

 Technical Report

 Nr. TUD-CS-2015-0065

April 1st, 2015

Authors
Siegfried Rasthofer1
Irfan Asrar3
Stephan Huber2
Eric Bodden1,2

1EC SPRIDE / Technische Universität Darmstadt
2Fraunhofer SIT
3Appthority

An Investigation of the Android/BadAccents
Malware which Exploits a new Android
Tapjacking Attack

An Investigation of the Android/BadAccents

Malware which Exploits a new Android

Tapjacking Attack

Siegfried Rasthofer1, Irfan Asrar3, Stephan Huber2, Eric Bodden1,2

Center for Advanced Security Research Darmstadt (CASED)
1 Technische Universität Darmstadt, Germany

siegfried.rasthofer@cased.de

2 Fraunhofer SIT, Darmstadt, Germany
{stephan.huber, eric.bodden}@sit.fraunhofer.de

3 Appthority, USA
iasrar@appthority.com

Abstract. We report on a new threat campaign, underway in Korea,
which infected around 20,000 Android users within two months. The
campaign attacked mobile users with malicious applications spread via
di↵erent channels, such as email attachments or SMS spam. A detailed
investigation of the Android malware resulted in the identification of
a new Android malware family Android/BadAccents. The family repre-
sents current state-of-the-art in mobile malware development for banking
trojans.
In this paper, we describe in detail the techniques this malware family
uses and confront them with current state-of-the-art static and dynamic
code-analysis techniques for Android applications. We highlight various
challenges for automatic malware analysis frameworks that significantly
hinder the fully automatic detection of malicious components in the mal-
ware. Furthermore, the malware exploits a previously unknown tapjack-
ing vulnerability in the Android operating system, which we describe in
detail. As a result of this work, the vulnerability, a↵ecting all Android
versions, has been patched in the Android Open Source Project.

Keywords: Botnet, Threat Campaign, Android Malware, Code Analysis, Bank-
ing Trojans, Vulnerability

1 Introduction

According to a recent study [9], Android has reached a mobile market share of
81%. There is an app for almost every need provided by various app stores such
as the Google PlayStore with 1.3M applications by July 2014 [33]. Beside apps
that are used mostly for amusement, there are also more critical applications
that handle confidential data such as mobile banking applications. According to
a Federal Reserve Board study [25], more and more people switch from manual
usage of an ATM to a more convenient way of using mobile banking with their
smartphones. This is a very attractive target for attackers who want to steal

money from victims. Indeed, there is a big underground market for trading
stolen bank account credentials [34]. For instance, Symantec reported [34] that
a single underground group made $4.3 million in purchases using stolen credit
cards over a two-year period.

The Android operating system got enhanced with di↵erent security features,
such as the ’Application verification’ in version 4.2. Its goal is to protect the user
against harmful applications. Despite those protection mechanisms, banking tro-
jans are still actively spread and successfully exploited in many applications [6];
even worse McAfee [19] is predicting a rapid growth. Very recently, we identified
a new threat campaign underway in South Korea which emphasizes McAfee’s
prediction. The campaign stole, within two months, more than 20,000 bank ac-
count credentials of users mostly resident in Korea. We identified a new malware
family Android/BadAccents (named after the main component in the first stage
of the trojan) that impersonates known banking applications in order to steal
the user’s credentials. Furthermore, it also steals incoming SMS messages, aborts
phone calls and installs a fake anti-virus application.

The goals and contributions of this paper are three-fold. First, we describe in
detail the techniques this malware family uses, and describe the current state-
of-the-art of banking trojans. Second, we confront these techniques with cur-
rent state-of-the-art code analysis techniques for Android applications. We de-
scribe challenges that static as well as dynamic code analysis techniques have
to cope with in order to automatically analyze current malware. For instance,
hiding sensitive information in native code is no longer a theoretical problem
for static analysis, it is already exploited in the wild. The usage of multi-stage
command and control (C&C) protocols is growing into a challenge for dynamic
code-analysis techniques as well. Even malware analysis frameworks that try to
circumvent emulator-detection mechanisms [26] are not well prepared for cur-
rent Android malware. There is still a big need for a proper environment setup,
such as specific files on the SD card or specific apps installed, as otherwise the
malicious behavior does not get triggered. These are significant challenges that
the future state-of-the-art code-analysis approaches will need to address. Finally,
we report on a dangerous tapjacking attack on Android that we have identi-
fied and which has been exploited by the malware family. Tapjacking, which is
similar to clickjacking for web applications, is an attack where the user clicks/-
taps on seemingly benign objects in applications, triggering actions not actually
intended by the victim [23]. This results in dangerous security issues as we will
elaborate in our paper. The attack seems to apply to all currently available An-
droid versions. The attack, together with a patch, has already been submitted
to the Android Security team who confirmed our attack and updated the latest
Android version.

The rest of the paper is organized as follows. Section 2 describes the iden-
tification of the malware and Section 3 describes the details of the malware. In
Section 4 we identify the challenges for current state-of-the-art code analysis
techniques. The new AOSP vulnerability together with the mitigation technique

is shown in Section 5. Section 7 describes the related work in the field of Android
security while Section 8 concludes the paper.

2 Threat Identification

Mobile malware that is targeting Korea in many ways represents the best of
breed practices when it comes to mobile malware development. Excluding spy-
ware, the majority of threat families targeting mobile devices in Korea involve a
C&C component. They employ tactics such as social engineering, apply themes
from trending events such as movies to famous brands such as StarBucks and
usually target high value assets like bank accounts. The same applies to An-
droid/BadAccents. Shortly after the news broke that the movie ’The Interview’,
originally scheduled to be released on Christmas Day, would appear online from
Sony Pictures, numerous sites claimed to o↵er a pirated copy fueled by the ru-
mors that the movie might be distributed online for free due to the circumstances
surrounding the change of film distribution channels. One free copy making the
rounds in South Korea turned out to be an Android Trojan that we have desig-
nated Android/BadAccents (named after the main component in the first stage
of the Trojan).

