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ABSTRACT
Most application code evolves incrementally, and especially
so when being maintained after the applications have been de-
ployed. Yet, most data-flow analyses do not take advantage of
this fact. Instead they require clients to recompute the entire
analysis even if little code has changed—a time consuming
undertaking, especially with large libraries or when running
static analyses often, e.g., on a continuous-integration server.

In this work, we present Reviser, a novel approach for
automatically and efficiently updating inter-procedural data-
flow analysis results in response to incremental program
changes. Reviser follows a clear-and-propagate philosophy,
aiming at clearing and recomputing analysis information
only where required, thereby greatly reducing the required
computational effort. The Reviser algorithm is formulated
as an extension to the IDE framework for Inter-procedural
Finite Distributed Environment problems and automatically
updates arbitrary IDE-based analyses.

We have implemented Reviser as an open-source extension
to the Heros IFDS/IDE solver and the Soot program-analysis
framework. An evaluation of Reviser on various client
analyses and target programs shows performance gains of
up to 80% in comparison to a full recomputation. The
experiments also show Reviser to compute the same results
as a full recomputation on all instances tested.
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F.3.2 [Logics and Meanings of Programs]: Semantics of
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1. INTRODUCTION
Within minutes to hours, static data-flow analysis can

often produce results that would take weeks or even months
to derive through manual code inspection. Code analyses are
used for a variety of tasks including program understanding,
compiler optimization, and security analysis. On the down-
side, though, highly precise static analyses on large code
bases are often still quite expensive to compute.

As others have argued before [6, 19,20], a large margin of
this inefficiency is due to the fact that current data-flow anal-
yses lack a way to respond to incremental program changes.
Once an expensive analysis run of some program p has com-
pleted, whenever p changes the analysis will typically need
to be re-computed entirely once again—a costly undertaking.
This is especially problematic with large libraries that change
rarely but contribute much to the overall size of the program.

In this work we present Reviser, an approach for au-
tomatically and efficiently updating static-analysis results
for a broad class of inter-procedural, flow-sensitive, context-
sensitive data-flow analyses. Reviser assumes that analyses
are implemented in Sagiv, Reps and Horwitz’s framework
for Inter-procedural Distributive Environment Transformers
(IDE) [21] or within the IFDS framework for Interprocedu-
ral Finite Distributive Subset problems [17], an often-used
specialization of IDE. Both frameworks require that flow func-
tions are distributive over the merge operator. Although this
is a limitation in some cases, IFDS and IDE have been used
for a large variety of practical analysis problems such as se-
cure information flow [8,10,15], typestate [7,13], alias sets [14],
specification inference [23], and shape analysis [18,27].

The IFDS/IDE frameworks allow data-flow analyses to be
expressed in a template-driven style. This means that users
simply define a set of flow functions. A generic IDE solver
then uses those flow functions to compute analysis results
for the entire program. Reviser replaces the standard IDE
solver with a solver that automatically copes with incremen-
tal program changes, at the same time allowing users to reuse
the original flow functions with only minor modifications and
without restricting the expressiveness of the IDE framework.
Reviser works by first applying the usual IDE algorithm
once to the application’s entire code base. Then, on receiving
a modified version of the code, it determines the changes in
terms of the application’s control flow graph. Afterwards,
Reviser invokes a specialized “revision algorithm” that up-
dates analysis results only where necessary. This algorithm
is the core contribution of this paper.
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Figure 1: Function representation in IFDS, reproduced
from [17]

A tool such as Reviser is useful if it produces correct and
precise results, saves analysis time, and does not impose too
large a burden on the static-analysis programmer. We have
thus evaluated Reviser on a number of client analyses and
target programs including revision histories of JUnit [9] as
well as the abc [2] and Soot [26] frameworks, showing that
Reviser produces the same results as a full recomputation,
can save up to 80% of the time required for a full recompu-
tation. At the same time, client analyses only require simple
changes to be made compatible with Reviser.

To summarize, this paper presents the following original
contributions:

• an algorithm for efficiently updating IDE results based
on a structural comparison of two program versions,

• an open-source implementation of the approach, and

• a set of experiments showing that the implementation
computes correct (and precise) results, and saves, on
average, about 80% of analysis time in comparison to
a full recomputation.

The implementation of Reviser is available as an open-
source extension to the language-independent Heros [3] IDE
solver and the Soot program analysis framework [12, 26]
for Java, along with all benchmarks, documentation and
scripts necessary to reproduce our experimental results: http:

//sseblog.ec-spride.de/tools/reviser/

This paper is accompanied by a Technical Report [1] con-
taining additional details on Reviser that we could not
include in this paper due to space restrictions.

The remainder of this paper is structured as follows. Sec-
tion 2 gives background information about the IFDS and IDE
frameworks. In Section 3, we present the core of this paper,
Reviser’s algorithm for incremental recomputation. Sec-
tion 4 presents important details about the implementation,
and particularly discusses design decisions and how client
analyses need to be adapted for use with Reviser. Section 5
presents our experimental results. We discuss related work
in Section 6 and conclude in Section 7.

2. BACKGROUND ON IFDS/IDE
Reviser applies to analyses formulated as Inter-procedural

Distributive Environment Transformers. For such analyses,
the IDE framework [21] defines a very efficient, tabulation-
based solution strategy based on computing summary func-
tions for each method. To achieve efficiency, these sum-
maries are only computed once, to achieve context-sensitivity,
though, they are re-applied anew at every calling context.
While many ideas of Reviser may carry over to updating
inter-procedural analysis results in general, our current for-
mulation of Reviser exploits certain properties of the IDE

framework that may not easily carry over to a more general
setting.

