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Abstract—In current aspect-oriented systems, aspects usually

carry, through their pointcuts, explicit references to the base

code. Those references are fragile and give up important

software engineering properties such as modular reasoning and

independent evolution of aspects and base code. A well-studied

solution to this problem consists in separating base code and

aspects using an intermediate interface abstraction.

In this work, we show that previous approaches fail at restor-

ing modular reasoning because they do not provide modular

type checking; programs can fail to compose when woven,

even though their interfaces are compatible. We introduce

a novel abstraction called Join Point Interfaces, which, by

design, supports modular reasoning and independent evolution

by providing a modular type-checking algorithm. Join point

interfaces further offer polymorphic dispatch on join points,

with an advice-dispatch semantics akin to multi-methods. As

we show, our semantics solves important problems present in

previous approaches to advice dispatch.

We have fully implemented join point interfaces as an open-

source extension to the AspectBench Compiler. A study on

existing aspect-oriented programs of varying sizes and domains

supports our major design choices and reveals potential for

exploiting polymorphism through non-trivial join-point type

hierarchies.

Keywords-Aspect-oriented programming, modular reason-

ing, independent evolution, polymorphism

I. INTRODUCTION

“Modular reasoning means being able to make decisions
about a module while looking only at its implementa-
tion, its interface and the interfaces of modules refer-
enced in its implementation or interface. For example,
the type-correctness of a method can be judged by look-
ing at its implementation, its signature (i.e. interface),
and the types (i.e. interfaces) of any other code called
by the method.” [1]

While Aspect-Oriented Programming (AOP) [2] aids in
obtaining localized implementations of crosscutting con-
cerns, its impact on modular reasoning is not that positive.
Indeed, the emblematic mechanism of AOP is pointcuts and
advice, where pointcuts are predicates that denote join points
in the execution of a program where advice is executed. With
such an implicit invocation mechanism, it is not usually
possible to reason about an aspect or an advised module
in isolation. As we show in Figure 1a, an aspect contains
direct textual references to the base code via its pointcuts—
with detrimental effects. These dependencies make programs
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Figure 1: Dependencies in traditional AOP and with join
point interfaces.

fragile, they hinder aspect evolution and reuse. Changes in
the base code can unwittingly render aspects ineffective or
cause spurious advice applications. Conversely, a change in a
pointcut definition may cause parts of the base program to be
advised without notice, breaking some implicit assumptions.
The fact that independent evolution is compromised is
particularly worrying considering that programming aspects
requires a higher level of expertise, and is hence likely to be
done by specialized programmers. Therefore, to be widely
adopted, AOP is in great need of mechanisms to support
separate development in a well-defined manner.

The above issues have been identified early on [3] and
have triggered a rich discussion in the community [1], [4]. In
particular, several proposals have been developed to enhance
the potential for modular reasoning by introducing a notion
of interface between aspects and advised code (e.g. [3],
[5], [6], [7]). However, while they do enhance the situation
over traditional AOP, none of these proposals manages to
fully support independent evolution through modular type
checking, mostly because the interfaces are not expressive
enough. This is especially troublesome because the existence



of a concrete modular type checker is generally considered
the first solid evidence of modular reasoning.

In order to enable fully modular type checking, we intro-
duce join point interfaces (JPIs), an extension and refinement
of the notion of join point types recently introduced by
Steimann et al. [7]. Join point interfaces are contracts
between aspects and advised code (Figure 1b). JPIs support
a programming methodology where aspects only specify the
types of join points they advise based on a JPI, not on
concrete pointcuts. It is the responsibility of the programmer
maintaining the advised code to specify, through an exhibits

clause, which join points are of which type. Aspects and
advised code can be developed and evolved independently.

Conversely to previous work [5], [6], [7], JPIs do allow for
strict separate compilation thanks to modular type checking.
When programmers in charge of advised code compile their
module, they need to include JPI definitions but no aspect
code. Likewise, when aspect experts compile their aspects,
they only include the join point interface definitions but
no base code. This is similar to what Java interfaces offer
to support independent evolution of object-oriented code.
The static semantics of JPIs gives the strong guarantee
that programmers can always safely compose aspects and
advised modules, even when they were separately developed
and compiled. This is very different from other approaches,
where errors can occur at integration (weave) time. The
key observation of this work is that a pointcut is not a
sufficiently expressive abstraction for such interfaces; return
and exception types ought to be taken into account.

In addition, join point interfaces support a notion of
subtyping, which helps in structuring and managing the
complexity of the space of events-of-interest to aspects.
Subtyping of JPIs supports join point polymorphism and
advice overriding. We introduce a novel semantics of advice
dispatch that avoids the pitfalls of other approaches, inspired
by the well-established multiple-dispatch semantics [8].

The contributions of this paper are as follows1:

• We illustrate why Steimann’s join point types fail to
support modular type checking and join point polymor-
phism (Section II).

• We describe the static and dynamic semantics of JPIs
that allow for modular type checking and proper join
point polymorphism (Section III).

• We provide a complete implementation of JPIs for
AspectJ, based on the AspectBench Compiler [10]
(Section IV).

• We evaluate the benefits of JPIs based on the study of
a set of existing AspectJ programs (Section V).

1The general idea of JPIs was first presented in the New Ideas track of
ESEC/FSE [9]. This paper is the result of the development and maturation
of that idea paper; both syntax and semantics have evolved, and both
implementation and evaluation are completely new.

