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Abstract

Runtime monitoring enables developers to specify code that executes whenever certain sequences of
events occur during program execution. Tracematches, a Java language extension, permit developers to
specify and execute runtime monitors. Tracematches consist of regular expressions over events, where
each event may specify free variables that are bound to run-time objects. Naive implementations of
runtime monitoring are expensive and can cause prohibitive slowdowns. In previous work, we proposed
optimizations based on flow-insensitive pointer analyses. While these optimizations worked well in most
cases, more difficult cases with large overheads remained.

In this paper, we propose three novel intraprocedural optimizations with the goal of eliminating the
overhead from runtime monitors. Our optimizations rely on flow-sensitivity and precise local may-alias
and must-alias information. The first two optimizations identify and remove unnecessary instrumenta-
tion, while the third one hoists instrumentation out of loop bodies.

We applied our transformations to seven difficult combinations of tracematches with programs from
the DaCapo benchmark suite which defeated our earlier analyses. Our results show that our three
optimizations, in combination, can remove much of the instrumentation in this benchmark set. For
two of the seven cases, we can remove all instrumentation: our analysis successfully shows that the
benchmark programs will always satisfy the verification properties stated in the tracematches. Our
results furthermore suggest that our analysis can detect hidden method preconditions which ought to be
documented and visible to the developers.

After our optimizations, only three cases (out of an original 90 cases) still have noticeable runtime
overheads. One of these cases cannot possibly be optimized, because the runtime monitors actually
trigger. While our optimizations ought to be able to handle the remaining two cases, only an imprecision
in our underlying global points-to analysis currently prevents us from removing the overhead in those
cases as well.

1 Introduction

A software system’s sequence of actions over an execution is a rich source of information about the system’s
behaviour on that execution and often gives insight into the system’s behaviour on other executions. Certain
sequences of runtime events indicate defects in the system. Runtime monitoring can detect such sequences
of events, enabling developers to handle the sequences with code that reports errors or enables the system
to recover from faults.

Tracematches [1] are a Java language extension which enable programmers to specify traces via regular
expressions of symbols with free variables, along with some code to execute if the trace occurs in an execution.
A symbol’s free variables bind heap objects at runtime. A tracematch executes its associated code if a suffix
of the symbols in the current execution trace contains 1) the right symbols with 2) a consistent variable
binding (i.e. symbols’ free variables match up) in 3) an order which matches the regular expression. At
the implementation level, the compiler and runtime system implement tracematches using runtime monitors
based on finite-state machines. Compiler-generated instrumentation code updates the monitor’s internal
state each time an event of the execution trace matches a declared symbol from the tracematch. When the
monitor finds a consistent match in the program’s execution trace, it triggers the code associated with the
tracematch.

Unfortunately, naive implementations of runtime monitoring can be impractical due to the run-time
expense: as expected, instrumented code runs more slowly than uninstrumented code. There are therefore
two basic approaches for reducing the overhead due to runtime monitoring: 1) run each instrumentation
point faster (corresponding to dynamic improvements); or 2) reduce the number of instrumentation points
(static improvements).

Avgustinov et al. have developed optimized runtime monitor implementations to make runtime monitor-
ing usable, at least at development time [3,4]. For instance, they use a special encoding for variable bindings
at runtime. However, even after such optimizations, 5x slowdowns over the uninstrumented code were not
uncommon, and some cases were even more expensive.

In [7], we explored the second alternative by proposing some static optimizations for tracematches.
These optimizations successfully eliminated overheads for all but 9 out of our 90 benchmark/tracematch



combinations. The key idea was to identify instrumentation points which could not trigger a complete match
because (1) the program did not contain enough symbols to give a complete match, (2) the variable bindings
among the symbols that the program did contain were inconsistent, or (3) the symbol never executed in an
order which would be matched by the regular expression. We used a flow-insensitive pointer-based analysis
to remove tracematches which were unnecessary because they satisfied properties (1) and (2). This analysis
proved very effective, reducing overheads to below 10% in most of our benchmarks. However, a significant
number of pathological cases with much larger overheads—from 18% to 260%—still remained. In the same
work, we also proposed a flow-sensitive whole-program analysis which attempted to address property (3),
but that analysis did not manage to identify any additional unnecessary instrumentation points.

We therefore set out to optimize the important cases that were not susceptible to improvement by
either more efficient monitor implementations or previously developed static analyses. Our approach was to
identify the weaknesses of the previous static analysis and to design new analyses targetted towards solving
the remaining—hard—problems. We found that, in many cases, much of the overhead came from a few hot
instrumentation points, which we studied in detail. We observed that an intraprocedural analysis ought be
able to conclude that the hot shadows from our benchmarks would never trigger the tracematches, if the
analysis was flow-sensitive and used both may-alias and must-alias information. In other words, exploiting
property (3) would indeed allow us to eliminate the hot shadows, given sufficiently strong alias information.
We therefore set out to develop a precise and accurate intraprocedural analysis that would enable us to
reduce the overhead of runtime monitoring.

We found that accurately estimating the possible tracematch configurations at each instrumentation
point enabled a number of optimizations based on property (3). We therefore describe a static analysis
which abstractly models the possible runtime configurations of tracematches. Based on our abstraction,

e we can remove an instrumentation point if it will never modify the tracematch configuration at runtime;

e we can remove an instrumentation point if it will never be on a path that reaches a final configuration;
and

e we can either move instrumentation points within a loop body outside the loop body or execute the
instrumentation points only once per loop.

We applied our optimizations to the those cases from [7] with remaining overhead. Our results show that
using all three optimizations in conjunction with the flow-insensitive optimization from [7] reduces the run-
time overhead in all but three cases to below 10%. In two cases, we were able to remove all instrumentation.
Because our tracematches detect error conditions, our analysis for those benchmarks therefore guarantees
that those error conditions can never occur.

Of the three cases with remaining overheads, one cannot be statically optimized because its monitor
triggers at runtime. While our optimizations ought to be able to handle the remaining two cases, only an
imprecision in our underlying global points-to analysis currently prevents us from removing the overhead in
those cases as well.

Contributions. This paper makes the following contributions:

e a novel intraprocedural flow-sensitive static analysis for statically estimating possible states of a trace-
match automaton, based on may-alias and must-alias information;

e three optimizations for eliminating overhead due to tracematches, all of which are based on our static
analysis; and

e an experimental evaluation of our optimizations on a suite of sizeable benchmark applications.

We believe that our results generalize beyond the immediate context of optimizing tracematches. Section 6
discusses the applicability of our analysis to other runtime monitoring frameworks such as PQL [11]. Fur-
thermore, our results suggest that our analysis can help detect hidden—currently undocumented—method
preconditions which ought to be visible to the developer.
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The remainder of the paper is organized as follows. Section 2 introduces the syntax and runtime be-
haviour of tracematches. It also points out some situations where unnecessary updates to the tracematch
monitor occur. Section 3 introduces an abstraction that mimics the dynamic tracematch evaluation statically.
Section 4 describes the tracematch optimizations, while Section 5 evaluates the results of our optimizations.
Finally, Section 6 discusses related work and Section 7 concludes.

2 Tracematches: Definition and examples

In this section, we describe tracematches, the mechanism for runtime monitoring that we seek to optimize,
and explain some of the key concepts behind how a compiler for tracematches creates code that implements
tracematches at runtime. We also include two examples which explain some of the reasoning behind our
static analysis and optimizations.

In this work, we focus on verification tracematches. Our tracematches typically encode API usage rules;
in our examples, the tracematch bodies report errors, but they could equally well contain error-recovery code
which would enable the program to continue running.

