
SWANASSIST: Semi-Automated Detection of
Code-Specific, Security-Relevant Methods

Goran Piskachev∗, Lisa Nguyen Quang Do†, Oshando Johnson‡ and Eric Bodden§
Fraunhofer IEM∗‡§, Paderborn University†§

∗goran.piskachev@iem.fraunhofer.de, †lisa.nguyen@upb.de, ‡oshando.johnson@iem.fraunhofer.de, §eric.bodden@upb.de

Abstract—To detect specific types of bugs and vulnerabil-
ities, static analysis tools must be correctly configured with
security-relevant methods (SRM), e.g., sources, sinks, sanitizers
and authentication methods—usually a very labour-intensive and
error-prone process. This work presents the semi-automated
tool SWANASSIST, which aids the configuration with an IntelliJ
plugin based on active machine learning. It integrates our novel
automated machine-learning approach SWAN, which identifies
and classifies Java SRM. SWANASSIST further integrates user
feedback through iterative learning. SWANASSIST aids develop-
ers by asking them to classify at each point in time exactly
those methods whose classification best impact the classification
result. Our experiments show that SWANASSIST classifies SRM
with a high precision, and requires a relatively low effort
from the user. A video demo of SWANASSIST can be found at
https://youtu.be/fSyD3V6EQOY. The source code is available at
https://github.com/secure-software-engineering/swan.

Index Terms—Program Analysis, Machine-learning, Security

I. INTRODUCTION

More and more companies use static analysis to detect
security vulnerabilities in their code, configuring them for
various types of bugs and vulnerabilities such as the SANS
top 25.1 For such analyses to be as effective as possible, they
must be adapted to the codebase. One particular challenge is to
provide the analyses with the correct security-relevant methods
(SRM): sources, sinks, etc.

Lists of SRM are generally created manually by security
experts. As a result, they tend to be incomplete, causing an
analysis to miss vulnerabilities, or to signal false positives. For
instance, Arzt et al. show that, static analysis tools frequently
miss a large majority of relevant findings due to insufficient
configurations [1]. They present SUSI, an automated machine-
learning approach for the detection of two types of SRM
(sources and sinks) in the Android framework. In later work,
Sas et al. [2] extend SUSI to detect sources and sinks to general
Java programs. Both approaches are run ahead of time, before
the analysis is deployed.

However, both approaches are specific to one framework:
the Android framework for SUSI and Java runtime for Sas et
al.’s approach. SRM contained in codebases that use specific
libraries, code constructs, or custom SRM are likely to be
missed. In this paper, we present SWANASSIST, an IntelliJ
plugin that works on top of SWAN (Security methods for
WeAkNess detection), a machine-learning approach that clas-
sifies methods into SRM types (sources, sinks, sanitizers, or

1http://cwe.mitre.org/top25/

1 protected void doGet(HttpServletRequest
request, HttpServletResponse response)
throws ServletException, IOException {

2 try {
3 String userId =

request.getParameter(’userId’);
4 userId = ESAPI.encoder().encodeForSQL(new

MySQLCodec(), userId);
5 Statement st = conn.createStatement();
6 String query = "SELECT * FROM User WHERE

userId=’" + userId + "’;";
7 ResultSet res = st.executeQuery(query);
8 String url = "https://" +userId+

".company.com";
9 response.sendRedirect(url);

10 } catch (Exception e) { ... }
11 }

Listing 1: Potential SQL injection (from l.3 to l.7) and open redirect
(from l.3 to l.9).

authenthication methods) and specific CWEs.2 SWANASSIST

allows users to actively feed new SRM from their code by
labeling methods, thus adapting the classification to their own
codebase. In addition, its recommender system, SuggestSWAN,
proposes methods for classification by the user that are more
likely to have the strongest impact on the classification.
SWANASSIST can be used by developers at coding or debug-
ging time, or by security teams to configure analysis tools
before they are deployed.

We show that SWANASSIST can improve SWAN’s base
precision with minimal user effort in labeling methods.

II. DISCOVERING SRM

Listing 1 contains a potential SQL injection (CWE-89) from
line 3 to line 7, and an open redirect (line 9) (CWE-601). The
SQL injection vulnerability is mitigated using the validator
line 4, which sanitizes the user-controlled input.

