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ABSTRACT
Today’s smartphone users face a security dilemma: many
apps they install operate on privacy-sensitive data, although
they might originate from developers whose trustworthiness
is hard to judge. Researchers have proposed more and more
sophisticated static and dynamic analysis tools as an aid
to assess the behavior of such applications. Those tools,
however, are only as good as the privacy policies they are
configured with. Policies typically refer to a list of sources
of sensitive data as well as sinks which might leak data
to untrusted observers. Sources and sinks are a moving
target: new versions of the mobile operating system regularly
introduce new methods, and security tools need to be re-
configured to take them into account.

In this work we show that, at least for the case of Android,
the API comprises hundreds of sources and sinks. We propose
SuSi, a novel and fully automated machine-learning approach
for identifying sources and sinks directly from the Android
source code. On our training set, SuSi achieves a recall and
precision of more than 92%. To provide more fine-grained
information, SuSi further categorizes the sources (e.g., unique
identifier, location information, etc.) and sinks (e.g., network,
file, etc.), with an average precision and recall of about 89%.
We also show that many current program analysis tools can
be circumvented because they use hand-picked lists of source
and sinks which are largely incomplete, hence allowing many
potential data leaks to go unnoticed.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Information flow con-
trols

General Terms
Security, Experimentation

Keywords
Android, Sources and Sinks, Dataflow, Information Flow,
Static Analysis, Dynamic Analysis
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1. INTRODUCTION
Current smartphone operating systems, such as Android or

iOS, allow users to run a multitude of applications developed
by many independent developers available through various
app markets. While this flexibility is very convenient for the
user, as one will find a suitable application for almost every
need, it also makes it hard to determine the trustworthiness
of these applications.
Smartphones are widely used to store and process highly

sensitive information such as text messages, private and
business contacts, calendar data, and more. Furthermore,
while a large variety of sensors like GPS allow a context-
sensitive user experience, they also create additional privacy
concerns if used for tracking or monitoring.

To address this problem, researchers have proposed various
analysis tools to detect and react to data leaks, both statically
[1, 2, 8, 10, 12, 15, 16, 18, 20, 23, 24, 33, 35] and dynamically
[6,11,19,30,32]. Virtually all of these tools are configured with
a privacy policy, usually defined in terms of lists of sources
of sensitive data (e.g., the user’s current location) and sinks
of potential channels through which such data could leak to
an adversary (e.g., a network connection). As an important
consequence, the tools are only as good as the policies they
are configured with. If a source is missing, a malicious
app can retrieve its information without the analysis tool
noticing. A similar problem exists for information written
into unrecognized sinks.
This work focuses on Android. As we show, existing

analysis tools, both static and dynamic, focus on a handful of
hand-picked sources and sinks, and can thus be circumvented
with ease. Moreover, considering that Android version 4.2,
for instance, comprises about 110,000 public methods, a
manual classification of sources and sinks is clearly infeasible.
Furthermore, new methods are added in every new framework
version, outdating classification results in regular intervals.

We therefore propose SuSi, a fully-automated machine-
learning approach for identifying sources and sinks directly
from the Android source code, without requiring any manual
e↵ort. We have identified both semantic and syntactic fea-
tures to train a model for sources and sinks on a small subset
of hand-classified Android methods. SuSi uses this model
to classify arbitrarily large numbers of previously unknown
Android API methods. We evaluate SuSi using a ten-fold
cross validation and manually inspect some of the well-known
sources and sinks. Our evaluation shows that our approach
is highly precise with a recall and precision of more than
92%. Interestingly, SuSi finds several hundred sources and



sinks, only a small fraction of which was previously known
from the scientific literature or included in configurations of
available analysis tools.
There exist some code analysis approaches, for instance

LeakMiner [33], that only consider methods as sources and
sinks that require a permission to execute. These meth-
ods can be identified using a permission map which can be
created either statically [5, 7] or dynamically [13]. Instead,
our approach does not simply rely on the methods in the
permission map because this would consider only a subset
of the whole Android API. SuSi identified methods that do
not require any permissions, but nevertheless provide access
to personal information. For instance the getNetworkOpera-
torName() method in the TelephonyManager class returns
the name of the network operator or carrier, but does not
require a permission. Applications can use this method to
show targeted advertisements in an attempt to convince the
user to change her provider or to o↵er special services in the
current provider’s network. Potential data leaks of such kind
of private information would be missed in approaches that
rely on the permission model alone.
Furthermore, only speaking of sources and sinks is too

coarse-grained for practical use. If a leak is found, the user
often desires information on what information has leaked
where, e.g., location information to the internet. Our ap-
proach thus further classifies the identified sources and sinks
into 14 source categories and 17 sink categories. The cate-
gorization shows that there is often more than one way to
retrieve a certain piece of data, and that there are multiple
ways to send it out to an attacker since all categories contain
more than a single method.

This paper presents the following original contributions:

• a practical and precise definition of data sources and
sinks in Android applications,

• a fully automated machine-learning approach for iden-
tifying data source and sink methods in the Android
framework,

• a fully automated classifier for data source and sink
methods into semantic categories like network, files,
contact data, etc., and

• a categorized list of sources and sinks for Android
version 4.2 that can be directly used by the di↵erent
static and dynamic analysis approaches.

Our complete implementation and all our classification
results are available as an open-source project at:

http://sseblog.ec-spride.de/susi/

The remainder of this paper is structured as follows. Sec-
tion 2 presents a motivating example, while Section 3 gives a
precise definition of the notions of sources and sinks. Section 4
presents the fully automated classifier, which we evaluate in
Section 5. Other sources of sensitive information not directly
related to method calls are discussed in Section 6. In Sec-
tion 7, we give an overview of related work, and we conclude
in Section 8.

