
Using Targeted Symbolic Execution for
Reducing False-Positives in Dataflow Analysis

Steven Arzt1 Siegfried Rasthofer1 Robert Hahn1 Eric Bodden1,2
1Center for Advanced Security Research Darmstadt (CASED)

Technische Universität Darmstadt, Germany
2Fraunhofer SIT, Darmstadt, Germany

{siegfried.rasthofer, steven.arzt, robert.hahn, eric.bodden}@cased.de

Abstract
Static data flow analysis is an indispensable tool for finding poten-
tially malicious data leaks in software programs. Programs, nowa-
days often consisting of millions of lines of code, have grown much
too large to allow for a complete manual inspection. Nevertheless,
security experts need to judge whether an application is trustwor-
thy or not, developers need to find bugs, and quality experts need
to assess the maturity of software products. Thus, analysts take ad-
vantage of automated data flow analysis tools to find candidates for
suspicious leaks which are then further investigated.

While much progress has been made in the area with a broad
variety of static data flow analysis tools proposed in academia and
being offered commercially, the number of false alarms raised by
these tools is still a concern. Many of the false alarms are reported
because the analysis tool detects data flows along paths which are
not realizable at runtime, e.g., due to contradictory conditions on
the path. Still, every single report is a potential issue and must
be reviewed by an expert which is labor-intensive and costly. In
this work, we therefore propose TASMAN, a post-analysis based
on symbolic execution that removes such false data leaks along
unrealizable paths from the result set. Thus, it greatly improves the
usefulness of the result presented to the human analyst.

In our experiments on DroidBench examples, TASMAN re-
duces the number of false positives by about 80% without prun-
ing any true positives. Additionally, TASMAN also identified false
positives in real-world examples which we confirmed by hand.
With an average execution time of 5.4 seconds per alleged leak
to be checked on large real-world applications, TASMAN is fast
enough for practical use.

General Terms Languages, Verification

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program analysis; D.4.6 [Security and
Protection]: Information flow controls

Keywords Data Flow Analysis, False Positives, Precision, Sym-
bolic Execution, TASMAN

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SOAP’15, June 14, 2015, Portland, OR, USA.
Copyright c© 2015 ACM 978-1-4503-3585-0/15/06. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

1. Introduction
Static data flow analysis tools have been adopted for a broad variety
of tasks in software development, quality engineering, testing, and
security assessment. Most modern software systems have grown
much too large for a human expert to fully manually analyze them
and detect data flows that may hint at bugs, security vulnerabilities,
or poor software quality. On the other hand, such analyses become
more and more important with software being increasingly used in
safety-critical environments or to deal with highly privacy-sensitive
information such credit card data, or personal health records.

This issue has given rise to a market of static analysis tools
which automatically perform checks on software, reducing the re-
quired labour of a human expert. The human expert now only needs
to assess the results produced by the tool. While this is already a
large improvement over manual analysis and there has been much
work on the quality of static analysis tools, today’s tools still re-
port a number of false positives. For the human analyst, this has the
consequence of wasted effort spent on understanding the program
until he finally arrives at the decision to ignore a certain tool report
at hand. For businesses, this wasted expert labour can quickly add
up to a considerable amount of money being spent in vain.

Many of todays’s static analysis tools which are available on
the market or which have been proposed in academia are based
on data flow analysis. In particular, analyzing Android applications
is a very attractive field for security researchers since it is known
that apps handle and may also leak personal data [1]. We have
looked into the main sources of false positives produced by static
data flow analysis tools for Android that arise when applying them
to large real-world applications. Our approach focuses on Android
applications, but can also be applied to Java applications. In most
cases, the path on which the tool reports a data flow through the
program is unrealizable, i.e., can never be taken at runtime. Most
prominently, those paths contain contradictory conditions such as
the operating system version is greater than 5 and at the same time
the operating system version is smaller than 3. Many other false
positives are similar, likely caused by the fact that the developer
missed to remove some checks during the testing phase. Many
of these conditions are however not local and thus not directly
eminent from the code. Therefore, even tools that employ a simple
dead-code elimination as a pre-processing still report these false
positives.

