taking up less human
time than manual testing or existing automated techniques.
These qualities can be particularly difficult to measure in a
research setting.

We present the results of a case study that sheds light on
the effectiveness of random testing when used by test engi-
neers in an industrial testing environment, and in compari-
son with the application of other test generation techniques.
Engineers from a test team at Microsoft applied feedback-
directed random test generation to a large component of the
.NET Framework [1] used by thousands of developers and
millions of end users. The component under question sits low
in the .NET framework stack, and many .NET applications
depend on it for their execution. For this reason, the com-
ponent has had approximately 40 testers devoted to testing
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it over a period of five years. It has undergone manual unit,
system, and partition testing, as well as automated testing
including fuzz, robustness, stress, and symbolic execution-
based testing. Because of proprietary concerns, we cannot
identify the .NET component analyzed. We will refer to it
as “the .NET component” or “the component” from here on.

The case study provides new evidence grounded in in-
dustrial experience to the long-standing question about the
effectiveness of random testing as an error-detection tech-
nique. The test team’s knowledge of the average human
effort required to manually find an error in the component
under test allowed us to quantify the benefit of feedback-
directed random testing compared to manual testing. Since
the team has applied many testing techniques to the com-
ponent, we were also able to learn about the effectiveness of
feedback-directed random testing against these techniques.

Our main results are:

• Feedback-directed random test generation found more
errors in 15 hours of human effort and 150 hours of
CPU time than a test engineer typically finds in one
year on code of the quality of the component under
test. The technique found non-trivial errors, including
errors that arise from highly specific sequences of op-
erations. Moreover, these errors were missed by man-
ual testing and by all previously-applied automated
test generation techniques. Based on these results,
the tool implementing feedback-directed random test-
ing was added to a list of tools that other test teams at
Microsoft are encouraged to use to improve the quality
of their testing efforts.

• As a result of applying feedback-directed random test-
ing to the component, the test team found and fixed
errors in other automated testing tools, performed fur-
ther manual testing on areas of the code that the tech-
nique showed to be insufficiently tested, and imple-
mented new best practices for future manual testing
efforts. In other words, the technique was used beyond
bug finding, as an assessment tool for the test team’s
existing testing methodologies, and spurred more test-
ing activities.

• After a highly productive error detection period, feed-
back-directed random testing plateaued and eventually
stopped finding new errors, despite using different ran-
dom seeds. This observation mirrors the results of a
recent, unrelated study of random testing [11]. We
provide a tentative explanation of the plateau effect
for the case of feedback-directed random testing ap-
plied to the .NET component, and propose research
directions to address the effect.

The rest of the paper is organized as follows. Sections 2
and 3 give an overview of the .NET component under test
and feedback-directed random test generation. Section 4
describes the process that the test team used in applying
feedback-directed random test generation to the component.
Section 5 discusses the results, including the number and
type of errors revealed, the reason why other techniques
missed these errors, and the challenges that feedback-directed
random testing faces in finding more errors over time. Sec-
tion 6 surveys related work, and Section 8 concludes.

2. OVERVIEW OF .NET COMPONENT

The software used in this study is a core component of the
.NET Framework [1]. It implements part of the functional-
ity that allows managed code (code written in a high-level
programming language like C#) to execute under a virtual
machine environment. The component is required for any
.NET application to execute. It is more than 100KLOC in
size, written in C# and C++, and it exports its functionality
in an API available to programmers both inside and outside
Microsoft. Many applications written at Microsoft use the
component, including the BCL (a library for I/O, graphics,
database operations, XML manipulation, etc.), ASP.NET
(web services and web forms), Windows Forms, SQL, and
Exchange.

The software component has undergone approximately
200 man years of testing, not counting developer testing
(most developers write unit tests). The test team has large
computational resources for testing, including a cluster of
several hundred machines.