1 class ShoppingSession { ...
2 void checkOut(Item item, float price,
3 int amount, Customer cus){ ... }
4 }
5 aspect Discount {
6 pointcut checkingOut(Item item, float price,
7 int amount, Customer cus):
8 execution(* ShoppingSession.checkOut(..))
9 && args(item, price, amount, cus);

10 void around(Item item, float price, int amt, Customer cus):
11 checkingOut(item, price, amt, cus) {
12 double factor = cus.hasBirthday()? 0.95 : 1;
13 proceed(item, price*factor, amt, cus);
14 }
15 }

Listing 1: Shopping session with discount aspect

Sections VI and VII discuss related work and conclude.2

II. EXAMPLE

We motivate our approach using a running example based
on an e-commerce system. A customer can check out a
product by either buying or renting the product. A business
rule states that, on his/her birthday, the customer is given
a 5% discount when checking out a product. We will be
adding further rules later.

Listing 1 shows an implementation of the example where
the business rule is defined as an aspect in AspectJ [11].
The around advice in lines 10–14 applies the discount by
reducing the item price to 95% of the original price when
proceeding on the customer birthday. Note how brittle the
AspectJ implementation is with respect to changes in the
base code. Most changes to the signature of the checkOut

method, such as renaming the method or modifying its pa-
rameter declarations, will cause the BirthdayDiscount aspect
to lose its effect. The root cause of this problem is that the
aspect, through its pointcut definition in lines 6–9, makes
explicit references to named entities of the base code—here
to the checkOut method.

A. Why previous work fails to provide modular reasoning

The motivation of this work is to introduce a layer of ab-
straction to mediate between aspects and advised code so as
to support modular reasoning and independent development
and evolution. This idea was already proposed by others;
most notably, Steimann et al. recently proposed join point
types (JPTs) [7].3 To facilitate an easy comparison of both
approaches we use similar examples here. As we will show,
the abstraction provided by JPTs does not actually support
modular type checking.

2The implementation is available, along with documentation, test cases,
and applications at http://bodden.de/jpi. We also include supplementary
material, such as examples of the problems described with other approaches.

3We use “JPTs” to refer to Steimann’s proposal of join point types.
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1 joinpointtype CheckingOut {
2 Item item; float price; int amt; Customer cus;
3 }
4 class ShoppingSession exhibits CheckingOut {
5 pointcut CheckingOut: execution(* checkOut(..))
6 && args(item, price, amount, cus);
7 //remainder of code as before
8 }
9 aspect Discount {

10 void around(CheckingOut jp) {
11 double factor = cus.hasBirthday()? 0.95 : 1;
12 jp.price = jp.price * factor;
13 proceed(jp);
14 }
15 }

Listing 2: Shopping session example with JPTs

Listing 2 shows the previous example with JPTs. A JPT
is defined as a plain data structure: lines 1–3 define the join
point type CheckingOut along with the names and types of
context parameters that join points of this type expose. The
base class ShoppingSession is enhanced to declare that it
exhibits join points of type CheckingOut. In lines 5–6 the
class binds the join point type to concrete join points, using a
regular AspectJ pointcut. Through the use of join point types,
the aspect is completely liberated from pointcut definitions.
Note that in line 10 the aspect refers directly to the join
point type, obviating the need to explicitly refer to base code
elements. Using this type-based abstraction, it may appear
that there are no longer any hidden dependencies between
aspects and advised code.

Unfortunately, however, Steimann’s proposal of join point
types does not eliminate all hidden dependencies between
aspects and advised code, and is therefore unable to properly
support modular reasoning: JPTs lack crucial information
necessary for modular type checking. Indeed, notice that
the join point type definition in lines 1–3 of Listing 2
specifies neither the return type of these join points, nor
the checked exceptions that the execution of these join
points may throw. Because this information is lacking, JPTs
must defer checking of some conditions, such as return
type compatibility, to weave time. This makes independent
development error prone, hinders aspect reuse, and is highly
undesirable in a collaborative working environment.

For example, consider that some requirements changed
on the aspect side. To determine a customer’s birthday the
aspect now has to submit an SQL query:

void around(CheckingOut jp) throws SQLException {
boolean hasBirthday = SQL.query(/*query omitted*/);
double factor = hasBirthday ? 0.95 : 1;
jp.price = jp.price * factor;
proceed(jp);

}

SQL queries can cause checked SQLExceptions, and the
aspect programmer, being careless, decides to just pass the
exception on, by including SQLException in its throws clause.
Nothing in the type system can prevent the programmer from
doing so. Since the struct-based join point type definition
contains no information about exceptions, a static type
checker based on this definition cannot tell which exceptions
are allowed or not. As a result, the type error remains latent
until system integration time: weaving will fail and report
an error. Since JPTs also lack information about the return
type of a join point, similar issues arise. If the return type is
changed, either on the side of the base code or on the side
of an advice, such a change will go unnoticed on the other
side, breaking the code at integration time.

To understand the gravity of the problem, one can make
the analogy with interfaces in statically-typed languages like
Java. Interfaces allow for modular type checking and inde-
pendent development. However, if interfaces only included
type information about method parameter types, eg.:

interface Printer { print(Document d); }

it would be easy to see that the type system would not be
able to maintain soundness due to the lack of information
about the return type and checked exception types of method
print. Both implementors and clients of this interface would
have to make informed guesses about those types, resulting
in fragile code due to hidden dependencies.

As we showed, the JPT proposal ultimately falls short
when it comes to providing important software engineering
properties. As Steimann et al. write, they “have not yet
explored whether and how [their] approach could open the
door for separate compilation.” [7, p.36]. But should not
the primary goal of a type declaration be to give static
guarantees such that modular checking and independent
development can be done in a sound manner? In this
paper we propose a stronger notion of interfaces for aspect-
oriented programming, called join point interfaces, which
address these fundamental shortcomings.

