
Aspects and Data Refinement?

Pavel Avgustinov1, Eric Bodden2, Elnar Hajiyev1, Oege de Moor1,
Neil Ongkingco1, Damien Sereni1, Ganesh Sittampalam1, Julian Tibble1

1 Programming Tools Group, Oxford University, United Kingdom
2 Sable Research Group, McGill University, Canada

Abstract. We give an introduction to aspect-oriented programming from the
viewpoint of data refinement. Some data refinements are conveniently expressed
via aspects. Unlike traditional programming language features for data refine-
ment, aspects conceptually transform run-time events, notcompile-time programs.

1 Introduction

Data refinement is a powerful tool in program construction: we start with an existing
module, adding some new variables related to the existing ones via acoupling invari-
ant, and possibly adding new operations as well. Next we refine each of the existing
operations so that the coupling invariant is maintained. Finally, if any existing variables
have become redundant, they are removed [8].

The idea is pervasive, and it is no surprise, therefore, thatnumerous researchers have
attempted to capture it in a set of programming language features. An early example of
this trend can be found in the work of Bob Paige, who advocatedthe use of a program
transformation system to achieve the desired effect [9]. The idea was again raised by
David Gries and Dennis Volpano in their design of thetransformin the Polya program-
ming language [3]. Very recently, Annie Liu and her coworkers [6] breathed new life
into this line of work by updating it to the context of object-oriented programming.

All these systems are very powerful, and they are complete inthat all data refine-
ments can be expressed, at least in principle. In another community, a set of program-
ming language features has been proposed that is less powerful, but still suitable for
direct expression of simple data refinements. These features are collectively known un-
der the name of ‘aspects’ [5].

In this talk, we shall examine some examples of data refinement expressed as as-
pects. Conceptually aspects transform run-time computations, unlike the above systems,
which are all based on the idea of compile-time transformation. For efficiency, aspect
compilers do as much transformation as possible at compile-time [7], but that is an
implementation technique, not the semantics. We argue thatto write reusable data re-
finements, which are independent of the syntactic details ofthe program being refined,
the run-time view offered by aspects is preferable.

? This work was supported, in part, by IBM, and by EPSRC in the United Kingdom, and NSERC
in Canada.

2 Data refinement

Consider an interface in Java for bags (multisets) of integers; an example of such an
interface is shown in Figure 1. It includes an operation thatreturns an iterator over the
elements of a bag; the order of such an iteration is not further specified.

interface Bag{
void add(int i);
void remove(int i);
java.util . Iterator iterator ();

}

Fig. 1. Bag interface inJava

Now suppose we wish to augment this interface, and all classes that implement it,
with an operation that returns the average of the bag of integers. A naive implementation
would be to re-calculate the average each time, but that requires time proportional to
the size of the bag.

To achieve a contant-time implementation ofaverage, we introduce two new vari-
ables via data refinement, namelysumandsize. The coupling invariant is thatsumholds
the sum of the abstract bag, andsizethe number of elements. Once we have these two
variables, it is easy to define an efficient implementation ofthe averagefunction, as
it just returns their quotient (provided the bag is not empty). Of coursesumandsize
have to be kept up-to-date whenaddandremoveare called: these operations must be
data-refined accordingly.

Figure 2 shows how to code this data refinement in AspectJ, an aspect-oriented
extension of the Java programming language [4]. First note how it introduces the two
new variables into all implementations of theBag interface, on Lines 2 and 3. Next
we define the newaverageoperation, on Lines 4 to 6. The remainder of the aspect is
devoted to refining theadd operation (Lines 7–14) and theremoveoperation (Lines
15–22). Let us examine the refinement ofadd in a little bit more detail. It says that
whenever we have completed executing the body ofadd, on a bagb, with argumenti,
the sum should be increased byi and the size should be increased by 1.

Note that the aspect is generic, in that it applies the data refinement to any imple-
mentation of theBag interface. Obviously this is a desirable property, as we cannow
reuse the same piece of code without having to replay the samedata refinement each
time a new implementation of bags is introduced.

3 Compile-time transformations

An obvious way to view aspects is as program transformations, which insert extra code
into an existing program. Indeed, that has been the prevailing view in all previous works
that sought to provide language support for data refinement.

The disadvantage of such a wholly syntactic approach is thatit is very hard to write
reusable data refinements, that are independent of the implementation details of the
program being refined. To illustrate, consider changing theoriginal Bag interface by
adding a methodaddAll(Bag c); this new method adds all elements of another bagc

2

1 public aspect Average{
2 private int Bag.sum;
3 private int Bag.size ;
4 public float Bag.average (){
5 return (size == 0 ? ((float)sum) / ((float) size) : 0);
6 }
7 after (Bag b,int i) returning () :
8 execution(void Bag.add(int)) &&
9 this (b) &&

10 args(i)
11 {
12 b.sum += i;
13 b. size += 1;
14 }
15 after (Bag b,int i) returning () :
16 execution(void Bag.remove(int)) &&
17 this (b) &&
18 args(i)
19 {
20 b.sum−= i;
21 b. size−= 1;
22 }
23 }

Fig. 2. Aspect for data refinement.

to the givenBag. Formally, the callb.addAll(c) implements the assignment (writing+
for bag union)

b := b+c

Now consider how the aspect should be modified, if at all, to take account ofaddAll.
First observe that if we know thataddAll is always implemented by iterating overc,
calling theb.add method, no changes to our aspect are necessary. It is conceivable,
however, that a more efficient implementation is used. For instance, when both the
collection and the bag happen to be stored as sorted lists, a simple list merge would be
cheaper than repeated element insertions.