Even though Google Play was used in the past as a distribution vector for Ko-
rean malware, improvements in the Google Play screening process have pushed
the malware authors to use other distribution vectors. The enforcement of strict
piracy laws in Korea means that third party sites for Android app downloads
are not very common. Thus distribution vectors such as file torrents, spoofed
emails pretending to be updates from a bank, as well as sms spam tend to be
the most common distribution methods. As if the complexities called out above
were not enough, the sheer volume of the files, spam messages or artifacts of
interest involved in typical campaigns that can span from a few days to months,
leaves little room for manual malware analysis framework.

However, with the help of a threat-detection framework that uses standard
practices in the AV industry, we were able to spot out an interesting malware
campaign underway in Korea. The framework is designed as a multi-stage pro-
cess. It continuously crawls the web to acquire applications from file repositories,
file sharing sites or specific app markets. The framework first checks the applica-
tions for known malware to identify threat families. If none were found, but the
context of the samples still indicate suspiciousness, the system involves a fur-
ther investigation. Suspicious applications are identified with various static as
well as dynamic analysis approaches. Since the framework itself is a commercial
and internal detection framework, we cannot provide concrete details about the
detection mechanism, since attackers could use this information for re-designing
their malware development process. This would threaten further malware anal-
ysis. Therefore, we will give only a brief overview about the framework in the
following.

As a first step, all crawled applications are inspected with static analysis
techniques to search for previously seen patterns. Several strategies can be em-

ployed here to identify samples that could potentially be malicious. The strategy
includes but not limited to

– Identify samples with permissions that tend to be suspicious.
– Identify strings in samples that can be correlated to external data feeds,

such as SMS numbers associated with malware, or urls associated with C&C
activity.

– Samples that have been signed with certificates that have been previously
seen in malicious campaigns.

– Samples that have been associated with spam distribution campaigns.

Once these samples of interest have been identified via static analysis (as
described above) the next step is to further filter the sample set by dynamic
analysis in a proper sandbox. Similar solutions from academic research are An-
drubis [20] and MobileSandbox [32]. The dynamic analysis adds additional data
to the investigation. For instance, it includes a tra�c analysis of sms sent/re-
ceived as well as ip address of the destinations being reached out to in addition
to file system monitoring.

The framework identified the Android/BadAccents malware since many indi-
cators pointed to a suspicious banking application. For example, constant strings
stored inside a file indicating a banking application. Additionally, strings such as
’The Financial Supervisory Authority’ or ’electronic fraud prevention service’ are
usually an indicator for message dialogs used in social engineering attacks. The
framework contains some heuristics that identified an email component inside
the application, probably used for leaking sensitive user data, but no concrete
information about the username and password of the account were available.
Therefore, we needed a further manual analysis which we will describe in the
following section.

3 Android/BadAccent Malware

The results described in the previous section gave us an indication about the
malware family (banking trojan), and evidence about some data being sent via
email. Important questions such as “What kind of sensitive data gets leaked?”,
“Are sensitive data leaked via email?” or “What is the username and password

of the target email account?” could not be answered yet at this stage. However,
these are very important questions for security analysts in the case of active mal-
ware, because the analysts have to initiate further steps to remove the threat,
for instance a C&C server takedown (see section 6). Since the questions above
relate to dataflow tracking problems [4], we used current state-of-the-art static
(e.g., FlowDroid [4]) as well as dynamic (e.g., TaintDroid [11]) dataflow-analysis
tools to investigate further. Unfortunately, none of the tools could answer these
questions and we elaborate in this paper why this was the case and what are
the challenges for code analysis tools in analyzing state-of-the-art malware on
the example of Android/BadAccents (section 4). We therefore manual reverse

(certificate password)

(ok) (cancel)

(cancel)
(cancel)

(next)
(next)

(secure mode) (secure mode)

(social security number)

(account number)

(account password)

(name)

(Please enter the security
card correctly)

(password)

(previous) (previous) (security center)(person check)

Fig. 1. Confidential banking credentials that get stolen

engineered the malware with the help of CodeInspect [27], an interactive de-
bugger for Android bytecode. It relies on the Soot [1] framework and its Jimple
intermediate representation [3].

In general, Android/BadAccents is a banking trojan that tries to steal bank
account credentials through a phishing attack. The victim is asked to enter her
confidential data into a Graphical User Interface (GUI) that looks identical to the
one of a benign mobile banking application. But the malware’s GUI is designed
by the attacker, and is instrumented to steal the credentials. Figure 1 shows
such a fake GUI component which appears after a fake security message which
prompts the user for some action.

Android/BadAccents demonstrates the complexity of current Android bank-
ing trojans. Di↵erent interactions, environment settings and conditions are nec-
essary before a specific malicious behavior gets triggered. The malware sample
uses di↵erent techniques to hide the malicious behavior as long as possible. Fig-
ure 2 gives an overview of the main components in the Android/BadAccents
malware and shows the complexity of environment settings, workflow and exter-
nal events that are involved. Especially the Intercept SMS components shows,
that current attackers do not only rely on a single channel for transmitting
sensitive data. Instead they use several ones, in this case e-mail and the HTTP
connections. In the following we will describe each component individually in de-
tail, and its requirements for triggering a malicious behavior. The requirements
on code analysis tools are evaluated afterwards.

3.1 Send SMS

The Send SMS component gets activated at application startup time and is
responsible for sending SMS messages to all contacts on the phone that have
more than 5 digits as a phone number. It first initializes a connection to the
C&C server (the victim’s device phone number is used for authentication) from
which it receives the text for the SMS message. Additionally, it saves all phone
numbers of the contacts into a global storage (SharedPreferences file). After
receiving the text, the component immediately sends a message containing that
text to all contacts. This mechanism is probably used for spreading the malware

Banking Trojan

Activation
Component

SMS

HTTP

E-Mail

Intercept SMS Intercept Call

Install
Fake AV Uninstall AV

File SystemNative Code

User

Waiting Time

Send SMS

App Internal External EventEnvironment Settings

Fig. 2. Interactions and environment settings necessary for triggering malicious behav-
ior in the Android/BadAccents Malware

to all contacts. We assume that the text from the C&C server contains spam
messages together with a download link to the Android/BadAccents malware.
The attacker’s aim is to infect the SMS receiver with additional malware by
clicking on the link.

