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Abstract
To assess the security and quality of the growing number of pro-
grams on desktop computers, mobile devices, and servers, compa-
nies often rely on static analysis techniques. While static analysis
has been applied successfully to various problems, the academic lit-
erature has largely focused on a subset of programming languages
and frameworks, and often only on a single language at a time.
Many tools have been created for Java and Android. In this pa-
per, we present a first step toward re-using the existing Soot frame-
work and its analyses for other platforms. We implement a front
end for converting the CIL assembly code of the .net Framework
into Soot’s Jimple code and show that this is possible without mod-
ifying Jimple nor overly losing semantic information. The front end
integrates Java/Android with CIL analysis and scales to large pro-
grams. A case study demonstrates the detection of real-world mal-
ware that uses CIL code inside an Android app to hide its behavior.

Categories and Subject Descriptors D.2.4 [Software]: Software
Engineering; D.4.6 [Software]: Security and Protection; F.3.2
[Semantics of Programming Languages]: Program analysis

General Terms Verification, Security, Languages

Keywords Compiler, Soot, CIL, .net, Frontend, Static Analysis,
Multi-Platform

1. Introduction
Current real-world programs have grown so large that, to ensure
their quality and security, manual testing and code review is no
longer sufficient. Customers expect the programs they depend upon
to be stable and reliable, and to adequately protect the sensitive
data they process. Consequently, many static-analysis techniques
for various problems such as data-flow tracking (Arzt et al. 2014)
have been proposed. Many of these techniques, have been designed
for particular target platforms and programming languages. Popu-
lar targets of research include Java programs and Android apps. In
reality, different programs are, however, often written in different
programming languages. The choice of the language depends on
the requirements of the deployment target, the language skills of
the developer, the availability of powerful frameworks, and many
other criteria. These criteria often differ significantly from the rea-
sons why platforms or programming languages are chosen for aca-
demic research. As a consequence, the focus of research attention

on individual platforms has lead to a large divergence in the avail-
ability of static-analysis tools for different platforms. This hinders
the practical applicability of static-analysis tools.

Some analyses (Gordon et al. 2015) are built directly on top of
platfom-specific tools such as disassemblers. Migrating these tools
to other platforms is a major undertaking. Other tools such as Flow-
Droid (Arzt et al. 2014) are based on more high-level frameworks
such as Soot (Lam et al. 2011) or WALA (Watson). These tools
work on the intermediate representation provided by the respective
framework, such as Jimple (Vallee-Rai and Hendren 1998) in the
case of Soot, or the WALA-IR in case of WALA. The intermediate
representations provide a significant abstraction of assembly-level
opcodes. In the case of Soot, this allows the framework to con-
vert into Jimple not only Java bytecode, but also Android’s Dalvik
bytecode, through the Dexpler front-end (Bartel et al. 2012). For
the analysis tool, there is little difference as to whether the client
code originated from an Android or Java application. To be pre-
cise, while the tool needs to deal with the different peculiarities of
the Android or Java libraries and frameworks, the tool can be ag-
nostic to the origin of the Jimple code as such.

Supporting other languages in a shared IR, however, is more
challenging. WALA offers WALA CAst (WALA Common Abstract
Syntax Tree), a cross-language source front-end. This front-end
currently supports Java and JavaScript as input. As the name im-
plies, CAst, is, however, an AST-style data structure with support
for multiple specialized IRs, and not a single, uniform, strongly
typed IR. Therefore, one cannot seamlessly switch the framework
to another input language and assume the same analyses to con-
tinue working as desired. Due to the nature of the highly dynamic
JavaScript language, it remains an open question whether a truly
shared IR for Java and JavaScript is actually possible or desirable.