IDE is a generalization of IFDS, a solution framework for
Inter-procedural Finite Distributive Subset Problems. Since
IFDS is easier to understand than IDE, we will present IFDS
first and also focus the remaining presentation in this paper
on IFDS, explaining elements important to treating full IDE
only where necessary.

2.1 Overview of the IFDS Framework
The major idea of the IFDS framework is to reduce any

program-analysis problem formulated in this framework to
a pure graph-reachability problem. Based on the program’s
inter-procedural control-flow graph, the IFDS algorithm
builds a so-called exploded super graph. The exploded graph
contains a node for every combination of a statement (a node
in the original control flow graph) and a statically decidable
fact d ∈ D about the program. In an information-flow ana-
lysis, for instance, the node (s,x) could denote that variable
x holds confidential data at statement s. The domain of
facts D must be finite. Edges between nodes in the exploded
supergraph model data flow functions. Figure 1 gives three
different examples on how simple flow functions can be rep-
resented as graph segments in IFDS. The nodes at the top
represent facts before the given statement s, the nodes at
the bottom represent facts after s. At the very left, the
identity function id maps each data-flow fact before a state-
ment onto itself. The special fact 0 is associated with every
node in the exploded supergraph and denotes a tautology,
a fact that always holds. As can be seen in the middle flow
function α, this fact can be used to unconditionally generate
the data-flow fact a: by connecting it to 0, the fact becomes
unconditionally reachable in the graph. At the same time, α
kills the data-flow fact b by making it no longer reachable.

Function β at the right side is a typical function modeling
data-flow through an assignment statement b=a. Here, a has
the same value as before the assignment, modeled by the
arrow from a to a, and b obtains a’s value, modeled by the
arrow from a to b. The previous value associated with b is
killed in the process: there is no edge from b to b.

It is important to note that data-flow facts are by no
means limited to simple values such as the local variables in
our example. Much more sophisticated abstractions exist,
in which facts can, for instance, model aliasing through
sets of access paths [25] or even the abstract typestate of
combinations of multiple objects [13]. The IFDS framework
itself, however, is oblivious to the concrete abstraction being
used; the abstraction is a free parameter to the framework.

IFDS is efficient because its graph-based data-flow func-
tions can easily be composed to so-called path edges. A path
edge always starts at a method’s header and ends at some
statement within the same method. The edge summarizes
the data flows along all paths from the method’s entry to
this statement. Path edges that end at one of the method’s
exit points are called summary edges. (See Figure 3 on page
for an example.) Crucially, the IFDS solution algorithm com-
putes such summaries only once for each method. Reviser
must take care to update these summaries where required.

2.2 The IDE Framework
As in IFDS, the IDE framework [21] models data flow

through edges in an exploded super graph. In addition to
IFDS, however, IDE allows for the computation of distribu-
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tive functions along those edges. A fact is no longer a simple
value, but an environment, mapping facts d ∈ D to val-
ues v from a separate value domain V . The flow functions
thus transform environments {d 7→ v} to other environments
{d′ 7→ v′}. In comparison to IFDS, this widens the class of
problems that can be expressed in the framework.

In general, IDE computes and maintains the following
types of functions:

Flow functions are used to compute environment trans-
formers between nodes (s, d), and (s′, d′). Flow func-
tions themselves are never stored, they are just used
to compute longer functions.

Jump functions correspond to path edges in IFDS. They
encode summaries of flow functions, i.e., compositions
of environment transformers. They effectively store
the composition of flow functions computed from the
method’s start point to the current statement n. We
write them as 〈d1, n, d2〉 with d1 being the transformer
at the start point and d2 being the transformer at n.
After the entire method was processed, jump functions
are turned into summary functions.

Summary functions encode the summarized effects of a
method. They are jump functions to the exit state-
ments (return/throw) of the respective method. Sum-
maries save the solver from having to recompute a
callee’s information anew for every call site.

If a statement is changed, its flow function may also change.
As a consequence, the jump functions of all transitive suc-
cessors may change as well, since they encode information
computed involving the changed statement’s flow function.
The same holds for the summary functions of the method
containing the changed statement. Section 3 describes in
detail the revisions that Reviser needs to perform to bring
jump and summary functions back to a correct state after
an incremental program update.

One important difference between IFDS and IDE is that
the IDE algorithm does not just compute graph reachability.
Instead it comprises a second phase in which the computed
environment transformers are actually applied along all edges
in the graph to yield individual values for every program
statement. Reviser incrementally updates both phases of
the IDE algorithm.

3. INCREMENTAL UPDATES
Reviser assumes a scenario in which the user first trig-

gers a complete analysis computation within the IFDS/IDE
framework and then submits an incremental program update,
for instance by committing a new version of the code to a
version-control system or by triggering an incremental build
in the user’s integrated development environment. Reviser
first compares both code versions, generating a structural
diff. This diff gives information about which nodes and edges
in the program’s inter-procedural control-flow graph (ICFG)
were added or removed.

In the following, we will call all nodes that were added
or removed changed nodes. One of the guiding principles
of Reviser is to infer from all changed nodes the set of
so-called affected nodes, i.e, nodes whose information was
outdated by the change and needs to be updated. Reviser
treats as affected all nodes reachable from changed nodes

when following edges in the novel, updated ICFG. This is
an over-approximation. Reviser then follows a clear-and-
propagate strategy: for each affected node it first clears the
analysis information computed and then re-propagates the
information from all the node’s predecessors.