We therefore propose TASMAN (Targeted Symbolic Execu-
tion for Android), a fully automated post-analysis step based on
symbolic execution. TASMAN runs after the main data flow anal-
ysis is completed and prunes data leaks with infeasible paths from
the result. Only those results that TASMAN could not disprove

1 void onCreate () {
2 show(null);
3 }
4
5 void show(AdDisplayListener listener) {
6 this.callback = listener;
7 boolean bool1;
8 if (this.callback != null)
9 bool1 = this.ad.show();

10 else
11 bool1 = false;
12 ...
13 String secret = getSecret ();
14 if (bool1)
15 leak(secret);
16 }

Listing 1. False Positive Example

are displayed to the human analyst, greatly reducing the effort that
remains to be spent on confirming the findings.

This however gives rise to an additional challenge. Most static
data flow analysis tools only report those fractions of the program
on the data flow path which directly manipulate the data being
tracked, but not all of its control-flow dependencies. Such a reduced
flow however is insufficient for collecting the full set of conditions
that must be met for the path to be feasible at runtime. Even
if a fraction of the path does not manipulate any data, it might
abort the control flow at runtime. Therefore, our post-analysis must
reconstruct the missing parts of the data flow path from the tool’s
output.

In summary, this paper presents the following original contribu-
tions:

• an approach for collecting the relevant conditions that can in-
fluence the validity of a data flow path,

• an analysis based on symbolic execution which scans for con-
tradictions on a data flow path,

• an evaluation of the effectiveness of our approach based on 80
micro benchmarking applications and 10 real-world apps from
the Google Play Store, and

• an extension of DroidBench containing our 80 micro bench-
marking applications for testing static data flow analyses based
on symbolic execution

The remainder of this paper is structured as follows. Section 2
presents a motivating example which will then be used to explain
how the framework works in Section 3. In Section 4, we evaluate
the performance and precision of our approach. Section 5 discusses
limitations, while Section 6 presents related work. We conclude in
Section 7.

2. Motivating Example
Listing 1 shows a shortened real-world example taken from the
Love calculator app 1, slightly modified for readability reasons.
The method show contains a potential data leak (line 13 and 15) re-
ported by the state-of-the-art static data flow tracker FlowDroid [1].
In this example, assume that onCreate() is the only caller of
show(). It is then easy to follow that there is no data leak since
the variable bool1 in line 14 can never hold a value of true.

FlowDroid nevertheless reports the leak as the tracking is ag-
nostic to conditionals which is a common design choice for taint

1 com.mobilplug.lovetest

tracking tools. Taint tracking is a meet-over-all-paths problem, and
one would thus need to track all values that could possibly reach a
conditional which is infeasible. TASMAN on the other hand only
works on the result paths reported by the taint tracker and is thus far
more efficient. In the remainder of the paper, we discuss the prob-
lem in more detail and propose a solution that reduces the number
false positives produced by static data flow tracking tools.

3. Framework
TASMAN checks whether a taint propagation path reported by a
data flow analysis tool is feasible. A necessary precondition for
taint feasibility is the existence of at least one control-flow path
containing all statements on the taint propagation path. Further-
more, if there are conditions along this control-flow path, they must
not be contradictory. Thus, to check for infeasible paths, one must
first match the taint proapagation path on possible control flow
paths and then collect all the conditions along this path.

However, the taint propagation paths reported by most static
taint tracking tools only contain those statements that actively
propagate or transform taint information, i.e., assignments as well
as method calls and returns. In the example in Listing 1, this
means that the taint propagation path only consists of statements 13
and 15:

String secret = getSecret ();
leak(secret);

To conclude that this path is infeasible, one however also needs
the conditional in line 14. Deciding the possible outcomes of the
conditional in turn requires knowledge about the possible values of
the callback field, which yet in turn requires a back-tracking into
the callers. Only then, we can conclude that the field must always be
null, the condition can never hold, and the leak can never happen.