It follows that for the aspect to remain reusable across all implementations of the
Bag interface, we need to implement the data refinement of the newaddAll method
separately:

after (Bag b, Bag c)returning () :
execution(void addAll(Bag)) &&
this (b) &&
args(c)

{
b.sum += c.sum;
b. size += c. size ;

}

3

It is not enough to add this piece of code to our aspect, however. If addAll is imple-
mented via repeated calls toadd, we would now add the sum ofc twice to that ofb. The
data refinement ofadd itself therefore needs to be amended. Intuitively it is clear what
amendment is required: whenadd is executed at the top-level, we use the refined code
described earlier, and when part of other routines inBag(such asaddAll), the unrefined
version ofaddis used. But this is a run-time distinction and not a compile-time one.

4 Run-time transformations

Motivated by this type of example, the designers of AspectJ advocate that aspects are
viewed as run-time observers, which intercept events basedon their run-time character-
istics. In our running example, we only want to transform top-level method executions:
in particular, the data refinement should apply toaddwhen called on its own, but not
when it is called from within another method ofBaglike addAll. To achieve that objec-
tive in AspectJ, we can add the conjunct

!cflowbelow(execution(∗ Bag .∗(..)))

to the pattern of Lines 8–10 in Figure 2. In words, it says the currently executing method
invocation is not properly nested inside another method ofBag. Specifying the same be-
haviour as a compile-time transformation could be exceedingly painful. Thecflowbelow
primitive requires, in general, run-time observation of the state of the program, in par-
ticular the control stack. However, in practice this can often be statically determined by
control-flow analysis [2] for efficiency.

The view of a data refinement in this setting is that an aspect checks the coupling
invariant, and when the invariant may be violated, the aspect runs some extra code to
restore the invariant. Much remains to be done to arrive at this point, however, and the
challenges include:

CompletenessWhat class of data refinements can be expressed via aspects? The ex-
ample in this abstract only illustrates adding code before or after an operation on
an abstract data type, and on its own it is clearly not enough to express all data
refinements. What is a minimal set of aspect-oriented features needed to achieve
completeness?

Diminution We have ignored the process ofdiminution, where auxiliary variables are
removed from a data-refined program. While it is tempting to just rely on mechan-
ical dead-code elimination in a compiler, it is unlikely that will always succeed.
Aspects do offer a feature (so-calledaround advice) where operations can be re-
placed by others, in particular byskip.

Semantic patterns The patterns of interception should be less syntactic in nature, in-
stead expressing properties like: ‘the state of this objectmay have changed’. Again
this is important for aspects to be reusable.

We are investigating these and other challenges related to the design and implemen-
tation of aspect-oriented programming languages in theabcproject [1]. We hope others
will join us in exploring this new area, and in developing a rigorous basis for the use of
aspects in program construction.

4

Acknowledgements

Richard Bird, Carroll Morgan, Jeff Sanders and Bernard Sufrin provided helpful feed-
back on a draft of this abstract.

References

1. abc. The AspectBench Compiler. Home page with downloads,FAQ, documentation, support
mailing lists, and bug database.http://aspectbench.org.

2. Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jennifer Lhoták,
Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tibble. Op-
timising AspectJ. In Vivek Sarkar and Mary W. Hall, editors,ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2005), pages 117–128. ACM
Press, 2005.

3. David Gries and Dennis M. Volpano. The transform — a new language construct.Structured
Programming, 11(1):1–10, 1990.

4. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. An overview of AspectJ. In J. Lindskov Knudsen, editor, European Conference
on Object-oriented Programming, volume 2072 ofLecture Notes in Computer Science, pages
327–353. Springer, 2001.

5. Gregor Kiczales, John Lamping, Anurag Menhdekar, Chris Maeda, Cristina Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet Aksit and Satoshi
Matsuoka, editors,European Conference on Object-oriented Programming, volume 1241 of
Lecture Notes in Computer Science, pages 220–242. Springer, 1997.

6. Yanhong A. Liu, Scott D. Stoller, Michael Gorbovitski, Tom Rothamel, and Yanni Ellen Liu.
Incrementalization across object abstraction. InACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages and Applications (OOPSLA 2005), pages
473–486. ACM Press, 2005.

7. Hidehiko Masuhara, Gregor Kiczales, and Chris Dutchyn. Acompilation and optimization
model for aspect-oriented programs. InCompiler Construction, volume 2622 ofSpringer
Lecture Notes in Computer Science, pages 46–60, 2003.

8. Carroll Morgan.Programming from Specifications. International Series in Computer Science.
2nd edition, Prentice Hall, 1994. See:http://users.comlab.ox.ac.uk/carroll.
morgan/PfS/.

9. Robert Paige. Programming with invariants.IEEE Software, 3(1):56–69, 1986.

5

