
Denial-of-App Attack: Inhibiting the Installation of Android
Apps on Stock Phones

Steven Arzt1, Stephan Huber2, Siegfried Rasthofer1, Eric Bodden12

CASED / EC SPRIDE
1Technische Universität Darmstadt 2Fraunhofer SIT

1{firstname.lastname}@cased.de
2{firstname.lastname}@sit.fraunhofer.de

ABSTRACT
We describe a novel class of attacks called denial-of-app that
allows adversaries to inhibit the future installation of attacker-
selected applications on mobile phones. Adversaries can use
such attacks to entrap users into installing attacker-preferred
applications, for instance to generate additional revenue from
advertisements on a competitive app market or to increase the
rate of malware installation. Another possibility is to block
anti-virus applications or security workarounds to complicate
malware detection and removal.

We demonstrate such an attack that works on arbitrary
unmodified stock Android phones. It is even possible to block
many applications from a list predefined by the attacker in-
stead of just a single app. Even more, we propose an attack
for banning applications from Google Play Store regardless
of the user’s phone by exploiting similar vulnerabilities in
the market’s app vetting process. Unblocking an applica-
tion blocked by our attack requires either root privileges
or a complete device reset. The Android security team has
confirmed and fixed the vulnerability in Android 4.4.3 (bug
13416059) and has given consent to this publication within a
responsible-disclosure process. To the best of our knowledge,
the attack applies to all versions prior to Android 4.4.3.

1. INTRODUCTION
Over the last decade, smartphones have become impor-

tant personal and business devices. Many people rely on
these devices to organize their appointments, read and send
e-mails, manage personal and business contacts, or entertain
themselves. Popular smartphone operating systems such as
Android, iOS, or Windows Phone are built around a vibrant
ecosystem that allows independent application developers
to provide new software for the respective platform. This
ecosystem is convenient for the user since almost every need
for features is met, but also for the developers who can earn
money by providing applications: either directly through
selling paid applications, or through “free” applications in
which they display advertisements. Especially the latter has

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SPSM’14 November 07 2014, Scottsdale, AZ, USA
ACM 978-1-4503-3155-5/14/11 ...$15.00.
http://dx.doi.org/10.1145/2666620.2666621.

become a big source of revenue, in some cases yielding sev-
eral thousand dollars per day [11]. In total, the app market
is expected to reach a volume of about 35 billion dollars
in 2015 [22]. Still, like any other market, the smartphone
application market requires fairness between offers and com-
petitors: Customers (i.e., smartphone users) must be able
to freely choose between offerings (i.e., applications). In this
paper, we present a new class of attacks through which a de-
veloper can block applications from users’ devices, effectively
hindering competitors in distributing their products. For
many use cases, several competing applications are available
on the market. If a user cannot install one application, she
will likely switch to the next one which offers a similar fea-
ture set. In the case of free, but advertisement-based apps,
this means that the revenue for showing the ads goes to the
developer of the second app, and not to the developer of the
first one. As a consequence, being able to block applications
can lead to increased financial revenue for the adversary in
the scenario of competing application developers.

Even worse, current smartphone malware often disguises
itself by forming a plugin to variants of otherwise benign, well-
known applications [24]. With our attack, the attacker can
entrap users to download such malware-infected app versions
by inhibiting the installation of the respective original, benign
app. Additionally, one could block the installation of anti-
virus applications which would detect the malicious app.

The Google Play Store contains various security applica-
tions that check for certain well-known Android exploits, such
as for the Master-Key Vulnerability [9], OpenSSL Heartbleed
on Android [13], or the USSD-Exploit [20]. By using a denial-
of-app attack, the installation of these security applications
can be blocked, hindering the detection and prevention of
further attacks on the device.

We present examples of the new denial-of-app class of
attacks on Android which is the most popular smartphone
operating system at the moment with a market share of more
than 80% [12] and over 1 million apps in its official market
alone, the Google Play Store. We have implemented a proof-
of-concept exploit with which an arbitrary application can
be blocked from being installed on a device. The exploit does
not need any special privileges and runs on a stock Android
phone without root access. To remove the application block
imposed by the exploit, however, the user does need either
root access and detailed system knowledge or must reset the
complete phone to factory defaults, thereby losing all data on
the phone if no remote backup of the data exists. In either
case, the user needs to spend considerable effort to remove
the block. Furthermore, as we show, the attack disguises

itself as a normal installation problem, leading to many users
staying unaware of a successful app block on their phones.