The test team has tested the component using many tech-
niques and tools. In addition to manual (unit and system)
testing, the team has developed tools for performance, ro-
bustness, stress, and fuzz [9] testing. They have created
tools that automatically test code for typical corner cases
and values, such as uses of null, empty containers or arrays,
etc. Additionally, thousands of developers and testers inside
Microsoft have used pre-release versions of the component in
their own projects and reported errors. To facilitate testing,
the developers of the component make heavy use of asser-
tions.

At this point, the component is mature and highly reli-
able. A dedicated test engineer working with existing method-
ologies and tools finds on average about 20 new errors per
year. During the earlier years of its development cycle, this
figure was much higher. One of the goals of this study was
to determine if feedback-directed random testing could find
errors not found by previous testing techniques, on software
of the maturity level of the component.

3. FEEDBACK-DIRECTED RANDOM

TESTING

Feedback-directed random testing [22] addresses the auto-
mated generation of unit tests for object-oriented software.
A unit test consists of a sequence of constructor and method
calls and code that checks for expected behavior of the se-
quence. Feedback-directed random testing generates a set
of test cases exhibiting error-revealing behaviors in the soft-
ware under test. This section summarizes the technique pre-
sented in our previous work [22] by describing the Randoop

unit test generator.
Randoop (Random Tester for Object-Oriented Programs)

implements feedback-directed random testing for .NET (an-
other version of the tool exists for Java [21]). The tool is
fully automatic. Figure 1 shows the architecture of Ran-

doop. It takes as input the location of an assembly, a time
limit after which test generation stops, and optionally a set
of configuration files that let the user specify (via regular
expressions) subsets of classes and methods in the assembly
that should be tested or avoided.
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Figure 1: Randoop’s architecture. The input to the tool is an assembly, a time limit, and optionally, a set of

configuration files. Randoop creates method sequences using the public methods and constructors exported

by the assembly, executes the sequences, and based on their execution, may output them as error-revealing

or regression test cases.

Randoop outputs unit tests that can be compiled and
executed to produce error-revealing behavior in a method
under test. The error-revealing behaviors that Randoop

checks for are assertion violations, access violations, and un-
expected program termination. Figure 2 shows an example
error-revealing unit test case generated by Randoop. The
test case shows a test input that leads to an assertion vi-
olation (realized as an AssertionViolationException). Lines
13—16 comprise the test input, and lines 17—30 comprise
the test oracle. Exit codes signal different execution out-
comes (if the code under test is non-deterministic, the out-
come may differ in different executions). The exit codes can
be used by tools to post-process Randoop-generated test
cases.

Randoop creates method sequences incrementally by ran-
domly selecting a method call to apply, and selecting in-
put arguments to the method from among previously con-
structed sequences. As soon as it is created, a new sequence
is executed and checked against a set of error-revealing be-
haviors. Randoop uses the result of the execution to deter-
mine if the sequence is error-revealing, new, or illegal:

• Error-revealing: the execution exhibits an error-revea-
ling behavior. Sequences that lead to error-revealing
behavior are output to the user. Figure 2 shows an
example error-revealing method sequence. Sequences
classified as error-revealing are not used to create new
sequences (such an extension would amount to explor-
ing off an already-corrupted state, which would lead
to many false positives).

• New: the objects that the sequence constructs are not
equivalent to objects constructed by a previously cre-
ated input. Randoop considers two objects o1 and o2

to be equivalent if o1.equals(o2) returns true. The tool
maintains a cached set of all the objects created during
generation, and checks if a new sequence creates new
objects (This heuristic did not improve performance
for the .NET component under test, and we did not
use it in the case study.) Sequences that create new
objects and are not error-revealing are output to the
user as normal behavior test cases and can be used for
regression testing.

1. // A Randoop-generated unit test for method
2. //
3. // ConfManager.LoadConfigFromFile(String,ConfigType).