2.1 HasNext example tracematch

Figure 1 presents the HasNext verification tracematch. This tracematch captures the fact that, given an
Iterator object i, it is unsafe to call i.next() twice in a row without a call to i.hasNext () in between.
Each tracematch may declare formal variables that bind to objects at runtime. Here, line 1 declares the
formal variable i of type Iterator. Tracematches also declare a set of symbols establishing the alphabet
for the tracematch’s regular expression. These symbols define events on the runtime execution trace using
AspectJ pointcuts. In the example, lines 2-5 declare symbols hasNext and next. These symbols capture
method calls to the hasNext () and next () methods of our iterator i. Finally, a tracematch declares a regular
expression over this alphabet and some code to execute when the regular expression matches a suffix of the
execution trace with a consistent variable binding. Here, line 7 declares the tracematch’s regular expression,
next next, and states the code to execute if next next occurs in some execution with both next symbols
binding the same iterator .

Note that the sequence next hasNext next is not matched by our tracematch: no suffix of this sequence
is matched by next next.

tracematch(Iterator i) {
sym hasNext
before: call(x java. util . Iterator +.hasNext()) && target(i);
sym next
before: call(x java. util . Iterator +.next()) && target(i);
next next { System.err.println (" Trouble with ”+i); }
}

Figure 1: Tracematch definition for the HasNext tracematch.

Tracematch implementation. The AspectBench compiler [2] (abc) implements tracematches by compil-
ing Java source or bytecode, together with any desired tracematches, into instrumented Java programs
augmented with runtime monitoring. The abc compiler first creates a tracematch automaton from the trace-
match’s regular expression. It then identifies a set of instrumentation points, or shadows [12], corresponding
to the points in the code where symbols will potentially execute (and thereby update the tracematch state).
Note that these shadows bind a subset of the tracematch’s variables, as specified by the symbol’s definition.
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Figure 2: Automaton for the HasNext tracematch from Figure 1.

While the tracematch automaton resembles the standard finite automaton induced by the tracematch’s
regular expression, the tracematch machinery uses the automaton in an unusual way. Normally, an automa-
ton is in one state at a time. But recall that a tracematch binds a set of heap objects to its variables.
The tracematch automaton must therefore track possible states for each set of bindings of the tracematch
variables. If a set of bindings reaches the final state of the automaton, then the runtime system executes the
body of the tracematch.

Figure 2 presents the tracematch automaton for the HasNext tracematch. Solid lines represent state
transitions, while dashed lines represent special skip loops.

State transitions are fairly standard: Whenever a shadow with label £ executes, the tracematch runtime

processes all transitions s LN t, for each possible pair of states s and t. If state s holds a variable binding that
is consistent with the binding induced by the shadow, the runtime propagates this binding to state t. This
propagation ensures that the tracematch automaton reaches the final state whenever the regular expression
matches with a consistent set of bindings.

On the other hand, the tracematch runtime machinery must also discard candidate matches as they
become invalidated. For instance, in the HasNext tracematch, the runtime must discard any candidate
match binding an iterator i in the event of a call to i.hasNext (), because the tracematch should only
trigger if two adjacent calls to i.next () occur with no call to i.hasNext () in between. Hence, at any call
to i.hasNext (), for i, the match has to start all over again. Skip loops instruct the runtime to discard
invalidated candidate matches.

2.2 Dynamic tracematch configurations

A configuration for a tracematch automaton A is a function mapping states of A to constraints. Figure 3
presents the grammar for these constraints. Constraints are stored in disjunctive normal form. A constraint
can be a disjunction of disjuncts D, or one of the boolean literals true and false. Each disjunct is a
conjunction of bindings B, each of which is either a positive binding v = o or a negative binding v # 0. The
left hand side v is a tracematch variable, as declared in the tracematch. At runtime, the right hand side
o0 is a heap object. The runtime also maintains the invariant that each disjunct only contains one positive
binding for each tracematch variable. One way to think of a disjunct is as a partial function from tracematch
variables to heap objects; when the function is partial, the negative bindings give additional information
about the objects that may be bound to a tracematch variable.

C o= true|fa|se|\/D
D == AB
B = wv=o|v#o

Figure 3: Grammar for configuration formulas.
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Example. We next present an example of dynamic tracematch configurations. The abc compiler gener-
ates instrumentation that manipulates such tracematch configurations at runtime. Dynamic configurations
are especially useful to understand because our static abstraction of tracematch configurations mimics the
dynamic configuration information.

We will present the evolution of dynamic configurations for the HasNext tracematch from Figure 1. Recall
that this tracematch detects the case where the next method of some Iterator object is called twice without
an intervening call to hasNext. Consider the tracematch’s behaviour on the following method:

void m(Iterator it) {
it .hasNext();
it .next ();
it .hasNext();
it .hasNext();

}

This method clearly does not trigger the HasNext tracematch. Furthermore, it is possible to deduce the
state of the object pointed to by it after each statement in the method.

To explain dynamic configurations, we describe the dynamic configuration at each program point of
method m. Note that, throughout the execution of method m, there is only one object bound to variable it.
We denote this object by o.

Initial configuration when entering m. Our automaton diagrams show constraints for automaton states
below the states themselves. Because the tracematch semantics state that a tracematch triggers whenever
its regular expression matches a suffix of the current execution trace, any variable binding can start a new
candidate match at any time. We represent this fact with the constraint true at the initial state. No objects
are bound in the final state: hitting the final state triggers the tracematch body, so objects are immediately
consumed as soon as they reach the final state. At runtime, when entering m, the constraint at ¢; is known;
we symbolically represent this known constraint by c;.

next, hasNext

-
tart *). next , next
star
true 1 false

After line 2 (hasNext shadow). We learn that o is not in state g1, due to the skip loop on g1, so we conjoin
the negative binding i # o at q:

next, hasNext

-
tart 4}. next . next
star
true false

c1NiT# o

This conjunction models the fact that o can certainly not be in state ¢;. The runtime engine optimizes
the constraints: if ¢; contained a disjunct d with a positive binding x = o, and we conjoin ¢; with the
negative binding = # o, then we get false, which means that disjunct d can simply be dropped from ¢;.

After line 3 (next shadow). We label the resulting constraint at g; with ca. Now o is in the intermediate
state q1, giving the binding ¢ = o at ¢;:



o N o oA W N =

next, hasNext

.
tart 4}. next . next
star
true Co false

I
Vi=o0
Here, object o is definitely bound to ¢ at state ¢;.

After line 4 (hasNext shadow). After line 4 we compute the constraint ca A4 # o, which is equal to
c1 ANi # o. Hence, we effectively return to the same configuration as after line 2.

next, hasNext

1/ \'

N
start *). next . next
true 7£ false

co Nl F# o0

After line 5 (hasNext shadow). The shadow at line 5 does not have any effect on the configuration, as o
is already known not to be in ¢;.

Discussion. Our example has presented the evolution of runtime configurations through a simple method.
We have seen how the abc runtime maintains a constraint for each tracematch configuration; this constraint
tracks states of various runtime objects.

We can deduce several properties of m and its interaction with the HasNext tracematch. First of all, m
never triggers the final state of this tracematch on any object: the only object m can affect is o, and we know
what m does to o. Secondly, observe that, despite knowing nothing about o at method entry, we can deduce
precise information about the state of o at each program point: after executing the hasNext shadow, o can
only be in state qo. Finally, note that the shadow at line 5 is unnecessary because it does not change the
automaton configuration. This type of observation has inspired the optimizations that we present in this
paper.

2.3 FailSafelter example tracematch

We present an additional example illustrating the case where a tracematch binds two variables. Figure 4
presents the FailSafeIter tracematch, which reports cases where the program modifies a Collection while
an Iterator is active on that Collection. Figure 5 shows the corresponding automaton.