To find the two potential vulnerabilities, a taint anal-
ysis can be used with specific SRM. Here, the source
getParameter() creates the data to be tracked, the sinks
executeQuery() and sendRedirect() raise the alarm,
and the validator encodeForSQL(), marks the data as safe,
but only for the SQL injection. To support the detection of the
SANS top 25 vulnerabilities, we identify five requirements:
• R1: SRM should differentiate between sources, sinks, val-

idators and authentication methods: In Java, the SANS 25

2http://cwe.mitre.org/



Training
set

Features

Test set

Training
data

Test
data

Classifier SRM lists

Web API

Maven

Git

AndroZoo

npm

Crawler

Command-Line 
InterfaceIndex

Web 
Application

train
classifier

classify
methods

most impactful methods

SWAN

SWANASSIST

Figure 1: Machine-learning approach used in SWAN (solid
edges), and SWANASSIST with developer feedback (angled
dotted edge), and the recommender system SuggestSWAN
(straight dashed edge).

can be detected using sources, sinks, and sanitizers, that are
required to configure data-flow analyses (e.g., in Listing 1).
Authentication methods are required for specific CWEs such
as CWE-306 (Missing Authentication for Critical Function).

• R2: SRM lists should be specific to each CWE: As seen in
Listing 1, different SRM should be used for different CWEs.

• R3: SRM lists should be specific to the code base: Since
different applications can use different libraries, or define
their own custom methods, not all SRM can be defined in
advance. They should instead be derived from the code of
the application or its libraries.

• R4: The detection of SRM should be automated: The Java
Spring framework contains more than 30,000 methods. Real-
life applications use many such dependencies. As a result,
a fully manual definition of the SRM is not feasible.

• R5: The detection of SRM should involve the user: In dif-
ferent contexts, different methods can be used for different
purposes. To best determine which methods are relevant
SRM, it is important to allow the user to correct the set
of SRM if the automated approach is insufficiently precise.
SUSI [1] and Sas et al. [2] only meet R4 and part of R1,

because they report only sources and sinks.

III. SRM CLASSIFICATION WITH SWAN

Figure 1 illustrates the SWAN and SWANASSIST systems.
SWAN runs the automated classification twice: in the first
iteration, it classifies all methods of the analyzed program
and libraries into general SRM classes (R1): sources (So),
sinks (Si), sanitizers (Sa), authentication methods, or none.
In the second iteration, it discards the methods marked with
none, and classifies the remaining SRM into the individual
CWEs (R2): CWE-78, CWE-79, CWE-89, CWE-306, CWE-
601, CWE-862, and CWE-863, per SRM class.

SWAN uses 25 types of binary machine-learning fea-
tures based on method signature, modifiers, parame-
ter and return types, and intra-procedural data-flows,
instantiated into 206 concrete. For example, the fea-

ture instance methodClassContainsOAuth, which is
used to indicate an authentication method, is of type
methodClassContains. Overall the features of SWAN
are designed to address R1–R2, targeted in particular for the
detection of sanitizers, authentication methods, and different
types of CWEs according to the SANS 25 classification.

To obtain the feature matrix, SWAN uses the Soot [3] pro-
gram analysis framework. As its machine-learning module, it
uses WEKA’s [4] SVM learner as it showed the best F-measure
[5]. The training set contains 235 Java methods collected from
10 popular and diverse Java libraries (Spring, jsoup, Google
Auth, Pebble, jguard, WebGoat, and four Apache frameworks),
annotated with SRM types and CWEs. We selected methods
to cover positive and negative examples for the features used
for each SRM and CWE classification. SWAN accepts a Java
program or library as its test set, and classifies its methods in
the SRM types and CWEs.

SWAN is implemented as a standalone command line Java
program with four parameters: a path to a directory containing
the test dataset, a link to a Json file containing the signatures
of the methods from the training sets, a path to a directory
containing the source code implemenation of the methods
listed in the Json file, and a path of a directory where the
output files should be stored.

SWAN can be extended with new CWEs as follows:
• add a description of the CWE in the CWE index,
• create new feature instances specific to the CWE,
• match the feature instances to the classes (SRM types of

CWEs), as shown in Listing 2,
• adjust the training set by (1) marking existing methods with

the new CWE and (2) adding methods if necessary, to ensure
that the training set contains at least one positive and one
negative example per feature instance.

12 IFeature classNameContainsSql = new
MethodClassContainsNameFeature("sql");

13 addFeature(classNameContainsSql, new
HashSet<>(Arrays.asList(Category.SOURCE,

14 Category.SINK, Category.CWE089,
Category.NONE)));

Listing 2: Matching a feature instance classNameContainsSql to the
categories Source, Sink, CWE-89, and None.

Listing 2 shows a code that creates the instance Method-
ClassContainsSql. The method addFeature adds this instance
to the classifiers for Source, Sink, CWE-89 and None.