In this paper, we make a first step towards turning Soot into
a cross-language, cross-platform static analysis tool that produces
the same IR irrespective of the input language. Specifically, we ex-
plain how we extended the Soot framework to convert into Jimple
also the bytecode language of the Microsoft .net framework and
the Mono open-source project. While this bytecode language CIL
(Common Intermediate Language) is a fully managed-code lan-
guage just as Java, we show that CIL code nevertheless has sig-
nificant differences to Java bytecode. We explain how we model
CIL’s distinct features in Jimple without extending the Jimple lan-
guage itself. We chose to avoid extensions to Jimple in order to
allow researchers to reuse existing analyses based on Jimple with-
out requiring changes or extensions. We hope that these ideas help
further broadening the applicability of existing (also other) static-
analysis frameworks to other languages and platforms.

The remainder of the paper is structured as follows. In Section 2,
we discuss how code is organized in CIL as opposed to Java. In
Section 3, CIL’s type system and method calling conventions are
discussed, before going into the details of selected CIL-specific
language constructs in Section 4. Afterwards, we present how the
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CIL frontend is architected in Section 5, and present the limitations
of this work in Section 6. We evaluate our work in Section 7 before
we present related work in Section 8 and conclude in Section 9.

2. Code Organization in CIL
In Java, every class gets compiled into its own class file. Multiple
class files can be packaged together into one JAR archive. In CLI,
on the other hand, a compiled class itself has no representation in
the file system. Instead, the CLI runtime operates with a collection
of classes stored in an assembly file. While at a first glance assem-
blies seem conceptually similar to JAR files, they are artifacts in
their own right, resembling a logical package on the language level.
For instance, visibility levels include an option for assembly-wide
visibility for classes, methods, and fields. Code can use reflection
to access an assembly and, e.g., list all classes inside it. Assemblies
can be signed and used for code security, i.e., by defining that cer-
tain code may only be called from code within assembly that was
signed with a specific key.

As Java has no notion of assembly visibility, nor has Jimple,
our generation of Jimple code from CIL widens assembly-wide
visibility (internal in C#) to public visibility. While this may
impact some specific analyses, it retains compatibility in general.
CIL bytecode represents security restrictions such as signatures
and permissions as API calls or attributes in the original code. CLI
attributes are similar to Java attributes and are translated into Jimple
as Tags attached to the appropriate Jimple artifacts. An analysis
usually does not need to cover the semantics of such attributes
unless it directly targets security problems. In thus case, it would
have to precisely model the correct target platform in either case.

Inside an assembly, classes are structured in namespaces, sim-
ilar to Java’s packages. In Jimple, we therefore represent names-
paces as packages. C# also allows one to define aliases for names-
paces, but these aliases are resolved to their original names by the
compiler and are thus not a challenge for the work presented here.
Note that CIL bytecode can reference the same class in the same
namespace from two different assemblies. This is not possible in
Jimple, unless we treat assembly names as namespace prefixes.

Furthermore, .net languages such as C# support partial classes.
In a partial class, methods and fields can be scattered among multi-
ple source files which get merged into one complete class at com-
pile time. Conflicting definitions lead to a compiler error. It is also
possible to only write the signature of a method in one source file
and the implementation in another one. Due to the compile-time
merging, the front-end presented in this work can, however, be
oblivious to this language feature.

3. The CIL Type System
Java distinguishes between Objects and numeric/Boolean values,
the former of which always use a pass-by-reference semantics,
while the latter use pass-by-value. CIL offers a richer model: on
top of regular objects it supports also value types called structs that
are passed by value. All structs have an implicit empty constructor
and therefore do not need to be initialized explicitly. The primitive
data types such as int and float are system-defined structs which
are declared in the system assembly mscorlib. Enums are structs
as well, merely defining fixed values that can be type-checked by
the compiler.