Consider the findVariableHere method from one of our benchmarks, pmd, a static analysis tool which
detects potentially problematic patterns in Java source code.

public int findVariableHere(Collection c) {

for (Iterator i = c.iterator (); i.hasNext(); ) {
Object o = i.next();

if (o == null)
return 0;
}
return 1;

}

This method simply creates an iterator ¢ and iterates over it. We can observe that i never hits the final state,
because it does not escape the findVariableHere method, so that all shadows on i can safely be disabled.

Our static analysis computes possible configurations for the tracematch automaton after every program
point. We observe that findVariableHere certainly never updates the collection bound to c¢. Furthermore,
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public aspect TMFailSafelter {
pointcut collection_update(Collection c):
( call(x java. util . Collection+.addx*(..)) || ... ||
call(* java. util . Collection+.removex(..)) ) && target(c);

tracematch(Collection c, Iterator i) {
sym create_iter after returning(i):
call(x java. util . Collection+.iterator ()) && target(c);
sym call_next before:
call(* java. util . Iterator +.next()) && target(i);
sym update_source after: collection_update(c);

create_iter call_next* update_source+ call.next { ... }

Figure 4: FailSafeIter tracematch: detect updates to a Collection which is being iterated over.

create, create,
update, update,
next next

[ Y N N
N A
create /L\update next
start —{ 9o @ q2 q3

Figure 5: Automaton for FailSafeIter from Figure 4.

the iterator bound to 7 is only live within findVariableHere. We can therefore conclude that the combina-
tion of ¢ and ¢ can never reach a final state in the automaton. Our static analysis will be able to remove all
shadows in this method.

Flow-sensitivity is crucial here: The collection is certainly updated somewhere in the program. We can
only safely remove the shadows in findVariableHere because the collection is not being updated while the
iterator is in use. We designed our analysis to use a flow-sensitive abstraction so that it would be able to
optimize situations like this one.

Note that tracematches bind multiple variables simultaneously, which enables them to express relation-
ships between multiple program objects. This feature complicates our analysis—we are forced to track sets of
bindings to objects, rather than tracking states of objects, one object at a time—but increases the expressive
power of the specification language: in particular, tracematches can express more sophisticated properties
than approaches based on typestate [8]. Section 6.2 describes the relationship between tracematches and
typestate verification in more detail.

3 Analysis abstraction

Our static abstraction of tracematch configurations enables us to 1) reason about the state of tracematch
automata throughout a program and 2) perform optimizations based on information that we collect about
possible tracematch configurations. This section presents our analysis abstraction and the update rules for
our abstraction.

Our static abstraction closely models the runtime tracematch configuration information, but substitutes
local variable names for runtime objects. We next present an example of our static analysis.



© ® N o o A& W N e

D S S
N =

-
o

3.1 Example of static analysis

We return to our HasNext example from Section 2.2 and explain the result of our static analysis on that
example. Note that the analysis actually operates on the instrumented code, with explicit shadows. A
simplified version of this instrumented code follows!:

void m(Iterator it) {
uniqueArglocal7 = it;
adviceformal$782 = uniqueArgLocalT;
theAspect$ TMReader.beforeAfter$14 (adviceformal$782);
it .hasNext();
adviceformal$783 = uniqueArgLocalT;
theAspect$ TMReader.beforeAfter$15 (adviceformal$783);
it .next ();
adviceformal$784 = uniqueArgLocalT;
theAspect$TMReader.beforeAfter$14 (adviceformal$784);
it .hasNext();
adviceformal$785 = uniqueArgLocalT;
theAspect$ TMReader.beforeAfter$14 (adviceformal$785);
it .hasNext();

This intermediate code clearly shows the need for pointer information. Without pointer information, it
would be impossible to keep track of which shadows apply to which heap objects. While simple transfor-
mations would be sufficient to push it throughout the method in this case, they are not enough in general.
Our pointer analyses will determine that all of the local variables in this method must-alias each other.

Initial approximation. We will present the result of the static analysis when we initially approximate the
value of ¢; with true.

next, hasNext

P
N
tart . next . next
start —
true true false

After line 4 (hasNext shadow). Statically, we know that variable adviceformal$782 is not in state ¢,
due to the skip loop on ¢, so we create the negative binding ¢ # adviceformal$782 at ¢1:

next, hasNext

start *). next @ next ’
false

true i # af3782

After line 8 (next shadow). We must add the binding i = af$783 at ¢1, since we know that af$783 is now
in state ¢;. Because af$782 must-aliases af$783, we can drop the i # af$782 binding due to the next skip
loop.

1n this text, we refer to the variables used in advice applications as advice actuals, but the abc compiler calls these variables
advice formals.

10
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N
tart . next . next
start —
true ; false

i = af3783

After line 12 (hasNext shadow). We generate the negative binding i # af$784. Furthermore, because
af$78/ must-aliases af$783, we drop the positive binding i = af$783.

next, hasNext

-
. tH next a next
star F.—
i false

true 1% af$784

After line 15 (hasNext shadow). We now generate the negative binding i # af$785. Because af$785 must-
aliases af$784, we consider both values equal and store only one of them. Hence this configuration is equal
to the previous configuration; we discuss equality of configurations in more detail below. Our unnecessary
shadow elimination optimization (Section 4.2.1) would eliminate this shadow.

3.2 How our static analysis works

We continue by describing our static analysis in detail. To compute our static abstraction of the tracematch
state for a method m, we perform a fixed-point iteration on m, starting with the initial approximation at
the start of the method.

Soundness properties. We have designed our approximation to be sound in the following sense:

1. if a shadow can trigger a final state at some program point, then our approximation at that point must
also flag the fact that the tracematch may hit the final state;

2. if two tracematch configurations may be different, then our approximation identifies that these config-
urations are different.

Property 1 supports transformations which estimate when tracematches cannot possibly reach their final
state, enabling such transformations to eliminate shadows that cannot contribute to a match. Property 2
supports transformations which recognize and eliminate shadows that do not have any effect at runtime.

Contents of bindings. Formally, our grammar for static configurations replaces runtime objects from Fig-
ure 3 with local variables; the definition for bindings therefore becomes

Bi=z=v|z#w.
Instead of stating that tracematch variable x is bound to runtime object o (z = o), we state that tracematch
variable z is bound to the contents of local variable v (z = v), and we keep in mind that v could point to a
number of different objects.

3.3 Initial approximation

At runtime, the tracematch automaton may be in an arbitrary configuration upon method entry. We model
this arbitrary configuration by running the static analysis with a set of configurations: one configuration has

11
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true at the initial state only and false at other states; other configurations have true at the initial state
and at each of the non-final states in turn, and false elsewhere. This initial approximation enables us to
detect all cases where a binding may potentially be propagated to a new state. (Note that starting with
true at all non-final states would mask some updates.)

3.4 Update rules

We next describe how our static analysis updates the abstraction at shadows. Statically, at each shadow,
our analysis receives two inputs: (1) the symbol name, and (2) a partial function from tracematch variables
to local variables. Our analysis updates the abstraction by (1) taking automaton transitions, and generating
negative bindings at skip loops, for every local variable that may alias the advice actuals (which represent
the objects bound at that shadow) and (2) dropping disjuncts when the disjuncts contain local variables
that are must-aliased with the advice actuals.

Need for aliasing information. Recall that our dynamic configuration example used a single object o as the
object whose tracematch state was being tracked. Unfortunately, as we have seen, the abc compiler creates
a number of temporary local variables and uses these temporary variables as advice actuals. Only some of
these variables point to 0. Our static analysis must determine which local variables must point to o and
which local variables may not point to o. Our use of aliasing information enables our analysis to properly
handle cases where different objects are aliased and shadows occur on some of these aliases.

