Aspects and Data Refinemerit

Pavel AvgustinoV, Eric BoddeR, Elnar HajiyeV, Oege de Moo,
Neil Ongkingcd, Damien Seredj Ganesh SittampalaimJulian Tibblé

1 pProgramming Tools Group, Oxford University, United Kingao
2 Sable Research Group, McGill University, Canada

Abstract. We give an introduction to aspect-oriented programmingnfithe

viewpoint of data refinement. Some data refinements are n@wty expressed
via aspects. Unlike traditional programming languageuess for data refine-
ment, aspects conceptually transform run-time eventgaropile-time programs.

1 Introduction

Data refinement is a powerful tool in program construction:start with an existing
module, adding some new variables related to the existieg @ia acoupling invari-
ant, and possibly adding new operations as well. Next we refinh edthe existing
operations so that the coupling invariant is maintainedally, if any existing variables
have become redundant, they are removed [8].

Theidea is pervasive, and itis no surprise, thereforeniaierous researchers have
attempted to capture it in a set of programming languageffeat An early example of
this trend can be found in the work of Bob Paige, who advoctitedise of a program
transformation system to achieve the desired effect [9¢ illea was again raised by
David Gries and Dennis Volpano in their design of ttemsformin the Polya program-
ming language [3]. Very recently, Annie Liu and her cowoekfg] breathed new life
into this line of work by updating it to the context of objemtiented programming.

All these systems are very powerful, and they are completkahall data refine-
ments can be expressed, at least in principle. In anothemeority, a set of program-
ming language features has been proposed that is less phwait still suitable for
direct expression of simple data refinements. These featweecollectively known un-
der the name of ‘aspects’ [5].

In this talk, we shall examine some examples of data refinem@ressed as as-
pects. Conceptually aspects transform run-time commutstunlike the above systems,
which are all based on the idea of compile-time transforomatiFor efficiency, aspect
compilers do as much transformation as possible at contipile{7], but that is an
implementation technique, not the semantics. We argueddhatite reusable data re-
finements, which are independent of the syntactic detailseoprogram being refined,
the run-time view offered by aspects is preferable.

* This work was supported, in part, by IBM, and by EPSRC in thaéddhKingdom, and NSERC
in Canada.



2 Data refinement

Consider an interface in Java for bags (multisets) of im&gen example of such an
interface is shown in Figure 1. It includes an operation teairns an iterator over the
elements of a bag; the order of such an iteration is not fugpecified.

interface Bag{
void add(nt i);
void remove(nt i);
java. util. Iterator iterator ();

Fig. 1. Baginterface inJava

Now suppose we wish to augment this interface, and all ciatbed implement it,
with an operation that returns the average of the bag ofémnted\ naive implementation
would be to re-calculate the average each time, but thairegjtime proportional to
the size of the bag.

To achieve a contant-time implementationaserage we introduce two new vari-
ables via data refinement, namslymandsize The coupling invariantis thaumholds
the sum of the abstract bag, asidethe number of elements. Once we have these two
variables, it is easy to define an efficient implementatiothefaveragefunction, as
it just returns their quotient (provided the bag is not emp®f coursesumandsize
have to be kept up-to-date whadd andremoveare called: these operations must be
data-refined accordingly.

Figure 2 shows how to code this data refinement in AspectJspactoriented
extension of the Java programming language [4]. First note ihintroduces the two
new variables into all implementations of tBag interface, on Lines 2 and 3. Next
we define the nevaverageoperation, on Lines 4 to 6. The remainder of the aspect is
devoted to refining thedd operation (Lines 7-14) and thremoveoperation (Lines
15-22). Let us examine the refinementanfd in a little bit more detail. It says that
whenever we have completed executing the bodgduf on a bag, with argument,
the sum should be increasedibgnd the size should be increased by 1.

Note that the aspect is generic, in that it applies the ddiaement to any imple-
mentation of theBag interface. Obviously this is a desirable property, as wertan
reuse the same piece of code without having to replay the siat@erefinement each
time a new implementation of bags is introduced.

3 Compile-time transformations

An obvious way to view aspects is as program transformatighih insert extra code
into an existing program. Indeed, that has been the pragailew in all previous works
that sought to provide language support for data refinement.

The disadvantage of such a wholly syntactic approach igttlsatery hard to write
reusable data refinements, that are independent of the imeplkation details of the
program being refined. To illustrate, consider changingatiginal Bag interface by
adding a metho@ddAll(Bag o; this new method adds all elements of another bag



1 public aspect Average{

2 private int Bag.sum;

3 private int Bag.size;

4 public float Bag.average ({

5 return (size ==0 ? (float)sum) / ((float)size) : 0);
6

7 after (Bag b,nt i) returning () :

8 execution(void Bag.addint)) &&
9 this (b) &&

10 args(i)

11 {

12 b.sum +=i;

13 b.size +=1;

14 }

15 after (Bag bjnt i) returning () :

16 execution(void Bag.removdfit)) &&
17 this (b) &&

18 args(i)

19 {

20 b.sum-=1;

21 b.size —=1;

22 }

23 }

Fig. 2. Aspect for data refinement.

to the giverBag Formally, the calb.addAll(c) implements the assignment (writirg
for bag union)

b:=b+c

Now consider how the aspect should be modified, if at all, ke tccount ohddAll
First observe that if we know thaiddAll is always implemented by iterating over
calling theb.add method, no changes to our aspect are necessary. It is cahkeiv
however, that a more efficient implementation is used. Fetaimce, when both the
collection and the bag happen to be stored as sorted lisitspdeslist merge would be
cheaper than repeated element insertions.