Pre-Condition1 :
– There has to be at least one contact on the device
– The phone number of the contact has to have more than 5 digits

Pre-Condition2 :
– There has to be an internet connection to the C&C server

Post-Condition1 :
– Phone numbers of all contacts are stored in global share (SharedPrefer-

ences file)

3.2 Activation Component

The Activation Component is responsible for receiving C&C messages via SMS.
Using SMS as a protocol is an important design decision that is di↵erent from
traditional IP-based approaches known from infected PCs. Zeng et al. [39] al-
ready illustrated this design in 2012. The main advantages of an SMS-based
approach instead of IP-based one are the fact that it does not require steady
connections, that SMS is ubiquitous, and that SMS can accommodate o✏ine
bots easily.

The Activation Component is implemented as a broadcast receiver, which
is active from the time the application starts. This broadcast receiver registers
63 di↵erent actions it can react on. However, it uses only a single one of them,
the receiving SMS action. It intercepts all incoming SMS messages and triggers

the malicious behavior only if the message contains special commands. More
concretely, it is responsible for activating the Intercept SMS and Intercept Call

component (details below). The Android/BadAccents malware contains two spe-
cific checks on the incoming SMS number. It checks for ’+84’ and ’+82’ numbers,
which indicates that the malware expects SMS from a C&C SMS server either
located in China or South Korea. The message has to have a special format that
contains either ’sd hMESSAGEi’, ’ak40 0’, ’ak40 1’ ’call 0’ or ’call 1’ and can
be concatenated with ’ ’ (e.g., ’ak40 1 call 0’). The ’ak40’ command is responsi-
ble for the Intercept SMS component and activates that component with ’ak40 1’
and deactivates it with ’ak40 0’. The ’call’ command is responsible for the Inter-
cept Call component and ’call 1’ activates and ’call 0’ deactivates it. Activating
a component is implemented by storing activation-flags (e.g. hcall, 1i) into a
SharedPreferences file, deactivating components is done by storing deactivation-
flags (e.g. hcall, 0i). The individual components get called in a specific time
interval were they first check for the appropriate activation-flag before running
it. This is indicated as dotted arrows in Figure 2 from both components to File

System. The ’sd hMESSAGEi’ command is equivalent to the functionality of
the Send SMS component (see section 3.1). The main di↵erence is the commu-
nication channel. Instead of receiving the text of the message body via HTTP
(Send SMS component), it uses only the SMS channel by taking the message
from the incoming C&C SMS (hMESSAGEi) .

Pre-Condition3 :
– send an SMS containing sd hMESSAGEi to the mobile device
– Pre-Condition1 has to be satisfied

Pre-Condition4 :
– sending an SMS containing ak40 1 to the mobile device

Pre-Condition5 :
– sending an SMS containing call 1 to the mobile device

Intercept SMS This component intercepts all incoming SMS messages that do
not contain any C&C command and forwards them to the attacker via HTTP and
E-mail. It uses two channels in parallel for a more reliable data theft. The creden-
tials of the E-mail account are hidden in native code which makes the detection
hard for static analysis approaches that operate purely on the Dalvik byte-
code. Listing 1.1 shows two native methods that return the constant username
and password (original credentials are removed) that get called in the onCreate
method (listing 1.2) and stored into a SharedPreferences file (setValuemethod).
Before sending the email, the credentials are extracted from the SharedPrefer-
ences file in order to authenticate against the email server.

1 void Java_com_MainActivity_stringUser () {
2 return "USERNAME";
3 }
4
5 void Java_com_MainActivity_stringPassword () {
6 return "PASSWORD";
7 }

Listing 1.1. Methods in Native Code

1 public native java.lang.String
stringPassword ();

2 public native java.lang.String stringUser ();
3
4 public void onCreate(Bundle b) {
5 ...
6 user = stringUser ();
7 setValue("musername", user);
8 pw = stringPassword ();
9 setValue("mpass", pw);

10 ...
11 }

Listing 1.2. Accessing Native
Methods within Java

Pre-Condition6 :
– Wait for 20 seconds
– Pre-Condition4 has to be satisfied (’ak40 1’ has to be sent)
– There has to be an internet connection

Intercept Call The Intercept Call component intercepts all incoming calls and
checks whether the caller is stored as a contact on the device or not. If this is
not the case, the call gets aborted and the entry in the call log gets deleted. We
assume that the attackers want to abort calls from the bank which could have
detected suspicious transactions caused by the banking trojan.

Pre-Condition7 :
– Pre-Condition1 has to be satisfied
– Incoming-call number does not have to be part of the list in Post-

Condition1 has to be satisfied
– Pre-Condition5 has to be satisfied (’call 1’ has to be sent)

3.3 Install/Uninstall

The Install/Uninstall component first removes one particular app, the ’AhnLab
V3 Mobile Plus 2.0’1 app in case it is installed on the device. This is a malware-
scanner application especially designed for detecting banking trojans. In the
Banking Trojan component, a fake ’AhnLab V3 Mobile Plus 2.0’ application
gets installed which impersonates the original app and which contains malicious
components similar to Android/BadAccents.

Pre-Condition8 :
– Wait for 40 seconds
– ’AhnLab V3 Mobile Plus 2.0’ app has to be installed

3.4 Banking Trojan

The main component of Android/BadAccents is the Banking Trojan compo-
nent. As a first step, it tries to hide the application’s icon from the launcher.