IV. ACTIVE LEARNING WITH SWANASSIST

To refine SWAN, SWANASSIST integrates developer feed-
back in order to adapt the learning algorithm to the code
base under development (R3 and R5). SWANASSIST allows the
developer to edit the training set directly in their Integrated
Development Environment (IDE), and includes this data in
the training set for the next learning iteration, as shown in
Figure 1. The developer can add or remove methods of the
training set, or change the classes of a method.



Figure 2: GUI of SWANASSIST.

In addition, SWANASSIST generates a list of methods that—
if classified differently—would yield the most impact on
the next run of SWAN, based on the feature matrix, and
proposes them to the user through a recommender system:
SuggestSWAN (dashed edge in Figure 1). This identifies the
most useful methods to the classification.

We have implemented SWANASSIST as an IntelliJ plugin. It
integrates into the development environment a GUI for editing
the SRM lists and for executing SWAN, as shown in Figure 2.

SWAN’s training set is shown on the rightmost view of the
GUI 2 , called the SWAN_Assist view. Methods in this view
can be filtered by classification class or by file (button in 1 ).
The pop-up dialog in the center 3 allows the developer to edit
the training set. It is accessible through the SWAN_Assist view
or through the context menu when a method in the code editor
is selected. With this dialog, the developer can add or remove
classes for the method. Methods can be added to the training
set through the context menu, and removed through the context
menu or using the SWAN_Assist view. SRM markers are also
shown on the left side of the editor 4 .

SWANASSIST allows the developer to re-run the classifica-
tion by clicking on the icon in the SWAN_Assist view 1 .
This re-runs SWAN in the background, and updates the list of
SRM (dotted edge in Figure 1). Methods that were removed
are shown in red, and can be returned to the training set by
using the restore operation from the context menu. Otherwise,
they are removed from the list on the next run.

V. ARCHITECTURE

Figure 3 shows the components of SWANASSIST, SWAN,
and external components (shown in gray). There are three
external components: WEKA, Soot and JsonSimple. WEKA is a
machine-learning library used for the classification [4]. SWAN
uses Soot to load the source code of the training and testing
sets, and to evaluate the methods against the features [3].
JsonSimple is used by both SWAN and SWANASSIST for
manipulating the sets of methods serialized in Json format [6].

MOISLauncher prepares the input parameters (training and
testing sets) and calls SWAN in separated thread. Once the
results are available, they are stored and AssistCore is notified.

SWANASSIST has its own model for methods, DataModel,
which can be serialized in Json format using JsonSimple. This
model contains the source code information for each methods
and it maps the GUI elements, such as icons and labels.

The plugin SWANASSIST uses three components of the
IntelliJ framework: ActionSystem, UI, and PSI. UI provides
the Dialog and ToolWindow user interface elements that As-
sistUI uses to display the SWAN results. These elements are
populated by AssistCore. The main communication between
the IntelliJ framework and the plugin is implemented through
the ActionSystem, which is a listener/notifier design provided
by IntelliJ. User actions on the GUI are handeled by this
component. The PSI (Program Structure Interface) component
provides information about the currently opened project. This
is used by AssistCore to set the GUI filters, configure SWAN,
and receive updates about changed classes or methods.

More details can be found in our publication [5].

VI. EVALUATION

We evaluated the precision of SWAN on 12 open-source
Java libraries: two frameworks from the mobile domain (An-
droid and Apache Cordova), eight web frameworks (Apache
Lucene, Apache Stratos, Apache Struts, Dropwizard, Eclipse
Jetty, GWT, Spark, and Spring), one framework from the home
automation domain (Eclipse SmartHome), and one utility
framework (Apache Commons). We applied SWAN to the 12
libraries, and randomly selected 50 methods for each pair of
library/class, whose classification we then manually verified.

SWAN yields an overall precision of 0.76. It is more precise
for detecting SRM types (0.826) than for CWEs (0.677). Its
best precision is of 0.99, for Android’s sources, and worst,
of 0.44, for GTW and CWE-78. SWAN’s overall precision is
consistent over different types of Java applications, but can be
improved with SWANASSIST.

To evaluate the efficiency of SuggestSWAN with respect
to the manual work required by the user, we used the Gene
Expression Atlas (GXA) [7] application, which yields a rel-
atively low precision with the base SWAN. This allows us
to showcase the potential of the active learning approach. As
our ground truth, we manually classified all 1,638 methods of



GXA, 286 of which were identified as sources. We compare
the precision of the SRM lists obtained when adding to the
training set randomly selected method pairs, against pairs
obtained with SuggestSWAN. Figure 4 shows the precision,
starting from the base SWAN until all 819 pairs are added
to the training set. The random graph is averaged over 10
runs. We repeated the experiments also for sinks and methods
related to CWE-89. Both show similar trend like the sources.
Because of space limitation we omit these graphs.