2. MOTIVATING EXAMPLE
Lists of sources and sinks known from the scientific litera-

ture [11,12,15] only contain some few well-known methods

1 void onCreate () {
2 TelephonyManager tm; GsmCellLocation loc;
3 // Get the location
4 tm = (TelephonyManager) getContext ().
5 getSystemService

(Context.TELEPHONY_SERVICE);
6 loc = (GsmCellLocation)

tm.getCellLocation ();
7
8 // source: cell -ID
9 int cellID = loc.getCid();

10 // source: location area code
11 int lac = location.getLac();
12 boolean berlin = (lac == 20228 && cellID

== 62253);
13
14 String taint = "Berlin: " + berlin + " ("

+ cellID + " | " + lac + ")";
15 String f = this.getFilesDir () +

"/mytaintedFile.txt";
16 //sink
17 FileUtils.stringToFile(f, taint);
18 //make file readable to everyone
19 Runtime.getRuntime ().exec("chmod 666 "+f);
20 }

Listing 1: Android Location Leak Example

for obtaining and sending out potentially sensitive informa-
tion in Android. However, there are often multiple ways to
achieve the same e↵ect. Developers of malicious applications
can thus choose less well known sources and sinks to circum-
vent analysis tools. Let us assume an attacker is interested in
obtaining the user’s location information and writing it to a
publicly accessible file on the internal storage without being
noticed by existing program-analysis approaches. Listing 1
shows an example that tries to hide the data leak by using
less common methods for both the source and the sink.
In our scenario, we have two source methods. Firstly,

line 9 calls getCid(), returning the cell ID. Line 11 then calls
getLac(), returning the location area code. Both pieces of
data in combination can be used to uniquely identify the
broadcast tower servicing the current GSM cell. While this
is not an exact location, it nevertheless provides the approxi-
mate whereabouts of the user. In line 12 the code checks for
a well-known cell-tower ID in Berlin. An actual malicious
app would perform a lookup in a more comprehensive list.
Finally, the code needs to make the data available to the

attacker. The example creates a publicly accessible file on
the phone’s internal storage, which can be accessed by arbi-
trary other applications without requiring any permissions.
Instead of employing Java’s normal file writing functions, the
code uses a little-known Android system function (line 17)
which SuSi identifies as a “FILE” sink but which is normally
hidden from the SDK. The FileUtils.stringToFile function
can only be used if the application is compiled against a
complete platform JAR file obtained from a real phone, as
the android.jar file supplied with the Android SDK does not
contain this method. Nevertheless, the example application
runs on an unmodified stock Android phone.

We have tested this example with publicly-available static
[12,15] and dynamic [11] taint analysis tools and confirmed
that none of them detected the leak. This shows how impor-
tant it is to generate a comprehensive list of sources and sinks
for detecting malicious behavior in deceptive applications.



SuSi finds and classifies appropriately all sources and sinks
used in the example.

3. DEFINITION OF SOURCES AND SINKS
Before one can infer sources and sinks, one requires a

precise definition of the terms “source” and “sink”. Several
publications in the area of taint and information-flow analysis
discuss sources and sinks, but all leave open the precise
definitions of these terms. For instance, Enck et al. [11]
define sinks informally as “data that leaves the system”which
is, however, too imprecise for automatic reasoning.

Taint and information-flow analysis approaches track through
the program the flow of data. Sources are where such data
flows enter the program and sinks are where they leave the
program again. This requires us to first define data in the
context of data flows in Android applications.

Definition 1 (Data). A piece of data is a value or a
reference to a value.

For instance, the IMEI in mobile applications is a piece of
data, as would be the numerical value 42. We also treat as
data, for instance, a database cursor pointing to a table of
contact records, since it directly points to a value and is thus
equivalent in terms of access control.
In taint tracking, one monitors the flow of data between

resources such as the file system or network. Conversely,
due to Android’s app isolation, data that is simply stored
in the app’s address space is not of interest. Before one
can define sources and sinks, one must therefore define the
notion of a resource method. Mobile operating systems
like Android enable applications to access resources using
predefined methods. While one could also imagine fields
being used for resource access, we found this not to be the
case with Android.

Definition 2 (Resource Method). A resource method
reads data from or writes data to a shared resource.

For instance, the operating system method for reading the
IMEI (getDeviceId() in class TelephonyManager) is a re-
source method. In this case, the phone’s hardware itself is
the resource as the IMEI is branded into the silicon. The
sendTextMessage() method in class SmsManager is a re-
source method for sending text messages to a specific phone
number. The resource is the GSM network.

Note that a writing resource method does not necessarily
need a reading counterpart. In our definition, there is no
restriction on how the data is shared. A writing resource
method might, for instance, send out data over the network
(which is a resource). Though another application cannot
directly obtain this data through a simple method call, the
data can easily be sni↵ed from the network and is thus shared.
Data leaving the phone is thus always considered shared.

After defining data and resource methods we can now define
sources and sinks in the context of Android applications:

Definition 3 (Android Source). Sources are calls into
resource methods returning non-constant values into the ap-
plication code.

The getDeviceId() resource method is an Android source. It
returns a value (the IMEI) into the application code. The
IMEI is considered non-constant as the method returns a

di↵erent value on every phone. Looking at the source code
alone does not reveal this value. In contrast, a function that
just reads a fixed constant from a database is a resource
method but, by our definition, is not an Android source.

Definition 4 (Android Sinks). Sinks are calls into
resource methods accepting at least one non-constant data
value from the application code as parameter, if and only if
a new value is written or an existing one is overwritten on
the resource.

The sendTextMessage() resource method is an Android
sink as both the message text and the phone number it
receives are possibly non-constant. On the other hand, the
reboot method in the PowerManager class, for instance, just
receives a kernel code for entering special boot modes which
must be part of a predefined set of supported flags. This
method is thus only a resource method (the data is written
into the kernel log), but not an Android Sink. We require
this restriction on constant values for methods which do not
introduce any new information into the calling application
in the case of sources, or do not directly leak any data across
the application boundary in the case of sinks. The values
at calls to such methods are of a purely technical kind (e.g.,
system constants, network pings etc.) and not of interest to
typical analysis tools. Note that our definition also excludes
some implicit information flows. This is a design choice. For
instance, in our approach the vibration state of the phone
is not considered a single-bit resource, even though it could
theoretically be observed and would then be “shared”.