Note that by this design it is always safe to over-approximate
the set of affected nodes. Assuming some un-affected nodes
as affected will lead to superfluous re-computation but it can
never lead to incorrect analysis results. Determining the set
of affected nodes precisely can sometimes be more time con-
suming than re-computing additional analysis information.
For this reason, Reviser does not necessarily seek to deter-
mine a maximally precise set of affected nodes but rather an
efficiently computable approximation that is good enough in
practice. As our experiments show, the set of affected nodes
is usually just a small fraction of all ICFG nodes yielding a
high potential for approaches such as Reviser.

The remainder of this section explains Reviser’s clear-and-
propagate algorithm in detail. Section 3.1 focuses on how to
identify affected nodes. Section 3.2 then introduces the notion
of safe and start nodes, and explains how re-propagations
are triggered. Section 3.4 discusses how Reviser handles
method calls. Section 3.5 explains how to incrementally
update the actual result values that IDE (opposed to IFDS)
computes for each statement, while Section 3.6 presents some
important optimizations.

3.1 Computing Changesets
We assume a structural differencing algorithm which mod-

els all code alterations through added and deleted statements,
represented by added and deleted nodes and edges in the
inter-procedural control-flow graph. In particular, modi-
fied statements are represented through combinations of
added and deleted statements. Our Technical Report [1]
provides details about two differencing algorithms that we
implemented and evaluated together with Reviser.

s1

s2

s3

Given the structural diff, one can express
the differences between two program versions
using two sets E+ and E−, containing all
edges added, respectively removed, from the
original ICFG. In the example shown to the
right the original edges s1→ s2 and s2→ s3
are removed and a new edge s1→ s3 is added.
For simplicity, we also define the sets N+ for
the added nodes (∅ in the example) and N−

for the removed nodes ({s2} in the example).
Reviser uses this program-change information to find

affected nodes. In general, Reviser considers as affected all
nodes that are transitively reachable from changed nodes via
the new ICFG’s successor relation. Reviser does implement
some optimizations, however, to further restrict this set. We
will discuss those optimizations in Section 3.6.

Note that while Reviser itself is language independent,
the ICFG is always language specific. For our instantiation
for Java, Reviser adds all nodes of added methods and
removes all nodes of removed methods, along with the re-
spective call edges. For modified methods, Reviser uses a
lightweight graph-differencing algorithm which computes a
superset of the added and deleted control-flow graph edges.
For performance reasons, Reviser approximates the com-
puted superset, and is thus not always maximally precise.
As our experiments show, however, the computed sets are
typically small enough to yield a short re-analysis time.



1 void test() {
2 a = 42;
3 while (a > 40) {
4 a--;
5 a = 42;
6 }
7 print(a);
8 }

Listing 1: Safe and Non-Safe Nodes

Algorithm 1 presents Reviser’s update algorithm, as an
initialization phase, followed by two outer loops (Phases A
and B) and a value-computation phase that is required for
IDE problems only (not for IFDS). Phases Phases A and B
call the function ForwardTabulateSLRPs, which is described
in Algorithm 2. But let us consider the initialization phase
first. The computation of change sets is shown in line 3.
Here the algorithm populates the four sets E+, E−, N+ and
N− using the differencing algorithm. It then purges E+ and
E−, removing edges starting at changed nodes. Since the
remaining algorithm will consider such edges automatically,
this avoids superfluous re-computations.

Line 10 clears the outdated analysis information, i.e., path
edges, at deleted nodes. For efficiency, Reviser clears the
outdated analysis information for all other affected nodes on
the fly. Section 3.3 will give further details. Next, we discuss
how Reviser initializes its repropagation in Phase A.

3.2 Safe Repropagations
After deleting outdated analysis information at a changed

node c, Reviser must compute the updated analysis informa-
tion. Computing this updated information is easy assuming
that c’s predecessor nodes are unaffected, i.e., their IDE
results are unchanged. We call such predecessors safe.

It is important to note that not all statements unchanged
by the incremental code update are automatically safe. List-
ing 1 gives an example. Assume that the incremental update
removes line 5 in order to fix the infinite loop. Further as-
sume that the analysis is computing constant propagation.
Both lines 2 and 4 are unchanged but, while line 2 is safe,
line 4 is not. The reason is that it is reachable from line 5,
and its abstract value even depends on the one computed at
line 5. Generally problematic are thus recursive data-flow
dependencies introduced by loops.

To find nodes guaranteed to be safe, Reviser thus walks
up the control flow graph. For every changed node, it follows
the sequence of predecessors until it finds a node which is
not itself (transitively) preceded by any changed nodes. This
node is then necessarily safe. If the changed node is not
part of a loop, the candidate for the safe node is always the
(set of) direct predecessor(s) of the first changed node in the
statement sequence. If the changed node is part of a loop,
Reviser selects the predecessor of the head of the outermost
loop. Then, if still at an affected node, Reviser walks up
the statement sequence until it reaches the predecessor of
the first affected node and regards that node as a safe node.
This is sound because nodes that are neither changed nor
have any affected predecessors are safe. In Algorithm 1, this
is done in lines 21 to 25 for all changed nodes.