Therefore, TASMAN must extend the propagation paths re-
ported by the taint tracking tool with all statements that can in-
fluence control flow reachability plus all assignments to variables
or fields on which the conditionals transitively depend. This col-
lection must happen inter-procedurally. All statements on the ex-
tended path are then transformed into constraints. Only if the re-
sulting constraint set is satisfiable, the leak is possible at runtime.
To check whether the resulting constraint set is satisfiable or not,
an off-the-shelf SMT solver is used.

In this section, we will first explain the algorithm used by TAS-
MAN to construct the constraint set in the intra-procedural case.
In Section 3.1, we show how the code from the motivating exam-
ple can be turned into an unsatifiable constraint set which can then
be used to disprove the corresponding data leak. In Section 3.2,
we explain in detail how inter-procedural control flows are han-
dled, and Section 3.4 refers to checking exceptional control flows.
Section 3.3 tackles how TASMAN processes loops and recursions,
while Section 3.5 explains how specific data types are handled. Our
implementation is discusssed in Section 3.7.

3.1 Basic Constraint Generation
TASMAN starts its backwards analysis at the sink statement
(line 15) which gets associated with an empty constraint set. Empty
constraint sets are trivially satisfiable as they do not impose any re-
strictions on the values of any variable in the program. TASMAN
then performs a backwards propagation along the interprocedu-
ral control flow graph. While going through the graph, TASMAN
checks for conditions. If a predecessor of the current statement is
a conditional, it is directly translated into a new constraint. Vari-
ables are treated as free symbols to be refined later on. We will

15: leak (secret)

14: if(bool1)

11: bool1 = false

8: if(this.callback != null)

9: bool1 = this.ad.show()

2: show(null)

6: this.callback = listener
7: boolean bool1

13: String secret = getSecret()

Figure 1. Constraint Propagation Along the Inverse CFG

now show how the propagation is done on the motivating example
from Listing 1. A graphical representation is shown in Figure 1.
The formulas on the edges of the control-flow graph represent the
constraint set aggregated so far. Formulas printed in red and italic
font are infeasible.

For line 14, TASMAN generates the constraint set s bool1 =
true. The conditional must evaluate to true, otherwise the sink
statement would not be reached. However, since the possible values
for bool1 are not yet known to the backwards analayis, a new,
free symbol s bool1 is created for this variable. For a constraint
solver, this means that the symbol can take any value possible
according to its type. At the moment, the constraint set would thus
be trivially satisfiable. While iterating further back in the control
flow, more and more constraints on the variable will however be
generated, further restricting its possible values. In other words, the
more information the backwards analysis picks up for a variable,
the more precise becomes the constraint set on the possible values.
Only if all constraints obtained in the end can be satisfied at the
same time, there is a set of values for which the taint propagation
path is feasible.

The next line in the backwards iteration would normally be
line 13. This line is however neither a conditional nor does it refine
any of the variables for which we already have symbols in the
constraint set. Thus, no additional information can be gained from
this line and TASMAN skips it.

Once the analysis has arrived at line 12, there are multiple pos-
sible predecessors. Depending on the outcome of the conditional
at line 8, the predecessor of line 12 is either line 11 or line 9. Se-
mantically, the data flow is feasible if at least one of the possible
control flow path paths containing the propagation path reported by
a static data flow analysis tool is feasible. At this point, TASMAN
thus splits the analysis and proceeds with two distinct (but initially
equal) constraint sets for two possible control flow paths that could
lead to the leak in question.

Path 1: Assume that statement 11 is the predecessor. The value
of variable bool1 gets changed which refines the set of possible
values for the corresponding symbol s bool1. This extends the
constraint set to s bool1 = true ∧ s bool1 = false. Obvi-
ously, this constraint is unsatisfiable (printed in red in the figure)
and processing can stop at this point. No further predecessors need
to be taken into account.

Path 2: Assume that statment 9 is the predecessor. This state-
ment also assigns variable bool1 and thus also refines symbol
s bool1. Unlike for the other possible control-flow path, we how-
ever get a satisfiable constraint set: s bool1 = true ∧ s bool1
= ad show 1. The new, free symbol ad show 1 models the return

value of the call to ad.show() and will once again be refined dur-
ing the further backwards processing. For the moment, we will ig-
nore the concrete refinement of the call for the sake of simplicity
and leave this new symbol free. Method handling will be discussed
in Section 3.2.