1
https://play.google.com/store/apps/details?id=com.ahnlab.v3mobileplus

This is possible with a singe API call (setComponentEnabledSetting in Package-

Manager) and does not require any permission. After a delay of 30 minutes, the
malware looks for DER-formatted certificates stored under a specific folder on
the SD card. If that is the case, the malware checks whether the user has in-
stalled specific korean banking applications such as Shinhan Bank, Woori Bank
or NH Bank. This indicates that the threat campaign primary targets user from
Korea. Next, if one of these application is installed, it dynamically creates a new
view impersonating this app. The ’fake’ app uses social engineering in showing
security warnings that should convince the user to provide the attacker her data.

After accepting the security messages, the attacker tries to steal the banking
credentials of the victim. Figure 1 shows the individual GUI fields the user has to
go through. It is worth mentioning that input into the fields has to satisfy specific
criteria such as the certificate password has to be entered twice or the password
in the security center has to have more than 5 digits. If everything got filled out
correctly, all the data, together with the certificate gets sent to the malicious
e-mail account. Similar to the Intercept SMS component (see section 3.2), the
e-mail account credentials were taken from the native code methods.

Pre-Condition9

– 30 minutes waiting time
– DER-formatted certificate stored at specific folder on sd-card
– At least one specific Korean banking app has to be installed
– Accepting fake security warnings by clicking
– Fields correctly filled

4 Code Analysis Challenges

In the previous section, we demonstrated the di↵erent requirements that have to
be met for triggering malicious behavior. In this section, we elaborate more on the
challenges that apps such as the one examined here pose to current state-of-the-
art malware analyses techniques. One particularly important piece of information
for most practical malware investigations is the kind of communication channels
the app uses. In the Android/BadAccents example, it is important to know the
username and password for the email account, the C&C URLs and the number of
the C&C SMS sender, since sensitive banking credentials get sent through these
channels. Very similar questions arise in analyses of di↵erent malware families,
since often the protection of the user can most easily be achieved by taking
down the attacker’s communication channels. Answering these questions in an
automatic way would save a lot of time and money for the investigation. There
are two code-analyses approaches that can be used: static or dynamic analysis
techniques, or more likely a combination of both. Unfortunately, both approaches
have some known limitations that causes problems for current malware analysis
approaches. In the following we look more concretely into the di↵erent challenges
for static and dynamic analysis approaches that will arise during an analysis of
the Android/BadAccents example.

4.1 Static Analysis Challenges

In general, static analysis is a very powerful technique since one can reason about
all paths in the application, but in the case of Android malware analysis there is
no complete view on the code. This has various reasons which will be described
using the Android/BadAccents example.

Recall that we are interested in the channels the attacker is using and we
know from our investigation (section 3) that sensitive data are sent via e-mail.
By answering the question What is the username and password of the email

account?, one is interested in concrete values at specific API calls (e.g. API used
for sending email). In some situations, the information itself might be stored
not as part of the app but on a remote server. In this case, the information
is out of reach for a static analysis. But even if it is encoded as part of the
application, static analysis either backward [14] or forward [4] may still fail to
extract it. One concrete example for why this might be the case is the hiding of
sensitive information in native code within Android/BadAccents. The extraction
of values encoded that way would require sophisticated analysis support for both
Android bytecode and ARM native code. And even if the analysis of native
code were possible, this code might load the credentials from external storage
such as a SharedPreferences file. This means that the static native-code analysis
would have to be able to interpret this code to be able to extract the right
information from that location. All in all, the implementation burden on the
analysis developer would be humongous. Furthermore, if the malware sample
would include binary packers or crypters [30] additional challenges would be
added to the static analysis.

As a summary, static analysis is very useful in general, but its known limita-
tions pose a serious problem when analyzing current Android malware. Dynamic
analysis promises to alleviate some of these problems.

4.2 Dynamic Analysis Challenges

For all the above reasons, dynamic analysis or behavior analysis [30] has been
advocated in the context of malware analysis [20, 32]. To be complete however,
dynamic analysis requires a set of execution traces that are representative of all
the possible program behaviors. While observing all the program behaviors of a
complex program is impractical, several coverage criteria have been proposed in
the software testing literature to approximate full behavior coverage, their e↵ec-
tiveness however is still debated [16,17]. Di↵erent facts in Android significantly
hinder the triggering of malicious behavior by dynamically executing the code.
For the example of Android/BadAccents we summarize the major problems in
the following three categories: external events, environment settings and user
interaction.

External Events The Android OS is an event-driven environment that reacts
to various events and executes the registered event handlers. For instance, an
incoming phone call is modeled as an Android internal event, called intent [37],

that can be intercepted through a corresponding callback defined in the applica-
tion. This produces the first challenge: a simple dynamic analysis is insu�cient
if it fails to generate the proper events. Researchers have proposed several ap-
proaches [31] for fuzzy testing Android components by sending abnormal/ran-
dom intents to the components in order to identify security bugs. Nevertheless,
section 3.2 shows that the malicious behavior gets only triggered if, for instance,
the incoming SMS or HTTP request have the proper format. Furthermore, the
ordering of events can also matter. For instance, the Intercept SMS compo-
nent described in section 3.2 gets only activated if the attacker first sends an
’activation-command’ and second the user sends an SMS to the victim. This
makes a fully automated triggering of the original Intercept SMS component
extremely di�cult.

Environment Settings A successful analysis of Android malware with a behav-
ior analysis requires a properly setup environment, since many malware families
check for clues of an emulated environment before they trigger their malicious
behavior. The environment thus must be set up in such a way that it emulates

all aspects of a proper smartphone. To some extent, this is impossible. For in-
stance, emulators will always expose timing and cache behavior that is clearly
distinguishable from real phones [26]. But not only emulator checks complicate
dynamic analysis. The problem of timing bombs, were the malware waits for
a specific time until it triggers its malicious behavior (see pre-requirements in
section 3.2) poses a serious problem to dynamic analyses. As the Wall Street
Journal reported this year2, Android malware went undetected in the Google
Play store, infecting close to 10 million devices, due to such a time bomb. Time
bombs can be ’evaded’ by speeding up the time in the environment. Unfor-
tunately, this might still be insu�cient with state-of-the-art malware samples.
Android/BadAccents requires specific files in the file system (DER-formatted
files), specific contact data stored on the device and specific apps installed on
the device (Korean banking apps) before the banking trojan gets activated. Since
there is an exponential amount of combinations for di↵erent settings, it is very
di�cult to come up with a proper setting of an environment that emulates all
that.