It follows that for the aspect to remain reusable acrossgilémentations of the
Bag interface, we need to implement the data refinement of the adshAll method
separately:

after (Bag b, Bag c)returning () :
execution(void addAll(Bag)) &&
this (b) &&
args(c)

b.sum +=c.sum;
b.size +=c.size;



It is not enough to add this piece of code to our aspect, howtvaddAll is imple-
mented via repeated calls&dd we would now add the sum eftwice to that ofo. The
data refinement addditself therefore needs to be amended. Intuitively it is clehat
amendment is required: whexldis executed at the top-level, we use the refined code
described earlier, and when part of other routinedBag (such asaddAll), the unrefined
version ofaddis used. But this is a run-time distinction and not a compiiee one.

4 Run-time transformations

Motivated by this type of example, the designers of Aspedtdaate that aspects are
viewed as run-time observers, which intercept events basdeir run-time character-

istics. In our running example, we only want to transform-texel method executions:

in particular, the data refinement should applatid when called on its own, but not

when it is called from within another methodBé&glike addAll. To achieve that objec-

tive in AspectJ, we can add the conjunct

I cflowbelow(executior(x Bag «(..)))

to the pattern of Lines 8-10 in Figure 2. In words, it says timeantly executing method
invocation is not properly nested inside another methdsbaf Specifying the same be-
haviour as a compile-time transformation could be exceggipainful. Thecflowbelow
primitive requires, in general, run-time observation & ftate of the program, in par-
ticular the control stack. However, in practice this carofbe statically determined by
control-flow analysis [2] for efficiency.

The view of a data refinement in this setting is that an asgsstks the coupling
invariant, and when the invariant may be violated, the aspets some extra code to
restore the invariant. Much remains to be done to arriveiafabint, however, and the
challenges include:

CompletenessWhat class of data refinements can be expressed via aspéatsxT
ample in this abstract only illustrates adding code beforaf@r an operation on
an abstract data type, and on its own it is clearly not enoagixpress all data
refinements. What is a minimal set of aspect-oriented featneeded to achieve
completeness?

Diminution We have ignored the processdifminution where auxiliary variables are
removed from a data-refined program. While it is temptingii fely on mechan-
ical dead-code elimination in a compiler, it is unlikely theaill always succeed.
Aspects do offer a feature (so-callacbund advicg where operations can be re-
placed by others, in particular skip.

Semantic patterns The patterns of interception should be less syntactic inreatn-
stead expressing properties like: ‘the state of this oljemt have changed’. Again
this is important for aspects to be reusable.

We are investigating these and other challenges relatée esign and implemen-
tation of aspect-oriented programming languages iratieproject [1]. We hope others
will join us in exploring this new area, and in developinggorious basis for the use of
aspects in program construction.



Acknowledgements

Richard Bird, Carroll Morgan, Jeff Sanders and BernardiSydrovided helpful feed-
back on a draft of this abstract.

References

1. abc. The AspectBench Compiler. Home page with downldadl®, documentation, support
mailing lists, and bug databage.t p: / / aspect bench. or g.

2. Pavel Avgustinov, Aske Simon Christensen, Laurie HemdBascha Kuzins, Jennifer Lhotak,
Ondrej Lhotak, Oege de Moor, Damien Sereni, Ganesh Sitéam, and Julian Tibble. Op-
timising AspectJ. In Vivek Sarkar and Mary W. Hall, editoACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDB20pages 117-128. ACM
Press, 2005.

3. David Gries and Dennis M. Volpano. The transform — a newlage constructStructured
Programming 11(1):1-10, 1990.

4. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersteleffrey Palm, and William G.
Griswold. An overview of AspectJ. In J. Lindskov Knudsenitel European Conference
on Object-oriented Programmingolume 2072 of.ecture Notes in Computer Scienpages
327-353. Springer, 2001.

5. Gregor Kiczales, John Lamping, Anurag Menhdekar, Chasd, Cristina Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-oriented programmingn Mehmet Aksit and Satoshi
Matsuoka, editorsEuropean Conference on Object-oriented Programmimjume 1241 of
Lecture Notes in Computer Scienpages 220-242. Springer, 1997.

6. Yanhong A. Liu, Scott D. Stoller, Michael Gorbovitski,fidrothamel, and Yanni Ellen Liu.
Incrementalization across object abstractionA@M SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages anda@pipins (OOPSLA 2005pages
473-486. ACM Press, 2005.

7. Hidehiko Masuhara, Gregor Kiczales, and Chris Dutchyncofpilation and optimization
model for aspect-oriented programs. @ompiler Constructionvolume 2622 ofSpringer
Lecture Notes in Computer Scienpages 46-60, 2003.

8. Carroll Morgan Programming from Specificationmternational Series in Computer Science.
2nd edition, Prentice Hall, 1994. Sés:t p: / / user s. coml ab. ox. ac. uk/carrol I .
nor gan/ Pf S/ .

9. Robert Paige. Programming with invariamtiSEE Software3(1):56-69, 1986.