The predecessor of line 9 is the condition in line 8. Since we
leave the then branch of a conditional, the condition must hold
or otherwise the control flow would not have reached this branch.
Therefore, our constraint set gets extended one more time: s bool1
= true ∧ s bool1 = ad show 1 ∧ ref callback 6= ⊥.

Note that object references such as this.callback are mod-
eled by assigning unique numeric identifiers to allocation sites.
When an object is first referenced, a new, unbound ref symbol
is introduced. If the backwards constraint collection then reaches
the allocation site of the corresponding object, TASMAN gener-
ates a constraint maping the symbol to this allocation site’s unique
number. This technique reduces object references to numbers and
allows for a simple handling of Java object identity comparisons:
For a check a == b, TASMAN generates a constraint which com-
pares the unique identifiers of the corresponding allocation sites.
The special pseudo allocation-site ⊥ models null references. The
remainder of the method can again be skipped as it does not pro-
vide any further information on conditionals or existing symbols.

At the beginning of the method, the backwards analysis must
continue into the callers. If there are multiple callers, the control
flow path must be split into multiple possibilities with one con-
straint set each just like in the case of the if statement. More infor-
mation on the interprocedural part will be given in Section 3.2. In
this example, there is only one caller and the parameter can trivially
be mapped to the respective call site argument (line 2), giving the
final constraint set: s bool1 = true ∧ s bool1 = ad show 1
∧ ref callback 6= ⊥∧ ref callback = ⊥. This constraint
set is clearly unsatisfiable.

In summary, TASMAN has now explored all possible control
flow paths that can lead to the alleged leak. It has collected all
constraints along these paths and proven that they are unsatisfiable.
As a consequence, this leak can only be a false positive.

3.2 Interprocedural Constraint Collection
When the backwards constraint collection reaches a method call
as in Line 9, it must continue with the constraint collection inside
the callee. More specifically, the return value of the callee yields
a new constraint on the symbol corresponding to left side of the
assignment in the caller.

In general, there can be multiple callees. TASMAN there-
fore splits the control flow path into the various possibilities with
one constraint set each. This splitting is equivalent to the intra-
procedural case of the if statement in line 8 of the motivating
example: In both cases, the predecessor of the current statement is
not uniquely identifiable and all possibilities must be explored with
their own copy of the constraint set built up so far.

Note that TASMAN never joins constraint sets, even if two
possible control flows do join again at some point. As an example,
if a call site has multiple possible callees, the two copies of the
constraint set will continue as independent possibilities even after
the backwards analysis has returned to the same return site for both
possible callees. While this can lead to more constraint sets than
necessary, it makes every single set simpler and easier to decide
for the solver. To keep runtime low, TASMAN however performs
early checking to not collect any further constraints if the set is
already infeasible.

3.3 Loops and Recursion
Some propagation paths are along control flow paths containing
loops or recursive method calls. Whether these paths are feasible

Contant Primitives
(76.1%)

76.1%

Constant Strings
(1.3%)

1.3%
Null References

(22.6%)

22.6%

Figure 2. Usage of Constants on Path Conditions in Android Ap-
plications

or not often depends on the number of iterations that have passed
inside the loop, e.g., if a certain value is only assigned after the 10th
iteration. Precisely modeling such constructs is hard and subject
to ongoing research work [8, 13, 14]. TASMAN unrolls loops -
either to the number of iterations after which no new constraints are
generated or to a pre-defined maximum iteration count, whichever
is lower.

3.4 Exception Handling
The motivating example in Listing 1 induces one more constraint
which we omitted in the description up to now for increased clar-
ity: In Line 8, this may not be null. In general, operations that
can throw exceptions according to the Java / Dalvik language spec-
ifications may make the program depart from normal control flow
at runtime. This can make sink statements found by a static data
flow analysis tool unreachable on the path detected by the data flow
tracker. TASMAN generates conditions for field accesses and vir-
tual invocations that require the respective base objects not to be
null. Other similar cases such as checks on array indices (must be
in range) or divisors in arithmetic expressions (must not be zero)
can easily be added to the tool to increase the detection rate even
further.