User Interaction The functionality of most applications involve some user
interactions, such as clicking on buttons, swiping objects or filling out forms.
Many of these interactions may need to be emulated to facilitate a meaningful
dynamic analysis. Again, there has been a lot of research in the area of Android
GUI testing [2, 8] but to the best of our knowledge none of these approaches
would successfully work on Android/BadAccents. For instance, the first GUI in
figure 1 requires the user to input her password two times. Randomly inserting
some values and automatically clicking on the ’ok’-button would not result in

2
http://blogs.wsj.com/personal-technology/2015/02/04/android-malware-

removed-from-google-play-store-after-millions-of-downloads/

a page switch. Also the password in the first and third screen page has to have
more than 5 digits, otherwise the GUI will not switch to the next one and the
malicious behavior of stealing the credential data (shown in figure 2) would not
be triggered. Figuring out the right combination of inputs would require the
most sophisticated techniques, such as symbolic execution, which are hard to
scale in general. Further research in this field is clearly required.

5 Vulnerability and Attack Description

Among other things, the Android/BadAccents malware tries to obtain Android
Device Administration privileges [35] without the user’s knowledge. Once ob-
tained, this protects the application from uninstalling it programmatically and
allows it to lock the device screen without the user’s agreement. When the priv-
ileges are requested, the Android OS shows a warning message to the user, who
then has to accept or deny the request. The malware abuses some Android vul-
nerability to trick the user into accepting the administration request by a so
called tapjacking attack. The following section describes tapjacking attack tech-
niques, gives an overview of the Android administration API and the associated
risk. Then, we show in detail the attack in Android/BadAccents and describe
the vulnerability in the Android operating system. In the last subsection, we
describe the patch and discuss the e↵ectively of Android’s mechanisms for pro-
tecting against tapjacking attacks.

5.1 Tapjacking Attack

The formal name or most common name in research for a tapjacking attack is
UI redressing [23] and subsumes tapjacking as a specific case. The first described
form of such an attack family was clickjacking in web browsers for the Adobe
Flash player shown by Hansen et al. [13]. Other current attack forms include cur-
sorjacking or filejacking. With the porting of clickjacking to the mobile context,
the so-called tapjacking was born.

The basic idea behind tapjaking on Android is not to directly exploit some
system vulnerabilty, instead its focus is to force the user to an interaction without
her knowledge and to hide the system or application information which is shown
as a consequence of this hidden interaction. A harmlessly looking overlay window
is brought to the foreground, hiding the real application behind the overlay
window. The design of such an overlay window can be freely defined, for instance
posing as a game or some generic application dialog.

As an example imagine the user is playing a simple game tapping on di↵erent
symbols located on the screen. What she doesn’t know is that in the background
the game application has started the phone call app and all the taps the user is
performing are routed through the game directly to the dialing app. The user
is thus dialing and calling some premium number without being aware because
the whole procedure is hidden behind the overlay window.

The requirements for such an attack are provided by the Android UI API.
Attacks can be performed in di↵erent ways. The main premise is to generate a
UI element which can be layered over applications and that touch gestures on
this element are routed to the underlying application. An additional requirement
for successful tapjacking is the hidden start of the victim application or a part of
the application [7] behind the overlay. For such hidden starts exported activities
or defined intent-filters in applications can be used. System applications or
Android settings can be accessed via system intents. To route taps through un-
derlying applications, Android provides settings that make a widget transparent
for touches. If such touch transparent windows is brought to the front of another
application all touches go directly to the underlying application. As a proof
of concept, Guerrero provides a tapjacking framework [10] based on Android
Toast widget. Another approach was shown by Niemietz et al. [23] who build
a transparent overlay window for logging touch gestures. Android/BadAccents
uses another approach, defining a LinearLayout View with a specific overlay
attribute.

Android Device Administration API The Android/BadAccents malware
uses tapjacking to activate the Android Device Administration. To understand
the Android Device Administration feature and why it can be a security risk,
we first provide some background information. The Android developers intro-
duced an API for applications to support enterprise features [35]. This Device

Administration API provides functions on the system level, with varying secu-
rity impact. It allows an app to force the user to set a device password, and can
define specific password policies like the length or complexity of the password.
Other feature are to enforce storage encryption, locking the device or to make a
factory reset and wipe all data. The full set of supported policies can be found
in the developer documentation [36]. To use the methods of the Administration
API, the application must define the android.permission.BIND DEVICE ADMIN
permission in the AndroidManifest.xml file. Additionally an XML policy file in
the app declares the features which can be used [35]. These policies must cover
the used API method calls in the code. After installation and after using an Ad-
ministration function call in the code for the first time, the system asks the user
to enable this device admin application’s functionality. The request lists all de-
clared policies and asks the user to accept or deny the request. Once this request
has been accepted, the application can have access to sensitive systems and data
or wipe the device. But more importantly in the case of Android/BadAccents,
with the administration activation an application also earns a special kind of
uninstall protection: user need to first unregister the application as an adminis-
trator under security settings options before the application can be uninstalled.
To monitor the administration state of the application itself a broadcast receiver
with the intent-filter android.app.action.DEVICE ADMIN ENABLED can be set
in the AndroidManifest.xml file. With this filter the application recognizes if
the device administration is accepted and activated, or disabled.