4. //
5. // When executed, the test causes the method

6. // to raise an assertion violation.
7. public class RandoopTest4065
8. {

9. public static int Main()
10. {

11. try
12. {

13. int v1 = 2;
14. String v2 = Convert.ToString(v1);
15. ConfigType v3 = ConfigType.User;

16. Config v4 = ConfManager.LoadConfigFromFile(v2,v3);
17. }

18. catch (AssertionViolationException e)
19. {

20. Console.WriteLine("Test threw an");
21. Console.WriteLine("AssertionViolationException.");
22. Console.WriteLine("Will exit with code 1.");

23. return 1;
24. }

25. catch (Exception e)
26. {
27. Console.WriteLine("Unexpected behavior:");

28. Console.WriteLine("expected an");
29. Console.WriteLine("AssertionViolationException.");

30. return 2;
31. }

32. }
33. }

Figure 2: Example Randoop-generated unit test

case. The test case reveals an error in method Load-

ConfigFromFile which leads to an assertion violation

when the method is executed.
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Figure 3: RandoopWrapper is a wrapper process

around Randoop that makes it more robust to

crashes caused by arbitrary code execution. First,

RandoopSpawner spawns a Randoop process. If

Randoop crashes, RandoopSpawner spawns a new

Randoop process with a new random seed. This

continues until the user-specified time limit expires.

• Illegal: execution of the sequence leads to an exception
suggesting that the input is illegal. For example, a
sequence that throws an ArgumentException when null

is used as input to a method is heuristically classified
as illegal. Sequences classified as illegal are discarded
and are not used to create new sequences.

Randoop outputs error-revealing sequences. Before out-
putting an error-revealing sequence, Randoop attempts to
minimize it by iteratively omitting method calls that can
be removed from the method sequence while preserving its
error-revealing behavior.

Robustness. Before starting the case study, we modi-
fied Randoop to make it more robust. The tool executes
method sequences in the same process where it executes
its own code, using .NET’s reflection infrastructure. This
increases the speed of the tool by an order of magnitude
compared to compiling and executing each sequence in a
separate process. In early runs of Randoop on the compo-
nent under study, some method sequences caused the tool
to be forcefully terminated by the operating system, due to
execution of sequences containing methods that attempted
to perform a low-level OS operation for which Randoop

had no privileges. Thus, Randoop sometimes terminated
before the user-specified time limit. To improve Randoop’s
robustness, we wrapped Randoop in another program, Ran-
doopWrapper (Figure 3). RandoopWrapper takes the user’s
input, spawns a Randoop process on the given input, and
monitors the execution of the Randoop process. If Ran-

doop crashes before the user-specified time limit is reached,
RandoopWrapper spawn a new Randoop process, using a
new random seed. Method sequences that lead to Ran-

doop crashes are also output as potentially error-revealing
test cases.

4. PROCESS

We gave a copy of Randoop to the test team, along with
instructions on how to run the tool. Since the tool is fully
automatic, works directly on assemblies, and it outputs com-
pilable, error-revealing test cases, the test team had no trou-
ble understanding the purpose of the tool. The test team
started using Randoop with its default settings: one minute
generation time limit and no configuration files.

total number of tests
generated 4,000,000
distinct errors revealed
by Randoop 30
total CPU time required to
reveal the errors 150 hours
total human time spent
interacting with Randoop 15 hours
average errors revealed by a
tester in 1 year of testing 20

Figure 4: Case study statistics.

As they discovered errors, the test team created error re-
ports and assigned engineers to fix them. It was not al-
ways possible to fix the code immediately, so the test team
altered Randoop’s configuration files to instruct it not to
explore methods that led to error-revealing behavior. This
prevented Randoop from rediscovering the same error in
subsequent runs.

As they became more familiar with the tool, they used the
tool in more sophisticated ways, creating different configu-
ration files to focus on different parts of the component. An
aspect that made the tool easy to adopt was its scalability.
The technique does not analyze the code, but simply runs
it, which makes it possible to test even code that executes
deep into the operating system.