Note that predecessors of safe nodes are always safe as well
if they are not changed nodes on their own. This directly
follows from the definition of a safe node. Therefore, one
simple selection of safe nodes would be all of the program’s
entry points. This choice will often be sub-optimal, however,

Algorithm 1 Incremental IDE - Initialization & outer loop

1: procedure IncrementalAnalysis(cold, cnew)
2: // Get the edges we must update
3: 〈E+, E−, N+, N−〉 := ComputeCFGChanges(cold, cnew)
4: // Purge the edges
5: E+ := E+ \

{
(n,m) : n ∈ N+

}
6: E− := E− \

{
(n,m) : n ∈ N−

}
7: E# := ∅ // callers of modified methods, see Sec. 3.6
8: // Delete all facts for all deleted statements
9: for all n ∈ N−; d1, d2 ∈ D; v ∈ V do

10: PathEdge := PathEdge \ 〈d1, n, d2〉
11: val := val \ 〈n, d1, v〉
12: EndSum[〈n, d1〉] = ∅
13: if E+ ∪ E− = ∅ then return
14: changedNodes := ∅
15: chgEndSums := ∅
16: WorkList := ∅
17: allChangedNs := ∅
18: oldES := EndSummaries
19: // Phase A: Update jump functions
20: for all 〈n1, n2〉 ∈ (E+ ∪ E− ∪ E#) do
21: if isPartOfLoop(n1) then
22: ls := getLoopStart(n1)
23: N := getPredsOf(ls)
24: else
25: N := {n1}
26: for all n ∈ N, d1, d2 : (d1, n, d2) ∈ PathEdge do
27: WorkList := WorkList ∪ {〈d1, n, d2〉}
28: ForwardTabulateSLRPs(Update, cnew)
29: // Return node or end summary changed?
30: if ∃ep ∈ eproc(d2) : ep ∈ (N+ ∪N−)∨
31: ∃d1 ∈ D, sp ∈ sproc(d2) :

32: oldES[〈sp, d1〉] 6= EndSummaries[〈sp, d1〉] then
33: for all c ∈ CallSite(proc(d2)), d ∈ succs(c) do
34: E# = E# ∪ 〈c, d〉
35: allChangedNs = allChangedNs ∪ changedNodes
36: changedNodes = ∅
37: // Phase B: Recompute information at merge points
38: for all n ∈ allChangedNs do
39: // Check for merge point, both straight-line and
40: // interprocedural
41: preds := {m : m→ n ∈ cnew}
42: if |preds| ≥ 2 then
43: for all m ∈ preds do
44: for all d1, d2 : (d1,m, d2) ∈ PathEdge do
45: WorkList := WorkList ∪ {〈d1,m, d2〉}
46: ForwardTabulateSLRPs(Compute, cfg)
47: // Incremental Phase II from [21]
48: for all n1 ∈ allChangedNs do
49: for all ni : ∃n1, ..., ni ∈ N ; ∀i : ni → ni+1 ∈ cfg do
50: for all d ∈ D; val(n, d) 6= ∅ do
51: val(n, d) = ∅
52: for all n1 ∈ allChangedNs do
53: // Run original Phase II for (n,d), see [21, page 149]

as it could cause the unnecessary re-computation also at safe
nodes. Reviser therefore determines start nodes as follows.

For a given affected node a and a path p to a, a safe node s
on this path is considered a start node if there is no other safe
node closer to s on p. One observation following from this
definition is that if an affected node has multiple (transitive)
predecessors, they all are start nodes.

3.3 Iterative Propagation
Once start nodes are known, a trivial approach would be

to just pass over the changed program twice: One would
first clear all IDE results at all affected nodes (the transitive



Algorithm 2 Incremental IDE - Iterations

54: procedure ForwardTabulateSLRPs(mode, cfg)
55: while WorkList 6= ∅ do
56: Pop an edge 〈sp, d1〉 → 〈n, d2〉 from WorkList
57: switch n do
58: case n ∈ Callp
59: if d2 = ε then
60: MaybeClearAndPropagate(〈d1, retSite(n), ε〉)
61: continue
62: for all d3 ∈ passArgs(〈n, d2〉) do
63: Propagate(〈d3, scalledProc(n), d3〉)
64: Incoming[〈scalledProc(n), d3〉]∪ := 〈n, d2〉
65: for all 〈ep, d4〉 ∈ EndSum[〈scallee(n), d3〉] do
66: for all d5 ∈ retVal(〈ep, d4〉, 〈n, d2〉) do
67: MaybeClearAndPropagate(〈d1, retSite(n), d5〉)
68: if retVal(〈ep, d4〉, 〈n, d2〉) = ∅ ∧
69: mode = Update then
70: MaybeClearAndPropagate(〈d1, retSite(n), ε〉)
71: case n ∈ ep
72: // Clear all potentially outdated end summaries
73: if mode = Update then
74: if 〈sp, d1〉 /∈ chgEndSums then
75: chgEndSums = chgEndSums ∪ 〈sp, d1〉
76: EndSum[〈sp, d1〉] := ∅
77: // Add new end summary
78: if d2 6= ε then
79: EndSum[〈sp, d1〉] := EndSum[〈sp, d1〉] ∪ 〈ep, d2〉
80: // Optimization: No automatic caller update
81: if mode=Compute then
82: for all 〈c, d4〉 ∈ Incoming[〈sp, d1〉] do
83: if d2 = ε then
84: Propagate(〈d1, retSite(c), ε〉)
85: continue
86: returnVals = returnVal(〈ep, d2〉, 〈c, d4〉)
87: for all d5 ∈ returnVals, d3 :
88: 〈sprocOf(c), d3〉 → 〈c, d4〉 ∈ PathEdge do
89: Propagate(〈d3, retSite(n), d5〉)
90: case n ∈ (Np \ Callp \ {ep})
91: if d2 = ε then
92: for all m : n→ m ∈ cnew do
93: MaybeClearAndPropagate(〈d1,m, ε〉)
94: continue
95: succs = {〈m, d3〉 : n→ m ∈ cfg ∧ d3 ∈ flow(〈n, d2〉, π)}
96: for all 〈m, d3〉 ∈ succs do
97: MaybeClearAndPropagate(〈d1,m, d3〉)
98: if |succs| = 0 ∧mode = Update then
99: MaybeClearAndPropagate(〈d1,m, ε〉)