B. Modular reasoning with join point interfaces

Join point interfaces (JPIs for short) share with JPTs the
idea of abstracting from join points through types; but in
contrast to JPTs, join point interfaces are type declarations
that actually do allow for modular type checking. Crucially,
join point interfaces define join point types through method
signatures instead of structs. This choice is for a good
reason. In a recent piece of work, Bodden showed that one
can avoid many semantic pitfalls by regarding join points
as typed closures [12]. Importantly, because a JPI definition
is akin to a method signature, it does specify return type
and checked exception types, just like Java interfaces do.
Listing 3 shows the shopping cart example in the syntax
we propose, including the JPI definition in line 2. Similar
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1 jpi void CheckingOut(Item item, float price, int amount,
2 Customer cus);
3 class ShoppingSession {
4 exhibits void CheckingOut(Item i, float price,
5 int amount, Customer c):
6 execution(* checkOut(..))
7 && args(i, price, amount, c);
8 ...
9 }

10 aspect Discount {
11 void around CheckingOut(Item item, float price,
12 int amt, Customer cus){
13 double factor = cus.hasBirthday()? 0.95 : 1;
14 proceed(item, price*factor, amt, cus);
15 }
16 }

Listing 3: Shopping session example using a JPI

to JPTs, the programmer attaches pointcut definitions to
classes. This is done through an exhibits declaration (lines
4–7).4 Lines 11–15 show the advice declaration. As with
JPTs, advices in our approach only refer to join point types,
not directly to pointcuts. However, since we model join
points and their types through method signatures, program-
mers access the exposed context information of join points
through formal parameters of the advice (as in AspectJ),
rather than field-like members (eg. line 12 in Listing 2).

Let us come back to the the case of introducing
SQLExceptions on the aspect side to show how join point
interfaces restore modular reasoning to AOP. The aspect
programmer extends the advice signature similar to before:

void around CheckingOut(Item item, float price, int amt,
Customer cus) throws SQLException { ...

With join point interfaces, however, this mistake is caught
by the type system. The JPI declaration in line 2 of Listing 3
states that join points of this type cannot throw any checked
exceptions. Hence, the JPI type system flags the modified
advice as erroneous, notifying the aspect programmer that
part of the JPI contract is now broken. The aspect program-
mer can now either handle SQLExceptions in the advice itself,
or, if that is an option, update the JPI to:

jpi void CheckingOut(Item item, float price, int amount,
Customer cus) throws SQLException;

When choosing the second option, the contract between
aspect and base code is modified. Therefore, as soon as
the base code programmer updates to the new interface, the

4While one could in principle infer the signature for the exhibits
declaration from the referenced JPI declaration (line 2). We decided not to,
so that the class definition is more self contained. After all, we envision JPI
definitions to reside in their own separate package, shared with the aspect
programmer. This is in stark contrast to JPTs: in line 6 of Listing 2, the
programmer has to remember how the JPT declaration named its arguments.

CheckingOut

Buying Renting

Figure 2: Inheritance between Join Point Interfaces

1 jpi void Renting(Item item, float price,
2 int amount, Customer c)
3 extends CheckingOut(item, price, amount, c);
4

5 aspect Discount {
6 void around CheckingOut(Item item, float price, int amt,

Customer cus) { /* as before */ }
7 void around Renting(Item item, float price,
8 int amt, Customer cus) {
9 double factor = (amt > 5) ? 0.85 : 1;

10 proceed(item, price*factor, amt, cus);
11 }
12 }

Listing 4: Advice overriding

type checker reports that exceptions of type SQLException

must be caught at all code locations of join points of type
CheckingOut, as specified by the exhibits declarations.

C. Join Point Polymorphism
Join point interfaces abstract from join points through

types. In the same way that object interfaces in languages
like Java support a flexible form of subtype polymorphism,
JPIs enable polymorphic join points. A join point can be
seen as providing multiple JPIs, and advice dispatch at that
join point can take advantage of this polymorphism.

Which JPIs does a join point provide? This is the role of
pointcuts. As we have seen, a class defines the pointcuts that
expose certain join points in its execution, following a given
JPI. For instance, in Listing 3, class ShoppingSession defines
a pointcut that gives the type CheckingOut to all join points
that are executions of the checkOut method. Because a join
point can be matched by several pointcuts, a join point can
have multiple types. For instance, an execution of checkOut

can be seen as a CheckingOut, and could additionally be
seen as a LoggableEvent (a JPI whose definition is left to
the imagination of the reader).

In addition, like interfaces in Java, JPIs support subtyping.
Consider two subtypes of CheckingOut, Buying and Renting

(Figure 2), and the following business rule: the customer
gets a 15% discount when renting at least 5 products of
the same kind; this promotion is not compatible with the
birthday discount.

Listing 4 shows an implementation of this additional rule
using the subtyping relationship on JPIs. First, we declare
the JPI Renting as extending CheckingOut. The semantics of
this subtyping relationship implies that Renting represents a
subset of the join points that CheckingOut represents. The
aspect Discount now declares two advices. The first one
is the same as in the previous example. It applies to all
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CheckingOut join points. The second advice overrides the
first advice for all join points that are of type Renting.