Our analysis uses must-alias and not-may-alias pointer information. We gather this information using
naive intraprocedural analyses that estimate whether local variable ¢; at program point p; must-aliases, or
may not alias, local variable /5 at program point po; the key idea is that if the value of ¢; and /5 originate
at the same expression and flow to ¢ and {5 by a sequence of copy statements, then they are must-aliased,
and if ¢; and ¢35 contain heap objects known to be disjoint (for instance, they are allocated on the heap at
different new expressions), then they may not alias. Our must-alias analysis is modelled on Extended SSA
Numbering [10].

Weak updates. When the runtime encounters a shadow s on a non-skip tracematch automaton edge, it
updates the state of the heap object 0 bound to a tracematch variable; because the runtime knows the precise
identity of o, it only needs to update the state of 0. However, at static analysis time, our compiler only
has an estimate of the set of variables which may point to 0. Because our analysis attempts to find out all
variable bindings which may trigger a final state, it must update the state of all local variables that may
potentially point to o with the effect of s. (In fact, we omit updates at shadows only for those local variables
which may-not alias local variables pointing to o).

Our analysis also handles skip loops by creating negative bindings = # v if there are no positive disjuncts
which must-alias v, reflecting the fact that we know that v is not in state s after shadow s executes.

We next describe a crucial optimization for the weak update rule. Consider the following code with the
FailSafelter tracematch from Figure 4. Method m(..) iterates over a collection s. Assume that this
collection has been populated elsewhere.

m(Collection s) {
Iterator it = s.iterator ();
while(it.hasNext()) {
it .next ();

}
}

We next consider the analysis of m(..), referring to the tracematch automaton in Figure 5. When
processing the next shadow at line 4 with an initial assumption of true in state g2, we infer that the next
shadow can actually lead to a final state, a false positive.

Consider the set of states at which it can possibly be bound at the next shadow. The create shadow
ensures that s and it are bound at state ¢1, and also ensures that s and it are not in go. Therefore, g2

12



could only contain a binding i=it if some collection besides s’ # s was associated with it. While we as
programmers know that there can only always be one single collection per iterator, our analysis has no way
of determining this. We have therefore implemented the following approximation.

The structure of the tracematch automaton ensures that at state go, tracematch variables ¢ and i must
be both bound. Therefore, if no shadows outside method m which share a shadow group with the next
shadow bind c and i (possibly separately), then it is sound to omit the weak update on i at the next
shadow: because i could not have reached go, it cannot advance to g2’s successor state.

Strong updates. At static analysis time, our compiler handles a skip loop with variable v bound by dis-
carding positive bindings in the configuration which must-alias v.

Loops and redefinitions. When a local variable ¢ is redefined within a loop, it no longer must-aliases its
value from previous iterations (old £). However, our must-alias analysis cannot tell which local variable we
are asking about: are we asking about the current value of ¢ or about old ¢? Because our static analysis
uses local variables in the analysis abstraction, it cannot use the results of the must-alias analysis directly.
We therefore add an additional step to our static analysis rules for tracematches: if a local variable appears
on the right-hand side of a binding and this local variable is redefined, we replace the variable and all of
its must-aliases with a special UNKNOWN value at variable bindings. This UNKNOWN value never must-aliases
any value. Note that this special rule gives us exact information within the first iteration of the loop, while
distinguishing values of local variables between different iterations. Our loop optimizations use information
about the first iteration to determine when it is safe to hoist shadows out of loops.

Formula transformations. We found that our analysis sometimes generated formulas which are equivalent
to true; for instance, we found that our analysis generates

r=vVzx#v

in one particular example. We apply an optimization to fix up formulas which are trivially seen to be true.

Method calls. Because our analysis is intraprocedural, we conservatively assume the worst of any calls to
methods that contain shadows. After any such method call, we taint the configuration (effectively marking
the configuration unknown) and propagate taintedness to all of the method call’s successors. Our optimiza-
tions refrain from program transformations which would be based on tainted information.

Hit counters. The final state keeps no bindings, but we need to know when the final state may be trig-
gered. Recall that when a set of bindings hits a final state, the runtime executes the tracematch body and
immediately throws out the bindings, leaving the final state empty. Even if the tracematch configuration
stays the same, we need to record the fact that something has changed in the program configuration (i.e.
the tracematch body executed) to ensure Soundness Property 2.

To record this information, we keep a hit counter as part of our abstraction. The hit counter is an integer
that we increment each time we potentially hit the final state. Clients of our static analysis can read the hit
counter and know when the final state may potentially be hit.

Equality of configurations. Two configurations ¢; and co are equal if: 1) they have equal hit counters
and 2) the constraints for each state s are equal up to must-aliasing. Note that the effectiveness of our
optimizations therefore depends on the accuracy of the must-aliasing information.

Termination. To conservatively approximate control flow, our static analysis performs a fixed point iteration
over the control flow graph for each shadow-bearing method. Note that Soundness Property 2 is incompatible
with reaching the fixed point in certain situations. Consider:
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while (...) { v = c.iterator (); v.next(); }

Because v is redefined within the loop body, we must assume that it is bound to a different object within
each iteration, preventing our analysis from reaching the fixed point. The iterations that did terminate did
so in no more than 10 iterations. We therefore aborted our fixed point iteration after a maximum of 20
iterations, to be on the safe side.

Sources of inaccuracy. The sources of inaccuracy in our analysis are: 1) as with any static analysis, we
must estimate the control flow—we guess that each branch of a conditional might be taken; 2) because our
analysis is intraprocedural, we conservatively estimate the initial state at the beginning of each method; and
3) we identify variables with the set of heap objects that it points to. (Note that our Jimple intermediate
representation splits local variables [16], so that disjoint lifetimes of local variables are split into different
variables for our analysis. SSA form gives a similar splitting.) Our approximation was designed to soundly
overestimate the set of objects that bind to tracematch variables in any given tracematch state.

Concurrency. As described, our static analysis does not handle concurrent programs; we verify that our
benchmark applications are single-threaded before optimizing them. A number of straightforward extensions
would enable our analysis to handle concurrency. First, we can conservatively assume that any shadow in
another thread may occur at any point in our methods. We could then improve our results by considering
only shadows that may actually occur in parallel with our shadows, for instance by determining thread-local
objects as in [9].

4 Optimizations

The AspectBench Compiler [2] (abc) implements tracematches. It weaves together Java or AspectJ code
with tracematches and emits instrumented Java bytecode. Figure 6 presents the entire weaving process,
including our three optimizations. To weave a program with a tracematch, the compiler matches the symbol
definitions of the input tracematch against the given program, giving a weaving plan. The weaving plan
contains a complete description of the instrumentation needed to implement the runtime monitoring specified
in the tracematches. Next, the compiler weaves together the program and the tracematch according to the
weaving plan. All subsequent analyses are conducted on the woven program.

We optimize our input program as follows. First, we apply two optimizations from [7], the quick check and
the flow-insensitive optimization. We then apply the three optimizations proposed in this paper: unnecessary
shadow elimination, cannot-reach-final elimination and shadow motion. Because each optimization may, in
principle, enable other optimizations, we iterate the optimizations, as illustrated by the back edge in the
figure.

Whenever any of the optimizations proves that a shadow can be removed, it updates the weaving plan
accordingly. The iteration terminates when no optimization removes any shadows. We then re-weave the
program according to the updated weaving plan.