To the best of our knowledge, the exploit works on all
Android versions. We have verified it on real devices running
Android 2.3.6 and different Android 4.x versions (Android
4.1 - 4.4). Additionally we have verified it on emulated
Android versions 2.2 to 4.4.2. Vulnerabilities that exist on
a broad variety of Android versions are particularly critical
since many devices are still running outdated versions of
the operating system which are no longer supported by the
device manufacturer and no longer receive security updates
[2], which in turn means that they will stay vulnerable even
if the problem is patched in upcoming Android versions.
Furthermore, many smartphones run versions of the Android
operating system that have been customized by the respective
device manufacturer. In addition to the time required for
Google to fix a security vulnerability, the device manufacturer
must in such cases also adapt the fix into its own code tree and
deploy a new build. This substantially enlarges the window
of exposure or leads to fixes not being distributed at all [7]. In
the context of our attacks, this has the consequence that large-
scale market manipulations affecting lots of users will stay
possible in the foreseeable future despite a fix being available
now. We have reported all of our attacks to the Google
security team and they have fixed the concrete vulnerabilities
described in this paper1. This publication was submitted as
part of the responsible-disclosure process.

The remainder of this paper is structured as follows. Sec-
tion 2 gives important background information on the An-
droid platform. Section 3 describes in detail the attack on the
Android platform, whereas Section 4 gives examples on how
the attack may be exploited in real-world scenarios. Coun-
termeasures and recovery from the attack are discussed in
Section 5 while Section 6 presents some related work known
to literature and Section 7 concludes the paper.

2. BACKGROUND
Regardless of whether an Android application is installed

from the official Play Store, a third-party app store or from
a file on the SD card, the application is always contained in
an APK file—which is just a renamed ZIP file—consisting
of various files, most importantly a dex file and a manifest
file. The dex file contains the application’s executable code
as Dalvik bytecode instructions. The manifest file describes
important settings for the application such as the permissions
it requests and the operating system version for which the
application was built. It is the responsibility of the installer
to check, among others, whether all files (APK, dex, manifest)
are of the correct format, whether the target OS version in
the manifest file is compatible with the actual OS version,
and whether the application has already been blacklisted by
Google as the OS vendor. Only if all these checks succeed,
the app may be installed. Trusting the installer with this task
is a reasonable design decision since the installer is a system
component running under the sole user ID “system” that
has write privileges to the directory in which Android stores
applications in the internal storage. This concept prevents
other applications from acting as installers on their own and
makes the pre-deployed installer a central enforcement point.

1https://android.googlesource.
com/platform/frameworks/base/+/
52af2ca919c068f1c9389fa4c979d2fe3105af40

When the app has been verified successfully and the user
has confirmed all of the privileges requested by the app, the
installer copies the APK file to /data/apk. Afterwards, it
creates a new Linux user account and group for the applica-
tion. Recall that the Android platform enforces application
sandboxing by running all apps in different instances of the
Dalvik VM which in turn run under separate user accounts,
one per application. Every application is assigned a private
data directory at /data/data for storing assets such as con-
figurations, caches, or user data. This directory is secured
using Linux file-system permissions: only the application’s
individual user account is allowed to access it.

In current versions of the Android operating system, the
account names under which applications run are composed of
a prefix and an increasing number, e.g., “u0 a42”. The name
of the APK file on disk and the name of the application’s pri-
vate data directory are, however, equal to the app’s package
name as it is defined in the manifest file. The package name
of an app can be seen as a UID, which has to be unique for
each app. This has the consequence that no two applications
with the same package name can be installed. This limitation
can, however, not directly be exploited since the user can
always uninstall any “blocking” application that may reserve
the package name of an application she is trying to install2.

3. DENIAL OF APP ATTACK
In this section, we describe our attack in more technical

detail and explain the bug in Android’s application instal-
lation system that makes our exploit possible (Section 3.1).
The concrete exploit is constructed in Section 3.2.