Steimann’s proposal also supports join point subtyping.
However, join point polymorphism is not properly han-
dled. To briefly illustrate why, let us consider that we
introduce two subtypes of Buying: BuyingBestSeller and
BuyingEcoFriendly. With JPTs, whenever a book is bought
that is both a best seller and an eco-friendly print, the
Discount advice for CheckingOut is executed twice! This
implies that the side effects of the advice (e.g. sending a
notification email) are duplicated for a single book purchase.
The reason is that JPTs do not support polymorphic join
points: instead, in the case above, two separate join point
instances are generated, one of each type. Because both
instances are subtypes of CheckingOut, the advice executes
twice. To the best of our knowledge, our approach is the first
to provide a clear and natural mechanism to address advice
overriding. It supports true join point polymorphism: a single
join point can have multiple types, and a given advice only
executes at most once for a given join point.

III. JOIN POINT INTERFACES

We begin this section by describing the syntax of JPIs,
designed as an extension to AspectJ (Section III-A). Join
point interfaces allow for modular reasoning about aspect-
oriented programs by precisely mediating the dependencies
between aspects and base code (recall Figure 1b). The most
fundamental contribution of JPIs therefore lies in the static
type system that supports modular checking: we informally
describe it in Section III-B. Our proposal of JPIs also inno-
vates over previous work in the way it supports join point
polymorphism. The dynamic semantics of JPIs are described
in Section III-C. The actual implementation of JPIs in the
AspectBench Compiler is described in Section IV.

A. Syntax
We have introduced the syntactic extension to AspectJ in

order to support join point interfaces in the previous section.
We provide the complete definition online.

Type declarations, which normally include classes, in-
terfaces and aspects, are extended with a new category
for JPI declarations. A jpi declaration specifies the full
signature of a join point interface: the return type at the join
points, the name of the join point interface, its arguments,
and optionally, the checked exception types that may be
thrown. A join point interface declaration can also specify
a super interface, using extends. In that case the name of
the extended JPI is given, and the arguments of the super
interface are bound to the arguments of the declared JPI.

Classes and aspects can have a new kind of member
declaration, for specifying the join point interfaces that
are exhibited. An exhibit declaration specifies a join point
interface signature and the associated pointcut expression
that denotes the exhibited join points.

Finally, with JPIs, the way advices are declared is
changed. Instead of directly referring to a pointcut expres-
sion, advices instead refer to a join point interface. The
information about return type, argument types and checked
exception types that the JPI specifies becomes part of the
advice signature.

B. Static Semantics
We next describe the JPI type system. It supports

modular type checking of both aspects and classes; only
JPIs declarations are needed to type-check either side. This
is similar to type checking Java code based on the interfaces
it relies upon. We first discuss how JPIs are used to type
check aspects. Then we turn to type checking base code
that exhibits certain JPIs. We finally discuss type checking
JPIs themselves, in particular considering JPI inheritance.

1) Type checking aspects: An aspect is type checked just
like an AspectJ aspect, save for its advices. There are two
facets of type checking an advice: checking its signature
and checking its body. Type checking the signature of an
advice is simple. Each advice declares an advised JPI in
its signature; the signature must directly resemble the JPI
definition. More precisely, both return and argument types
must be exactly the same as those of the JPI.5 Checked
exceptions are dealt with similarly. The advice must declare
the same exception types as the JPI it advises. It cannot
declare any additional exception, as this could lead to
uncaught checked exceptions on the side of the base code.

Type checking the advice body is similar to type
checking a method body, with the additional constraint
of considering calls to proceed. As it turns out, a join
point interface is identical to a method signature (except
for the extends clause, used for join point subtyping). In
fact, a JPI specifies the signature of proceed within the
advice body, thereby abstracting away from the specific
join points that may be advised. This is a fundamental
asset of JPIs, and the key reason why interfaces for AOP
ought to be represented as method signatures (including
return and exceptions types), and not as structures like
JPTs. JPIs fully specify the behavior of advised join points,
thereby allowing safe and modular static checking of advice.

2) Type checking base code: On the other side of the
contract is base code, which can exhibit join points. Also
this base code must obey the contract specified by join point
interfaces. Part of this contract has to be fulfilled by the
pointcut associated with the exhibit declaration: the pointcut
has to bind all the arguments in the signature, using pointcut
designators such as args, this and target.

5Note that the invariance on types in the advice signature is motivated
by simplicity: it could be relaxed to allow covariance on the return type for
instance, but that may be more confusing than helpful. The advice body
can in any case always return a subtype of the declared return type.
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The second part of the contract from the base-code point
of view is to respect the return type and exception types
of the JPI. This has to be checked at each join point
potentially matched by the pointcut associated to the exhibit

declaration. More precisely, the pointcut is matched against
all join point shadows6 in the lexical scope of the declaring
class. Whenever the pointcut matches a join point shadow,
the type system checks that this shadow is of the same type
as the return type of the JPI. Similarly, it checks that the
declared exceptions of the shadow are exactly the same as
those of the JPIs. To understand this invariance requirement,
consider the case of declared exceptions. Let us denote
TS the checked exception thrown at a join point, TI the
exception type declared in the JPI, and TA the type thrown
by the advice. If TS < TI

7, this means that the context of
the shadow is not prepared to handle TA if TS < TA <: TI .
Conversely, if TS > TI , the advice is not prepared to handle
TS when invoking proceed. Therefore TS = TI by necessity.
The same reasoning holds for the return type [14].

These type checks at the join point shadows are the
fundamental contribution of JPIs from the point of view of
type checking base code. Other approaches, like JPTs, are
not able to perform these checks modularly, simply because
the specification of return and exception types are not part
of their interfaces. Those approaches have to defer these
type checks to weave time, or even worse, to runtime. With
JPIs, conformance can be checked statically and modularly,
prior to linking and weaving.