1 private void activateAdminReceiver () {
2 ComponentName cn = new ComponentName(this , AdminReceiver.class);
3 Intent i = new Intent("android.app.action.ADD_DEVICE_ADMIN");
4 i.putExtra("android.app.extra.DEVICE_ADMIN", cn);
5 this.startActivityForResult(i, 20);
6 createSmallWindow ();
7 }

Listing 1.3. Isolated proof of concept code calling admin permission interface

Malware tapjacking After a detailed analyses of the malicious application, we
isolated the code responsible for the tapjacking attack and reassembled it into
a stand-alone proof-of-concept implementation. The malware uses the described
tapjacking attack to obtain Android Device Administration privileges and thus
the ability to lock the device screen. Another aspect is the uninstall protection.
Once admin privileges are granted, antivirus tools cannot remove the malware
any longer. The attack can be illustrated as shown in figure 3. The victim only

Fig. 3. Tapjacking Attack on Android Device Administrator App

sees an application window requesting “Please update to the latest version”

with a confirmation and a cancel button. Pressing confirmation she activates
the device administration features.

Listing 1.3 shows the first part of the tapjacking code by calling the ad-
ministration request. In line 3 and 4 the device administration request intent is
prepared. With the statement startActivity in line 5 the administration priv-
ileges request activity is started and shown to the user. The second parameter
of the statement can be ignored. Due to the asynchronous execution character
of Android the application does not stop after calling the administration activ-
ity. The next method call (line 6) is executed immediately providing the overlay
window (see figure 3). This overlay window is an extended LinearLayout class
defining specific layout properties. Listing 1.4 shows an excerpt of the method
setting these properties. The first layout option is the overlay definition which

1 private void setupLayoutParams () {
2 layoutParams = new WindowManager.LayoutParams(WindowManager.LayoutParams.TYPE_SYSTEM_OVERLAY ,
3 WindowManager.LayoutParams.FLAG_FULLSCREEN ,
4 WindowManager.LayoutParams.FLAG_SCALED);
5 layoutParams.flags = WindowManager.LayoutParams.FLAG_NOT_TOUCHABLE;
6 ...
7 }

Listing 1.4. Settings for ovelay window layout paramters

1 mCancelButton = (Button) findViewById(R.id.cancel_button);
2 + mCancelButton.setFilterTouchesWhenObscured(true);
3 mCancelButton.setOnClickListener(new View.OnClickListener () {
4 ...
5 mActionButton = (Button) findViewById(R.id.action_button);
6 + mActionButton.setFilterTouchesWhenObscured(true);
7 mActionButton.setOnClickListener(new View.OnClickListener () {

Listing 1.5. Add tapjacking protection to DeviceAdminAdd.java file

enables the window to be displayed on top of everything else, in this case over the
administration request activity. The second and third flag are responsible for the
full screen size of the overlay window. The last option (FLAG NOT TOUCHABLE) is
the crucial factor. It makes the window transparent for touches and therefore ev-
ery touch gestures on it were received on the application behind it. Considering
the malware example the victim assumes she confirms the update request, but
in reality she activates the administration privileges. After enabling them the
administration request is closed and the malware removes the overlay. This form
of attack is working to Android Kitkat version 4.4 and older Android versions.
In the newer Lollipop version (Android 5) there seems to be some conflict with
the asynchronous execution, here the overlay window was always shown behind
the administration request. Thus the victim would detect the attack. We slightly
modified the isolated proof of concept code to show that the attack is still pos-
sible and that there is no tapjacking protection for the administration activity.
We informed Google about our discovery and provided a patch preventing such
an attack.

5.2 Counter-Measures

As a counter measure against tapjacking Android provides some specific protec-
tion mechanism. It was introduced in API level 9 (Android 2.3)and is enabled
by the method setFilterTouchesWhenObscured(). Alternatively view elements
can be protected on the level of XML declarations by defining the attribute
android:filterTouchesWhenObscured. The code excerpt for the patch shown
in listing 1.5 is setting the tapjacking protection to the accept and cancel button.
The code lines marked with (+) are the contributed patch to the original code.

With this patch, if a touch event from an overlay window arrives at one of
the buttons in the Administration privileges activities, the touch will be ignored.
An attacker app thus can no longer trick the user into obtaining administrator
privileges without her explicit consent.

Additional findings After providing the patch we additionally checked the
AOSP code to see for which kinds of UI widgets the tapjacking protection is
enabled for and what is the functionality behind those widgets. We found the
application installation confirmation button, the backup and restore allow but-
ton, the accessibility Service Warning dialog accepting button and the VPN con-

firmation dialog button. This shows that only a minority of system applications
use tapjacking protection. Considering other system application like telephony
or SMS applications, there thus still remains some capability for tapjacking at-
tacks. The proof of concept framework [10] demonstrates this.

Another problem is the developer awareness of tapjacking attacks against
common applications. We analyzed 263.623 di↵erent apps selected from each
PlayStore category (downloaded November 2014) and 1.579 open-source appli-
cations from the open-source f-droid3 market, to see which apps have tapjacking
protection enabled for at least one UI element. The result for f-droid applica-
tions was 0, while in the Google Play store we found 369 applications defining
android:filterTouchesWhenObscured or setFilterTouchesWhenObscured()
method. This shows that nearly all of the developers are not aware about this
attack vector. The disadvantage of Android’s protection concept is an insecure
default. Protection must be enabled explicitly and separately for each UI element
to be protected. A simple proof-of-concept tapjacking protection mechanism was
developed by Niemietz et al [23]. They introduced a tapjacking security layer
consisting of a transparent layer over each foreground application. If a malicious
application tries to get above the victim activity to set up a tapjacking attack,
the security layer can catch all the touches trying to reach the protected app.
We believe that such a concept would be simpler to maintain and should be
introduced.

