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Abstract. Modern software systems are not only famous for being ubig-
uitous and large scale but also infamous for being inherently insecure.
We argue that a large part of this problem is due to the fact that cur-
rent programming languages do not provide adequate built-in support
for addressing security concerns.

In this work we outline the challenges involved in developing CODANA,
a novel programming language for defining provably correct dynamic
analyses. CODANA analyses form security monitors; they allow program-
mers to proactively protect their programs from security threats such
as insecure information flows, buffer overflows and access-control viola-
tions. We plan to design CODANA in such a way that program analyses
will be simple to write, read and prove correct, easy to maintain and
reuse, efficient to compile, easy to parallelize, and maximally amenable
to static optimizations. This is difficult as, nevertheless, CODANA must
comprise sufficiently expressive language constructs to cover a large class
of security-relevant dynamic analyses.

For deployed programs, we envision CODANA-based analyses to be the
last line of defense against malicious attacks. It is hence paramount to
provide correctness guarantees on CODANA-based analyses as well as the
related program instrumentation and static optimizations.

A further challenge is effective but provably correct sharing: dynamic
analyses can benefit from sharing information among another. We plan to
encapsulate such shared information within CODANA program fragments.

Keywords: Runtime verification, inline reference monitors, code synthesis, declar-
ative programming languages, information flow, buffer overflows

1 Introduction

Modern software systems are ubiquitous and often large scale, however many
such systems are also inherently insecure. A large part of this problem is caused
by the fact that currently programmers are forced to implement security features
using general-purpose programming languages. While during the requirements
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elicitation phase of the software development process, software architects formu-
late security requirements rather concisely on a high level of abstraction, this
simplicity becomes lost as appropriate security checks are implemented using
generic low-level programming-language constructs.

As an example, consider the same-origin policy, an important security policy
in web-based scripting languages such as JavaScript and ActionScript:

“An origin is defined by the scheme, host, and port of a URL. Generally
speaking, documents retrieved from distinct origins are isolated from
each other.” [35]

The same-origin policy can be concisely and precisely defined in a few paragraphs
of English text. Implementing enforcement of the same-origin policy, however, is
a whole different story, as is evident by a former violation of the same policy in
WebKit [3], the rendering engine used in the Chrome [1] and Safari [2] browsers.
Listing [1| shows change set 52401 in WebKit, which fixes a vulnerability that
allowed for violations of the same-origin policy. The change comprises a single
character; building WebKit involves downloading a software development kit of
several gigabytesﬂ

This example shows the challenges involved with implementing security poli-
cies in large-scale software systems. Ideally, programming languages would allow
for definitions of security policies at a high level and in a modular fashion, and
implement the enforcement of those policies through automatic means. Today’s
reality, however, are low-level security checks in general-purpose languages, writ-
ten and maintained by hand. The checks are scattered throughout the program,
which makes them hard to trace and maintain. Moreover, they are tangled to
the program’s base functionality.

In this work we outline the challenges involved in developing CODANA, a novel
programming language with which we try to rectify some of those problems.
CODANA has the goal to be a language for defining provably correct dynamic
analyses for security purposes. In this setting, dynamic analyses effectively form
security monitors. Thus, they allow programmers to proactively protect their
programs from security threats such as insecure information flows, buffer over-
flows and access-control violations. Opposed to design-time analyses, CODANA-
based analyses are meant to remain a part of the program even after deployment;
they form an essential security-critical part of the program.

! Building WebKit: http://www.webkit.org/building/checkout.html

1|- if (protocolIsJavaScript (url) ||
2|+ if (! protocolIsJavaScript (url) ||
3 ScriptController::isSafeScript (newFrame) {

Listing 1: Fix for bug 30660 in WebKit (violation of same-origin policy)


http://www.webkit.org/building/checkout.html

CODANA is not a general-purpose programming language. Instead, we envi-
sion functional concerns of programs to be written in a “base language” such
as Java or C/C++. CoDANA-based analyses then uses aspect-oriented program-
ming techniques to augment those base programs with instrumentation to fulfill
the stated security goals.