1 void test() {
2 int a = 5;
3 calcRef(ref a);
4 Console.WriteLine(a);
5
6 int[] b;
7 calcOut(b);

8 Console.WriteLine(b[1]);
9 }

10 int calcRef(ref int a) {
11 a = a + 3;
12 }
13 int calcOut(out int[] a) {
14 a = new A[3] { 1, 2, 3 };
15 }

Listing 1. Calling Conventions in C#

Since Jimple is based on Java, it cannot directly represent this
distinction. We represent CIL classes and structs as normal classes
in Jimple. Whenever such Jimple classes are used in the code, we,
however, need to correctly emulate the semantics of the calling con-
vention. We achieve this by cloning the objects that correspond to
structs before passing them as method parameters (or base objects
for virtual calls). The clone is a member-wise deep-clone on structs
only. This means that if a struct contains another struct (recall that
primitive types are structs as well in CIL), its value is copied recur-
sively. If a struct contains a reference to a class, this reference is set
to null in the clone.

Note that programmers can also overwrite the default calling
convention as shown in Listing 1. In line 3 an int value (which
is a struct and thus normally passed by value) is explicitly passed
by reference. In the test() method, the new value will thus be
available which is why line 4 will output 8. We model this behavior
by not cloning structs when they are explicitly passed by reference.
System-defined primitive structs such as int are modeled through
classes just like any other struct.

CIL further supports the out keyword. This can be used in the
same place as the ref keyword and makes a parameter behave
similar to a return value as shown in line 7 of the example. The
output line 8 is 1 from the array constructed in the callee calcOut.
This is different to ref where a reference is passed in and members
of the referenced object can be changed by the callee, but the callee
cannot pass back a totally different object. In the case of out,
nothing goes in and the callee defines the value to be returned.
It is important to correctly model this behavior. If we assume a
pure by-reference semantics as in Java, false positives can occur
in analyses such as taint tracking. Furthermore, not handling the
out keyword can lead to uninitialized variables as shown in the
example. However, the out keyword cannot directly be represented
in Jimple. Just like Java, Jimple only allows a single return type for
a method and assumes all parameters to be input data. We solve
this challenge by automatically boxing the respective parameters.
For each type that is passed as an out parameter, we automatically
generate a boxing class that stores the actual data in a field. When
the call returns, the data is read from the field.

Structs differ from objects also in the way they are allocated.
Before calling a method on an object or accessing one of its fields,
the object’s constructor must be called. For a struct, this is not
necessary. When a struct is declared, the runtime automatically
allocates the required memory and fills it with zeroes. Semanti-
cally, this initializes all fields to the default values of their respec-
tive types, i.e., zero for numeric types, and null for references. In
Jimple, just like in Java, such implicit initialization does not ex-
ist. Therefore, we create explicit calls to the default constructor for
each declared struct before any other method code is created. This
simulates the runtime’s initialization behavior.

4. Modeling the CIL Language Features
In this section, we describe some of the distinct language features
of the CIL language and how we model them in the Jimple IR.
Due to space constraints, we limit ourselves to the most important
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features. Recall that the goal is re-usability of existing analyses
which requires us to avoid changed or extensions to the Jimple IR.

4.1 Generics

1 void test() {
2 List <A> lst = getList ();
3 A a = lst.get(0);
4 bar(a.toString ());
5 }

Listing 2. Generic Lists in C#

While Java and the .net languages such as C# all support gener-
ics, their handling at compile time is fundamentally different. The
example in Listing 2 works for both Java and C#. The Java compiler
erases generics by reducing them to the closest common supertype.
Therefore, the return type List<Object> of method getList()
will be reduced to List. The types of local variables are erased,
because they are not needed in the bytecode. A static analysis tool
such as Soot must reconstruct these local types from the interface
types (parameter types, method return types) and the operations
performed on the local variables. In the example, it can only in-
fer java.lang.Object as the type for variable a. Recall that no
generic-type information is available for the list, and thus the return
type of the get() method is java.lang.Object as well. There-
fore, the call to toString() in line 4 can lead to the toString()
implementation of java.lang.Object or any subtype, making
the callgraph greatly imprecise.

In CIL, type information is preserved on local variables as well
as on generics. From the CIL bytecode, it is immediately apparent
that variable a is of type A and not of type System.Object (which
is CIL’s equivalent to java.lang.Object). Therefore, the CIL
frontend can simply inject a typecast. This has several advantages.
Firstly, the time-consuming process of type inference is avoided.
Secondly, the use of generic types, most commonly collections,
does not reduce the callgraph precision in comparison to explicitly-
typed specialized classes. In the example, the set of possible callees
for the call in line 4 is directly limited to A.toString() or over-
rides in subtypes.