3) Type checking JPIs: Finally, some type checking is
performed at the level of JPIs themselves, to ensure that
inheritance is used properly. The extending interface declares
how arguments of the super interface are bound to its own
arguments. The types of the arguments must coincide, as
must the return type. Again we impose invariance on these
types. A sub-interface can declare more arguments than its
super interface. However, the exception interface of a sub-
JPI must be the same as that of the extended JPI to preserve
type soundness.

C. Dynamic Semantics
The dynamic semantics of JPIs differ slightly from that of

a traditional aspect language. Briefly, the traditional model
is as follows [15]. All aspects (pointcuts and associated
advices) are present in a global environment. At each eval-
uation step, a join point representation is built and passed
to all defined aspects. More precisely, the pointcuts of an
aspect are given the join point in order to determine if the
associated advices should be executed or not.

With JPIs, aspects do not have pointcuts. They advise
JPIs, and base code defines the pointcuts that denote the

6A join point shadow is the expression in program text that corresponds
to a (set of) dynamic join point(s) at runtime [13].

7We use <: for subtyping, and < for strict (i.e. non-reflexive) subtyping.

join points that provide these JPIs. The global environment
contains aspects (with their advices). Conceptually, at each
evaluation step, a join point representation is passed only
to the pointcuts defined in the current class. If a pointcut
matches, then the join point is tagged with the corresponding
JPI. Then, the advices that advise one of the tagged JPIs
are executed. In presence of join point polymorphism and
inheritance among JPIs, it is necessary to specify which
advice is executed.

We write AT to denote an advice of aspect A that advises
JPI T ; we write jpT to denote a join point jp tagged with JPI
T . The semantics of advice dispatch closely mimics the se-
mantics of message dispatch in multiple dispatch languages
like CLOS [16] and MultiJava [8]. Indeed, an aspect with
its multiple advices (each declared to advise a specific JPI)
can be seen as a generic function with its multiple methods.
Once a join point jp is tagged with interfaces T1, . . . , Tn

we select, for each aspect A, all applicable advices. An
advice AS is applicable to jpT1,...,Tn if there exists an i
such that Ti <: S. In order to support overriding, among all
applicable advices AS1 , . . . , ASk , we invoke only the most-
specific ones, defined as the ASj such that for all i, either
Sj <: Si or Si ⌅: Sj .

In this work we are dealing with implicit invocation,
which inherently supports multiple reactions to an event.
This differs from multiple dispatch, which requires exactly
one method to execute. The difference manifests in two ways
in the semantics. First, if there are no applicable advice, then
nothing happens; no advice executes. In contrast, a multiple-
dispatch language throws a message-not-understood error if
no applicable method can be found. Also, message dispatch
requires that there is a unique most-specific applicable
method, otherwise an ambiguity error is raised8. In our case,
we execute all the most-specific applicable advices, in the
precedence order imposed by regular AspectJ when multiple
advices of a same aspect match the same join point [17].

In the above, we have overlooked one specificity of
AspectJ and most aspect languages: the fact that advices can
be of different kinds—before, after, or around. The advice
overriding scheme we described is kind-specific: an advice
may override another advice only if it is of the same kind.
(In Section V, we will show cases where this is useful.) For
instance, consider an aspect that defines two advices AT1

and AT2 , with T2 <: T1. If one is a before advice and the
other is an after advice, both are executed upon occurrence
of a join point jpT2 . Conversely, if both are around advices,
only the most specific (AT2 ) executes, as explained above.

In practice, we found that advice overriding is not always
desirable (see Section V-B4). We support the possibility to
declare an advice as final, meaning it will always execute if
applicable, regardless of whether there exists a more specific

8In a statically-typed language like MultiJava, both cases can be ruled
out by the type system.
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applicable advices; in such a case, both execute, following
the standard AspectJ composition rules.

A fundamental asset of the dispatch semantics presented
here is that it gives the guarantee that a given advice executes
at most once for any given join point. This is in stark
contrast with the semantics of JPTs, where the same advice
can surprisingly be executed several times for the same join
point, as discussed in Section II-C.

IV. IMPLEMENTATION

We have fully implemented join point interfaces as an
extension to the AspectBench Compiler (abc) [10]. Our
abc extension extends Bodden’s implementation of Closure
Join Points [12]. This allows our approach to not only
support implicit announcement (pointcuts select exhibited
join points), but explicit announcement as well. We come
back to this in Section VI.

The most interesting aspect of our implementation is
how we assure the correct dispatch semantics for advices
referring to JPIs. Remember that syntactically our advice
declarations do not at all refer to any pointcut. Instead they
refer to a JPI declaration which in turn may be bound to
pointcuts by one or more exhibits declarations. To allow for
maximal reuse of existing functionality in the abc compiler,
we decided to implement our dispatch semantics through
a transformation that would compute for each such advice
a single pointcut, based on the referenced JPI, its type
hierarchy and the exhibits declarations of those types. Let
a be the advice to compute the pointcut for, as the set of
other advices in the same aspect and es the set of all exhibits
declarations in the program. Then we compute the pointcut
for a as follows:

pc(a, as, es) = pc+(a.jpi, es) ^ ¬pc�(a, as, es)

pc+(jpi, es) =
_

e2es, e.jpi <: jpi

e.pc

pc�(a, as, es) =
_

a02as, a0@a

pc+(a0.jpi, es)

The equation9 for pc+ implements polymorphism: if a refers
to a.jpi then a will match not only on join points for
a.jpi itself but also for all subtypes. The equation for pc�
implements advice overriding within the same aspect: if an
advice a0 has the same kind as a but refers to a more specific
JPI type, then a0 overrides a, which means that a will not
execute for the join points of this JPI. For advice that has
been declared final, pc� is simply skipped, so as to avoid
overriding.