3.1 App Verification Bug
Our attack exploits a bug in the installation sequence

described above. It is at a very early point in time that the
installer creates the user account, the group, and the private
data directory for an application to be installed. At this
time, not all checks on the APK file and its contents have
been completed yet. If one ore more checks fail afterwards,
these early actions need to be undone, as otherwise conflicting
artifacts will be left in the internal storage. Having a spurious
user and group ID in the system is not a big issue since the
next application to be installed will simply get a higher
number in the account and group name, e.g., (”u0 a43”)
instead of (”u0 a42”). The private data directory, on the
other hand, receives the name of the application package as
defined in the manifest file. If this directory is left over from
a failed application installation (i.e., our exploit), it produces
a conflict when another application with the same package
name is attempted to be installed.

Recall that private data directories are owned by the respec-
tive application’s account in the file system. This account
is the only one with access to its contents. When a new
application is to be installed, the installer cannot simply
overwrite the directory, nor can it just transfer ownership,
as for security reasons the installer account does not have
root privileges either. Instead, the installer gives an error
message. Depending on the user interface used for installing
the new app, this is either reported in full, such as with

2Nevertheless, identifying the blocking application on its own
is not a trivial task for the average user as the Android UI
shows friendly names, not package names.

1 @Overwrite @Overwrite
2 public void killerMethod (){
3 //do nothing
4 }

Listing 1: Code example which causes an installation
failure of an Android application

the Android Debug Bridge (ADB)3, or “installation failed”
is given together with a numeric error code as in the Play
Store app (e.g., see Figure 2). In either case, the attack
cannot be distinguished from a normal installation failure
unless one knows the attack, recognizes the error message
and explicitly looks for installation leftovers, i.e., a private
data directory without a corresponding application. Even
more, since the application was not fully installed, it does not
appear in Android’s list of installed applications and thus
cannot be uninstalled through the user interface. Uninstalla-
tion attempts on the command line such as adb uninstall

<packagename> also fail with Android reporting that there
was no application with the specified package name. Remov-
ing the leftovers to “unblock” the respective package name is
therefore virtually impossible for the average user. Section 5
discusses this problem in more detail.

3.2 Exploit Construction
For staging the attack, one must build an APK file that

makes the Android installer fail after creating the applica-
tion’s private data directory. This means that the manifest
file must be valid, or otherwise the installer would abort
too early. We therefore inject a semantic bug into the dex
file containing the application code as the bytecode verifier
dexopt (note that dexopt is used for bytecode verification and
optimization) runs exactly between creating the directory
and registering the application in the system. The purpose
of the bytecode verifier is to check the application’s code
against the specification of the Dalvik VM. Mainly for per-
formance reasons, but also to enforce semantic consistency,
Dalvik enforces numerous constraints: Try/catch blocks, for
instance, must be ordered by their starting line numbers
and must not overlap, and no two annotations of the same
type may exist for the same code object such as a method or
parameter. To violate such a constraint, we use the Soot [21]
bytecode optimization framework to read in an Android dex
file, and write it out again (without applying any additional
transformers to it). We patch Soot, however, such that while
generating the output, it writes out annotations twice instead
of just once. Listing 1 shows such an example. Installing
the resulting APK file on an Android phone fails with a
dexopt failure as expected. Using adb install this is shown
as Failure [INSTALL_FAILED_DEXOPT], while the UI only
shows a generic message and a numeric error code (e.g., see
Figure 2). In either case, the attack blocks the package name
declared in the manifest file.

4. EXPLOITING THE ATTACK
In this Section, we first describe a proof of concept appli-

cation (Section 4.1) that demonstrates our attack. Next, we
show how the installation of the broken APK files can be
triggered without user interaction (Section 4.2). Adversaries

3adb install <filename> returns
Failure [INSTALL_FAILED_UID_CHANGED]

could use similar techniques to gain personal or financial ad-
vantage, to harm other competing developers or, to foster the
installation of additional malware. In general, we envision
four different scenarios: Firstly, a targeted attack against
a specific competing developer’s application (Section 4.3).
Secondly, a multi-stage attack combining our denial-of-app
attack with a so-called master key attack to distribute mal-
ware and disable protections on the phone (Section 4.4).
Thirdly, a mass attack to block large amounts of applications
at once (Section 4.5), and lastly an attack on Google’s Play
Store infrastructure to block an application not only from
phones on which the exploit is executed, but from the market
overall (Section 4.6).