Algorithm 3 Incremental IDE - Clear and Propagate

100: procedure MaybeClearAndPropagate(e := 〈d1, n, d2〉)
101: if mode=Update then
102: // Only clear if we haven’t changed this node yet
103: if n 6∈ changedNodes then
104: changedNodes := changedNodes ∪ {n}
105: for all d3 ∈ D : (d1, n, d3) ∈ PathEdge do
106: PathEdge := PathEdge \ (d1, n, d3)

107: if d2 6= ε then
108: Propagate(e)

successors of the start nodes as described in Section 3.1)
and then start a new propagation from each of the start
nodes as described in Section 3.2. For efficiency, however,
Reviser follows a more advanced approach by combining
both passes into a single clear-and-propagate step which we
show in Algorithm 3. When Reviser processes a node, it
first clears the IDE results associated with this node to then

if

s2

s4

s3

Figure 2: Example with control-flow branch

compute the new analysis information through a propagation
from the node’s already re-computed predecessors.
Reviser commences at the start nodes, clearing and re-

propagating the analysis information for each node reachable
from there. After this step, all affected nodes are associated
with the correct analysis information for the new version of
the target application. For our example from Listing 1, line 2
is the only safe node and thus also the only start node. By
keeping a record of nodes already visited and never clearing
a node twice, this procedure is guaranteed to reach a fixed
point in all cases in which the forward propagation as defined
in the original IDE algorithm reaches such a fixed point.

While efficient, this clear-and-propagate approach requires
some precaution: if a node can be reached on more than one
path, Reviser must make sure to clear it only once. The
example in Figure 2 contains a simple conditional. Assume
the if -statement to be a start node. In this case, statement
s4 will be reached along two different paths. Without loss
of generality, assume the propagation via the left branch to
occur first. Reviser would first clear the information at s4
to then add the information computed along this branch. Af-
terwards, when processing the right branch, Reviser would
clear the information at s4 once again, thus resulting in final
analysis information for s4 which only contains results from
the right branch. The jump functions previously computed
along the left branch would be lost. To circumvent this prob-
lem, Reviser remembers all nodes for which the analysis
information has been cleared already, preventing them from
being cleared a second time, see line 103.

Additionally, Reviser must make sure to actually start
a repropagation on all paths reaching an affected node n,
even for paths to n which themselves contain no change.
In our example from Figure 2, assume a statement in the
right branch to be changed and the start node to also reside
within the right branch as well. In this case, s4 would be
cleared and the analysis information computed along the right
branch would be added, but the one from the left branch
would be lost since no propagation is ever performed along
this path. The algorithm therefore performs in a second
phase (Phase B), after all clear-and-propagate cycles have
completed, a single forward-only propagation step for all
control-flow merge points whose analysis information was
updated (see line 37). In other words, Reviser starts an
artificial propagation from all non-unique predecessors of
nodes that have been cleared at some point during Phase
A. This is correct since after the clear-and-propagate phase
has completed, no outdated analysis information is left in
the graph. Thus, a forward propagation cannot possibly
re-introduce spurious analysis information.

The iterative steps of the incremental update (see Al-
gorithm 2) are very similar to those of the original IDE
algorithm. Generally, Reviser needs to perform a clear-and-
propagate step whenever the original algorithm performs a
propagate step (see, for instance, line 97). For performance
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reasons, however, Reviser deviates from this rule in the case
of method calls (see Section 3.4).

Finally, Reviser must make sure to clear the analysis
information at a successor node even if no new analysis in-
formation is to be propagated because otherwise outdated
analysis information would be retained. In such cases, Re-
viser needs to clear without having anything to propagate.
Reviser thus uses the pseudo-value ε as a marker to de-
note the obligation to clear (lines 70 and 99). ε values are
transparently repropagated to transitive successors just like
new jump functions would be, so that all affected nodes are
actually assured to be cleared (lines 60, 79, and 93).

3.4 Method Calls
IDE is a framework for solving inter -procedural analysis

problems. When the IDE algorithm processes a call site, it
uses the so-called call flow function to propagate the current
analysis information (i.e., jump functions) to the start nodes
of all possible callees. It would be sound for Reviser to
replace this propagate step with a clear-and-propagate step
(see line 63). This, however, would in some cases require
the analysis to recompute the information for all methods
in the analyzed program (for instance if the program’s main
method has changed), even if neither those methods’ code
nor their call parameters have changed. This would severely
impair performance. As described in Section 3.3, Reviser
thus treats call edges separately and for those edges only
performs a regular forward propagation without clearing
potentially outdated analysis information (see line 63). In
result, a method is only entered if it is reached by new
analysis information via the call edge.