To implement the above equation, our implementation
has to overcome a few technical obstacles. JPI declarations
can rename formal arguments of their super types in their

9@ denotes kind-specific subtyping for advices: a0 @ a means that a0
and a are of the same kind and a0.jpi < a.jpi.

extends clauses. Our implementation undoes this renaming
in the back-end. Further, the pointcut pc�(a, as, es) is used
under negation. This raises an issue with argument-binding
pointcuts, like this(a), because they cannot be negated.
Fortunately, abc supports a way to close such pointcuts so
that they do not have any free variable anymore, by rewriting
them to (�a.this(a)); such a pointcut can be negated, and if
a is of type A, the negation is equivalent to !this(A), which
yields the semantics we need.

V. EVALUATION

A. Benefits of Joint Point Interfaces
Join point interfaces establish a clear contract between

base code and aspects, such that separate development can
be supported. This is in essence similar to crosscutting
programming interfaces (XPIs, see Section VI) and join
point types (JPTs). The benefits of XPIs and JPTs on mod-
ularity have been empirically demonstrated elsewhere [6],
[7]. Because JPIs are an extension of these approaches, JPIs
enjoy the same modularity benefits, and more.

As we argued and illustrated in Section II, JPIs refine the
notion of JPTs with information that is crucial for robust
separate development: return and checked exceptions types
are part of the interface. Therefore modules can be compiled
separately, and no type errors occur at weave time. Because
software inevitably has to evolve, it is an important task for a
modular type checker to ensure that once a module conforms
to an interface, composing it with other modules that also
rely on the interface never raises an error at integration time.
It is obviously crucial that changes in the type of the return
at a join point, or for an advice, be detected modularly.

The same necessity happens with checked exception
types. Robillard and Murphy [18] report on an effort to
design robust programs with exceptions. They report that
focusing on specifying and designing the exceptions from
the very early stages of development of a system is not
enough; exception handling is a global phenomenon that is
difficult and costly to fully anticipate in the design phase.
Thus, inevitably, the exceptions that can be thrown from
modules are bound to evolve over time, as development
progresses and this global phenomenon is better under-
stood. The support that JPIs provide to report exception
conformance mismatch between aspects and advised code
in a modular fashion is therefore particularly necessary: as
modules change their exception interface, immediate and
local feedback is crucial to decide if these changes must be
promoted to the actual contract between aspects and advised
code. This avoids errors before system integration time.

B. Join Point Polymorphism
To evaluate JPIs in practice, we have converted a

set of existing AspectJ applications from the corpus of
Khatchadourian et al. [19]. These rewritten projects are
available online. Then, to assess our semantics for join point
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polymorphism, we have closely inspected a set of interesting
subjects from this corpus: AJHotDraw, an aspect-oriented
version of JHotDraw, a drawing application; Glassbox, a
diagnosis tool for Java applications; SpaceWar, a space
war game that uses aspects to extend the game in various
respects; and LawOfDemeter, a small set of aspects checking
the compliance to programming rules.

The first three projects were selected because of their
comparatively large size and number of aspects. La-
wOfDemeter is a rather small project that showcases an
interesting use of pointcuts, as discussed further below.

We inspected the programs using both the Eclipse
AspectJ Development Tools [20] and AspectMaps [21].
These tools allowed us to easily identify which advices
advise which join point shadows. In particular, we focused
on the shadows that are advised by more than one advice, as
this hints at potential for subtyping. We also systematically
investigated all pointcut expressions used in these projects
and looked for potential type hierarchies. Our investigation
revealed several interesting example hierarchies and clearly
supports the usefulness of our semantics of join point
subtyping. We now discuss a few representative examples.

1) Subtyping Patterns: We identify two patterns that
programmers use to “emulate” subtyping with pointcuts.

LawOfDemeter contains the following pointcuts:

pointcut MethodCallSite(): scope() && call(* *(..));
pointcut MethodCall(Object thiz, Object targt):

MethodCallSite() && this(thiz) && target(targt);
pointcut SelfCall(Object thiz, Object targt):

MethodCall(thiz,targt) && if(thiz == targt);

These pointcuts form an instance of a pattern that we call
subtype by restriction. MethodCall restricts the join points
exposed by MethodCallSite to instance methods, through
additional this and target pointcuts. SelfCall restricts this
set further by identifying self calls using an additional if

pointcut. A programmer could model this join point type
hierarchy with JPIs as follows:

1 jpi Object MethodCallSite();
2 jpi Object MethodCall(Object thiz, Object targt)
3 extends MethodCallSite();
4 jpi Object SelfCall(Object thiz, Object targt)
5 extends MethodCall(thiz, targt);

The example shows that it is useful to allow subtypes to
expose more arguments than their super types: MethodCall

exposes thiz and targt, while MethodCallSite exposes noth-
ing at all.

SpaceWars includes various instances of the subtype by
restriction pattern, but also features instances of the dual
pattern, super type by union. Consider the following:

pointcut syncPoint():
call(void Registry.register(..)) ||

call(void Registry.unregister(..)) ||
call(SpaceObject[] Registry.getObjects(..)) ||
call(Ship[] Registry.getShips(..));

pointcut unRegister(Registry registry):
target(registry) &&
(call(void register(..)) || call(void unregister(..))

);

Here the pointcut unRegister matches a subset of the join
points matched by syncPoint because syncPoints includes
additional join points by disjunction (set union). Here also,
the subtype induced by unRegister exposes an additional
argument.