Inside the generic class (the List class in the example), the
generic types are reduced to base types, similar to the type reduc-
tion performed in the Java compiler. If the generic type is a class
type, it is reduced to System.Object, unless it is explicitly de-
clared to be the subclass of some other, more concrete type. In the
latter case, the generic type is reduced to that given supertype. Note
that the frontend needs to apply name mangling for generic classes.
As generics are explicit in CIL, it is legal to have two different
classes with the same name that only differ in the number of type
variables. It is, however, not legal to have the same class name and
same number of variables multiple times even if the generic types
are limited to subclasses of distinct superclasses. This means that
only the number of generics is relevant, not any further informa-
tion about them. The frontend uses this restriction to create unique
names for generic classes. In the example, the List class with one
type variable becomes List 1.

1 interface IFace <out T> {
2 T get();
3 }
4 interface IFace2 <in T> {
5 void add(T data);
6 }
7 void test() {
8 IFace <String > if_string = factory ();
9 IFace <Object > if_object = if_string;

10 Object obj = if_object.get();

11
12 IFace <Object > if2_object = factory2 ();
13 IFace2 <String > if2_string = if_object;
14 if2_string.add(new Object ());
15 }

Listing 3. Co- and Contravariance in C#

CIL also allows covariance and contravariance on generic
classes. In the example in Listing 3, the interface IFace declares an
out type variable. The out keyword indicates that this variable may
only be used in place of return types or as out-parameter types of
methods. This restriction makes it safe to broaden the type through
covariance as shown in line 9. Attempting to use the generic param-
eter T as in in parameter in the interface leads to a compiler-time
error complaining about unsafe covariance. Our frontend assumes
that all bytecode to be processed passes type checking. Recall that
we generate typecasts to map generic types to actual ones. The
type of the generic interface is, just as in Java, independent of the
concrete instances of any type variables. Handling covariance is
therefore trivial. The frontend only needs to downcast the return
type. Similarly to covariance, CIL also allows contravariance on
assigments as shown in line 13 in Listing 3. The interface IFace2
uses an in-type variable T, which is restricted to incoming param-
eters of method calls. Trying to use it for out parameters or return
values of methods will cause type checking to fail. Under the as-
sumption that all code processed by the frontend type checks, this
is also handled through an implicit downcast similar to the case of
covariance.

Similar to generic classes, CIL also supports generic methods.
As with classes, the generic-type information is persisted in the
bytecode. The frontend uses overloading to implement the same
technique as with classes. The original generic method is reduced to
concrete base types to which concrete overloaded methods provide
type-safe access. The overloaded methods implement all necessary
typecasts before and after calling the original method.

4.2 Operator Overloading
The .net languages such as C# support operator overloading. In the
CIL code, custom operator implementations are treated as normal
function calls which makes them easy for Soot to handle. Neither
the client analysis nor the CIL front-end need to provide special
treatment for this language construct.

4.3 Properties

1 class TestClass () {
2 private int m_id;
3 public int id {
4 get { return m_id };
5 set { m_id = value; }
6 }
7 public String data { get; set; }
8 }

Listing 4. Properties in C#

The .net languages support properties as shown in Listing 4.
Properties are used with the same syntax as fields when storing or
retrieving values, but are conceptually similar to getter and setter
methods. In fact, the compiler automatically converts the property
code into methods. The property in line 3 in Listing 4 is an explicit
property definition, similar to writing getter and setter methods in
Java. Due to this automatic conversion, the frontend does not need
any special handling for properties and can simply keep the method
invocations generated by the compiler.
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C# also supports a simplified syntax for properties that do not
need any additional code, and only store a value. Line 7 declares
such a property. The compiler automatically generates a private
field for it, as well as getter and setter methods that store and
retrieve the value for this field. The implications for the frontend
are the same as for explicit properties. The handling of indexers is
similar to properties. In C#, an indexer is a property that can be
accessed with an index, similar to an array. In the CIL bytecode,
this is translated into getter and setter methods that take the index
as a parameter.