4.1 Previous analyses

In previous work [7], we described some techniques for statically optimizing tracematches. Because this
paper builds on some of our previous work, we briefly summarize some key points. The main idea in all of
our work is to use static analyses to move or disable shadows which cannot possibly trigger a final state.

4.1.1 Quick check

The quick check technique uses the following insight. A tracematch automaton can only hit its final state if
the program executes a sequence of shadows which lead to the final state. If a critical edge in the automaton
has no corresponding shadows in the program (leaving the automaton disconnected), then the automaton
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Figure 6: Weaving Process.

can never reach its final state. In that case, the quick check may remove all other shadows belonging to that
tracematch.

For example, consider the HasNext tracematch and a target program that does not call the next ()
method. Since such a program can never trigger the HasNext tracematch, we remove the all instrumentation
for this tracematch, including at calls to hasNext ().

4.1.2 Flow-insensitive analysis

The flow-insensitive analysis uses the following main idea: given a set of shadows which contain transitions
reaching the final state, the automaton can only actually trigger on those shadows if each shadow’s trace-
match variables are potentially bound to the same objects. For the HasNext tracematch, if a program calls
i.hasNext () on some iterator i, but never i.next () on the same i, then it is sound to remove the shadow
at i.hasNext ().

Shadow groups. A shadow group consists of a collection of shadows that may drive the tracematch into a
final state, along with the points-to sets for each shadow’s bound objects. The shadow group can only lead
to a match at runtime if there potentially exists at least one actual heap object for each bound variable. We
call such shadow groups consistent. Our analysis determines whether a shadow group is consistent or not by
testing whether the intersection of the points-to sets for bound variables is empty or not. Our flow-insensitive
analysis disables all shadows that do not belong to at least one consistent shadow group.

In this work, we only use the following property:

If two shadows might ever collaborate to drive a tracematch configuration into a final state at
runtime, then there exists a shadow group that contains both of these shadows.

Shadow groups enable us to soundly handle method calls in our analysis: if method m transitively calls
method n, and m and n have shadows in the same shadow groups, then we must taint the configuration after
calls to n, since we are performing an intraprocedural analysis. If they do not have any common shadows,
then n has no effect on the configurations we are tracking in m.
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4.2 Novel optimizations

Our static analysis enables novel program optimizations that are based on an estimate of the possible
tracematch states at various program points. In this section, we present three transformations that use
the information collected by our static analysis. Two of the transformations disable shadows that cannot
contribute to reaching a final state. Other shadows are not unnecessary—they might contribute to reaching
a final state—but only need to execute once. Our other transformation therefore manipulates loops to ensure
that such shadows are only executed once, either by hoisting shadows out of loops, or by guarding them
with special Boolean flags.

4.2.1 Unnecessary Shadow Elimination

Recall that a program executes a shadow every time it encounters a pointcut corresponding to a symbol
definition. Generally, a shadow triggers a change in the tracematch configuration. However, it may turn
out that a particular shadow will never change the tracematch configuration, given a set of known possible
input configurations to that shadow. Consider the HasNext tracematch (Figure 1) and the following typical
example of printing the contents of a collection:

while(it.hasNext()) {
if (it .hasNext()) {
System.out.println(”,” );
}

System.out.println(it .next ());

}

Observe that the inner call to it.hasNext (), on line 2, cannot possibly affect the tracematch automaton:
the call to it.hasNext () on line 1 has already cleared all disjuncts binding it from state g1, so that the
call on line 2 is always a no-op. We can therefore safely disable the shadow at line 2.

Note that this transformation is only possible because the shadow at line 2 must execute immediately
after the shadow at line 1, ensuring that the iterator it must be in the initial state. Flow-sensitivity is
crucial for this transformation.

Implementation. We have implemented the unnecessary shadow elimination transformation as follows:

e Collect the static analysis results for method m.
e If the analysis did not reach the fixed point, abort.
e For each shadow-bearing statement s,

— If, for every input state reaching s, s generates an identical output state, and s is not tainted,
then disable shadows at s.

Note that we perform the verification state-by-state: that is, we split the input configuration into a
collection of input tracematch states (one input per non-final automaton state) and verify that the output
on that state is unchanged. This ensures that our over-estimation of the input configuration does not mask
cases where one input state changes the configuration to a different state, but that new state is invisible
because it is already in the input configuration.

4.2.2 Cannot-trigger-final Elimination

Our unnecessary shadow elimination handles shadows that do not change the tracematch configuration.
Some shadows do change the tracematch configuration, but can still never lead to the final state. Consider,
for instance, the following code with the HasNext tracematch:
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Iterator i = c.iterator ();
while (i.hasNext()) {
Object o = i.next();

}

Clearly, this code can itself never trigger the final state, regardless of the input configuration. Further-
more, if i is a local variable and does not escape its defining method, no other shadow in the program can
cause the tracematch to hit the final state on i. Alternately, if the shadows in the rest of the program
cannot subsequently trigger a final state on the objects in our method of interest, then we can remove the
shadows in our method of interest. In general, local variables that do not escape are candidates for removal
by our “cannot-trigger-final” transformation, as are objects that do escape but whose potentially-dangerous
shadows are confined to one method.

Our static analysis identifies all shadows that may reach the final state within a particular method m.
However, even if the shadows of m do not trigger the final state while m is executing, they could leave the
tracematch automaton in a state where a shadow in some subsequently-executed method will trigger the
final state.

We therefore model future actions as follows. First, using our flow-insensitive whole-program analysis (as
described in Section 4.1), we identify a set of relevant shadows. A shadow is relevant for method m if it is
an active shadow, does not belong to m, and shares a shadow group with some shadow in m. Note that only
the shadows which share a shadow group with shadows in m can possibly be affected by m; the definition of
shadow groups ensures that all other shadows operate on a disjoint set of bound objects and are therefore
unaffected by m.

To use the information about future actions, we create an extended control flow graph, augmented with
the relevant shadows, and feed the extended CFG to our static analysis. We augment the control flow graph
of m by replacing each exit statement s, of the graph with a jump from s, to a synthetic node. The synthetic
node is a fresh node that we create and to which we add all relevant shadows.

next(7) next(j);

Figure 7: Extended control flow graph.

Figure 7 presents an example of an extended control flow graph for a method with one shadow, next (i).
Assume that the program contains one other shadow, next (j), in some other method (a foreign shadow).
We replace the return; statement with a jump to a synthetic node that triggers the foreign next (j) shadow.

If the next (i) shadow from the current method and next(j) from the foreign method belong to the
same shadow group, then i and j may be aliased, ¢.e. may at runtime point to the same object. In that
case, our analysis would have to keep next (i) alive. Otherwise, the analysis may safely remove the next (i)
shadow.

In general, we interpret the results of the static analysis on the extended control-flow graph as follows.
If m never hits any final states, we remove all shadows in m. Otherwise, we must make sure that we do not
remove any shadow that can contribute to a final state. A shadow can contribute to a final state if any of
its successors is either tainted (we therefore assume that the successor will potentially trigger the final state)
or contains a shadow that leads into a final state.

Initial approximation. Unlike all of the other analyses, where we care about whether a shadow may change
the tracematch configuration or not, in this transformation we only care about whether the tracematch may
hit its final state. A sound initial overapproximation for this analysis is simply to assign true to each non-
final tracematch state and false to final states. This approximation represents the state where all objects
are potentially bound to all tracematch variables in all non-final states. (Recall that the final state is always
empty because bindings immediately leave the final state after triggering the tracematch.)
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Implementation. We use the following algorithm for the cannot-hit-final transformation on method m:

e Augment method m with a synthetic node which contains all relevant shadows from other methods.
e Collect the static analysis results for augmented method m.

e Remove all shadows that do not reach final states or statements with tainted configurations.