2) Depth of Subtyping Hierarchies: Glassbox proved to
be a very interesting case study in that it provides over
80 aspects, and more than 200 pointcut definitions, with
potential for non-trivial join point type hierarchies. Due to
space limitations, we only show one of the most interesting
examples in Figure 3. The figure shows a hierarchy formed
by 11 pointcuts within the aspect ResponseTracer. We have
added Stats as a root type that the aspect does not contain
explicitly, but which could be introduced to abstract the
common parts of the StartStats and EndStats pointcuts.

3) Per-Kind Advice Overriding: AJHotDraw contains the
following definitions:

pointcut commandExecuteCheck(AbstractCommand acommand) :
this(acommand)
&& execution(void AbstractCommand+.execute()) ..
&& !within(*..JavaDrawApp.*);

before(AbstractCommand acommand):
commandExecuteCheck(acommand) {..}

pointcut commandExecuteNotify(AbstractCommand acommand) :
commandExecuteCheck(acommand)
&& !within(org.jhotdraw.util.UndoCommand) ..
&& !within(org.jhotdraw.contrib.zoom.ZoomCommand);

after(AbstractCommand acommand):
commandExecuteNotify(acommand) {..}

This is another instance of the subtype by restriction
pattern, with commandExecuteNotify refining the pointcut
commandExecuteCheck. This example validates our semantics
to consider advice kinds separately when resolving advice
overriding (Section III-C). In the example, the first pointcut
is advised with a before advice, while the second is advised
by an after advice. Assume now that we had abstracted from
those pointcuts using JPIs as in the following code:

before CheckingView(AbstractCommand acommand){..}
after NotifyingView(AbstractCommand acommand){..}

In this example, NotifyingView is a JPI subtype of
CheckingView. If we did not separate advices by advice
kind when determining advice overriding then only the
NotifyingView would execute at a NotifyingView join point,
leading to an altered semantics compared to the original
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Figure 3: A Potential Hierarchy of Join Point Interfaces in Glassbox.

AspectJ program. Conversely, because we do separate
advices by kind, when encountering a NotifyingView join
point, the CheckingView advice is executed before the join
point and the NotifyingView afterwards.

4) Overriding and the Multiple-Execution Bug: Glassbox
showcases both the bug of JPTs with multiple execution of
the same advice (Section II-C), and the interest of being able
to declare some advice as final to avoid overriding.

An aspect in charge of system initialization advises
the execution of TestCase object constructors. Some test
classes implement the InitializedTestCase interface (ITC for
short), and some implement the ExplicitlyInitializedTestCase
interface (EITC for short); some classes implement both
(these interfaces are added via inter-type declarations). More
precisely, 5 classes implement only ITC, 5 classes EITC
only, and 1 class implements both. The aspect defines
four before advices on these constructors, discriminating
between different categories using pointcuts. These pointcuts
correspond to four join point types T1 . . . T4, where T1 is a
super type of the three others.

With JPTs, T1 never executes, because it is always over-
ridden. The solution is to refactor the aspect to move the
advice for T1 in a separate aspect. But then, for all classes
that implement only one of the two interfaces (10 out of
11), the advice associated to T1, which initializes a factory
object, is executed twice. Whenever a join point is of sibling
join point types and there is an advice associated to the
common super type, the advice executes as many times
as there are siblings involved. This example shows that it
can be non-trivial to reason about when such a multiple-
execution bug can happen, because the hierarchy of join
point types does not align with the hierarchy of classes
and interfaces. For users of an aspect-oriented framework,
this can be particularly hard to track down. The dispatch
semantics of JPIs avoids this problem. In addition, with JPIs
it is possible to declare the advice for T1 as final, and
therefore it is not necessary to introduce a separate aspect.

C. Flexibility of the Type System
The typing rules currently enforce invariance on both

return and exception types of join point interfaces (Sec-
tion III-B). This is the simplest way to ensure soundness,
but can be too rigid in practice. If a pointcut matches a
large number of shadows, invariance forces us to define
different JPIs (and advices) for the different types of shad-
ows. In applications that rely on wide-matching pointcuts,

such as LawOfDemeter, this is clearly problematic: during
conversion, the number of advices increased from 6 to 26.
On the other hand, in an application like AJHotDraw, in
which most pointcuts are very specific, we found that only
3 advices are affected by the rigidity of the current typing
rules. The total number of advices increased from 48 to 51.
This issue could be addressed with parametric advice types
as in StrongAspectJ [14]; we leave such an extension to
future work.

VI. RELATED WORK

There is a very large body of work that is concerned
with modularity issues raised by the form of implicit in-
vocation with implicit announcement provided by aspect-
oriented programming languages like AspectJ, starting with
Gudmundson and Kiczales [3]. In the AOP literature, many
proposals have been formulated, some aiming at providing
more abstract pointcut languages (e.g. [22]), and others—as
we do here—introducing some kind of interface between
aspects and advised code. A detailed discussion of all
these approaches is outside the scope of this paper, so we
concentrate on the most salient and most related proposals.
An exhaustive treatment of this body of work and neighbor
areas can be found in [7].

In their ICSE 2005 paper, Kiczales and Mezini argue that
when facing crosscutting concerns, programmers can regain
modular reasoning by using AOP [1]. Doing so requires an
extended notion of interfaces for modules, called aspect-
aware interfaces, that can only be determined once the
complete system configuration is known. While the argument
points at the fact that AOP provides a better modularization
of crosscutting concerns than non-AOP approaches, it does
not do anything to actually enable modular type checking
and independent development. Aspect-aware interfaces are
the conceptual backbone of current AspectJ compilers and
tools, which resort to whole program analysis, and perform
checks at weave time.