A malicious app can try to access private information not
only through calls to the o�cial Android framework API
but also through calls to code of pre-installed apps. For
instance, the default email application provides a readily-
available wrapper around the getDeviceId() function. This
app is pre-installed on every stock Android phone, which
gives a malicious app easy access to the wrapper: the app
just instructs the Android class loader to load the respective
system APK file and then instantiates the desired class. To
cover such cases, our approach does not only analyze the
framework API but the pre-installed apps as well. (We use
a Samsung Galaxy Nexus with Android 4.2.)

4. FULLY AUTOMATED CLASSIFICATION
In this section, we explain the details of SuSi, our machine-

learning approach to fully-automatically identify sources and
sinks corresponding to the definitions given in Section 3. We
address two classification problems. For a given unclassified
Android method, SuSi first decides whether it is a source, a
sink, or neither. The second classification problem refines
the classification of sources and sinks identified in the first
step. All methods previously classified as neither are ignored.
For an uncategorized source or sink, SuSi determines the
most likely semantic category it belongs to. In our design,
every method is assigned to exactly one category.

Section 4.1 gives a short introduction to machine learning.
Section 4.2 then presents the general architecture of SuSi,
while Section 4.3 discusses the features SuSi uses to solve its
classification problems. Section 4.4 gives more details on one
particularly important family of features which deals with
data flows inside the methods to be classified. In Section 4.5
we show how the semantics of the Java programming language
can be exploited to artificially generate further annotated



ID Experience Alcohol Phone No Accident
T1 5 yrs 0.6 1234 yes
T2 11 yrs 0.4 45646 yes
T3 7 yrs 0.2 76546 yes
T4 4 yrs 0.0 54645 no
T5 10 yrs 0.2 78354 no
C1 6 yrs 0.1 6585 ?
C2 12 yrs 0.55 67856 ?

Table 1: Classification Example on Drunk Driving

training data. Section 4.6 discusses some prefiltering that
SuSi applies.

4.1 Machine Learning Primer
SuSi uses supervised learning to train a classifier on a

relatively small subset of manually-annotated training exam-
ples. This classifier is afterwards used to predict the class
of an arbitrary number of previously unseen test examples.
Classification is performed using a set of features. A feature
is a function that associates a training or test example with a
value, i.e., evaluates a certain single domain-specific criterion
for the example. The approach assumes that for every class
there is a significant correlation between the examples in the
class and the values taken by the feature functions.
As a simple example, consider the problem of estimating

the risk of a driving accident for an insurance company.
We may identify three features: years of experience, blood
alcohol level and the driver’s phone number. Assume the
learning algorithm deduces that a higher level of experience
is negatively correlated with the accident rate, while the
alcohol level is positively correlated and the phone number
is completely unrelated. The impact of a single feature on
the overall estimate is deduced from its value distribution
over the annotated training set. If there are many examples
with high-alcohol accidents, then this feature will be given
a greater weighting than the years of experience. However,
if there are more accidents of inexperienced drivers in the
training set than alcohol-related issues, the classifier will
rank the experience feature higher.

The classifier works on a matrix, organized with one column
per feature and one row per instance. Table 1 shows some
sample data. An additional column indicates the class and
is only filled in for the training data. In our example, this
column would indicate whether or not an accident took place.
The first five rows are training data, the last two rows are
test records to be classified.

In this example, a simple rule-based classifier would deduce
that all reports with alcohol levels larger than 0.2 also con-
tained accidents, so C2 would be classified as accident: yes.
However, since the converse does not hold, further reasoning
is required for C1. Taking the experience level into account,
there are two records of inexperienced drivers with levels of
0.2 or below in our test set: one with an accident and one
without. In this case, the classifier would actually pick ran-
domly, since both accident:yes and accident:no are equally
likely. A probabilistic classifier could also choose accident:yes
because accidents are more likely for inexperienced drivers
(two out of three with five years of experience or less in this
test data set) in general. This demonstrates that results can
di↵er depending on the choice of the classifier.
As a concrete classifier, we use support vector machines

4 6 8 10 12

0

0.2

0.4

0.6
T1

T2

T3

T4

T5

C1

C2

Years of Experience

A
lc
oh

ol
L
ev
el

Accident
No Accident
To Be Classified

Figure 1: SMO Classification Example

(SVM), a margin classifier, more precisely the SMO [26]
implementation in Weka [17] with a linear kernel. We opti-
mize for minimal error. The basic principle of an SVM is to
represent training examples of two classes (e.g., “sink” and
“not a sink”) using vectors in a vector space. The algorithm
then tries to find a hyper-plane separating the examples.
For a new, previously unseen test example, to determine its
estimated class, it checks on which side of the hyper-plane
it belongs. In general, problems can be transformed into
higher-dimensional spaces if the data is not linearly sepa-
rable, but this did not prove necessary for any one of our
classification problems.

Figure 1 shows an SMO diagram for Table 1. We have not
included the phone number feature since it is unrelated to the
probability of an accident. The red line shows a projection
of the hyper-plane. In this example, the SMO detects that
all points above the line are positive examples (i.e., records
of accidents), and all points below are negative ones (i.e., no
accident). C2 would thus be classified as an accident, just
as with the simple rule-based classifier above, but C1 would
now definitely be classified as non-accident because it lies
below the line.
SMO is only capable of separating two classes. However,

we have three classes in the first problem and a lot more in
the second one (the categorization). We solve the problem
with a one-against-all classification, a standard technique in
which every possible class is tested against all other classes
packed together to find out whether the instance corresponds
to the current single class or whether the classification must
proceed recursively to decide between the remaining classes.
We also evaluated other classification algorithms based

on di↵erent principles, for instance Weka’s J48 rule learner,
which implements a pruned C4.5 decision tree [27]. The main
problem with a rule set is its lack of flexibility. While many
source-method names, for instance, start with get, this is not
the case for all source methods. On the other hand, not all
methods that start with get are actually sources. Since this
rule of thumb is correct most of the time, however, a rule
tree would usually include a rule mapping all get methods
to sources and only perform further checks if the method
name has a di↵erent prefix. With an SVM, such aspects that
are usually correct, but not always, can be expressed more
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appropriately by shifting the hyper-plane used for separation.
Probabilistic learning algorithms like Naive Bayes [34]

produced very imprecise results. This happens because our
classification problem is almost rule-based, i.e., has an almost
fixed semantics. The variance is simply not large enough to
justify the imprecision introduced by probabilistic approaches
which are rather susceptible to outliers.