4.4 Delegates

1 class TestClass {
2 delegate void MyDelegate(String inStr);
3
4 void test() {
5 MyDelegate md = delegate (String

inStr) {
6 Console.WriteLine(inStr);
7 };
8 md += delegate (String in) {
9 Console.WriteLine("Hello: " + inStr);

10 };
11 md("My String");
12 }
13 }

Listing 5. Delegates in C#

The .net framework provides a built-in concept called delegates
for handling callbacks. The delegate definition in line 2 is concep-
tually similar to a Java interface containing only a single method.
Line 5 creates an instance of the delegate through an anonymous
method implementation. At compile time, the C# compiler cre-
ates a new class for each delegate. This class is derived from
System.Delegate. It declares a constructor and an Invoke()
method that matches the signature of the declared delegate (void
Invoke(String inStr) in the example). The constructor takes
a reference to the enclosing class instance and the pointer to the
method to be called when the delegate is invoked (an int). Since
there is one class per delegate and not per implementation, this in-
direction is required. Note that CIL is able to deal with pointers
which is used here for internally managing the delegates.

In the bytecode, invoking a delegate is then represented by
simply creating an instance of the delegate class and then calling
the Invoke() method as shown in Listing 6. At compile time, the
anonymous inner method is converted into a normal private method
with compiler-generated name. In the example, this is <test>b 0.
Therefore, no special support for anonymous inner methods is
required in the frontend. The opcode ldftn is responsible for
loading the function pointer of this compiler-generated method
onto the stack before invoking the constructor of the delegate class.
Note that that the actual bytecode is slightly more complex as the
instance of the delegate object is not created anew every time, but
cached in a compiler-generated field of the TestClass class.

1 ldnull
2 ldftn void

TestClass ::’<test >b__0’(string)
3 newobj instance void

TestClass/MyDelegate ::. ctor(object ,
native int)

4 ldstr "My String"
5 callvirt instance void

TestClass/MyDelegate :: Invoke(string)

Listing 6. Simplified Bytecode for Listing 5

The generated delegate class is special, though. Delegates are
a concept that is native to the CIL and the .net framework. There-
fore, the generated class does not contain any real implementation
for the Invoke() method or the constructor. Instead, the method is
declared as runtime managed, a special flag in the method’s meta-
data. This flag instructs the runtime environment to not actually
call the empty method when it is invoked. Instead, it jumps to the
function pointer that was passed in via the constructor and that is
now stored in a field of the delegate class. The process of finding
the correct method and invoking it is performed inside the CIL run-
time, invisible from the program’s code.

To allow existing callgraph algorithms to create sound (and ide-
ally precise) callgraphs, our frontend must emulate this behavior
in Jimple code. As function pointers (ldftn opcode) do not exist
in Jimple, it instead creates an artificial dispatch class per function
pointer. The ldftn opcode is then interpreted as creating an in-
stance of the respective dispatch class and pushing it onto the stack.
If the target function is an instance function, the ldftn opcode also
contains a reference to a target object. This target object is stored
in a field of the dispatch class. All these artificial dispatch classes
implement a common interface cil delegate that defines an
Invoke() method. Since the dispatch class is specific to one single
function pointer, it can divert a call to its generic Invoke() method
to the original method that was referenced in the ldftn instruction.
This allows the dispatch class to complete cover the semantics of
the original function pointer. The System.Delegate class must
then (instead of the native int function pointer) store a reference
to a cil delegate object, i.e., the common interface of all dis-
patch classes. When the Invoke() method of System.Delegate
is called, it can just call Invoke on its artificial dispatch class which
in turn calls the target method. Note that the concept of dispatch
classes allows the frontend to uniformly handle function pointers
in a similar fashion as other load instructions. This works even if
the function pointer is not directly used afterwards, but remains on
the stack for a while.