Omitting the current method’s shadows in the summary of the future. It is sound to omit the shadows
of m when computing the set of shadows that may execute in the future, even if m may be called again in
the future. Recall that our analysis makes the worst-case assumption of an arbitrary initial configuration,
which includes all possible effects of method m. Our static analysis will therefore not miss any final states
reached in future calls of m; they would have already been detected at this call to m.

Alias analyses. We comment briefly on the must-alias analysis with respect to the synthetic node. Each
shadow on the synthetic node has a set of variable bindings with variables from other methods. Our must-
alias analysis therefore states that the variables never must-alias the variables in method m. Note that our
may-alias analysis can still give meaningful answers even for foreign variables. Observe also that the result
of importing foreign shadows is that they are treated as weak updates (they may execute) but not as strong
updates (there is no guarantee that they will execute).

4.2.3 Shadow Motion

Some shadows, of course, are not amenable to optimization with either the unnecessary-shadow or the cannot-
trigger-final elimination. For instance, the optimizations that we have presented so far would not help for
a shadow that may potentially contribute to a final state in some potential execution; our optimizations so
far only eliminate shadows that provably do nothing. Our next insight is that many shadows occur in loops;
if we can somehow reduce the number of times that these shadows are executed, then we will speed up the
program.

Shadow motion optimizes loops by hoisting shadows out of loops. If the set of shadows in a loop body
collectively leave the tracematch state unchanged (except, possibly, for the first time that these shadows
execute), and if these shadows can never trigger a final state, then the shadows can be hoisted out of the
loop. Note that shadows can be hoisted whether or not they contribute to reaching a final state later on.
Consider the following example code with the HasNext tracematch:

while(it.hasNext()) {
it .next ();

it .next ();
it .next ();

Figure 8 graphically illustrates the situation. No shadow in the code can be eliminated by the “un-
necessary shadow” analysis. Further, line 5 can trigger the final state on it, so the “can’t-trigger-final”
optimization will not remove any of the shadows either, because line 5 can be reached from all those shad-
OWS.
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Observe, however, the following two properties of the loop at lines 1-3: (1) the loop can never trigger a
final state; (2) the state upon exit from the loop is known, and in particular, it is equivalent to the state
obtained by calling it.hasNext () exactly once.

Note that the hasNext shadow must execute at least once, as it may change the tracematch state. We
move the hasNext shadow to run after the loop exit, as shown in Figure 9.

Because we know that the loop never triggers the final state, it is sound to move the shadows around. In
particular, any effect of these shadows will not be visible until after the loop exits.

Hitting the final state: Execute Shadows Once. If the code in a loop body may actually trigger the final
state, it is unsafe to hoist the shadows out of the loop body: if the final state is actually hit at runtime, the
tracematch body must execute right away. Here is an example of such a case. Consider the FailSafelter
tracematch from Figure 4, which detects collections that are modified while they are iterated on, with the
following program:

Iterator it = c.iterator ();
if (...)

c.add(new Object());
while(it.hasNext()) {

it .next ();
}

Clearly, the shadow on line 5 may trigger the final state of the FailSafelIter tracematch, so that we cannot
remove, or even move, that shadow: it must stay where it is. A naive compiler, of course, will execute
the shadow on line 5 every time through the loop. However, our static analysis allows us to conclude that
subsequent iterations of the loop do not affect the tracematch automaton; the shadow at line 6 is dead on
subsequent iterations (both the hit counter and configuration stays the same after that shadow). In such
cases our transformation does not move shadows out of the loop. Instead, it copies shadows to loop exits
and then guards the shadows in the loop so that they execute exactly once after the loop header executes.

Our execute-shadows-once transformation is equivalent to unrolling the loop once, leaving the shadows in
the unrolled code, and disabling the shadows in the loop itself. We chose to implement this transformation
using a boolean flag for practical reasons.

Implementation. We have implemented our “shadow motion” transformation as follows.

e Find all (reducible [13]) loops in method m.
e For each loop ¢ (inner loops first):

— Apply our static analysis to only the statements of /.

During this analysis, store (for each statement) the output configurations after the first iteration
of the analysis.

— If, at any loop exist e, the outgoing configurations after the first iteration differ from the outgoing
configurations at the fixed point, continue with the next loop.
Having reached this point, we know that the method’s static configurations reach their fixed
points in one iteration: no subsequent execution of the loop body has any effect on the trace-
match configuration. Because of our second soundness property, this also holds for all dynamic
configurations. Executing the shadows in subsequent iterations is therefore unnecessary. We only
need to execute the set of shadows in the loop once.

— If some statement in £ potentially triggers a final state, guard the shadows in ¢ with conditionals
so that they only execute once.

— Else, disable all shadows in ¢, and for each loop exit e:
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* Determine the set of shadows S which lie on some path from the loop header to e. (Note that
the choice of path does not matter: if it did matter, we would not have a stable configuration
at e after one iteration. Given a stable configuration, we do not need to worry about infinite
paths through inner loops, nor do we have to worry about possible branches within the loop.)

x Determine the unique post-loop successor s of e. Add a nop statement n before s, and make
n the new successor of e. Annotate n with all of the shadows S, in order; they will be woven
into the code at the next reweaving.

5 Results

To validate the effectiveness of our optimizations, we applied them to several combinations of tracematches
and benchmarks from version 2006-10-MR2 of the DaCapo benchmark suite [5]. We have previously identi-
fied [7] a number? of benchmark/tracematch combinations as being resistant to our flow-insensitive analysis:
even after the flow-insensitive analyses, these benchmark/tracematch combinations still had relatively large
overheads.

pattern name | description

FailSafelter | do not update a collection
while iterating over it
HashMap | do not change an object’s hash code
while it is in a hash map
HasNextElem | always call hasNextElement before
calling nextElement on an Enumeration
HasNext | always call hasNext before
calling next on an Iterator
Reader | don’t use a Reader after closing it
or its underlying InputStream

Table I: Tracematches applied to our benchmarks
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antlr/Reader | 43 | 15 | 15 0 0 0 0
bloat/HashMap | 29 | 28 | 28 | 28 | 28 | 28 0
bloat/HasNext | 640 | 640 | 640 | 630 | 438 | 417 || 359
chart/FailSafelter | 110 | 110 | 107 | 107 | 107 | 107 0
luindex/HasNextElem | 16 | 16 | 15 3 0 0 1
pmd/FailSafelter | 130 | 91 | 90 | 90 | 90 | 90 0
pmd/HasNext | 88 | 87 | 87 | 73 | 47 | 42 | 43

Table II: Number of shadows remaining after each analysis stage, plus number of shadows moved by shadow
motion

2We reported nine pathological combinations in [7]. However, Avgustinov et al. have recently further optimized the
implementation of the generated runtime monitor [4] so that only seven of those combinations still showed overhead at submission
time. We hence conducted experiments on those seven cases.
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The tracematches that we use all validate safety properties. We assume that our benchmark applications
are mature systems which will not trigger our tracematches. We should therefore—in principle—be able to
remove all instrumentation from our benchmarks.

Our tracematches specify usage constraints for frequently used Java Runtime Environment data struc-
tures, including collections, iterators, readers and writers. These tracematches tend to induce reasonably hot
instrumentation points and can therefore incur substantial instrumentation overheads at runtime without
static optimization. Table I summarizes our example tracematches and the properties that they ensure.