4.1 Proof of Concept App
As a proof of concept, we developed an Android application

Denial-of-App-PoC with zero permissions. It includes a ma-
nipulated dex file containing a double Overwrite annotation
as described in Section 3.2. The Denial-of-App-PoC applica-
tion allows the user to enter an arbitrary package name of an
application to be blocked from installation. Denial-of-App-
PoC takes this package name and the pre-built dex file to
construct a new APK file where it places the user-specified
package name in the AndroidManifest.xml. The Android-

Manifest.xml is manipulated with the axml framework [16],
added into the apk zip file, signed using a fixed key, and
zip-aligned, so that it can readily be installed on the phone.
However, as the app is broken by construction, the installa-
tion will fail and leave the secured private data folder behind.
Figure 1 shows an example, where we entered the package
name of the well-known Android Facebook Messenger app
which we would like to block for installation.

Figure 1: Entering package name of the app which
has to be blocked

After clicking on “Start. . . ” button, the Denial-of-App-
PoC application creates a broken app with the package
name of the Facebook Messenger app. This impersonates the
Facebook Messenger app, since the package name is treated
as a unique id (see Section 2). Denial-of-App-PoC initializes
the installation and the broken app gets installed, but fails
with an “App not installed” error. This is everything one
needs for blocking specific applications. When a user wants
to install the original app now, she will fail with an error
as shown in Figure 2. Since Facebook is not in the list of
installed applications maintained by the Android operating
system, the user cannot even try to re-install it, but remains
stuck with the error whenever she tries to install Facebook.

The full source code of our proof-of-concept exploit, in-
cluding the broken dex file is available at:

https://github.com/secure-software-engineering/

denial-of-app-attack

4.2 Exploit Enhancement
With the proof-of-concept application described in the

previous section, the user still needs to approve the instal-
lation of the created broken application. If she aborts the
system confirmation, the attack fails. Even if she allows
the installation, she afterwards gets a pop-up showing an
“App not installed” error. These limitations can however be
circumvented using various techniques for silent application
installation as we show in this section.

Attack using infected PC.
If the attacker is for instance able to infect a computer

connected to the phone, she can launch the attack from
there and use the adb install command to silently install
a broken apk on the phone. This happens without any user
interaction if the Android debug mode is enabled on the
device. While debugging is disabled by default, Android
users who are developers on their own are likely to have
it enabled, so there is still a large target audience for the
attack. Examples of such multi-stage attacks have already
been found in the wild, such as the Zeus malware [6].

Confused deputy installs.
In the past years, there have also been various attacks for

silently installing applications. If the Android version running
on the user’s phone is vulnerable to such an attack, one could
also exploit it to block a massive amount of applications.

One practical way for a hidden installation and combined
mass blacklisting could be a confused deputy attack [4, 8]. In
general, android applications require the INSTALL_PACKAGE

permission to silently install applications without having root
privileges. This permission is however not available for third
party applications; only applications signed with a system
or manufacturer key can be granted this privilege. Yet, if
attackers are able to hijack such a privileged application
which defines the INSTALL_PACKAGE permission, they can
abuse its permissions for installing other apps. A practical
example with a proof of concept exploit was already shown
on the Samsung Galaxy S3 device [14]. The attack exploits
the restore function of the Samsung’s Kies.apk application.
Kies is the Samsung pendant of Apple’s iTunes; it offers syn-
chronization, backup/restore, and administration features
for media files, contacts, and system upgrades. Every apk
file stored in the sdcard folder /sdcard/restore/ was in-
stalled by the vulnerable Kies’ service when a restore was
triggered with the sole condition that the application was
not already present in the /data/app/ folder. For trigger-
ing a restore, one only needed to send an intent with the
action com.intent.action.KIES_START_RESTORE to this ser-
vice. With our attack, such vulnerabilities can be exploited
to block applications from affected phones on a large scale.
The attacker simply needs to prepare a set of broken apk
files and place them in the restore folder before triggering
the recovery service. The preparation of such broken apk can
be done on the fly (see 4.5). Similar techniques for hijacking
applications with install privileges were also shown on various
other devices from different manufacturers, for instance for
older HTC phones [18].