In case an update to a caller deletes analysis information,
this approach might lead to situations where jump functions
associated with the callee become unreachable. Figure 3
shows such a situation. Assume a taint analysis tracking
the return value of password(). After the code update
removing the second assignment, Reviser deletes the caller-
side jump function as indicated, but it retains the callee-
side jump function from b to c, leaving this jump function
unreachable in the super graph. This has the additional
advantage of having the jump function still available, should
it become reachable again later, but at the same time the
disadvantage of wasting memory in the meantime. While
our Reviser prototype does not clean up this memory, an
implementation in an industrial setting would probably want

to implement some idle-time garbage collection to collect
unreachable functions at selected points in time. In any
case, such leftovers get disconnected from the graph and
thus cannot impair the precision of the analysis. Recall
that the result is defined through the reachable tails of the
supergraph.

Note that Reviser recomputes the callgraph from scratch
and therefore does not need to deal with changing callee sets
during the incremental analysis.

3.5 Value Computation
In the above, we have explained how Reviser updates

“analysis information”. In IDE, this information actually
itself resembles environment transformers, i.e., functions,
which in a second step are applied to some initial values
taken from a pre-defined value domain. Values are computed
intra-procedurally, using jump functions. A value can thus
only become outdated through a change to a jump func-
tion or through a change to values at the jump function’s
start node. The latter, however, can only change through
a change to a jump function in the caller. Thus, the transi-
tive closure of all nodes with changed jump functions safely
overapproximates the set of expired values. Reviser deletes
all values at these nodes (see lines 48 to 51 in Algorithm 1).
Afterwards, to obtain all updated values, Reviser starts a
regular value-propagation task from the start nodes of all
changed methods (line 52). Since the new jump functions are
complete and correct, and since the IDE value-propagation
algorithm (which we use without changes) is sound, the in-
cremental computation is sound as well. Note that there
is no risk of repropagating old values since all values not
guaranteed to still be valid have been removed.

3.6 Optimizations
Reviser applies a couple of sound optimizations to the

clear-and-propagate principle. Firstly, when the iteration
reaches a node that itself serves as a start node for a clear-
and-propagate cycle, it can safely abort the propagation.
(This can happen when the incremental update comprises
changes to multiple parts of the code.) Secondly, if there are
two changes in the same method, only the first one needs to
be propagated if the clear-and-propagate cycles will reach
the start node of the second change anyway. Note that the
second optimization does not include the first one in the case
of interprocedural loops. Finally, when processing return
edges, Reviser does not need to clear-and-propagate back
into the caller if the return site is a start node, since in this
case this node will trigger a recomputation on its own. To
avoid cluttering the presentation, these optimizations are not
shown in Algorithm 1.
Reviser also implements another less obvious optimiza-

tion: Instead of performing clear-and-propagate steps over
return edges, Reviser stops at the end of each method (see
line 81). After all updates in the current method have com-
pleted, Reviser checks whether either one of the return
statements is in the set of changed nodes or whether an end
summary entry has been changed (see line 32). Only if this
is the case, Reviser adds the caller to the set of changed
nodes (artificial changed edge set E#, see line 34) and sched-
ules it to be updated. This is sound since the return edge
is computed locally on the return statement and the jump
functions reaching it in the callee. The latter, however, are
equal to the end summaries for that function. (When we say



that Reviser is sound then we mean that it yields the same
analysis information as a full re-computation.)

In essence, the return statement serves as a checkpoint
during which Reviser checks whether additional propaga-
tions are required. Such checkpoint could also be defined
at other statements. Initially we even experimented with
an implementation that would first compute all analysis in-
formation for an entire statement to then discontinue the
propagation if the analysis information obtained that way
was found to be equal to the original information at this
statement. We found, however, that this design was causing
drastic slowdowns in our implementation. This is because
our IDE solver Heros gains much efficiency by computing
individual data flows concurrently. An eager equality check
at each statement requires synchronizing the computations
for each statement, however, which we found to cause too
much thread contention to pay off in practice.

4. IMPLEMENTATION
We have implemented Reviser on top of the open source

solver Heros [3]. Heros provides an open interface for ICFGs,
which allows it to be used in combination with program-
analysis frameworks for various target languages. We have ex-
tended this interface for changeset computation and provide
a reference implementation which integrates with Soot [26]
for analyzing Java programs. This raised some technical chal-
lenges as Soot normally does not support parts of the AST
and intermediate program representation to be exchanged
while Soot is running. We thus decided to decorate all rel-
evant Soot objects with wrappers that support dynamic
replacement. Reviser’s modified IDE solver then accesses
these wrappers only. Naturally, the indirection introduced
through the wrappers incurs some overhead. As our eval-
uation shows, though, in practice the overhead is quite ac-
ceptable in comparison to the savings achieved through in-
cremental evaluation.

Additionally, the client analysis developer is required to
adapt his code using a simple template. Instead of directly
accessing AST objects, he must request the corresponding
wrapper from Reviser. For space reasons, we refer the
interested reader to our technical report [1].

5. EXPERIMENTS
Our evaluation addresses both the correctness and perfor-

mance of Reviser’s implementation. In our accompanying
Technical Report [1] we further assess the usability of Re-
viser. To assess correctness, we compare the results com-
puted by a full recomputation on the target code with the
results of an incremental update. To evaluate performance,
we measure the time required to initially run Reviser on the
original code, as well as the time required for the incremental
update, and compare it to the time a full recomputation of
the changed code would have taken in the original, unchanged
Heros solver.

For all our tests, we use the following target applications
and test cases:

JUnit Special Tests These test cases were hand written
by ourselves; they comprise important corner cases such
as changes in methods close to the entry point, loops
in callees, etc. The tests all consist of code changes
to JUnit 4.10. They are especially useful to assess the
correctness of Reviser.

JUnit Update JUnit is upgraded from version 4.10 to ver-
sion 4.11, changing a large amount of code. This
test case evaluates a typical worst-case scenario to see
whether the algorithm degenerates for large changes.