4.2 Design of the Approach
Figure 2 shows SuSi’s overall architecture. It includes

four di↵erent layers: input, preparation, classification, and
output. The square elements denote objects, while the round
elements represent actions. We run two rounds: One for
classifying methods as sources, sinks, or neither, and one for
categorizing them. Solid lines denote the data flow within
SuSi. The two dashed lines denote the initialization of the
second round. The general process is the same for both
rounds. For the categorization, SuSi just takes the outputs
of the classification as test data inputs. More precisely,
SuSi categorizes separately those methods it has previously
identified as sources or sinks and disregards those it classified
as neither.
SuSi starts with the input data for the first classification

problem, i.e., for identifying sources and sinks. This data
consists of the Android API methods to analyze. These
methods can be separated into a set of training data (hand-
annotated training examples) and a set of test data for
which we do not know whether a method is a source, sink
or neither. The set of training data is much smaller than
the set of unknown test data, in our case only roughly 0.7%
for the classification and about 0,4% for the categorization.
Beside the API methods we need a database of features, both
for the classification and categorization. The features are
di↵erent for classification and categorization. See Section 4.3
for details.
As described in in Section 4.1, a supervised learning ap-

proach requires two matrices. The first one is built by eval-
uating the features on the set of hand-annotated training
data, the second one by applying the same feature set as well

to the test data yet to be classified (preparation step). SuSi
then uses the first matrix to train the classifier (classification
step), which afterwards decides on the records in the test
matrix (output step).

While there are a few methods in the Android library that
are both sources and sinks (such as some of the transceive
methods of the NFC implementation), their scarcity stops
us from establishing a fourth category “both”, even though in
theory such a category might sound sensible. Respectively, we
treat such methods as either sources or sinks. This decision
a↵ects both the training data and the classifier’s results.
In a second step, SuSi categorizes the sources and sinks

set. In this step, SuSi separately considers the sources and
sinks determined in the first step as new test sets (dashed
arrows). Note that methods classified as neither are ignored
at this point. SuSi also requires new training data for the
second classification problem. To provide such data, we
hand-annotated a subset of the Android sources and sinks
with semantic categories related to the mobile domain. We
furthermore chose di↵erent kinds of features for the feature
database as explained in Section 4.3. We chose 14 di↵erent
kinds of source-categories that we identified as being su�-
ciently meaningful for the di↵erent Android API methods:
account, bluetooth, browser, calendar, contact, database, file,
image, location, network, nfc, settings, sync, and unique-
identifier. For the sinks, we defined 17 di↵erent kinds of
categories: account, audio, browser, calendar, contact, email,
file, location, log, network, nfc, phone-connection, phone-state,
sms/mms, sync, system, and voip. For the purpose of com-
piling our training data, if a method is not relevant or does
not fit in any of the identified categories, it is annotated as
belonging to the special no-category class. If one wants to
add a new category, one simply has to create new features
for the feature database and randomly annotate the corre-
sponding API methods. Our approach automatically uses
the new feature for the generation of the categorized sources
and/or sinks. The subsequent steps as shown in Figure 2
are equal to the one for the classification. The final output
consists of two files, one for the categorized sources and one
for the categorized sinks.

Note that some of these categories refer to data being man-
aged by applications, not the operating system itself. One
example are contacts: The system provides a data interface
to make sure that there is a uniform way of obtaining contacts
for all applications that require them, e.g., travel planners,
or calendars sending invitations. Additionally, Android con-
tains system applications providing default implementations
of these interfaces, so there are methods which are available
on every Android phone and which can be called in order
to obtain private data. Therefore, we include categories for
such methods, despite them not being part of the operating
system as such.
Since we have di↵erent categories for sources and sinks,

their categorization comprises two distinct classification prob-
lems: one for sources and one for sinks. Though they share
the same feature set (see Section 4.3), both are solved inde-
pendently of each other. Thus, quite naturally, the resulting
correlations might di↵er significantly, as some features might
be more relevant to distinguish di↵erent kinds of sources
than di↵erent kinds of sinks, and vice versa.

4.3 Feature Database
We used a set of 144 syntactic and semantic features for



classifying the Android methods. A single feature alone does
not usually give enough information to decide whether a given
Android method is a source, a sink or neither. However,
all features in combination can be used to train a highly
precise classifier. The same holds for the second classification
problem in which we need to find categories for our sources
and sinks.

One main reason for why these features work is that many
developers of the Android framework do in fact follow a cer-
tain regular coding style, or duplicate parts of one method’s
implementation when implementing another. These social
aspects of software development lead to a certain degree
of regularity and redundancy in the code base, which a
machine-learning approach such as ours can discover and
take advantage of.

Though we have a large number of distinct features, most
of them are instances of the same parameterized class. For
example, the “method name starts with” feature class has
instances “method name starts with get”, “method name
starts with put”, and so on. For identifying sources and sinks,
SuSi uses the following classes of features:

Method Name The method name contains or starts with
a specific string, e.g., “get”, which can be an indicator
for a source.

Method has Parameters The method has at least one pa-
rameter. Sinks usually have parameters, while sources
might not.

Return Value Type The method’s return value is of a
specific type. A returned cursor, for instance, hints at
a source, while a method with a void return value is
rarely ever a source.