Installs using master-key vulnerability.
Even if a confused deputy attack on an already-installed

system application bearing the INSTALL_PACKAGE permission
is not possible, attackers can still exploit the so-called master
key vulnerability [9, 10]. This vulnerability allows modified
system applications to pass signature verification and be

installed on the phone despite the changes, even keeping the
original manufacturer signature. Therefore, the modified
versions can still receive highly sensitive system permissions
such as INSTALL_PACKAGE. Even worse, there is no need for
the original system application to have this permission; the
modification can introduce it together with the patched
code. The Android operating system will grant the new
permission since the modified application is still regarded
as manufacturer-signed due to the vulnerability. The App
Manager contained in the Android operating system will
however not show such injected permissions, leaving the user
in a false sense of security and making it harder for the user
to detect the attack.

We have verified that our proof-of-concept app can use
this vulnerability to block arbitrary apps on Android 4.0,
4.1 and 4.2.2. We tested this on a Google Nexus S phone as
well as devices from Samsung, and HTC. As a master-key
vulnerability has been reported for Android 4.3 and 4.4 [10] as
well, our combined attack is also applicable to these versions.

Figure 2: Attempt to install a blocked app

4.3 Targeted Attack
The denial-of-app vulnerability allows arbitrary applica-

tions to be blocked, which can be exploited for a targeted
attack. Imagine two competing developers offering similar
games on the market and gaining revenue through adver-
tisements. It is likely that users who cannot install one of
the games will switch to the other one if both have about
the same popularity or rating on the market which is quite
common for many games. One developer thus can distribute

a fake app, with the package name of his competitor’s game.
Users will just see the fake app’s installation fail, and will not
notice that an attack has happened. They are now, however,
unable to install the competitor’s actual game in the future,
giving the attacker financial benefits from those users that
switch to his game. The same attack vector can also be
used to inhibit the installation of general popular apps in
favor of malware-infected variants of those apps, fostering
the installation of additional malware on the user’s device.

4.4 Combined multi-stage attack
Attackers can also use the ability to block arbitrary sets

of applications to complicate the detection, blocking, and
removal of malware. After the user has been tricked into
installing the exploit app (which can e.g., imitate or re-
package a popular game), this app can abuse its system
permissions gained through the master-key vulnerability to
deinstall all well known anti-virus products and afterwards
block them use our attack to make sure that the user cannot
reinstall any of them. Afterwards, it exhibits its malicious
behavior. For the user, detecting and removing such malware
then requires manual investigation without any tool support.
This brings the additional caveat that she will usually not
suspect a replaced system app as the source of malicious
behavior unless pointed to it by a scanner which is however
no longer available on his phone.

4.5 Mass Attack
The exploit can easily be adapted for targeting different

package names. The dex file containing the broken code that
makes the bytecode verifier fail needs not be changed at all.
One only needs to create a copy of the original exploit APK,
change the package name in the manifest file, and sign it
to get a customized exploit for blocking a different package
name. We created a proof of concept that automates this
process in an Android app which uses a blacklist of package
names for directly installing them with the new exploit.

4.6 Bouncer Block
Before newly uploaded applications are allowed into the

Google Play Store, they are vetted by Bouncer [15], a dynamic
analysis tool. Bouncer runs the application for a defined
period of time, randomly clicks on elements in the user
interface and monitors the application’s behavior. Only if
the application neither crashes nor violates any policy checked
by Bouncer, it is allowed into the Play Store. This technique
was introduced to help improve the stability and security of
applications available on the market.

Google’s Bouncer runs on a modified Android emulator [15]
and is therefore likely vulnerable to the same attacks as
the emulator itself. Previous research has shown that the
Bouncer’s emulator is not reset after every test run [5]. We
therefore suspect that uploading our exploit into the Play
Store would execute the attack on this emulator, effectively
blocking the target application. When the developer of the
attack target then later wants to upload or update her app,
and if this novel app is vetted on the same Bouncer instance,
the new app will be refused until the Bouncer emulator is
finally reset. In the worst case, this attack could be used to
block applications from the market completely. For ethical
and legal reasons we did not confirm the attack by attacking
Bouncer, since this would have meant running exploits on the
productive Play Store system, making the authors liable for

potential damages. We did, however, confirm that our attack
also works on emulators such as those used by Bouncer.

5. COUNTERMEASURES
In this section, we describe a number of countermeasures

against our denial-of-app attack. For preventing the attack
at large, the fix provided by Google as the operating system
vender needs to be applied to all Android devices such that ar-
tifacts are properly cleaned after failed app installations. The
original Android 4.4 version pre-installed on recent phones
still contains the bug, so users are required to install the
update on their own. Even worse, for phones customized by
the respective manufacturers, adapted updates are often still
under development or are unlikely to be provided at all as
the devices have reached the end of their support period.