Delegates can also be used in asynchronous callbacks. In this
case, the caller wants to invoke a delegate and continue with its
own execution before the delegate has finished its work. There-
fore, generated delegate classes provide two additional methods:
BeginInvoke and EndInvoke. Instead of calling the synchronous
Invoke() method, client code can also call BeginInvoke(). This
method takes as an optional parameter a second callback that gets
invoked upon completion. Afterwards, the client code can obtain
the result of the computation through a call to EndInvoke(). In
the CIL bytecode, these two additional methods become part of the
generated delegate class and thus are easily modeled in Jimple.

A delegate can not only be used to provide a callback to a sin-
gle method, but also provides multicast support. In the example
in Listing 5, a second implementation is added in line 8. When
the delegate is invoked, both implementations are called. If a del-
egate returns a value, the default multicast operation return the
value computed by the last invoked implementation. Multicast is,
just like unicast, handled by the runtime. The generated delegate
class is no different to unicast except for it being derived from
System.MulticastDelegate instead. To model adding another
recipient to a delegate, the compiler first creates a second instance
of the delegate class. It then issues a call to the static Combine()
method the System.Delegate API class. This method takes both
instances of the delegate class and returns a combined instance.
Again, the exact function pointer handling happens inside the CIL
runtime and not in user code. In the frontend, we model multi-
cast by chaining dispatch methods. We provide artificial imple-
mentations of system methods such as Delegate.Combine(). The
Combine() method, for instance, takes two dispatch classes, and
creates a new instance of the first one. This first dispatcher has a
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reference to the second one which is called in Invoke() after the
local target (i.e., the first dispatcher’s target method) has returned.

Furthermore, note that delegates are objects and can thus freely
be passed around in the program. It is legal to create a delegate
instance of a private method and then pass this delegate to some
other code location from which the target method would not be
accessible otherwise. The frontend solves this issue by making all
methods public that are referenced through function pointers.

4.5 Reflection
Similar to class constants in Java bytecode, CIL has data struc-
tures for reflectively accessing not only classes, but also methods
and fields. All of these handles can be loaded using the ldtoken
opcode. Depending on the argument of the ldtoken opcode, an in-
stance of a particular handle class is created. For a class reference,
an instance of the System.Reflection.RuntimeTypeHandle
class is created and put on the stack. Afterwards, one can use the
reflection methods in the system class library to perform operations
on the handle such as calling a method or accessing a field.

The CIL frontend detects the type of token being loaded. It con-
structs one data structure per target that is derived from the respec-
tive system data structure. If the CIL code creates a reference to
class A, the frontend generates an artificial class cil typeref A
that is derived from System.Reflection.RuntimeTypeHandle.
The class reference is then modeled through an instance of this ar-
tificial reference class instead of an instance of the parent system
class. In other words, the ldtoken opcode is modeled as creating
an instance of the artificial handle class. This technique allows the
frontend to keep the semantics of the original target without ab-
stracting all references together in a single class. A Jimple class
constant would not correctly capture the semantics of class refer-
ences being structs with methods and fields in CIL. Furthermore,
there are no field or method constants in Jimple which would lead
to a non-uniform handling of the three token types in CIL.

5. Implementation
An assembly containing CIL code is a Windows DLL or EXE file
with a proper PE header. These files contain the CILcode as ad-
ditional resources. The EXE files compiled with Microsoft’s com-
pilers also contain small bootstrappers written in native code. This
code is responsible for invoking the CIL runtime on the contained
managed CIL code without additional effort from the user. If no
runtime is installed, it offers to download an install it. Conse-
quently, an assembly is a binary file with complex data structures.
To avoid having to parse these binary data structures, our front-end
uses ildasm, the IL disassembler tool shipped with the Microsoft
.net framework. The ildasm tool first converts the binary assembly
file into a textual disassembly which Soot’s front-end then parses
and converts into Jimple code.