Parameter Type The method receives a parameter of a
specific type. This can either be a concrete type or all
types from a specific package. For instance, a parameter
of type java.io.* hints at a source or a sink.

Parameter Is An Interface The method receives a pa-
rameter of an interface type. This is often the case
with methods that register callbacks. Note that such
methods are neither sources nor sinks according to
our definition, since they do not perform any actual
operation on the data itself.

Method Modifiers The method is static/native/etc. Static
methods are usually neither sources nor sinks, with
some exceptions. Additionally, sources and sinks are
usually public.

Class Modifiers The method is declared in a protected/ab-
stract etc. class. Methods in protected classes are usu-
ally neither sources nor sinks.

Class Name The method is declared in a class whose name
contains a specific string, e.g., Manager.

Dataflow to Return The method invokes another method
starting with a specific string (e.g. read in the case of
a source). The result of this call flows into the original
method’s return value. This hints at a source.

Dataflow to Sink One of the method’s parameter flows
into a call to some other method starting with a specific
string, e.g., update, which would suggest a sink.

Data Flow to Abstract Sink One of the method’s pa-
rameter flows into a call to an abstract method. This

is a hint for sink as many command interfaces on the
hardware abstraction layers are built on top of abstract
classes.

Required Permission Invoking the method requires a spe-
cific permission. There is one such feature for every
permission declared in the Android API. We were only
able to use this feature on the approximately 12,600
methods for which we had permission annotations from
the PScout [5] list.

All our features can assume one of three values: “True”
means that the feature applies, i.e., a method does indeed
start with a specific string. “False” means that the feature
does not apply, i.e., the method name does not have the
respective prefix. “Not Supported” means that the feature
cannot be decided for this specific method. The latter can
happen if, for example, the feature needs to inspect the
method body, but no implementation is available in the
current Android version’s platform JAR file.
The details of our dataflow features are explained in Sec-

tion 4.4. SuSi’s features for categorizing sources and sinks
can be grouped as follows:

Class Name The method is declared in a class whose name
contains a specific string, e.g., Contacts.

Method Invocation The method directly invokes another
method whose fully-qualified name starts with a spe-
cific string, e.g., com.android.internal.telephony for An-
droid’s internal phone classes. This feature does not
consider the transitive closure of calls starting at the
current method.

Body Contents The method body contains a reference to
an object of a specific type, e.g. android.telephony
.SmsManager for the SMS MMS category).

Parameter Type The method receives a parameter of a
specific type (similar feature as for the classification
problem with di↵erent instances).

Return Value Type The method’s return value is of a
specific type, e.g., android.location.Country for regional
data.

Note that we do not use permission-based features for the
categorization, since many methods require permissions for
internal functionality not directly related to their respective
category. For instance, a backup method requests many
permissions, but does not necessarily give out all of the data
it accesses using these permissions if it only creates an internal
savepoint that can be restored later. The permission list
alone thus does not directly relate to the method’s category.

It becomes apparent that semantic features are much more
suitable for identifying sources and sinks than for catego-
rizing them. On the source-code level, Android’s sources
and sinks share common patterns which can be exploited by
our dataflow feature. For finding categories, however, there
seems no such technical distinction and SuSi must rather
rely on syntactical features such as class and method names.

4.4 Dataflow Features
As we found through empirical evaluation, considering a

method’s signature and the syntax of its method body alone
is insu�cient to reliably detect sources and sinks. With such
features alone we were unable to obtain a precision or recall
higher than about 60%. It greatly helps to take the data



flows inside the method into consideration as well. Recall
from our definitions in Section 3 that sources must read from
and sinks must write to resources.
To analyze data flows, we originally experimented with

a highly precise (context-, flow- and object-sensitive) data-
flow analysis based on Soot [21], but found out that this
did not easily scale to the approximately 110,000 methods
of the Android SDK. Computing precise call graphs and
alias information simply took too long to be practical. We
thus changed to a much more coarse-grained intra-procedural
approximation (also based on Soot) which runs much faster
whilst remaining su�ciently precise for the requirements of
our classification. Keep in mind that the result of the data-
flow analysis is only used as one feature out of many. Thus,
it su�ces if the analysis is somewhat precise, i.e., produces
correct results with just a high likelihood.

Our data-flow features are all based on taint tracking inside
the Android API method to be classified. Depending on the
concrete feature, we support the following analysis modes:

• Treat all parameters of the method as sources and calls
to methods starting with a specific string as sinks.

• Treat all parameters of the method as sources and calls
to abstract methods as sinks.

• Treat calls to specific methods as sources and the return
value as the only sink. Optionally, parameter objects
can also be treated as sinks.

Based on this initialization, we then run a fixed-point
iteration with the following rules:

• If the right-hand side of an assignment is tainted, the
left-hand side is also tainted.

• If at least one parameter of a well-known transformer
method is tainted, its result value is tainted as well.

• If at least one parameter of a well-known writer method
is tainted, the object on which it is invoked is tainted
as well.

• If a method is invoked on a tainted object, its return
value is tainted as well.

• If a tainted value is written into a field, the whole base
object becomes tainted. For arrays, the whole array
becomes tainted respectively.

When the first source-to-sink connection is found, the fixed
point iteration is aborted and the dataflow feature returns
“True” for the respective method to which it was applied. If
the dataflow analysis completes without finding any source-
to-sink connections, the feature returns “False”.

While such an analysis would be too imprecise for a general-
purpose taint analysis, it is very fast and usually reaches
its fixed point in less than three iterations over the method
body. Since the analysis is intra-procedural, its runtime
is roughly bounded by the number of statements in the
respective method.