3.5 Special Data Types
Some data types available in Java-based programming languages
pose challenges to constraint solvers. Strings, for instance, have
no corresponding type in many SMT solvers and thus need to be
emulated by TASMAN. Fully modeling strings as sequences of
Unicode characters can however lead to very large constraint sets
and is thus infeasible in practice. In a pre-analysis on the top 100
application in the Google Play Store, we found this is however
usually not even necessary: string operations are mostly equality
checks in real-world Android applications. Even those only made
up 1.3% of all data types of variables involved in conditions on
taint propagation paths as shown in Figure 2. Note that data types
which are used in the application as such, but not for variables in
conditions along taint propagation paths, need not be modeled.

This enables us to, instead of modelling the Java String API,
treat strings as immutable atomic objects that are represented by
unique symbols. Equality comparisons are then transformed in
constraints matching two symbols. If an app does perform a string
operation such as a substring, TASMAN picks a new unbound
symbol, modelling that any value is possible. In the future, a more
precise model may be possible when novel approaches in constraint
solving [3, 9] become available in production-grade solvers.

According to our preliminary study, the majority of all data
types to be considered were numeric types (integer, long, etc.), and
object types. The latter were however only used for null checks in

almost all cases which is trivial to model in the constraint set using
the special ⊥ symbol as shown in Section 3.1.

The SMT library interface we use (see Section 3.7) contains an
Array type which is however closer to a key-value map than to a
Java-style array. Though arrays and lists were not shown as preva-
lent in our pre-analysis, TASMAN uses this SMTLib feature to
map Java arrays to SMT Lib maps using numeric keys. Java-style
mutable lists, maps, and sets are currently treated as unbound sym-
bols as their complex runtime semantics cannot easily be expressed.

3.6 Static Single Assingment Form
If the code is not in static single assignment (SSA) form and a
variable gets overwritten, this may lead to contradictory conditions
if handled trivially. Assume two assignments a = 3; a = a + 5.
If these are translated to a constraint set s a = 3 ∧ s a = s a +
5, this set would be unsatisifiable, though the code corresponds to
a perfectly valid control flow path.

To avoid this problem, TASMAN introduces a new symbol for
every consecutive assignment of the same variable. This is similar
to converting the code to SSA form before collecting constraints.
In the example, the new constraint set would be s a0 = 3 ∧ s1 a
= s a0 + 5 which is satisfiable.

3.7 Implementation
We implemented our approach on top of FlowDroid [1] which is
a highly precise data flow tracker with support for Android appli-
cations as well as normal Java programs. Furthermore, FlowDroid
allows easy access to the actual taint propagation paths, though in a
condensed form as described above. Since FlowDroid does not take
conditionals into account2, contradictory conditions are a source of
precision by design. TASMAN helps solve this issue.

FlowDroid is in turn based on Soot [10] which gives TASMAN
access to a call graph and unit graphs for the individual meth-
ods. Additionally, Soot already provides many useful analyses that
could be re-used such as checking for definitions of certain vari-
ables.

For checking the satisfiability of the generated constraint set,
an off-the-shelf SMT solver is used. TASMAN is based on SMT
Lib v2.0 [2] to allow for easily exchanging the concrete solver. By
default, the Z3 solver [4] created by Microsoft Research is used.

4. Evaluation
For TASMAN to be useful, it must identify a substantial number
of false positives in the FlowDroid output for a common set of
applications, it must not flag any actual data leaks as false positives,
and it must finish its processing in an adequate timeframe. In
this section, we therefore describe how we assessed the precision
and performance of TASMAN both on artificial micro-benchmark
challenges and on real-world Android applications taken from the
Google Play Store.