We met with the test team on a regular basis to discuss
their experience with the tool, including the time they had
spent using it and inspecting its results, as well as its effec-
tiveness compared with their existing manual test suites and
testing tools. Based on requests by the test team, we also
implemented a number of new configurable options, such as
the ability to output all sequences that Randoop generated,
regardless of their classification (Section 5.1.2 discusses the
way that the test team used this option).

5. RESULTS

Figure 4 summarizes the results of the test team’s effort.
Randoop revealed 30 serious, previously unknown errors in
15 hours of human effort (spread among several days) and
150 hours of CPU time. Each error was entered as a bug
report; many have since been fixed. The 15 hours of human
effort included inspecting the error-revealing tests output by
Randoop. To place the results numbers in context, recall
that for a code base of the component’s level of maturity, a
test engineer will find approximately 20 errors per year.

The kinds of behaviors that the tool currently checks for
(assertion violations, access violations, and unexpected ter-
mination) are almost always indicative of errors in the code,
so false positives were not as much a problem as redundant
tests: test that were syntactically distinct but revealed the
same error in the implementation. The hours reported in-
clude time spent inspecting and discarding redundant tests.

In terms of human effort, a test engineer using Ran-
doop revealed more errors in 15 hours than he would
be expected to find in a year using previous testing
methodologies and tools.
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5.1 Error characteristics
This section present the observed characteristics of the

errors that Randoop found, and representatives examples.
Each section presents an observation followed by examples.

5.1.1 Errors in well-tested code

Randoop revealed errors in code on which previous tests
had achieved full block and arc coverage. An example is an
error dealing with memory management and native code.
The component code base is a combination of memory-ma-
naged (garbage collected) code as well as native code with
explicit memory allocation. When native code manipulates
references from managed objects, it must inform the garbage
collector of any changes (new references, references that can
be garbage-collected, etc.).

Randoop created a test input that caused an internal
portion of the component to follow a previously untested
path through a method. This path caused the native code
to erroneously report a previously used local variable as con-
taining a new reference to a managed object. In this specific
path, the address of the reference was an illegal address for
a managed object (less than 32k but greater than 0). In
a checked build (the version of the component used during
testing, which includes assertion-checking code), the compo-
nent checks for the legality of the addresses, and threw an
assertion violation stating that a bad value was given as a
reference into the garbage-collected heap.

The erroneous code was in a method for which existing
tests achieved 100% block coverage and 100% arc coverage.
After fixing the error, the test team added a new regres-
sion test and also reviewed (and added test cases) for sim-
ilar methods. This is an example of an error discovered by
Randoop that led to testing for more errors of the same
kind, reviewing existing code, and adding new tests.

Feedback-directed test generation revealed errors in
code in which existing tests achieved 100% code cov-
erage.

5.1.2 Using Randoop’s output as input to other tools

At the beginning of the study, we expected Randoop

to be used as an end-to-end tool. However, the test team
started using Randoop’s test inputs (which are stand-alone
executable files) as input to other tools, getting more func-
tionality from each generated test. The test team requested
that we add an execution to Randoop in which it outputs
all the test inputs it creates, even if they were not error-
revealing. Their goal was to use other tools to execute the
inputs under different environments in order to discover new
errors.

Among the tools that they used were stress and concur-
rency testers. An example is a tool that invokes the com-
ponent’s garbage collector after every few instructions, or a
tool that runs several Randoop-generated test inputs in a
stress tool that executes a single tests input multiple times
in parallel (with a separate thread executing the same in-
put). This process led the test team to discover more errors.
Using the latter tool, the test team discovered a race condi-
tion that was due to incorrect locking of a shared resource.
The error was revealed only after a specific sequence of ac-
tions by a method, involving locking an object, performing
an operation, and finally calling another method that reset

the state of the thread. The team fixed the error in the
method that reset the thread state, implemented a tighter
protocol around the specific behavior, and did a review of
similar constructs (the review found no other issues).

The test team used Randoop’s generated tests as in-
put to other testing tools, increasing the scope of the
exploration and the types of errors revealed beyond
those that Randoop could find.