On smartphones running Android 4.4.2 or below, the attack
cannot easily be prevented by other means than installing a
fix. In managed environments such as corporate app stores,
one could analyze every new application for corresponding
exploit code before allowing it into the market. End-users
could try to only install applications from trusted sources.
Yet, this leaves the phone vulnerable to e.g., attacks abusing
the debug interface from a connected infected computer.

After the system has been attacked and applications have
been blocked, there are only two possibilities to remove the
block. First, the user can obtain root privileges on her
phone for which various tools or services exist [1, 23]. This
process however often wipes all data from the phone for
security reasons. After rooting the device, the user has
to delete all files in the /data/data/<package-name>
folder. “Rooting” a smartphone is however not advisable
as it circumvents the Android sandbox security model and
may therefore introduce new vulnerabilities which may allow
applications to access sensitive data from other applications.

A second possibility is a complete factory reset of the
affected smartphone which not only removes the blocking
data directory, but also deletes all other installed applications
and user data. This side-effect makes the solution likewise
unattractive to the average user who is not in possession of
a current and complete backup of all his phone data.

6. RELATED WORK
In the context of Android security, this form of attack

is the first of its kind. There have however already been
different attacks that exploited missing consistence checks
on the apk file or insufficient of its contents such as the
classes.dex file or the AndroidManifest.xml file.

Apvrille [3] has shown numerous ways to hide sensitive
information in a dex file from common disassemblers such
as baksmali [19] by manipulating the method index table
of the classes.dex file. At runtime, the method is made
accessible again by rebuilding the dex data structure. These
attacks can however only disguise behavior and data, but
cannot actively block the installation of an app.

The Android master-key exploit [9] also exploited miss-
ing apk file validations. An Android application is digitally
signed and the signature is verified before installation. Nor-
mally, whenever there is a signature mismatch due to a
manipulation of the file, the verification process fails and the
application is rejected. In vulnerable versions of the Android
OS, the signature verification and the content extraction
were however implemented on different layers of the operat-

ing system. Even though both processes would unpack the
apk file, the signature verification process validated different
aspects than the content extraction process late extracted
from the file. If the zip file table of the apk file was therefore
manipulated such that there were two files with the same
name, a vulnerable Android system would verify the first one
but extract and install the second one. This allows an at-
tacker to inject code files such as an additional classes.dex
file into an application without modifying the signature. If
the original application was signed using a manufacturer key,
the patched application will also receive system-privileges.

One attack closely related to ours is the Denial of Service
attack from Ibrahim Balic which exploited flaws in the verifi-
cation process of the AndroidManifest.xml file [5]. He forced
a system freeze by manipulating attributes in the manifest.
This however just freezes the Android device and does not
prevent apps from being installed as in our attack. In sum-
mary, there are many different attacks against Android, but
to the best of our knowledge, the denial-of-app attack is a
new form of attack that has not been described before.

Ratazzi et. al. [17] present a Denial-of-app attack on a
multi-user Android device. If one user installs an application
with a certain package name, no other user can install an app
with the same package name. Only the installing user and
the device owner are permitted to remove the blocking app.
Our attack, on the other hand, also works for single-user
devices. If applied to a multi-user device, not even the device
owner can remove the block with our attack.

Ratazzi also describes preventing app installations by using
upp all available app ids. This however requires installing
a substantial number of apps (50,000 on a Nexus 10 with
Android 4.4) which are visible in the operating system’s app
list and are thus highly suspicious. On the other hand, one
could combine their attack and ours by installing 50,000
blocking (and hidden) apps with our approach to prevent
the user from installing any new apps (not just specific ones),
while at the same time making it very hard to detect and
remove the cause of this global block.

7. CONCLUSIONS
In this paper, we have presented a new form of attack

for mobile devices, called denial-of-app attack. This form
of attack inhibits the installation of one or more apps on a
smartphone. We have demonstrated and released a proof-
of-concept exploit app which allows a user to block any
application on her device. The block can only be removed in
two ways, either by rooting the device and deleting specific
folders in the Android file system or by resetting the device
to factory defaults. Both solutions have severe drawbacks:
Rooting a device forces new security problems and resetting
the device deletes all installed applications and user data
which is not convenient for a user (in case there is no backup).
The Android security team has released a patch for this
vulnerability, but to the best of our knowledge, all versions
prior to Android 4.4.3 are likely to be affected by our attack.