4.1 Test Suite
An independent researcher contributed a test suite with 80 test
cases containing challenges for static data flow tools based on
symbolic execution. We will integrate these test cases into the
DroidBench open-source project [1]. These tests are grouped into
various categories such as array handling, casts, static and dynamic
field use, inter-procedural data flows, lists and collections, loops
and recursion, exceptions, operators, and strings. Table 1 shows
the performance of TASMAN on the test suite. The first column
lists the groups of test cases in the benchmark suite. For every

2 In this work, we assume the implicit flow tracking option is disabled which
is the default.

Table 1. Symbolic Benchmark Suite

Test-case group False Positives True Positives
Arrays 2/3 3/3
Casts 3/3 3/3
Collections 1/1 1/1
Exceptions 2/2 -
Fields and Objects 15/16 16/16
General Java 2/2 2/2
Interprocedural Data Flow 2/3 3/3
Library Handling 1/2 2/2
Loops and Recursion 4/4 4/4
Operators 2/3 3/3
Strings 1/4 4/4
Sum 35/43 (81%) 41/41 (100%)

test group, there are test cases with real leaks and ones without
real leaks. We limited our evaluation to those test cases for which
FlowDroid reported results as our goal was to assess TASMAN as
a post-processing step on the FlowDroid results.

TASMAN was able to erase 81% of all false positives reported
by FlowDroid and did not remove any true positive. This means that
applying TASMAN as a post-processing step on the FlowDroid
results is safe due to conservative over-approximation in cases that
cannot be decided by symbolic execution.

4.2 Real-World Android Applications
In this section, we show how TASMAN performs on 10 randomly
picked real-world Android applications taken from the Google Play
Store. Table 2 shows the package names of the respective applica-
tions (column 1) together with the total number of leaks reported by
FlowDroid (column 2), and the number of leaks from that set iden-
tified as false positives by TASMAN (column 3). We verified all
of these alleged false positives by hand. This manual verification is
the main reason why we had to limit this evaluation to a small set of
applications as verifying static analysis results on real-world appli-
cation without any access to the original source code is non-trivial
and time-consuming.

All false positives identified by TASMAN were actual false
positives, i.e., TASMAN did not remove any actual leaks from the
result set. From our experiments, we can thus conclude that TAS-
MAN is a safe post-processing that significantly reduces the num-
ber of false-positives left for analysis by a human expert without
affecting the recall of FlowDroid.

The main reason for the false positives identified by TASMAN
and confirmend by hand was dead code in the application. In
some cases, the methods containing the leaks were not even called,
in others, the leaks were guarded by conditionals that can never
evaluate to true, for instance due to debug checks.

4.3 Performance
Column FlowDroid(s) in table 2 shows the performance of Flow-
Droid and TASMAN on the ten real-world examples on which
we hand-verified the reported false positives. While the post-
processing by TASMAN takes considerable time, it is still in the
order of minutes. With an average of about 8 minutes per app in to-
tal, an automated post-processing using symbolic execution is still
useful when it reduces the number of leaks that need to be verified
by an expensive human expert.

Furthermore, much of the computation time is due to the high
number of leaks in large applications. Per leak, TASMAN takes
only about 5.4 seconds. Per identified false positive, TASMAN
takes about 4.5 minutes on average.

5. Limitations
Our current approach is only applicable to conditions on values
that can statically be derived from the program code. If a value is
for instance read from the environment (e.g., from a file on disk),
TASMAN assumes that the respective variable can take any value.
Furthermore, our approach does not support string operations such
as concatenation or substring. According to our pre-analysis (see
Figure 2), this is however not an issue in practice. Comparisons
on strings are scarce on data flow propagation paths, and even
if they exist, they only compare constant values. As future work,
we will however lift this limitation by combining TASMAN with
HARVESTER [11] which is an approach for extracting complex
runtime values from Android applications.