5.1.3 Testing the test tools

In addition to finding errors directly in the component,
Randoop led the test team to discover errors in their exist-
ing testing and program analysis tools. An example of this
is an error in a static analysis tool that involved a missing
string resource. In the component, most user-visible strings
(for example, exception messages) are stored in a text file
called a resource file. The resource file is included with the
product binary at build time, and is accessed when a string is
needed during execution. This approach simplifies language
localization.

The test team had previously built a simple analysis tool
to detect unused or missing resource strings. The tool in-
spects the component source code and checks that each re-
source is referenced at least once in the code, and that the
resource exists. However, the tool had a bug and it failed
to detect some missing strings. Randoop generated a test
input that caused an infrequently-used exception type to be
raised. When the virtual machine looked up the exception
message string, it did not find the string and, in the checked
build, led to a fatal assertion violation. On a retail build
(the version of the component shipped to customers), the
missing string produced a meaningless exception message.

After adding back the missing resource, the test team fixed
the error in their resource checking tool and did further man-
ual testing on the tool to verify that it worked properly.

In addition to revealing errors in the .NET compo-
nent, Randoop revealed errors in the test team’s test-
ing and program analysis tools.

5.1.4 Corner cases and further testing

For software of high complexity, it is difficult for a team of
testers to partition the input space in a way that ensures that
all important cases will be covered. While Randoop makes
no guarantees about covering all relevant partitions, its ran-
domization strategy led it to create test cases for which no
manual tests were written. As a result, feedback-directed
random testing discovered many missed corner cases.

The knowledge gained from the discovery of the corner
cases led the test team to consider new corner cases, write
new tests, and find more errors. In some cases, the discovery
of a new error led the test team to augment an exiting testing
tool with new checks for similar corner cases, and in other
cases the discovery of an error led the test team to adopt
new practices for manual testing.

The first example is an error that uncovered a lack of
testing for empty arrays. The component has a container
class that accepts an array as input to initialize the contents
of the container. The initialization code checks the legality
of the input data by iterating over the array and checking
that each element is a legal element for the container. An
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empty array is legal. One of access methods expected did
not handle the case in which the input array is empty. In
this case, the method incorrectly assumed that it was an
array of bytes and started reading bytes starting from the
base address of the array. In most cases, this would quickly
lead to a failure due to malformed data, and in other cases
(one created by Randoop), the method would fail with an
access violation. The test team fixed the error, reviewed
other access methods, and as a result fixed other similar
issues. As a result of this error, the team updated their
“best practices” to include empty arrays as an important
input to test.

This area of the component contained a large number of
tests for different kinds of initialization arrays. However, the
sheer size of the state space made it impossible to test all
possible combinations of inputs, and the manual tests were
incomplete.

The second example is an error that uncovered a lack of
testing for I/O streams that have been closed. When an
I/O stream is closed, subsequent operations on the stream
should fail. A Randoop-generated test showed that calling
a successive set of state-manipulating methods on a closed
stream would lead to one of the operations succeeding. In
the specific case, Randoop generated a call sequence that
would create a specific stream, do some operations and then
close the underlying stream. The component has many test
cases that test for similar behaviors, i.e. testing that oper-
ations on closed streams fail in specific ways. Again, due
to the size of the component, some important cases were
missing. In a checked build the test case caused an asser-
tion violation, and on a retail build it led to being able to
access certain parts of the stream after its closed. The error
has been fixed, test cases have been added, and reviews of
similar code have been completed.

The errors that Randoop revealed led to further test-
ing activities unrelated to the initial random testing
effort, including writing new manual tests and adopt-
ing new practices for manual testing.

5.2 Comparison with Other Test Generation
Techniques

The errors that Randoop revealed were not revealed us-
ing the team’s existing methodologies and tools, including
a very large collection of manually-written unit and system
tests, partition testing, fuzz testing, and program analysis
tools like the one described in Section 5.1.3. Conversely,
there were many errors revealed by previous efforts not re-
vealed by Randoop. In other words, Randoop was not
subsumed by, and did not subsume, other techniques.