JUnit, Soot, and abc Revisions Performs incremental up-
dates for 25 check-ins from the JUnit and Soot git repos-
itories as well as the abc SVN repository to evaluate
Reviser on changes submitted to real-world version-
control systems. We envision this to be the main sce-
nario for Reviser: Frequent updates of smaller scale
on a continuous integration server or even inside a
development environment to ensure software quality.

All benchmarks are available on our project website. Firstly,
we ran every target application with an interprocedural
reaching-definitions analysis. The results of this IFDS client
analysis change at a rather large scale (every modified defini-
tion statement changes at least one result) and is thus a good
candidate for evaluating the lower performance bounds of
an incremental algorithm. Secondly, we ran an uninitialized-
variable analysis on all target programs to evaluate Reviser
with a more lightweight client analysis. For maximum ana-
lysis precision, the full JDK was included with the target
program for all JUnit test cases. For the Soot and abc test
cases, memory constraints required us to exclude the JDK.

5.1 Implementation Correctness
To validate the correctness of our implementation, we ap-

plied Reviser to all test cases mentioned above, i.e., both
the set of artificial test cases on JUnit as well as all real-world
change sets. For two subsequent versions v1 and v2 of any
target program, we first ran all analyses using the unmod-
ified Heros solver on version v2 and recorded the results.
Afterwards, we ran Reviser on v1, incrementally updated
the results to version v2, and compared the results with the
ones from the unchanged Heros solver. Our experiments
confirm that Reviser computes the same results as a full
recomputation in all cases.

5.2 Performance
All results reported in this section are averaged over 10

runs. Every run was allotted a maximum heap size of 35 GB
on a computation server with 12 AMD Opteron 8356 cores
running Debian Linux 2.6 with Oracle’s Java HotSpot 64-Bit
Server VM version 1.6.0. We allotted a large amount of
memory since some client analyses require it. This is not a
requirement introduced by Reviser. All times are measured
for the client analysis only excluding aspects like loading the
target program into memory or constructing a callgraph.

5.2.1 Reaching-Definitions Analysis
We first show how Reviser performs with an interproce-

dural reaching definitions analysis. The results of the JUnit
special tests cases and the JUnit version upgrade are shown
in Figure 4. The left side shows the timings, the right side
the number of processed edges. Note that the edge count is
shown on a logarithmic scale. Though Reviser introduces
some overhead on the initial computation, it requires only
few edges to be recomputed, making incremental updates
fast. Therefore, the initial overhead (which only occurs once)
quickly pays off when performing multiple incremental up-
dates. With the JUnit special tests, the first update already
makes up for initial overhead, with Reviser saving about
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Figure 4: JUnit Special Tests - Reaching Definitions
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Figure 5: JUnit GIT Commits - Reaching Definitions

70% of the time required for a full recomputation using the
original, unmodified HEROS solver.

In the worst-case scenario of large changes to the code
base as in the JUnit update case, shown as the rightmost
data point in Figure 4, the time required for an incremental
update (205 seconds) is approximately equal to the time
of a complete recomputation in Reviser (215 seconds). In
this scenario, 9 classes and 40 methods in existing classes
were added, 28 methods were removed, and 87 methods were
changed. The changed methods included hashCode() and
equals() methods, requiring the changed return definitions
to be propagated through all callers including those in the
JDK. In result, in this case one really cannot expect much
time to be saved by an incremental update.

On the 25 most recent check-ins to the JUnit GIT reposi-
tory, Reviser greatly outperforms a recomputation. Figure 5
shows the results which are very similar to our hand-crafted
test cases. Reviser saves about 65% of the full recomputa-
tion time with the original solver and about 80% of its own
initial computation time. In concrete numbers, incremental
updates on the JUnit GIT commit set take 46 seconds on
average, about 30 seconds of which are due to changeset com-
putation. The right side of Figure 5 shows how the savings
accumulate over time to more than 3,000 seconds.

For the updates to the Soot repository, about 75% of both
the initial computation time and the full recomputation time
with an unchanged Heros solver are saved for the reaching
definitions analysis, see Figure 7. An update takes 12 sec-
onds on average; 10 seconds are were spent on changeset
computation. The overhead of the initial computation is
about 8 seconds or 18% on average.

On the 25 most recent commits to the SVN repository
of the AspectBench Compiler abc [2], Reviser saves about
64% of the original computation time as shown in Figure 8.
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Figure 6: JUnit Special Tests - Uninitialized Variables

The initial overhead was below the standard deviation of
the original computation time and thus negligible. Even in
the worst case scenario in which a commit modularized and
restructured the project, Reviser performed an update in
about 95% of the original computation time.

5.2.2 Uninitialized-Variable Analysis
On the specialized test cases, Reviser saves about 13%

of the original time and about 26% of its own initial com-
putation time when performing incremental updates. The
overhead of the initial computation is about 20%. As shown
in Figure 6, the savings are smaller than for the reaching
definitions analysis because the analysis as such is much
faster. Still, Reviser saves time in all cases except the
version upgrade. Here, the huge number of changed edges
severely affects performance.

On the 25 most recent commits to the JUnit repository
(Figure 9), Reviser saves about 16% of is initial computation
time (56 seconds on average) and about 21% of the original
solver’s time (59 seconds on average). The initial overhead
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is negligible since it was well inside the standard deviation
of the original computation time (about 4 seconds).