The combination of FlowDroid with TASMAN approach is
not sound. For every source-to-sink connection it finds, FlowDroid
only reports one arbitrarily chosen witness as a path, regardless of
how many paths between the respective source and the respective
sink exist in the program being analyzed. TASMAN collects the
conditions on this witness path and checks whether they are contra-
dictory. Thus, if TASMAN finds a contradiction and concludes that
the respective path is no realizable at runtime, this only disproves
the witness reported by FlowDroid and not the source-to-sink con-
nection as such. In theory, there could be a different witness for
the same source-to-sink connection which is indeed realizable. To
avoid this issue, one could configure FlowDroid to report all pos-
sible witnesses to its findings. This can however not only severely
impact performance, but also lead to an exponential increase in re-
ports. Though artificial examples that demonstrate this problem can
be created, witnesses are usually equal with respect to realizabil-
ity in practice. Thus, TASMAN can limit itself to the one witness
FlowDroid reports in its default configuration as we have shown in
our evaluation.

6. Related Work
Static information flow analysis has been an active research topic
for many years and numerous solutions for dealing with false posi-
tives and for increasing the precision of the analysis tools have been
proposed.

Hammer et al. [5] propose the inference of path conditions
for Java programs. Such conditions which can then be processed
by a constraint solver to automatically derive input values which
trigger the illicit paths. If no such inputs can be derived, the path is
infeasible and the leak is a false positive.

Previously, Snelting [15] has already shown for procedural lan-
guages how path conditions can be used to increase the accuracy of
a static program slices. Extracting and simplifying the conditions
shows under which circumstances a certain leak can happen.

Robschink et. al. [12] generate path conditions for large proce-
dural programs. These constraints are represented as BDDs for im-
proved scalability. Similarly to Snelting’s work, Robschink’s con-
ditions are simplified to yield formulae representing necessary con-
ditions for a given information flow. Inputs satisfying these formu-
lae are witnesses for the flow.

Taghdiri et. al. [16] extend these approaches with a CEGAR
process to further erase false witnesses by executing them and
iteratively refining the path conditions with those whitnesses that
did not actually yield a data flow at runtime.

Jeon et. al. [6] present a simplified language for Dalvik executa-
bles which can more easily be used for symbolic execution than
the original bytecode. Secondly, they demonstrate that their tool
SymDroid is able to discover the path conditions under which the
contact database is accessed in Android apps.

Another approach to eliminate infeasible paths was presented
by Jhala et. al. [7] who propose slicing the program and eliminating

Table 2. Evaluation on Real-World Android Applications with Potential Leaks Identified by FlowDroid, False Positives Found by TAS-
MAN, and Runtime Performance. All Identified False Positives Were Verified by Hand.

Test-case group Leaks FPs FlowDroid(s) TASMAN (s) Time/Leak(s) Time/FP(s)
com.buttons.dynamicButtonsfullPro 51 1 82.27 82.49 1.58 82.49
laser.pointer.laserpointer 120 7 166.75 2,453.67 20.44 350.52
com.devuni.flashlight 63 1 107.20 379.35 6.02 379.35
com.CrazyRobot.BatteryBooster 106 1 135.60 179.32 1.69 179.32
com.mobilplug.lovetest 57 1 119.82 71.73 1.25 71.73
goldenshorestechnologies.brightestflashlight.free 33 1 50.54 313.29 9.49 313.29
com.mattia.videos.manager 102 1 160.11 232.04 2.27 232.04
com.surpax.ledflashlight.panel 135 1 572.63 1,005.08 7.44 1,005.08
com.reviloapps.ChistesyFrasesGraciosas 21 1 76.43 40.28 1.91 40.28
love.bigcamerabuttonlite 50 2 124.44 97.50 1.95 48.75
Sum (Leaks) / Average (Times) 739 17 159.58 485.48 5.40 270.29

all statements which do not influence control flow reachability. The
resulting minimal program induces necessary conditions which can
then be checked.

ALETHEIA [17] applies statistical learning based on user feed-
back. The user can flag a small subset of the issues found by a data
flow analysis tool as false warnings and ALETHEIA will filter out
similar allegedly false warnings using the machine-learned model.

7. Conclusion
In this work, we presented TASMAN, a post-processing step for
static data flow analysis tools which helps reduce the number of
false alarms raised by these tools. Our experiments have shown
that TASMAN removes up to 81% of all false positives while
not removing any true positives from the list of results. Therefore,
TASMAN is safe to apply before investigating the remaining leaks
by hand.