4.5 Implicit Annotations for Virtual Dispatch
SuSi’s implementation is based on Weka, a generic machine

learning tool, which has no knowledge about the language
semantics of Java. However, we found that when annotat-
ing methods to obtain training data it would be beneficial
to propagate method annotations up and down the class

hierarchy in cases in which methods are inherited. Such
a propagation models the semantics of virtual dispatch in
Java. We thus extended SuSi such that if encountering an
annotated method A.foo, the annotation is implicitly carried
over also to B.foo in case B is a subclass of A that does
not override foo itself, thus inheriting the definition in A.
Similarly, if B.foo were annotated, but not A.foo, we would
copy the annotation in the other direction.
For our subset of 12,600 methods with permission anno-

tations taken from the PScout list [5], SuSi was able to
automatically create implicit annotations for 305 methods.
After loading the remaining methods of the Android API
to get our full list of 110,000 methods, SuSi was able to
automatically annotate another 14 methods.

4.6 Prefiltering
Our definition of sources and sinks is based on how a

method behaves. Abstract methods have no own behavior,
which is why we remove such methods from consideration
by SuSi. The same holds for methods whose definition
for technical reasons is simply not available in the Android
platform version at hand.
We also prune all private methods and all methods in

private classes. This design choice is justified by the fact that
apps can access such methods only through reflection. Given
that we created SuSi primarily to aid static Android analysis
tools, and given that none of these tools can currently handle
Java reflection, including such private sources and sinks could
not possibly aid those tools but might instead pollute our
machine-learning approach with unimportant data. With
this technique, our subset of 12,600 methods with permission
information is pruned down to 6,700.

5. EVALUATION
Our evaluation considers the following research questions:

RQ1 Can SuSi e↵ectively find sources and sinks with high
accuracy?

RQ2 Can SuSi categorize the found sources and sinks with
high accuracy?

RQ3 How complete are the lists of sources of sinks dis-
tributed with existing Android analysis tools and how
do they relate to SuSi’s outputs?

The following sections address these questions in order.

5.1 RQ1: Sources and Sinks
To evaluate SuSi, we use ten-fold cross validation: divide

all training data into 10 equally-sized buckets, train the
classifier on nine of them, and then classify the remaining
bucket, repeating the process 10 times, omitting another
bucket from training each time. In the end, SuSi reports
the average precision and recall. For each class c, precision
is the fraction of correctly classified elements in c within
all elements that were assigned to c. If precision is low it
means that c was assigned many incorrect elements. Recall is
defined as fraction of correctly classified elements in c within
all elements that should have been assigned to c. If recall is
low it means that c misses many elements.
Table 2 shows the results of this ten-fold cross validation

over our training set of 779 methods randomly picked from
the PScout subset [5] of about 12,600 methods. We started



with this subset as it provided mappings between methods
and required permissions and thus enabled us to also use
Android permissions as features for our classifier. The aver-
age we report in the table is weighted with the number of
examples in the respective class.

Category Recall [%] Precision [%]
Sources 92.3 89.7
Sinks 82.2 87.2
Neither 94.8 93.7
Weighted Average 91.9 91.9

Table 2: Source/Sink Cross Validation PScout

Our final results for the source/sink classification had to be
computed without any permission features, though, since we
do not have permission associations for the complete Android
API1. For assessing the impact of the permission feature,
we ran the PScout subset again with the permission feature
disabled, yielding the results shown in Table 3. Interestingly,
the average precision and recall are almost the same with
the permission feature and without. The impact of the
permission feature is apparently low enough for not having
to worry about the lack of permission information when
analyzing the complete Android API.

Category Recall [%] Precision [%]
Sources 90.5 91.3
Sinks 86.0 88.8
Neither 95.2 94.4
Weighted Average 92.8 92.8

Table 3: Source/Sink Cross Validation PScout With-
out Permission Feature

Table 4 shows the ten-fold cross-validation results of ap-
plying our approach to the complete Android SDK of about
110,000 public methods. Note that we did not extend our set
of manually annotated training records for this test. However,
since SuSi automatically propagates classifications along
the class hierarchy as explained in Section 4.5, one obtains
slightly more implicitly annotated data and thus di↵erent
results. SuSi again shows an average recall and precision of
more than 92%.

Category Recall [%] Precision [%]
Sources 89.6 88.0
Sinks 84.7 90.8
Neither 95.2 93.6
Weighted Average 92.3 92.3

Table 4: Source/Sink Cross Validation Complete
List

The classifier takes about 26 minutes to classify the com-
plete Android API on a MacBook Pro computer running
MacOS X version 10.7.4 on a 2.5 GHz Intel Core i5 processor
and 8 GB of memory.

As explained in Section 4.1, we experimented with various
classification algorithms, and found that SMO performed
best. In Table 5, we compare the weighted average precision

1The available permission lists including PScout are incom-
plete since they exclude permissions enforced in native code.

Category Recall [%] Precision [%]
ACCOUNT 100.0 100.0
BLUETOOTH 83.3 100.0
BROWSER 80.0 100.0
CALENDAR 100.0 100.0
CONTACT 95.0 100.0
DATABASE 50.0 100.0
FILE 75.0 100.0
IMAGE 75.0 100.0
LOCATION 100.0 100.0
NETWORK 83.3 83.3
NFC 100.0 100.0
SETTINGS 75.0 85.7
SYNC 100.0 100.0
UNIQUE IDENTIFIER 88.9 100.0
NO CATEGORY 91.7 59.5
Weighted Average 88.8 89.7

Table 6: Source Category Cross Validation

Category Recall [%] Precision [%]
ACCOUNT 85.7 100.0
AUDIO 100.0 100.0
BROWSER 50.0 100.0
CALENDAR 100.0 100.0
CONTACT 91.7 100.0
EMAIL 100.0 100.0
FILE 60.0 100.0
LOCATION 100.0 100.0
LOG 100.0 71.4
NETWORK 72.7 88.9
NFC 100.0 100.0
PHONE CONNECTION 75.0 85.7
PHONE STATE 100.0 100.0
SMS MMS 96.3 100.0
SYNC 80.0 100.0
SYSTEM 80.6 89.3
VOIP 66.7 100.0
NO CATEGORY 97.1 70.2
Weighted Average 88.4 90.4

Table 7: Sink Category Cross Validation

for SMO, J48, and Naive Bayes, the most well-known repre-
sentatives of their respective families of classifiers (margin,
rule-based and stochastic classifier, respectively). The results
were computed on the complete 110,000 public methods of
the Android 4.2 API without the permission feature.