According to the test team, a major disadvantage of Ran-

doop in comparison with manual and non-random auto-
mated techniques is Randoop’s lack of a meaningful stop-
ping criterion. After several hours of running Randoop

without the tool producing a new error-revealing test case,
they did not know whether Randoop had essentially ex-
hausted its power and was “done” finding all the errors that
it would find, or whether more computer resources would
lead to new errors. For example, towards the end of the
study, the test team ran Randoop for many hours on several
dedicated machines but the tool did not reveal any new er-

rors. Other techniques have more sensible stopping criteria.
When writing manual tests, a test team typically has a code
coverage goal; a static analysis tool terminates when the
analysis is complete; symbolic execution based techniques
terminate when they have attempted to cover all feasible
paths, etc.

The experiences of the test team suggests that Randoop

enjoys two main benefits compared with non-random auto-
mated test generation approaches. One is its scalability. For
example, concurrently with using Randoop, the test team
used a new test generator that outputs tests similar to Ran-

doop, but uses symbolic execution [14], a technique that
instruments the code under test to collect path constraints,
and attempts to solve the constraints in order to yield test
inputs that exercise specific branches. The symbolic execu-
tion tool was not able to find errors in the component during
the case study. One of the reasons is that the tool depends
on a constraint solver to generate tests that cover specific
code paths, and the solver slowed down the tool and was
not always powerful enough to generate test cases. In the
amount of time it took the symbolic execution tool to gener-
ate a single test, Randoop was able to generate many test
cases.

The second main benefit is that Randoop’s (and more
generally, random testing’s) randomized search strategy pro-
tects test engineers against human bias. For example, in
Section 5.1.4 we discuss that the test team had not previ-
ously considered testing a set of methods using empty ar-
rays, and Randoop revealed an error elicited via an empty
array. The test team had previously omitted empty arrays
from testing because the engineer that crafted the test cases
for the method in question did not consider empty arrays an
interesting test case at the time.

Human bias is not limited to manual testing; automated
tools can suffer from the biases of their creators. For ex-
ample, the test team has created automated testing tools
that test methods that take multiple input parameters, us-
ing all possible combinations of a small set of inputs for each
parameter slot. Randoop revealed errors that were not re-
vealed using the inputs programmed into the tool.

Randoop’s randomized search revealed errors that
manual and non-random automated techniques missed
because of human bias or lack of scalability. How-
ever, Randoop has no clear stopping criterion, which
makes it difficult to gauge when the tool has exhausted
its effectiveness.

Randoop versus fuzz testing. Previous to Randoop,
the component had undergone extensive fuzz testing [9] on
nearly every format and protocol of the component. Like
feedback-directed random testing, fuzz testing is also unbi-
ased, but previous fuzzing efforts did not reveal the errors
that Randoop revealed.

A reason for this is that fuzz testing has been traditionally
been done on data-intensive software that take as inputs
files, network packets, etc. Fuzzing is less frequently applied
to domains that deal with both data and control, such as
method sequences in object-oriented libraries. The errors
that Randoop found turned out to be about both data (the
input to methods) and about control (the specific sequence
of methods). In order to discover data errors, some amount
of control structure was necessary (a sequence of method
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calls), and in order to discover control errors, some data was
necessary (inputs to methods). Randoop helped bridge the
divide between data and control.

Fuzzing is effective in generating test inputs that ex-
plore either data or control. When the structure of in-
puts includes both data and control, feedback-directed
method sequence generation can be more effective.

5.3 The Plateau Effect

The errors revealed by Randoop did not emerge at a uni-
form rate during the testing process. Instead, the rate of
error discovery was quick at first and then decreased. Dur-
ing the first two hours of use, Randoop revealed 10 distinct
errors (5 errors per hour). Then the error-finding rate fell
to 2 errors per hour for approximately 10 hours. After that,
Randoop ceased to output error-revealing test cases.