6 Takedown

The biggest di↵erence between a takedown - the notification of malicious content
with the intention of removal to parties concerned - on Google Play and malware
not hosted on Google Play is that a takedown request to Google Play tends to
be pretty straight forward and after an investigation by Android Security the
malicious content is usually removed within a short period of time. In the case of
Android/BadAccents, it roughly took about a week to dismantle the machinery
and included the involvement of several parties in di↵erent jurisdictions. The first
part we contacted with Amazon Security, to inform them that the Amazon Web
Service was being used to host the malicious files of the Android/BadAccents
family. Despite the fact that the holidays were just around the corner, Amazon
Web Service acknowledged the notification and an investigation was started.
The takedown of the files was slow and it took about a week for the files to be
removed and during the time consumers were still exposed to the files. Our next
point of contact was the Korean Information Security Agency who immediately
responded to our request and then carried out an internal investigation of their

3 https://f-droid.org/

own. It is very likely that the so called ’Yanbian Gang’ was involved in this
threat campaign [15].

7 Related Work

In this section, we describe a number of related work in the context of Android
malware analysis that addresses attacks and threats.

Abusing the device administration privileges in order to make the uninstal-
lation of applications more di�cult is a common technique used in Android
malware. For instance, the Android malware OBAD [38] requests administra-
tion privileges. Additionally it uses an android vulnerability (fixed in Android
4) to hide its entry from the device administration list. This means it was also
not possible for a user to manually revoke the admin privileges for uninstalling
the malware. It also contained di↵erent environment checks for emulator detec-
tion and code obfuscations to impede manual reverse engineering. Also di↵erent
ransomware applications like Android/Koler [18] try to gather administration
privileges to lock the device and encrypt the data storage. Another related mal-
ware in the context of banking trojans and C&C is the Zeus [22] trojan. This
banking trojan exists despite of Android also for di↵erent mobile platforms like
Blackberry, Windows Mobile or Symbian. The focus of the first Zeus trojan was
to steal mTAN numbers through sms interception. Newer version of Android
trojans are aiming on stealing credit cards through wireless connection. Zhou et
al. showed in [41] a first global study about di↵erent types of android malware.
They showed that normal applications were enriched with malicious content and
found di↵erent apps containing similar malware code. Depending of this payload
they grouped them in di↵erent families.

Besides the internal threat detection framework of AV companies, there ex-
ist also other open-source approaches that crawl various app-stores for detecting
malicious applications. Lindorfer et al. [21] propose a framework for discovering
multiple instances of a malicious Android application in a set of alternative appli-
cation markets. Based on some lightweight indicators, such as the package name
or the hash of an application, they found various malicious applications in dif-
ferent markets. DroidSearch [28] is another framework that crawls di↵erent app
stores and stores for each application meta-data into a database. The database
can be queried afterwards for detecting vulnerabilities or malicious applications.

Isolated environments for analyzing and detecting android malware are a
well-established technique in the context of mobile malware analysis. Andru-
bis [20] or the Mobile Sandbox [32] are two examples. Usually, they use lightweigth
static analysis techniques to find concrete malware patterns [5] in combination
with a lightweight dynamic code analysis approach that monitors the appli-
cation in a secure environment. The results are used to detect suspicious be-
havior or evaluate the risk factor [24] of an application. Due to the nature of
the lightweight analysis, the proposed techniques reaches its limitations when
it comes to sophisticated malware that triggers malicious behavior only under
specific circumstances.

Signature based approaches [40] are a well-known techniques used by many
anti-virus applications. Zheng et al. [40] proposed a new signature methodol-
ogy that was able to easily discover repackaged malicious applications or even
zero-day malware samples. Apposcopy, a tool proposed by Feng et al. [12] im-
proves signature based approaches by a semantic based approach that specifies
signatures that describe semantic characteristics of malware families. Both ap-
proaches rely on static information extracted from the bytecode. Hardening or
even packers complicates the detection of malicious applications as shown by
di↵erent researchers [29].

8 Conclusion

In this paper, we have described an investigation of a new malware family that
infected more than 20,000 mobile devices in Korea. We described in detail the
components of current state-of-the-art mobile banking trojans. Furthermore, we
compared each individual technique of the malware with current state-of-the-art
malware analysis techniques. Our results show that current malware poses many
challenges to malware analysis techniques in order to trigger malicious behavior,
showing the need for further research in this area. We furthermore demonstrated
a new tapjacking attack that is exploited by the Android/BadAccents malware.
It causes a security threat, as the user can be tricked into clicking/tapping on
objects that trigger unintended behavior. The Android Security Team confirmed
the attack and our proposed patch will be integrated in the next major release
of Android.

References

1. Soot wiki, August 2014. https://github.com/Sable/soot/wiki.
2. Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. Automated

concolic testing of smartphone apps. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, FSE ’12,
pages 59:1–59:11, New York, NY, USA, 2012. ACM.

3. Steven Arzt, Siegfried Rasthofer, and Eric Bodden. Instrumenting android and
java applications as easy as abc. In Axel Legay and Saddek Bensalem, editors, RV,
volume 8174 of Lecture Notes in Computer Science. Springer, 2013.

4. Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps. In Proceedings of the 35th ACM SIGPLAN conference on Program-
ming language design and implementation (PLDI). ACM, June 2014.

5. Thomas Bläsing, Aubrey-Derrick Schmidt, Leonid Batyuk, Seyit A. Camtepe, and
Sahin Albayrak. An android application sandbox system for suspicious software
detection. In 5th International Conference on Malicious and Unwanted Software
(Malware 2010) (MALWARE’2010), Nancy, France.

6. Carlos Castillo. Phishing attack replaces android banking apps with malware, June
2013. Blog.

7. Qi Alfred Chen, Zhiyun Qian, and Zhuoqing Morley Mao. Peeking into your
app without actually seeing it: UI state inference and novel android attacks. In
Proceedings of the 23rd USENIX Security Symposium, 2014.