5.2 RQ2: Categories for Sources and Sinks
We also use ten-fold cross validation on our training data to

assess the quality of our categorization. For this task, we do
not use the permission feature and thus only report results for
the complete list of approximately 110,000 public methods in
the Android API. Table 6 shows the cross-validation results
for categorizing the sources, while Table 7 contains those for
the sinks.
While SuSi achieves a very high precision and recall for

most of the categories, the results for a few categories (e.g.
Bluetooth) are considerably worse. These categories are
rather small, i.e. randomly picking training methods from
the overall set of 110,000 Android API methods yields only



Classifier Avg. Recall Avg. Precision
Class. [%] Source Cat. [%] Sink Cat. [%] Class. [%] Source Cat. [%] Sink Cat. [%]

Margin (SMO) 92.3 88.8 88.4 92.3 89.7 90.4
Rule-Based (J48) 89.5 81.0 80.2 89.4 81.6 77.4
Probabilistic (Naive Bayes) 86.9 61.5 46.6 87.1 61.7 36.1

Table 5: Source/Sink Classifier Comparison

few entries belonging to such categories. Respectively, there
is not much material to train the classifier on. Annotating
more data (recall that we only have category annotations for
0.4% of all methods) would certainly improve the situation.
Categories can be ambiguous in some cases. A method

to set the MSIDN (the phone number to be sent out when
placing a call) could for instance be seen as a system set-
ting (category SETTINGS), but could also be considered a
UNIQUE ID. In such cases, we checked the classifier’s result
and updated our training data if a misclassification was to
due semantic ambiguity, i.e., the result would be right in
both categories. Categories that ended up empty or almost
empty due to such shifts were removed.

Categorizing the sources took about 6 minutes on our test
computer. The sinks were classified in about 3 minutes.

5.3 RQ3: Existing Lists of Sources & Sinks
In this section we assess to what extent current static [1,

2, 12,15,16,20,23,24,33] and dynamic code analysis [11, 32]
approaches could benefit from our categorized sources/sinks
list. As our results show, SuSi finds all the sources and sinks
these previous approaches mention, plus many others which
the community was previously unaware of.
Unfortunately, most of the code-analysis tools were not

publicly available to us, precluding us from directly compar-
ing their source and sink lists to ours [16,20,23,24,32,33]. As
a best e↵ort, we thus estimated the lists from the respective
research papers.
Mann et al. [24] mention a few concrete source and sink

methods. This hand-picked list is only a fraction of the one
produced by SuSi. The taint-tracking tool CHEX [23] uses
a list of 180 semi-automatically collected sources and sinks.
Unfortunately, this list is not publicly available and the paper
does not explain how the semi-automatic approach works.
The authors do mention that their list is based on the An-
droid permission map by Porter Felt et al. [14] but also argue
that this list is insu�cient. LeakMiner [33] uses the Android
permission map to identify sources and sinks. From this map
it filters out all methods an application is not allowed to use.
However, this leaves open how the tool actually identifies
the relevant sources and sinks in the remaining method set.
Furthermore, if all methods not requiring a permission are
filtered, some sensitive data might be overlooked as we have
shown. Scandal [20] and AndroidLeaks [16] do not provide
concrete lists of source and sink methods. The publications
only provide categories (e.g., location information, phone
identifier, internet, etc.), which are also covered by our au-
tomatic categorization. SCanDroid [15] is available as an
open-source tool [3]. We extracted the source and sink speci-
fications from the source code (version of April 2013). The
resulting list appears hand-picked and only contains a small
fraction of SuSi’s. Enck et al. [12] implemented a tool that
decompiles the Android bytecode into Java bytecode. This
bytecode is then used as input for the commercial Fortify

SCA [1] static code-analysis suite. Fortify can be configured
with rules for defining sources and sinks. Enck et al. created
such rules and made them publicly available [4]. The list
contains about 100 Android sources and 35 Android sinks,
all of which are also included in our results.
Aurasium [32] shifts the problem of identifying sources

and sinks by intercepting calls at the system level, i.e., be-
tween the native Android libraries and the standard Linux
system libraries. While this reduces the number of methods
to consider, it makes it harder to reconstruct higher-level
semantics, and is failure-prone in case of Android version up-
grades. Due to this design, the sources and sinks considered
by Aurasium are incomparable to SuSi’s results. Taint-
Droid [11] is a well-known dynamic taint-analysis tool for
Android applications. We tried to extract the list of sources
and sinks from TaintDroid’s source code which is, however,
non-trivial. TaintDroid does not specify the high-level API
calls as sources or sinks, and instead uses the smaller set
of lower-level internal system methods called by those, an
approach somewhat comparable to Aurasium. However, this
again raises the problem of reconstructing the higher-level
context from lower-level calls. The type of data leaked can
thus be imprecise. Furthermore, we also found that Taint-
Droid over-approximates the list of sources and sinks, for
instance by tainting the result value of all methods in the
TelephonyManager class, including the result of toString(),
which is just the Java object ID (default implementation
inherited from java.lang.Object). We thus argue that auto-
matically inferring higher-level API methods as provided by
our approach would improve tools like TaintDroid as this
would allow one to more easily categorize and di↵erentiate
various types of sources and sinks.

We also examined well-known commercial tools for static
code analysis such as Fortify SCA [1] by HP and IBM App-
Scan Source [2]. As we found, by default these tools provide
lists that are rather incomplete2. However, both provide an
easy way to integrate new sources and sinks to be considered
by the analysis. This shows that these tools shift the problem
of defining sources and sinks to the analyst, who still needs to
obtain such a list from somewhere. SuSi can help to provide
more comprehensive defaults.