To make Randoop more effective, the test team tried
different strategies, such as creating different configuration
files that targeted specific portions of the component. These
efforts revealed more errors, but did not alter the trend to-
wards diminishing returns for the effort expended. Towards
the end of the case study, the test team switched from run-
ning Randoop on a desktop to running it on parallel in
a cluster of several hundred machines, using different com-
binations of random seeds and configurations. These runs
revealed fewer errors than the initial runs on a single desk-
top.

Groce et al. [11] also observed this effect using a tech-
nique similar to Randoop’s to generate tests consisting of
sequences of file system operations for flight software.

Understanding the plateau effect. Given a software
artifact composed of multiple components, a reasonable re-
quirement for a test generation tool is that it be fair, mean-
ing that it distribute its computational resources fairly among
the different components. When analyzing Randoop’s out-
put, we discovered that Randoop is not fair. Randoop se-
lects which method to test next uniformly at random from
among the set of all public methods in the assembly un-
der test (the same applies to constructors). This strategy
can lead to some classes being explored more than others.
A class that defines five constructors will be explored more
heavily than a class that defines one constructor. A class
that defines a nullary constructor (a constructor that re-
quires no arguments) will be explored more heavily than a
class whose constructor requires an object of a type that is
difficult to create.

Randoop focuses on classes that declare nullary construc-
tors or that define several constructors, at the expense of
classes whose constructors require more complex setup. Be-
cause Randoop is incremental and creates new method se-
quences from previously created sequences, the initial favor-
ing of a few classes leads to a feedback loop in which classes
that were initially easier to create are focused on more in
later stages of generation, while classes that are difficult to
create become starved.

After an initial period of effectiveness, feedback-directed
random test generation yielded diminishing results.
Other exploration strategies may extend the technique’s
period of effectiveness.

Overcoming the plateau effect. We do not yet have a
solution to the fairness problem. Below, we sketch a possible
approach, with the caveat that we have not yet evaluated its
effectiveness. The idea is to use a distribution other than
Randoop’s uniform random distribution. In fact, it may be
desirable to use an adaptive distribution, as follows. At the
start of generation, Randoop could maintain a mapping
from each constructor and method to a “weight” number
indicating the relative probability that the given method
or constructor will be selected for testing (members with
higher weight have a higher change of being selected). At the
beginning, all methods and constructors would have equal
weight. At regular intervals, Randoop would update the
weights: members for which more tests have been created
would be given lower weight, and members for which fewer
tests have been created would be given higher weight. Thus
for example, a class with several constructors or with a unary
constructor, for which Randoop quickly generates many in-
puts, would eventually receive a lower weight, which would
increase the chances that the tool explores other classes.
Other techniques for achieving fairness are possible; the one
we have outlined is one possibility.

6. RELATED WORK

Random testing. Researchers have used random test-
ing [12] to reveal errors in many applications, including Unix
utilities [16], Windows GUI applications [9], Haskell pro-
grams [6], and object-oriented code programs [7, 20, 19].
Research tools for random testing object-oriented code in-
clude JCrasher [7], Jartege [19], Autotest [5], Eclat [20], and
Randoop [22]; commercial tools include Jtest [23] and Ag-
itator [2]. JCrasher [7] creates test inputs by using a pa-
rameter graph to find method calls whose return values can
serve as input parameters. Jartege [19] and AutoTest [5] re-
quire a formal specification, and use it to determine whether
randomly-generated method calls are error-revealing. Au-
totest lets the user vary a number of generation parameters
and distributions. Eclat [20] generates random sequences of
method calls and classifies them as normal, illegal, or er-
ror revealing based on an operational model derived from
an existing test suite. Randoop [22] focuses on generat-
ing a set of behaviorally-diverse test inputs, including state
matching to prune redundant objects, repetition to gener-
ate low-likelihood sequences, oracles based on API contracts
that can be extended by the user, and regression oracles that
capture the behavior of a program when run on the gener-
ated input. Jtest [23] is a commercial tool that also uses
specifications to determine if an input is error-revealing; its
input generation algorithm is not published. Agitator [2]
creates test inputs using a variety of techniques, including
random generation and data flow analysis, and proposes to
the user program invariants based on execution of the test
inputs.