As future work, we plan to integrate TASMAN directly into
FlowDroid so that infeasible taint propagation paths can already
be detected and pruned during the taint propagation and no further
effort needs to be spent on extending them any longer. We hope
that this will significantly reduce the runtime in comparison to the
current post-processing step.

Acknowledgements This work was supported by the BMBF
within EC SPRIDE, and by the Hessian LOEWE excellence ini-
tiative within CASED.

References
[1] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,

Y. Le Traon, D. Octeau, and P. McDaniel. Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for an-
droid apps. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, page 29. ACM,
2014.

[2] C. Barrett, A. Stump, and C. Tinelli. The smt-lib standard: Version
2.0, 2010. Available at www. SMT-LIB. org.

[3] N. Bjørner, V. Ganesh, R. Michel, and M. Veanes. An smt-lib format
for sequences and regular expressions. In Strings, page 24, 2012.

[4] L. de Moura and N. Bjrner. Z3: An efficient smt solver. In
C. Ramakrishnan and J. Rehof, editors, Tools and Algorithms
for the Construction and Analysis of Systems, volume 4963 of
Lecture Notes in Computer Science, pages 337–340. Springer
Berlin Heidelberg, 2008. ISBN 978-3-540-78799-0. . URL
http://dx.doi.org/10.1007/978-3-540-78800-3 24.

[5] C. Hammer, R. Schaade, and G. Snelting. Static path conditions for
java. In Proceedings of the 3rd Workshop on Programming Languages
and Analysis for Security, pages 55–66. ACM, June 2008. .

[6] J. Jeon, K. K. Micinski, and J. S. Foster. Symdroid: Symbolic execu-
tion for dalvik bytecode, 2012. http: //www.cs.umd.edu/ jfoster/paper-
s/symdroid.pdf.

[7] R. Jhala and R. Majumdar. Path slicing. In Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’05, pages 38–47, New
York, NY, USA, 2005. ACM. ISBN 1-59593-056-6. . URL
http://doi.acm.org/10.1145/1065010.1065016.

[8] S. Khurshid, C. S. Păsăreanu, and W. Visser. Generalized symbolic
execution for model checking and testing. In Tools and Algorithms for
the Construction and Analysis of Systems, pages 553–568. Springer,
2003.

[9] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst.
Hampi: a solver for string constraints. In Proceedings of the eighteenth
international symposium on Software testing and analysis, pages 105–
116. ACM, 2009.

[10] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. The soot framework
for java program analysis: a retrospective. In Cetus Users and Com-
piler Infastructure Workshop (CETUS 2011), 2011.

[11] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden. Harvesting
runtime data in android applications for identifying malware and en-
hancing code analysis. Technical Report TUD-CS-2015-0031, EC
SPRIDE, Feb. 2015.

[12] T. Robschink and G. Snelting. Efficient path conditions in dependence
graphs. In 24th International Conference of Software Engineering
(ICSE), pages 19–25, Orlando, Florida, USA, May 2002. ACM. .

[13] P. Saxena, P. Poosankam, S. McCamant, and D. Song. Loop-extended
symbolic execution on binary programs. In Proceedings of the eigh-
teenth international symposium on Software testing and analysis,
pages 225–236. ACM, 2009.

[14] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted
to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In Security and Privacy (SP),
2010 IEEE Symposium on, pages 317–331. IEEE, 2010.

[15] G. Snelting. Combining slicing and constraint solving for validation of
measurement software. In Static Analysis, pages 332–348. Springer-
Verlag London, UK, Sept. 1996. .

[16] M. Taghdiri, G. Snelting, and C. Sinz. Information flow analysis via
path condition refinement. In 7th International Workshop on Formal
Aspects in Security and Trust (FAST), pages 65–79, September 2010.

[17] O. Tripp, S. Guarnieri, M. Pistoia, and A. Aravkin. Aletheia:
Improving the usability of static security analysis. In Proceed-
ings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’14, pages 762–774, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2957-6. . URL
http://doi.acm.org/10.1145/2660267.2660339.