For an uninitialized-variables analysis on the 25 most recent
Soot commits, Reviser saves about 70% of both the initial
and the original computation time, see Figure 10. An update
takes about 13 seconds on average (19 seconds if only counting
updates that actually changed code); 10 seconds thereof are
spent on the changeset computation. The initial overhead is
negligible for this experiment - the unchanged solver took 48
seconds on average with a standard deviation of 7.4 seconds,
while Reviser took 47 seconds on average.

On the most recent commits to the abc repository, Reviser
saves about 64% of the original computation time on average
as shown in Figure 11 with an initial overhead of less than
9%. There is a single case in which the incremental update
with Reviser takes 20% longer than the initial computation.
This commit modularized abc, i.e., contained major code
restructuring, which is rare.

5.3 Discussion
The performance advantage of Reviser in comparison to

full recomputations is visible best when applied repeatedly.
When we assume that the static analysis is performed on a
continuous-integration server for every check-in into a version
control system, savings are accumulated over time as depicted
on the right sides of Figures 5–11. For instance, over the 25
most recent Soot revisions, the 75% savings introduced by
Reviser accumulate to over 11,000 seconds (3 hours).

In general, the performance of Reviser depends on the
number of jump functions that need to be recomputed. The
larger the impact of the code change is, the more edges are
affected. Clearing and repropagating over an edge takes
generally longer than the initial computation for that edge.
Performance gains are thus achieved by recomputing only (a
sufficiently precise overapproximation of) the affected nodes
which is usually a small subset of all nodes in the program
graph. In the worst case, all edges must be recomputed and
the algorithm degenerates to a recomputation with some
overhead, caused by changeset computation and wrapper
lookups as described in Section 4. This, for instance, happens
for the JUnit update from version 4.10 to version 4.11.

Furthermore, Reviser is not applicable in cases in which
the time required for changeset computation already exceeds
the time a full recomputation would take, or, in other words,
a recomputation is extremely fast which erases the need for
incrementalization anyway. If such a situation is detected
during the first incremental update, further revisions should
rather be recomputed than incrementally updated.

In the situations we consider primary use cases for Reviser,
changes to the source code are frequent, but reasonably
small, e.g., a single bug fix or new feature checked into a
version control system. In these cases, Reviser can save
up to 80% of the computation time across different client
programs and analyses as we have shown in our evaluation.
Furthermore, if Reviser is integrated into a development
environment like Eclipse which provides changesets as part
of the infrastructure, the respective computation time can
be saved in Reviser, making it even faster.

6. RELATED WORK
A method for constructing incremental versions of kill-gen

problems has been proposed by Pollock and Soffa [16]. Ry-
der [20] has shown an incremental solver based on linear

equations for partitionable problems. These approaches how-
ever do not easily translate to arbitrary IDE problems. Car-
roll and Ryder [5] incrementalize arbitrary elimination-based
data flow algorithms by reducing them to the domintator-tree
problem and applying a variant of Reps’ optimal attribute
parse-tree update algorithm. In general, Ryder and Burke [4]
have surveyed many older approaches which are limited to
lowering lattice values in IDE problems leading to results
that differ from a complete recomputation. Reviser always
produces the same results as a full recomputation.

Ismail [11] and Souter et al. [24] have presented methods for
incrementally updating call graphs. This work is orthogonal
to Reviser which focuses on the IDE results alone. At the
moment, Reviser re-computes the complete call graph.

Sharp [22] has presented an approach for pre-computing
summaries for type and dependence analysis in library func-
tions which change rarely. Our approach is orthogonal as
it focuses on identifying changes and propagating their ef-
fects across the code under analysis. Rountev et al. [19]
discuss how to compute more concise summaries of libraries
for generic IDE problems. Integrating these results into our
incremental solver is subject to future work. We envision
using summaries when calls into libraries are changed, but
not the libraries themselves, so as not to repropagate the
changes through the complete library.

Tripp et al. [25] efficiently update data-flow results by
replacing the whole-program control-flow graph and pointer
analysis with local information computed on demand during
the taint propagation. This removes the need of recomputing
these data structures when the target changes. For the
data-flow facts as such, their tool Andromeda computes the
transitive closure of all facts influenced by the code change,
removes them, and then starts a recomputation. While
the latter is quite close to Reviser’s clear-and-propagate
approach, Reviser only deletes jump functions on demand
and thus can abort earlier if it detects that a jump function
would be recreated in exactly the same way, i.e., it does not
delete functions that might not change at all just because
they are in the change’s transitive dependence set.

Eichberg et al. [6] use incremental tabled evaluation to
update analysis results deduced in a logic language. This
approach comes with the cost of having to translate the pro-
gram graph to Prolog facts and depends on the performance
of the underlying general-purpose reasoning engine.

7. CONCLUSION
We have presented Reviser, a novel approach for effi-

ciently and incrementally updating analysis results to reflect
changes to the analyzed code. Reviser’s update algorithm
is based on the clear-and-propagate principle. It detects
the origin of a change, then clears the information of its
successors and propagates the new results from there on.
We have implemented Reviser on top of Heros and Soot.
Using this implementation, we have shown that on the initial
computation Reviser only introduces a small overhead (un-
der 20% in most cases, sometimes even within the standard
deviation), but greatly outperforms recomputation (saving
up to 80% of the time) when performing incremental updates.
Therefore, the initial overhead quickly pays off when updat-
ing IDE results on a regular basis, e.g., at every check-in
on a continuous-integration server. Over the 25 most recent
commits to the Soot GIT repository, the savings achieved
with Reviser accumulated to over 11,000 seconds (3 hours).
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