Other approaches combine random generation with more
sophisticated techniques in an attempt to achieve higher
coverage of the code under test. Ferguson and Korel [8]
proposed an input generation technique that begins by ex-
ecuting the program under test with a random input, and
systematically modifies the input so that it follows a different
path. Recent work by Godefroid et al. and Sen et al. [10, 24]
explores DART and CUTE, two related symbolic execution
approaches that integrate random input generation.
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Evaluations of random testing. People tend to believe
that random testing is a poor testing methodology. Glenford
Myers sums up the feeling in his Art of Software Testing
book: “In terms of likelihood of detecting the most errors, a
randomly selected collection of test cases has little chance of
being an optimal, or close to optimal, subset.” [17]. However,
this intuition is not backed by experimental evidence, and
in fact theoretical studies have shown that random testing
can be as effective as more systematic techniques such as
partition testing [13, 18].

The literature contains relatively few empirical evalua-
tions of random testing. As mentioned in the introduc-
tion, previous evaluations have reported that random test-
ing performs poorly compared with other techniques. For
example, Ferguson and Korel describe an experiment where
randomly-generated inputs achieve less code coverage than
their chaining technique [8]. Marinov et al. [15] describe an
experiment where randomly-generated test inputs kill fewer
mutants than inputs generated using Korat. Visser et al. [25]
describe the results of experiments where random testing
achieves less coverage than model checking and symbolic
execution.

In theoretical studies, Hamlet and Taylor [13] and Nta-
fos [18] conclude that random testing can be as effective as
partition testing. Groce et al. [11] describe a case study
in which model checking would not scale to testing code
for complex flight systems, while random testing scales and
finds many errors in the code. In previous work, we de-
scribe an experiment in which feedback-directed random
testing [22], a variant of random testing, finds errors in many
component libraries while model checking finds none. The
paper shows that when augmented with execution-feedback
heuristics, random testing outperforms the same benchmarks
used in [25].

We know of few industrial case studies of random test-
ing’s use by an actual product group to test a real product.
Recent work by Groce et al. [11] describes a realistic appli-
cation of random testing to a file system used in flight soft-
ware. Their experience was similar to ours: random testing
found a large number of errors in a relatively short amount
of time. Like Randoop, their tool eventually reached a
plateau. To find more errors, Groce et al. suggest moving
towards formal verification of the software; this is a different,
and complementary approach to our attack on the plateau
via techniques to increase fairness.

7. CONCLUSION

The goal of this case study was to determine the effec-
tiveness of a random testing technique when used by prac-
ticing test engineers in an industrial setting. Our focus on
a component that had already undergone large amounts of
testing allowed us to reach clearer conclusions about the rel-
ative effectiveness of feedback-directed random testing, by
setting the bar high for the technique, and by allowing us to
compare with the many previous techniques applied to the
component.

The technique proved highly effective in testing even an
extremely well-tested component, and led to a highly pro-
ductive period of error discovery. In addition, the technique
revealed errors in the test team’s existing testing and anal-
ysis tools, holes in their manual testing, and even led them
to improve their best practices. These results provide evi-

dence of the promise of feedback-directed random testing in
improving the quality of software, and the productivity of
the engineers that test it.

Random testing can greatly increase the effectiveness of
the test engineer by creating test cases that reveal not only
errors, but alert a test engineer to potential biases in the
crafting of manual tests or automated tools. This can have
a positive impact on the quality of testing beyond the errors
found directly by random testing. Randoop proved effective
in uncovering these biases. Since the study was conducted,
other test teams at Microsoft have used Randoop to find
errors in software components and improve the quality of
their testing efforts.
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