

 Technical Report

 Nr. TUD-CS-2011-0149

June 6th, 2011

Authors
Eric Bodden

Defining Access Control Policies as Tracematches

Defining Access Control Policies as Tracematches

CASED Technical Report TUD-CS-2011-0149

Eric Bodden
Software Technology Group, Technische Universität Darmstadt
Center for Advanced Security Research Darmstadt (CASED)

bodden@acm.org

ABSTRACT

Tracematches are a programming language for runtime mon-
itoring of Java programs. A tracematch declares a set of
program events to observe, along with a regular expression.
When the program events occur in the order defined by
the expression, the tracematch “triggers”, executing a user-
defined piece of code.

In this work we show how tracematches can be used to
define history-based access control policies.

1. INTRODUCTION

Tracematches [1] are a programming language for run-
time monitoring of Java programs. In this work we show
how tracematches can be used to define history-based ac-
cess control policies. We argue that defining access control
policies using tracematches allows for modular and expres-
sive poilicy definitions.

1.1 Mutually Exclusive Roles

We use examples by Turkmen et al. [3]. As an example
for “Mutually Exclusive Roles” (MER), the authors write:

“A transaction comprises of three steps: creation,
validation and checkout. No employee can per-
form all three operations required to complete a
transaction”

In Figure 1 we show a tracematch for this policy. The
tracematch defines three events (or “symbols”) of interest:
create, validate and checkout. Tracematches use AspectJ [2]
pointcuts to give abstract names to concrete program events.
In line 12, the tracematch defines a regular expression, stat-
ing that the subsequent body of code should execute when-
ever a checkout event follows a create event and then at least
one validate event. In the example, the body of code just
logs the MER violation to a file.

The code in Figure 2 expands on this example. In lines 15–
20, the code asks a supervisor whether it is ok to override

1 tracematch(Transaction t, Employee e) {
2 sym create after returning:
3 call(* Transaction.new(..)) && target(t) &&
4 let(e, Session.current().getUser());
5 sym validate after returning:
6 call(* Transaction.validate(..)) && target(t) &&
7 let(e, Session.current().getUser());
8 sym checkout before:
9 call(* Transaction.checkout(..)) && target(t) &&

10 let(e, Session.current().getUser());
11

12 create validate+ checkout {
13 log("User "+e.getName()+" tried to create,"+
14 " validate and check out transaction "+t.getID());
15 }
16 }

Figure 1: Tracematch for Mutually Exclusive Roles

the check in this case. If permission is granted, then the
tracematch proceeds with the original checkout action as
originally planned.

1 tracematch(Transaction t, Employee e) {
2 sym create after returning:
3 call(* Transaction.new(..)) && target(t) &&
4 let(e, Session.current().getUser());
5 sym validate after returning:
6 call(* Transaction.validate(..)) && target(t) &&
7 let(e, Session.current().getUser());
8 sym checkout around:
9 call(* Transaction.checkout(..)) && target(t) &&

10 let(e, Session.current().getUser());
11

12 create validate+ checkout {
13 log("User "+e.getName()+" tried to create,"+
14 " validate and check out transaction "+t.getID());
15 if(Supervisor.getSupervisor().ask(
16 "Grant "+e.getName()+" permission to check out"+
17 " although same user already created and"+
18 " validated transaction "+t.getID()+"?")) {
19 proceed(t,e);
20 } else {
21 throw new PolicyViolationException();
22 }
23 }
24 }

Figure 2: Tracematch for Mutually Exclusive Roles
with enforcement

1.2 Conflict of Interest

In a second example, Turkmen et al. state a conflict-of-
interest property:

Supervisors are responsible to audit transactions
and write audit reports. A teller can act as a
supervisor only for transactions that are not cre-
ated, validated or checked out by herself.

Figure 3 shows an appropriate tracematch: if a user per-
forms an audit on a transaction for which he/she has raised
either a create, validate or checkout event before, then the
tracematch triggers. In this case, the tracematch body calls
method findSupervisorNotInConflictWith to find an appro-
priate supervisor to dispatch the audit to instead. The
tracematch then automatically delegates the audit by calling
proceed with that new supervisor.

2. CONCLUSION

We have shown that tracematches can capture access con-
trol policies in a declarative and modular way. Traceamtches
can not only validate access control policies at runtime, they
can even enforce them and can use additional logic to revolve
policy violations gracefully and just in time.

3. REFERENCES

[1] Chris Allan, Pavel Avgustinov, Aske Simon
Christensen, Laurie Hendren, Sascha Kuzins, Ondřej
Lhoták, Oege de Moor, Damien Sereni, Ganesh
Sittampalam, and Julian Tibble. Adding Trace
Matching with Free Variables to AspectJ. In OOPSLA,
pages 345–364. ACM Press, October 2005.

[2] The AspectJ home page, 2003.

1 tracematch(Transaction t, Employee e) {
2 sym create after returning:
3 call(* Transaction.new(..)) && target(t) &&
4 let(e, Session.current().getUser());
5 sym validate after returning:
6 call(* Transaction.validate(..)) && target(t) &&
7 let(e, Session.current().getUser());
8 sym checkout around:
9 call(* Transaction.checkout(..)) && target(t) &&

10 let(e, Session.current().getUser());
11 sym audit around:
12 call(* AuditSystem.audit(Transaction)) && args(t) &&
13 let(e, Session.current().getUser());
14

15 (create|validate|checkout)+ audit {
16 log("User "+e.getName()+" tried to audit "+
17 " her own transaction "+t.getID());
18

19 Supervisor s =
20 AuditSystem.findSupervisorNotInConflictWith(e);
21

22 log("Delegating audit to "+s.getName()+ " instead.");
23

24 proceed(t,s);
25 }
26 }

Figure 3: Tracematch to resolve a Conflict of Inter-
est situation

[3] Fatih Turkmen, Eunjin Jung, and Bruno Crispo.
Towards run-time verification in access control. In
IEEE International Symposium on Policies for

Distributed Systems and Networks. IEEE, 2011.