Acknowledgements. This work was supported by the BMBF
within EC SPRIDE and by the Hessian LOEWE excellence
initiative within CASED.

REFERENCES
[1] http://rootwiki.net/.
[2] S. Acharya. Samsung Confirms No Android 4.4 KitKat for

Galaxy S3 and S3 Mini 3G Versions.
[3] A. Apvrille. Playing Hide and Seek with Dalvik Executable.

https://www.fortiguard.com/uploads/general/Hidex_
Paper.pdf.

[4] “Automatic detection of inter-application permission leaks
in Android applications”. In: IBM Journal of Research and
Development (Volume:57, Issue: 6) (2013).
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?
reload=true&arnumber=6665098.

[5] I. Balic. Android Vulnerability affected Google Play
Bouncer (Emulator). Blog.
http://ibrahimbalic.com/2014/android-vulnerability-
affected-google-play-bouncer-emulator/. Mar. 2014.

[6] Cert Polsks. A PowerZeus Incident Case Study. Tech. rep.
Cert.

[7] CVE Details. Website.
http://www.cvedetails.com/product/19997/Google-
Android.html?vendor_id=1224. June 2014.

[8] A. P. Felt et al. “Permission Re-Delegation : Attacks and
Defenses”. In: SEC’11 Proceedings of the 20th USENIX
conference on Security. ACM, 2011. url:
https://www.usenix.org/legacy/event/sec11/tech/
full_papers/Felt.pdf.

[9] J. Forristal. Android: One Root to Own Them All.
[10] J. Freeman. http://www.saurik.com/id/19.
[11] E. Hamburger. Indie smash hit Flappy Bird racks up 50K

per day in ad revenue.
http://www.theverge.com/2014/2/5/5383708/flappy-
bird-revenue-50-k-per-day-dong-nguyen-interview.
Feb. 2014.

[12] International Data Corporation. Worldwide Quarterly
Mobile Phone Tracker 3Q12. http://www.idc.com/
tracker/showproductinfo.jsp?prod_id=37. Nov. 2012.

[13] Lookout Mobile Security. https:
//blog.lookout.com/blog/2014/04/09/heartbleed-
detector/. 2014.

[14] A. Moulu. From 0 perm app to INSTALL PACKAGES on
Samsung Galaxy S3. http://sh4ka.fr/android/galaxys3/
from_0perm_to_INSTALL_PACKAGES_on_galaxy_S3.html.
2012.

[15] J Oberheide and C Miller. “Dissecting the android
bouncer”. In: SummerCon2012, New York (2012).

[16] Panxiaobo. axml.
[17] P. Ratazzi et al. “A Systematic Security Evaluation of

Android’s Multi-User Framework”. In: IEEE Mobile
Security Technologies workshop (MoST), 2014.

[18] T. Relph-Knight. http://www.h-
online.com/security/news/item/Android-holes-allow-
secret-installation-of-apps-1134940.html. 2010.

[19] smali. smali: An assembler/disassembler for Android’s dex
format. Google Code.
https://code.google.com/p/smali/. June 2014.

[20] M. Smith. http://www.engadget.com/2012/09/25/dirty-
ussd-code-samsung-hack-wipe/. 2012.

[21] R. Vallée-Rai et al. “Soot - a Java Bytecode Optimization
Framework”. In: Proceedings of the 1999 Conference of the
Centre for Advanced Studies on Collaborative Research.
CASCON ’99. Mississauga, Ontario, Canada: IBM Press,
1999, pp. 13–. url:
http://dl.acm.org/citation.cfm?id=781995.782008.

[22] M. de Vries et al. “POPSIS - Pricing Of Public Sector
Information Study”. In: European Commission
Information Society and Media Directorate-General (2011).
http://www.epsiplatform.eu/sites/default/files/
apps_market.pdf.

[23] WugFresh. http://www.wugfresh.com/.
[24] W. Zhou et al. “Fast, Scalable Detection of ”Piggybacked”

Mobile Applications”. In: Proceedings of the Third ACM
Conference on Data and Application Security and Privacy.
CODASPY ’13. 2013.