We implemented our own parser for CIL disassembly files. Soot
is implemented in Java and there is no parser for CIL written in
Java yet. Existing work on decompiling CIL assemblies has been
performed in CIL by the use of the platform’s reflection and code-
model APIs. The commercial product .net Reflector by Redgate 1,
for instance, is implemented as a .net application for this reason.

6. Limitations
Some of the .net language features cannot easily be modeled in
Jimple. The .net framework, for instance, allows for mixed-mode
DLLs. Such DLLs are .net assemblies containing CIL code as
well as native, platform-specific Windows DLL files. Both parts
contain user code. Methods implemented in CIL code can call

1 http://www.red-gate.com/products/dotnet-development/reflector/

native methods and vice versa. Native code can construct and use
classes in CIL, and various techniques exist for marshaling data
transferred between native and CIL code. In contrast to Java’s JNI, a
mixed-mode DLL in .net integrates native and managed code more
tightly. CIL, for instance, supports bytecode instructions that call
native methods given their offset in the file. Mixed-mode DLLs
are usually written in an extended version of C++ that supports
additional modifiers. For the developer, the difference between
managed and native code is a matter of adding or leaving away
these modifiers. As Jimple is based on Java, the frontend would
need to model this tight coupling as explicit calls to native methods
which is non-trivial. Therefore, we leave modeling mixed-mode
DLLs to future work.

7. Evaluation
In this section, we evaluate the performance of the CIL frontend
presented in this paper. We furthermore use the frontend to apply
existing analyses to CIL bytecode. We also report on experiments
on a recent malware sample for Android that uses CIL code to
hide its malicious behavior from state-of-the-art detection tools. It
exploits that most of these tools do not support CIL code, although
CIL code can be run on Android using the Mono framework.

7.1 Performance
A new frontend to any static analysis framework should be able to
efficiently handle even large input files. Note that the implementa-
tion of the frontend is not yet fully stable and functional for every
corner case, which is why the performance data reported here is
preliminary. As we have not yet spent any explicit effort on per-
formance optimization, it can be seen as an upper bound for the
computation time.

When parsing a simple “Hello World” program written in Java
using the ASM-based Java bytecode frontend, Soot loads 216 sys-
tem classes this program depends on. When loading the seman-
tically equivalent program written in C# using the CIL frontend,
Soot needs to load only 114 classes, due to the different structure
of the .net framework’s runtime. These classes are contained in the
mscorlib system assembly whose binary is about 5 megabytes and
whose disassembly is about 55 megabytes in size. In total, for Mi-
crosoft .net framework version 4.0.30319 x64 mscorlib comprises
more than 3,200 types, 28,300 methods, and 14,200 fields.

In the case of Java, the Jimple conversion requires about one
second. In the case of CIL, the current frontend requires six sec-
onds. This excludes the additional time required by Microsoft’s ex-
ternal ILDASM tool to disassemble the bytecode. From our expe-
rience, however, this time is negligible. At the moment, the biggest
bottleneck appears to be the parsing of the huge input text file. We
plan to improve the performance in future work.

7.2 Cross-Platform Cross-Language Malware for Android
Mobile devices are used to process a great amount of sensitive in-
formation such as banking or health data. Furthermore, these de-
vices are equipped with a broad variety of sensors such as for loca-
tion (GPS) or acceleration. They can also impose charges at the cost
of the user by sending SMS messages to costly premium-rate tele-
phone numbers. Unsurprisingly, these features have attracted mis-
creants who develop and provide malicious apps. Due to the great
market share of Android (more than 80%), most mobile malware is
developed for Android. Regardless of the programming language
used to develop an app, it must be compiled to Dalvik bytecode.
Dalvik is a register-based bytecode language that is specially opti-
mized for resource-constrained mobile devices.