The evolution of the precision for the random recommender
is linear, i.e. it does not help the classification. SWAN has
a fast increase in precision at the beginning, showing that
the recommender is efficient in selecting the methods with
the most impact first. This maximizes the impact of the
classification and minimizes the user’s effort. The precision
reaches 0.8 at iteration 31 (from 0.75 at iteration 1), with 60
labeled methods (4% of the total number of methods). Using
SuggestSWAN on GXA, it yields a high precision significantly
faster than with a random selection of methods.

VII. RELATED WORK

SUSI is a machine-learning approach to detect Android
sources and sinks. SWAN extends SUSI to be able to find san-
itizers and authentication methods. SWAN sub-classifies the
SRM into CWEs, unlike SUSI which sub-classifies its sources
and sinks into Android-specific categories such as bluetooth,
browser, etc. SWAN is applicable to general Java, including
the Android framework, and its extension SWANASSIST is able
to further adapt it to specific codebase. Sas et al. [2] generalize
SUSI to Java applications, but do not further sub-classify in
CWE classes, nor do they support sanitizers and authentication
methods, or provide active learning functionalities.

JoanAudit [8] provides hand-crafted lists of sources, sinks,
and validators specific to particular CWEs. However, the lists
are not complete, and only contain SRM for targeted examples
of specific libraries. SWAN is able to automatically detect
SRM for any Java application and its libraries, with minimal

Figure 3: Architecture of the SWANASSIST IntelliJ plugin.

Pr
ec

is
io
n

0,70

0,78

0,85

0,93

1,00

Iteration

1 101 201 301 401 501 601 701 801

Suggester
Random

Figure 4: Precision of the sources over 819 iterations of
SWAN on GXA by adding methods to the training set with
SuggestSWAN and with a random selection of methods.

manual work. The automated SRM extractor Merlin [9] uses
probabilistic inference to detect string-based vulnerabilities for
taint analyses. The approach used by SWAN can be extended
to more types of vulnerabilities, on top of being able to adapt
to the codebase with SWANASSIST.

VIII. CONCLUSION

In this paper, we present the SRM detector SWAN and
the SWANASSIST IntelliJ IDEA plugin, which help developers
to create SRM lists specific to selected CWEs and specific
codebases. We demonstrated tool features of SWAN and
SWANASSIST, and detailed their architecture, as well as the
machine-learning model behind it. Our tool enables users to
adapt the configuration of static analyses in semi-automatic
way with relatively low effort. Using this tool, static analysis
tools can adapt to individual projects, with minimal work and
required knowledge from the developer.

ACKNOWLEDGEMENT

This research has been funded by the BMBF Software Cam-
pus, the DFG project RUNSECURE, and the NRW Research
Training Group on Human Centered Systems Security.

REFERENCES

[1] S. Arzt, S. Rasthofer, and E. Bodden, “Susi: A tool for the fully
automated classification and categorization of android sources and sinks,”
ser. NDSS’13, 2013.

[2] D. Sas, M. Bessi, and F. A. Fontana, “Automatic detection of sources and
sinks in arbitrary java libraries,” ser. SCAM’18, 2018.

[3] S. Arzt, S. Rasthofer, and E. Bodden, “The soot-based toolchain
for analyzing android apps,” in Proceedings of MOBILESoft ’17.
Piscataway, NJ, USA: IEEE Press, 2017, pp. 13–24. [Online]. Available:
https://doi.org/10.1109/MOBILESoft.2017.2

[4] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining, Fourth
Edition: Practical Machine Learning Tools and Techniques, 2016.

[5] G. Piskachev, L. N. Q. Do, and E. Bodden, “Codebase-adaptive detection
of security-relevant methods,” ser. ISSTA 2019. NY, USA: ACM, 2019.

[6] “Jsonsimple,” https://github.com/fangyidong/json-simple, 2019.
[7] “Gene expression atlas,” https://github.com/gxa/gxa, 2019.
[8] J. Thomé, L. K. Shar, D. Bianculli, and L. C. Briand, “Joanaudit: A tool

for auditing common injection vulnerabilities,” ser. ESEC/FSE’17, 2017.
[9] B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee, “Merlin:

Specification inference for explicit information flow problems,” SIGPLAN
Not.’09, 2009.

https://doi.org/10.1109/MOBILESoft.2017.2
https://github.com/fangyidong/json-simple
https://github.com/gxa/gxa

	Introduction
	Discovering Srm
	Srm Classification With SWAN
	Active Learning With SWANAssist
	Architecture
	Evaluation
	Related Work
	Conclusion
	References