6. SOURCES NOT CONSIDERED BY SUSI
SuSi works well when it comes to classifying sources and

sinks based on their structural similarity to other sources,
respectively sinks. In practice, this seems to work well for
sources that return data from method calls and sinks that
obtain data through parameters. Android o↵ers other less
prevalent sources and sinks, however, which cannot be easily
classified through machine learning which we will show in
this section.

2AppScan Source does not allow to display the default source
and sink lists. This has been verified with IBM Customer
Support, so we empirically evaluated the list.



1 NmeaListener mylistener = new
NmeaListener () {

2 public void onNmeaReceived(long arg0 ,
String nmea) {

3 if (nmea.startsWith("$GPGLL")) {
4 String [] data = nmea.split(",");
5 Log.d("Loc", "Longitude: "
6 + data [3]} + data [4]
7 + ", Latitude: " + data [1] +

data [2]);
8 }
9 }

10 };
11 LocationManager lm = (LocationManager)

this.getSystemService(LOCATION_SERVICE);
12 lm.addNmeaListener(mylistener);
13 // Just to start GPS , no data from this

callback is ever used
14 lm.requestLocationUpdates

(LocationManager.GPS_PROVIDER , 0, 0,
new LocationListener () { ... });

Listing 2: Android Location via NMEA Data

Applications can implement callback methods and receive
data from the operating system through the parameters
of these methods. This is commonly used to e.g., obtain
the location in an Android application. In an attempt to
avoid detection, the app could however register the callback
with onNmeaReceived instead of the well-known onLocation-
Changed method and then parse the raw GPS data (the
NMEA records) as shown in Listing 2. Both kinds of call-
backs receive sensitive data as parameters. This shows, that
a complete list of callback methods is required for finding
all data leaks. SuSi cannot currently find such callbacks as,
by our definition of sources, such callbacks are out of scope.
Luckily, the number of callback interfaces in the Android
operating system is su�ciently small for manual inspection,
allowing those methods to indeed be added manually. Static
analysis could also aid their detection.

Android defines layout controls through XML files. In the
source code, they can be accessed by passing the respective
identifier to the system’s findViewById function. Depending
on the ID that is passed, this function can return, for instance,
a reference to a password field or to a button with a constant
label. Thus, depending on the ID, the method can or can
not be a source. Since calls to this function are present in
almost every Android app, a precise analysis must model the
Android resource system.

7. RELATED WORK
Our work was originally inspired by Livshit’s orthogonal

research on automatic placement of sanitizers [22]. Livshits’
approach assumes sources, sinks and sanitizers to be known
in advance, and then attempts to place them both e↵ec-
tively and e�ciently with the goal of a low runtime overhead.
Obtaining these lists triggered our interest in building SuSi.
Privacy violations through leaks of sensitive data in An-

droid applications are well known in the community. To
protect the user’s privacy, di↵erent kinds of taint-tracking
approaches have been proposed, both static [1, 2, 8, 10, 12,
15, 16, 18, 20, 23, 24, 33, 35] and dynamic [11, 19, 30, 32]. As
already described in Section 1, such approaches are only as
good as the source and sink lists they are configured with.

In Section 5.3 we have shown that all approaches we have
evaluated only consider a few sensitive methods for sources
and sinks. With the support of our categorized list of sources
and sinks, we argue that all of them could be improved to
detect more data leaks that are a security problem for the
mobile device user.

More generic policy enforcement approaches, for instance
Kynoid [30] or AppGuard [6], also require comprehensive lists
of sensitive information sources. AppGuard, for instance,
provides the user with the ability to revoke permissions after
app-installation time. The implementation inserts additional
permission checks into the application (not the framework).
This requires the identification of relevant methods at the
API level for which such checks are required. Our list of
sources and sinks includes many methods that require permis-
sions and access sensitive information (e.g., phone identifier,
location information, etc.) but are not considered by App-
Guard (evaluated version 1.0.3).
Applying machine learning for security has already been

done for automatic spam detection [29] or anomaly detec-
tion in network tra�c [31]). Sarma et al. [28] and Peng et
al. [25] successfully used various machine-learning approaches
to detect malicious Android applications. MAST [9] is a
machine-learning approach based on Multiple Correspon-
dence Analysis (MCA) for automatically identifying mali-
cious applications from various Android markets. The tool
aims at ranking apps for inspection by a human security an-
alyst, thereby giving priority to those applications that look
suspicious. For classifying sources and sinks, we use SMO
instead of MCA since MCA requires a logical ordering of
records which is not applicable to our scenario. SuSi instead
works on discrete and independent classes.

8. CONCLUSIONS
In this paper, we have shown that privacy-enhancing tech-

nologies for Android are threatened by the fact that they
come with largely incomplete lists of sources and sinks of
private information, thereby allowing attackers to circum-
vent their measures with ease. We have presented SuSi, a
novel and fully automated machine-learning approach for
identifying sources and sinks in the Android framework and
pre-installed apps. The approach is capable of automatically
categorizing findings according to the type of data being pro-
cessed, for instance to distinguish between sources providing
unique identifiers and sources providing file data.
A ten-fold cross validation showed our approach to have

an average precision and recall of more than 92%. On An-
droid 4.2, SuSi finds hundreds of sources and sinks. A
manual comparison with existing hand-written (categorized)
lists shows that, while SuSi finds all sources and sinks of the
existing lists it also finds many more that were previously
unknown, thus greatly reducing the risk for analysis tools
to miss privacy violations. We further showed that current
approaches based on permission checks alone are inadequate
as permission checks are, contrary to popular belief, not a
good indicator for a method’s relevance.

As future work, we aim to apply our approach to interfaces
for automatically finding and classifying sensitive callbacks.
We also want to further investigate how our approach can be
applied to other environments than Android, e.g., J2EE. We
are confident that the same concepts can also be applied to
identify sources and sinks in other procedural programming
languages such as C#, C++ or PHP.
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