8. Wontae Choi, George Necula, and Koushik Sen. Guided gui testing of android
apps with minimal restart and approximate learning. In Proceedings of the 2013
ACM SIGPLAN International Conference on Object Oriented Programming Sys-
tems Languages and Applications, OOPSLA ’13, New York, NY, USA, 2013.

9. International Data Corporation. Worldwide quarterly mobile phone tracker 3q12,
November 2012. Blog.

10. Sebastin Guerrero D. Tapjacking-framework-for-android, 2012. Github.
11. William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,

Patrick McDaniel, and Anmol N. Sheth. Taintdroid: An information-flow tracking
system for realtime privacy monitoring on smartphones. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation, OSDI’10,
Berkeley, CA, USA, 2010. USENIX Association.

12. Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Apposcopy: Semantics-based
detection of android malware through static analysis. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, FSE 2014, New York, NY, USA, 2014. ACM.

13. Grossman J. Hansen R. Clickjacking attack, 2008. Blog.
14. Johannes Ho↵mann, Martin Ussath, Thorsten Holz, and Michael Spreitzenbarth.

Slicing droids: Program slicing for smali code. In Proceedings of the 28th Annual
ACM Symposium on Applied Computing, SAC ’13, New York, NY, USA, 2013.

15. Simon Huang. The south korean fake banking app scam. Technical report, Trend
Micro, February 2015.

16. Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. Experiments
of the e↵ectiveness of dataflow- and controlflow-based test adequacy criteria. In
Proceedings of the 16th International Conference on Software Engineering, ICSE
’94, Los Alamitos, CA, USA, 1994.

17. Laura Inozemtseva and Reid Holmes. Coverage is not strongly correlated with test
suite e↵ectiveness. In Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, New York, NY, USA, 2014.

18. Bitdefender LABS. Reveton / icepol ransomware moves to android. blog.
19. McAfee Labs. Threats predictions, 2015.
20. Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick

Fratantonio, Victor van der Veen, and Christian Platzer. Andrubis - 1,000,000
Apps Later: A View on Current Android Malware Behaviors. In Proceedings of
the the 3rd International Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security (BADGERS), 2014.

21. Martina Lindorfer, Stamatis Volanis, Alessandro Sisto, Matthias Neugschwandt-
ner, Elias Athanasopoulos, Federico Maggi, Christian Platzer, Stefano Zanero, and
Sotiris Ioannidis. AndRadar: Fast discovery of android applications in alternative
markets. In Proceedings of the 11th Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA), volume 8550, London, UK, July
2014.

22. Denis Maslennikov. Zeus-in-the-mobile - facts and theories, October 2011. Blog.
23. Marcus Niemietz and Jörg Schwenk. Ui redressing attacks on android devices,

2014. BlackHat Asia.
24. NViso. http://apkscan.nviso.be/.
25. Board of Governors of the Federal Reserve System. Consumers and mobile financial

services 2014, March 2014.

26. Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Michalis Polychronakis,
and Sotiris Ioannidis. Rage against the virtual machine: Hindering dynamic anal-
ysis of android malware. In Proceedings of the Seventh European Workshop on
System Security, EuroSec ’14, New York, NY, USA, 2014.

27. Siegfried Rasthofer. Codeinspect says ”hello world”: A new reverse-engineering
tool for android and java bytecode, December 2014. Blog.

28. Siegfried Rasthofer, Steven Arzt, Stephan Huber, Max Kohlhagen, Brian
Pfretschner, Eric Bodden, and Philipp Richter. Droidsearch: A tool for scaling
android app triage to real-world app stores. In Proceedings of the IEEE Techni-
cally Co-Sponsored Science and Information Conference 2015 (SAI), July 2015.

29. Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. Droidchameleon: Evaluating an-
droid anti-malware against transformation attacks. In Proceedings of the 8th ACM
SIGSAC Symposium on Information, Computer and Communications Security,
ASIA CCS ’13, New York, NY, USA, 2013.

30. Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz. Automatic
analysis of malware behavior using machine learning. J. Comput. Secur., 19(4),
December 2011.

31. Raimondas Sasnauskas and John Regehr. Intent fuzzer: Crafting intents of death.
In Proceedings of the 2014 Joint International Workshop on Dynamic Analysis
(WODA) and Software and System Performance Testing, Debugging, and Analytics
(PERTEA), WODA+PERTEA 2014, New York, NY, USA, 2014. ACM.

32. Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas Schreck, and Jo-
hannes Ho↵mann. Mobile-sandbox: Having a deeper look into android applications.
In Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC
’13, New York, NY, USA, 2013. ACM.

33. statista, jul 2014. http://www.statista.com/statistics/266210/number-of-

available-applications-in-the-google-play-store/.
34. Symantec. Symantec report on the underground economy, 2008.
35. Android Developer Team. Device administration. http://developer.android.

com/guide/topics/admin/device-admin.html.
36. Android Developer Team. Device policymanager. http://developer.android.

com/reference/android/app/admin/DevicePolicyManager.html.
37. Android Developer Team. Intent. http://developer.android.com/reference/

android/content/Intent.html.
38. Emre Tinaztepe, Doğan Kurt, and Alp Güleç. Android obad. Technical report,

COMODO, July 2013.
39. Yuanyuan Zeng, Kang G. Shin, and Xin Hu. Design of sms commanded-and-

controlled and p2p-structured mobile botnets. In Proceedings of the Fifth ACM
Conference on Security and Privacy in Wireless and Mobile Networks, WISEC ’12,
New York, NY, USA, 2012. ACM.

40. Min Zheng, Mingshen Sun, and John C. S. Lui. Droid analytics: A signature
based analytic system to collect, extract, analyze and associate android malware.
In Proceedings of the 12th IEEE International Conference on Trust, Security and
Privacy in Computing and Communications, TRUSTCOM ’13, Washington, DC,
USA, 2013. IEEE Computer Society.

41. Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization and
evolution. In Proceedings of the 2012 IEEE Symposium on Security and Privacy,
SP ’12, pages 95–109, Washington, DC, USA, 2012. IEEE Computer Society.