Tested configurations. We performed our experiments on four different versions of the benchmark pro-
grams:

raw no tracematch present (raw benchmark program)

no-opt tracematch present, no whole-program optimizations

flowins tracematch present, flow-insensitive analysis [7] only

full tracematch present, flow-insensitive analysis and
new intra-procedural analyses enabled

Our new intra-procedural analyses took several minutes to execute in the worst case, and usually substantially
less.

Compilation was performed on Sun’s 64-Bit Server VM (build 1.6.0-rc-b104), with 3GB maximal heap
space and a default stack size of 2MB (-Xmx3072m -Xss2048k) on a machine with AMD Athlon 64 X2 Dual
Core Processor 3800+ running Ubuntu with kernel version 2.6.15-28.

5.1 Shadow removal

Table II presents measurements of the effectiveness of our optimizations. In particular, it reports on the
number of shadows that each of our optimizations removes. The first column contains the benchmark/trace-
match combination. The second number is the total number of reachable shadows in the program. The
third column contains the number of shadows remaining after performing the flow-insensitive optimizations
from [7]. This column constitutes the baseline; the techniques in this paper seek to show improvements over
this baseline number.

Although our three transformations could, in principle, synergistically work together to enable optimiza-
tions upon iteration, we found that, in practice, one iteration of each optimization was sufficient to ensure
maximal results. In terms of Figure 6, we only needed to run through the optimization loop once; a second
iteration had no effect. The next three columns of Table II show the number of remaining shadows after the
“unnecessary-shadow”, “cannot-trigger-final” and “shadow motion” optimizations.

After these optimizations, we found that a second iteration of the flow-insensitive analysis did sometimes
remove additional shadows. The second-to-last column therefore contains the number of shadows remaining
after the second application of the flow-insensitive analysis. This is the number of shadows remaining in the
fully optimized program.

Because shadow motion does not necessarily reduce the number of shadows in the program, we evaluate
its static effectiveness by presenting the number of shadows moved during shadow motion in the rightmost
column.

Complete success: Static verification. We were happy to find that our optimizations removed all shadows
for the antlr/Reader and luindex/HasNextElem benchmarks. Such a result has two benefits: the run-
time overhead will obviously be nil, and better yet, the benchmarks are statically safe with respect to the
verification property encapsulated in the tracematch.

No improvement for bloat/HashMap. The HashMap tracematch differs from the other tracematches: it
does hit its final state. For this tracematch, part of the verification occurs in the tracematch body, which

21



compares objects’ current hash codes with previously-stored hash codes. We therefore did not expect to
improve this case; instead, this benchmark helped ensure soundness for our analyses.

Other improvements. In the remaining four cases, our optimizations removed more shadows than the
first flow-insensitive pass did. For bloat/HasNext, we removed 223 shadows, but 417 shadows remained.
We believe that this is because bloat uses a number of highly non-local data structures, and iterators
are frequently passed across method boundaries. bloat therefore does not lend itself very well to the
optimizations described in this paper. In pmd/HasNext, some of the examples cannot be verified with any
intraprocedural analysis; consider the following:

if ('c.isEmpty()) { foo(c. iterator ().next()); }

Although this use of an iterator is innocuous, a conservative initial approximation for the Iterator
returned by c.iterator() must assume that this (fresh) Iterator may already have had next () called
once on it.

We found situations which were more worrisome from a maintenance perspective. Consider the following
code sketch:

void bar() { if (!c.isEmpty()) { foo(c. iterator ()); } }
private void foo(Iterator i) { dolt(i.next()); }

This code is safe as long as foo(..) is only called by bar(..). However, foo(..) does rely on the fact
that its input Iterator still has more elements. Of course, there is no documentation of this assumption
(except in the private scope of foo). An unwary developer could easily call foo and crash the program.

Remaining shadows. Our optimizations were not able to improve on the flow-insensitive analysis in the
chart/FailSafeIter and pmd/FailSafelIter benchmarks. We carefully investigated these cases and found
the following idiom: method m iterates over a collection ¢ with a fresh iterator ¢, and method m’ updates this
collection. We described an optimization for weak updates in Section 3.4. This optimization was designed to
handle such cases. If we can determine that no method but m creates any iterator aliased to i (as is always
the case), then our analysis of m will be able to omit the weak update at the call to i.next (). This weak
update is currently preventing us from applying both cannot-trigger-final elimination and shadow motion to
m. Unfortunately, our global points-to analysis currently does not provide enough precision to determine
that no object in other methods may possibly alias ¢, due to a lack of context information.

Applicability of optimizations. Our results show that different transformations help differently on different
benchmarks. While shadow motion removed by far the most shadows for bloat, cannot-trigger-final was
very effective for lucene. Unnecessary shadow elimination did not remove many cases, but was easy to
implement, and we hope that generalizations of unnecessary shadow elimination will be useful.

5.2 Runtime improvements

We executed all of the relevant benchmark/tracematch combinations to measure the runtime overhead.
Because some of the benchmarks require a Java 1.4 Virtual Machine, we executed all of our benchmarks on
Sun’s HotSpot 32-Bit Client VM (build 1.4.2_.12-b03), with 2GB of maximal heap space on a machine with
a AMD Athlon 64 X2 Dual Core Processor 3800+ running Ubuntu 6.06 with kernel version 2.6.15-28. We
used the standard workload size for the benchmark and enabled the ~converge option, which tries to assure
timing within a confidence interval of 3%. The benchmark chart renders objects to the screen. In order to
minimize distortion by that fact, we opened a VNC server with a virtual screen that is not actually displayed.
Screen output of chart was then redirected to that server. The two benchmarks luindex/lusearch use the
same binaries (the program lucene) which are compiled/optimized only once. Just their run configuration
differs.
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Table IIT shows the results of those measurements. The “raw” column shows the running time of the raw
benchmark without any tracematches. The “no-opt” column shows the slowdown with tracematches but
without any whole-program program optimizations. Next, the “flowins” column presents the slowdown with
the flow-insensitive analysis from [7] has been applied. Finally, the “full” column contains the slowdown
after applying the optimizations in this paper.

| benchmark | raw | no-opt | flowins | full

antlr/Reader | 4.1s | 5.50x | 1.07x | 1.00x
bloat/HashMap | 9.6s | 1.88x | 1.89x | 1.89x
bloat/HasNext | 9.6s | 15.55x | 14.75x | 13.78x
chart/FailSafelter | 14.7s | 1.09x 1.09x | 1.09x
luindex/HasNextElem | 17.3s | 1.12x 1.10x | 1.02x
pmd/FailSafelter | 12.8s | 2.12x | 1.87x | 1.84x
pmd/HasNext | 12.8s | 1.62x | 1.63x | 1.08x

Table III: Runtime overheads after different analysis stages

As we would expect, the two benchmarks where we removed all shadows suffer no overhead. For
pnd/HasNext, even though we removed just over half of the original shadows, the runtime overhead shrinks
from 63% to just 8%. This is by design: our analysis was targetted towards typical situations where hot
shadows would be likely to occur. pmd has only two pairs (each containing next and hasNext) of such
shadows, which account for 90% of the overhead. Our cannot-trigger-final optimization removes one of these
pairs, while shadow motion improves the other pair. For the other benchmarks, speedups are in line with the
proportion of shadows removed. The final result leaves us with only three benchmarks (one unoptimizable),
out of an initial set of 90 benchmarks, that carry a runtime overhead of more than ten percent.

Our benchmark set and our current version of abc are available at http://www.aspectbench.org, along
with an extended technical report version of this paper (abc-2007-2). As usual, our optimizations will be
part of the upcoming release of abc.

6 Related Work

We next discuss a number of areas of related work. We first describe the relationship between our work
and the ASTREE project, which uses static analysis to ensure that programs never trigger runtime errors.
We compare our work on tracematches to research on the alternate specification languages encapsulated
in typestate-based approaches and PQL. Finally, we explain the relationship between the standard loop
hoisting compiler optimization and our loop optimizations for shadows.