Since there is no compiler from .net languages such as C# to
Dalvik, any Android application that wishes to use .net must have
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its CIL code intepreted, through a special version of the Mono
framework (an open-source implementation of a CIL runtime)
compiled for ARM. The Mono execution environment runs side-
by-side with Android’s normal Dalvik runtime. A recent malware
sample (identifiable through its package name com.tinker.gameone)
uses CIL to hide its malicious code from purely Dalvik-based anal-
yses, as they are commonly used by mobile app stores to block
malware from the store. In the gameone malware, these analy-
sis only see the Dalvik bytecode of the benign Mono framework,
which is why the app made it into several stores. According to
virustotal.com, even at the time of writing the paper, the malware
was only detected by 29 out of 56 popular anti-virus tools. Those
tools use signature-based matching, i.e., can only re-identify the
malware once its malicious behavior has been manually identified.

The malware protects its assemblies from being disassem-
bled by associating the SuppressIldasmAttribute with its
assembly. Recall that in CIL assemblies are proper entities and
may thus have attributes associated. This particular attribute is
checked by ildasm. If present, ildasm refuses to disassemble
the assembly. We countered this protection by removing the at-
tribute before disassembling the file. In the Jimple code, the class
FBAccount.TinkerAccount contains a method AccountSend
Data(). This method calls a number of methods with obfus-
cated names, which are, however, only wrappers around API calls.
In the end, the code calls the method PushToServer() in the
class AppData.ClientDataManager. With our frontend, Soot
was able to find call sites for methods such as getResult in
System.Net. Http.Http ResponseMessage as they appear in
PushToServer(). In total, these methods send the user’s Face-
book credentials over the internet. Although not yet tested, we are
confident that existing data-flow analyses or slicing techniques can
be applied as well without modifications to the analysis as the data
flow is fairly trivial in this malware app. It furthermore allows the
human analyst to read convenient Jimple code instead of the stack-
based CIL disassembly. Therefore, using our frontend it would have
been easy to detect this malware with existing analysis techniques.

8. Related Work
The CIL bytecode language is defined as a part of the Common
Language Infrastructure (CLI) which is defined in standard ECMA-
335 (cli 2012). More precisely, the language parsed by our frame-
work is the textual ILAsm language defined in Part IV of the stan-
dard. Others have added documentation on how high-level lan-
guages such as C# compile to CIL code (Bock 2008).

Existing work such as the inline reference monitoring for .net
programs proposed by Hamlen, Morrisett, and Schneider (Hamlen
et al. 2006) is based on Microsoft’s ILX SDK. The ILX SDK is
capable of reading and writing .net assemblies with the help of
OCAML. This toolkit also extends the CIL language with con-
structs for closures, functions types, thunks, and others (Syme
2001). Microsoft develops the Phoenix Compiler2 as a research
platform for code generation, optimization, and program analysis
which can handle native PE binaries as well as CIL code. Phoenix
uses a single, strongly-typed intermediate representation. Concep-
tually, this approach is thus closest to the work presented in this
paper. Other purpose-built specialized analysis tools include Fx-
Cop (similar to FindBugs (Ayewah et al. 2008) in the Java world)
and StyleCop for detecting bad code style. Kieker.NET (Magedanz
2011) is a framework for performing dynamic analysis on .net pro-
grams. It re-uses the original Kieker implementation for Java (van
Hoorn et al. 2009) by the means of a custom interoperability layer.

2 http://research.microsoft.com/en-us/collaboration/
focus/cs/phoenix.aspx

9. Conclusions
We have presented a novel frontend for the Soot program analy-
sis framework. The frontend is capable of converting CIL bytecode
into Soot’s Jimple intermediate representation. We have shown how
CIL language constructs can be expressed in Jimple, though Jim-
ple was originally designed for the less expressive Java bytecode
language. As future work, we plan to remove the dependency on
ildasm and implement a conversion directly from the binary CIL
datastructures instead of the disassembly text. We are currently
working on integrating our frontend into the Soot open-source
framework. As the ultimate goal, we hope to apply a mainly un-
modified version of the FlowDroid static data flow tracker (Arzt
et al. 2014) to .net programs.
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