Sullivan et al. [6] formulated a lightweight approach
to alleviate coupling between aspects and advised code.
Crosscutting interfaces, XPIs for short, are design rules that
aim at establishing a contract between aspects and base code
by means of plain AspectJ. With the XPI approach, aspects
advising the base code only define advices, no pointcuts. The
pointcuts, in turn, are defined in another aspect representing
the XPI. Griswold et al. argue that this additional layer
of indirection improves the system evolution because the
resulting XPI is a separate entity and hence can be agreed
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upon as a contract. The authors also show how parts of
such a contract can be checked automatically using static
crosscutting or contract-checking advices in the XPI aspect
itself. However, without a language-enforced mechanism,
XPIs cannot provide any strong guarantees on modularity.

In the same period, Aldrich formulated the first approach
for language-enforced modularity, Open Modules [5]. Here,
modules are properly encapsulated and protected from being
advised from aspects. A module can then open up itself
by exposing certain join points, described through pointcuts
that are now part of the module’s interface. The advantage
is that aspects now rely on pointcuts for which the advised
code is explicitly responsible. Aldrich formally proves that
this allows replacing an advised module with a functionally
equivalent one (but with a different implementation) without
affecting the aspects that depend on it. Ongkingco et al. have
implemented a variant of Open Modules for AspectJ [23].

Steimann’s join point types (JPTs) [7], which we have
extensively discussed in this paper, can be seen as a further
(and the most recent) step in the line of Open Modules.
Still being a language-enforced mechanism, JPTs provide a
higher level of abstraction than pointcuts: join point types,
which can be organized in a subtype hierarchy, provide a
more natural way to deal with complexity, just like interfaces
in Java help classify object behaviors. Also, join point
types open opportunities for advice overriding. JPTs do not
handle polymorphism properly; we fix this through a proper
dispatch semantics inspired by multi-methods.

A major contribution of our work is to realize that all
the above proposals—XPIs, Open Modules, JPTs—rely on
insufficiently expressive interfaces to really allow separate
development and modular type checking. XPIs and Open
Modules use pointcuts; and JPTs, although aesthetically dif-
ferent from named pointcuts, do not include any additional
information. Both lack information about the return type and
checked exception types of join points.

Open Modules and JPTs have different takes on an inter-
esting design decision: should classes be aware of the join
points they expose? With Open Modules, classes themselves
do not declare their exposed join points; it is the task of the
module. The argument is that the maintainer of the module is
in charge of all the classes inside the module, and therefore,
has sufficient knowledge to maintain classes in sync with the
pointcuts in the module interface. Steimann and colleagues,
on the other hand, argue for class-local exhibit clauses: each
class is responsible for what it exhibits. In JPTs, even nested
classes are not affected by the exhibited pointcuts of their
enclosing classes. Our current proposal is actually half-way
between both standpoints. We do not extend Java with a
new notion of modules (this is left for future work), but
we do support nested classes in the sense that the exhibited
pointcut of a class match join points in nested classes as well.
This means that we can use class nesting as a structuring
module mechanism—although this approach to modules is

certainly not as well supported in Java as it would be in
other languages, such as Newspeak [24], where modules are
objects, supported by a very flexible virtual class system.

Another answer to the design question above is to have
join points raised explicitly in the code, as proposed by
Hoffman and Eugster [25], the Ptolemy language [26], and
also supported by Steimann’s proposal. Ptolemy introduces
event types, which are similar to JPTs in the sense that
they are struct-like specifications; they include information
about the return type, but not about checked exceptions.
Also, event subtyping is not supported. Ptolemy supports
behavioral contracts, called translucid contracts [27], to
specify and verify control effects induced by event handlers.
These verification techniques go beyond more lightweight
interfaces like Java interfaces and JPIs. EScala [28] is an
approach to modular event-driven programming in Scala,
combining implicit and explicit events. EScala does not
support around advice, so event definitions need not declare
return types; however exception types are missing. EScala
treats both events and handlers as object members, subject
to encapsulation and late binding. Aspects are scoped with
respect to event owners rather than event types.

It is important to highlight that join point interfaces are
not tied to implicit announcement; in fact, although not the
focus of this paper, our implementation also supports explicit
join points. More precisely, we have integrated JPIs with
closure join points [12]. Closure join points address many
issues related to control and data flow common to all other
approaches to explicit join points.

VII. CONCLUSIONS AND FUTURE WORK

Join point interfaces enable fully modular type checking
of aspect-oriented programs by establishing a clear con-
tract between aspects and advised code. Like interfaces
in statically-typed object-oriented languages, JPIs support
independent development in a robust and sound manner. Key
to this support is the specification of JPIs as method-like
signatures with return types and checked exception types.
JPIs can be organized in hierarchies to structure the space of
join points in a flexible manner, enabling join point polymor-
phism and dynamic advice dispatch. We have implemented
JPIs as an AspectJ extension, and have rewritten several
existing AspectJ programs to take advantage of JPIs. This
study supports our major design choices.

Our study motivates the need to relax the invariance
requirements imposed on JPIs. We have also started to study
more advanced mechanisms for polymorphism and reuse:
multiple inheritance of JPIs, flexible support for advice
overriding, as well as a mechanism similar to super calls.
Such mechanisms should improve the support for refinement
of both pointcuts and advices for join point subtypes. The
latter is not trivial because of the interaction between super

and proceed in around advices [9].

10



REFERENCES

[1] G. Kiczales and M. Mezini, “Aspect-oriented programming and mod-
ular reasoning,” in Proceedings of the 27th international conference
on Software engineering (ICSE 2005). St. Louis, MO, USA: ACM,
2005, pp. 49–58.

[2] R. E. Filman, T. Elrad, S. Clarke, and M. Akşit, Eds., Aspect-Oriented
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