6.1 Eliminating runtime errors

The ASTREE static analyzer [6] has successfully verified millions of lines of automatically genrated C code
for the absence of runtime errors. ASTREE verifies that programs never trigger the runtime errors defined
in the C language specification. Examples of such errors include out-of-bounds array accesses and arithmetic
overflow. It combines a number of different static analyses to statically verify program properties, and in
general, ASTREE uses abstract interpretation over a number of specialized abstract domains.

While, like ASTREE, we use static analyses to detect cases where error conditions might occur, our goals
differ substantially from those of ASTREE. ASTREE attempts to remove all possible runtime errors from
the code; we instead flag possible matching tracematches and to evaluate them at runtime. Furthermore,
instead of detecting a set of runtime errors that is fixed in the C language specification, our specification
language is flexible: we enable developers to choose the properties that are important to them, by supporting
any property that can be specified as a regular expression over symbols. Finally, ASTREE generally verifies
that integers and floating-point numbers fall within acceptable ranges, while we verify relationships between
events on heap objects.
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6.2 Typestate

Typestate properties [14] have been enjoying renewed interest; recently, Fink et al. presented a static analysis
for the runtime checking of typestate properties [8]. Their approach, like ours, uses a staged analysis which
starts with a flow-insensitive pointer-based analysis, followed by flow-sensitive checkers. Note that Fink et al.
aim to verify properties fully statically, and emit a warning or error message if they fail to verify the property,
rather than inserting instrumentation code as we do. Also, Fink et al. do not discuss how developers might
specify properties to be verified. Tracematches enable developers to specify the properties that are to be
verified.

Tracematches are more expressive than typestate. Typestate describes the state of heap objects one-at-
a-time: for instance, heap object i is in state s at program point p. Tracematches enable developers to relate
the state of multiple heap objects. Tracematches are therefore more difficult to optimize than typestate
properties: they change the worldview from one where it is sufficient to focus on a particular object to one
where arbitrary objects can affect the property of interest. Consider the following two concrete cases.

Our HasNext example binds one free variable, i, for the Iterator object being considered. After any call
to i.hasNext (), we know that the object bound to ¢ must be in its initial state; in principle, we could track
i from its creation site throughout its lifetime. Because tracematches bind multiple objects simultaneously,
it is no longer clear where to start tracking the tracematch state for tracematches with multiple variables.

Next, consider the FailSafelter example, which ensures that an Iterator does not suffer from changes
in its underlying Collection during iteration. To analyze a call to c.add(), we need to know about all
of the iterators that might be active over c; in principle, any Iterator in the program might be based on
the Collection object c. Because typestate properties only constrain one object at a time, an analysis for
typestate properties can always derive enough context information just from looking at the actions on the
object itself. These two issues—where do we start the analysis? which objects are bound simultaneously?7—
drove us to use constraints in our static abstraction. These constraints cannot specify precisely which objects
are related, but they encapsulate the information that we need for our analyses.

6.3 Program Query Language

The Program Query Language [11] is similar to tracematches in that it enables developers to specify proper-
ties of Java programs, where each property may bind free variables to runtime heap objects. PQL supports
a richer specification language than tracematches, since it is based on stack automata rather than finite state
machines. Runtime overhead is a problem for both PQL and tracematches, and the authors show that a
flow-insensitive, pointer-based analysis can eliminate much of the overhead incurred by using PQL. Their
approach inspired the flow-insensitive optimizations in our earlier work [7].

Because PQL uses a flow-insensitive approach to static analysis, we believe that it would suffer comparable
overheads to those in [7]; no flow-insensitive analysis can remove any more instrumentation in the cases that
we consider in the present paper. We have shown that our novel flow-sensitive approach can successfully
handle more cases than older approaches, and we believe that our approach would apply to PQL as well.
A static abstraction of PQL stack automaton configurations which satisfies the properties from Section 3
would therefore enable the use of our optimizations.

6.4 Loop optimizations

One of our optimizations is modelled on loop hoisting: we move redundant code out of loop bodies. Loop
hoisting (also known as code motion) is a well-known standard compiler optimization technique (e.g. [13],
chapter 14). In the standard setting, loop hoisting attempts to move redundant computations out of loops
as follows. If an expression computed within a loop depends only on values defined before entering the loop,
and this expression has no side-effects, then the computation of the expression can be moved out of the loop.
The general code motion problem is difficult: any computations to be moved out of a loop must be free of
side effects and dependences on the heap. Xu [17] and Salcianu [15] report on some purity analyses for Java
which would enable such code motion.
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In any case, we are interested only in moving shadows out of loops. Fortunately, executing a tracematch
shadow can only have two side-effects: the shadow may (1) modify the current configuration, or (2) execute
the tracematch body. Our abstraction captures all possible instances of both of these side effects, enabling
us to move shadows out of loops. Note that the finite-state model of tracematches enables us to quickly
determine if two configurations are identical or not; it is, of course, much harder to determine whether two
general program configurations are identical.

7 Conclusions

In this paper we have presented a novel approach to optimize the instrumentation required for runtime
monitoring. We have proposed three different intra-procedural optimizations that identify unnecessary in-
strumentation using local flow-sensitive state and alias information. All three optimizations use a sound
static abstraction of finite state machines for tracematches, the particular runtime monitoring system we
developed. We see no reason that our approach should be restricted to tracematches. In general, our
optimizations could use any sound static abstraction of runtime configurations.

Our results show that our three optimizations can remove most of the instrumentation in our benchmark
set. We greatly improved the performance of four benchmarks which each had perceivable runtime overheads
before our optimizations. For two of these benchmarks, we showed that the given tracematches never
apply, making instrumentation unnecessary: for tracematches which capture error situations, our analysis
proves that the error situations can never arise, and the program is proven safe with respect to that error.
Another benchmark is not amenable to improvement by any static instrumentation-elimination technique, as
it actually executes its body. For the remaining two benchmarks, we removed some instrumentation but did
not reduce the observed runtime overhead. We believe that an improvement in the global points-to analysis
that we use will enable our optimizations to remove most of the overhead in these cases.

Implications. We discuss broader implications of our research.

Many static analyses attempt to discover properties of the program being analyzed. Our analysis instead
focusses on the behaviour of the runtime monitor—something external to the program. Because our analysis
verifies properties that are specified apart from the program itself, each developer is free to specify the
properties that are most useful to him or her.

Our static analysis is intraprocedural; we were somewhat surprised to find that it worked as well as it
did. We believe that an intraprocedural analysis is powerful enough to handle many useful cases for the
following reason. Recall that our use of tracematches aims to guarantee certain constraints on the program’s
behaviour; we want to ensure that the program never executes certain pathological sequences of events.
When implementing a method, defensive programming on the developer’s part will often (but not always)
ensure that the program state is appropriate before proceeding with the method’s actions. Because such
defensive programming ensures that the program is in a desirable state, the static analysis can also use
the fact that the defensive code has successfully completed to conclude that the tracematch will never be
triggered.

Currently, runtime monitoring is usable during development but not for deployed programs: the runtime
overhead is tolerable but noticeable. A goal of our research is to make runtime monitoring feasible in deployed
code. This paper contributes to our goal by significantly reducing the runtime overheads for our benchmark
applications; most of our benchmark programs suffer no performance loss at all under our benchmark runtime
monitors.

Acknowledgements. We owe thanks to Manu Sridharan for help with using his demand-driven points-to
analysis. We also thank the entire abc group for their continuing support.
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