At the time of writing, the language design for CODANA has not yet been
fixed. In this paper we outline the challenges involved in designing such a lan-
guage. We plan to design CODANA in such a way that program analyses will
be simple to write, read and prove correct, easy to maintain and reuse, efficient
to compile, easy to parallelize, and maximally amenable to static optimizations.
On the other hand, CODANA must comprise sufficiently expressive language con-
structs to cover a large class of security-relevant dynamic analyses.

Dynamic analyses expressed in the CODANA language are not just supposed
to be used to determine whether or not a program fulfills its security guarantees,
but rather to implement security features that will establish those guarantees. A
formerly insecure program hence becomes secure by augmenting it with dynamic
analyses formulated in CODANA. This programming paradigm requires that dy-
namic analyses be efficient enough to actually remain part of the program even
after deployment time. We hence plan to include a wide range of domain-specific
static optimizations that restrict runtime checks to a necessary minimum.

In such deployed programs, CODANA-based analyses are likely to be the last
line of defense against malicious attacks. It is hence paramount to provide cor-
rectness guarantees on CODANA-based analyses as well as the related program
instrumentation and static optimizations.

A further challenge is effective but provably correct sharing and reuse: dy-
namic analyses can benefit from sharing information among another. We plan to
encapsulate such shared information within reusable CODANA fragments. This
fosters reuse of both CODANA implementations and correctness proofs.

To summarize, this paper provides the following original contributions:

— an outline of the challenges in designing a language for correct dynamic
analyses,

— an outline of the impact of the language design on static optimizations to
speed up those analyses,

— an outline of the requirements for providing correctness guarantees, and

— an outline of the potential for reuse of dynamic-analysis definitions.

The remainder of this paper is structured as follows. In Section 2] we discuss
the trade-offs involved in CODANA’s language design. Section [3| provides details
about our envisioned static optimizations. Section 4| outlines the challenges in-
volved in providing correctness proofs and guarantees. We discuss our plan to
support sharing, reuse and extensions in Section [§] Section [0] discusses related
work. We conclude in Section



2 Dynamic Analysis

We next explain the challenges involved in designing a programming language
for security-related dynamic analyses. First, one may ask why we opt at all to
counter malicious attacks through dynamic and not static program analyses.
The problem is that static-analysis tools are always limited in precision, as they
have to make coarse-grain assumptions about the way a program is used, and
which input a program is provided. In addition, all interesting static-analysis
problems are inherently undecidable. In result, analysis result will always be
approximate, which leaves static-analysis designers two options: design the anal-
ysis to be overly pessimistic or optimistic. An optimistic analysis would not be a
viable option in a security-sensitive setting, as it would allow a potentially large
class of malicious attacks to go unnoticed. A pessimistic static analysis, however,
runs risk of generating false warnings. Such false warnings are a burden to the
programmers, who are often under time pressure and have insufficient resources
at their disposal to manually tell apart false warnings from actual vulnerabilities.

For those reasons, we base our approach primarily on dynamic runtime anal-
ysis. With a dynamic analysis, we can actually guarantee to detect certain classes
of vulnerabilities without false warnings and without missed violations. For de-
ployed programs, we envision CODANA-based analyses to be the last line of
defense against malicious attacks. The analyses will identify vulnerabilities just
in time, as they are about to be exploited. This allows the program to induce
countermeasures to prevent the exploit from succeeding.

We would like CODANA-based analyses to be able to detect and mitigate
different kinds of attacks, such as attacks based on buffer overflows, insecure
information flows and cross-site scripting, circumvention of access control, ex-
ploitation of leaked capabilities, and side channels such as timing channels. To
this end, CODANA needs to support various language features. To identify buffer-
overflows, one must be able to reason about numeric values and operations, as
well as pointer assignments. Insecure information flows and cross-site script-
ing vulnerabilities can only be identified if the sources of sensitive information
are known and if values assigned from those sources can be tracked trough all
possible program operations. Access-control and object-capabilities require an
analysis to be able to associate state with objects. Timing channels require an
analysis to reason about real-time data.

In the following, we explain some of those requirements in more detail by
given two examples: the detection of buffer overflows and a mechanism for en-
forcing access control. The reliable detection of buffer overflows during runtime
could be realized by comparing the lengths of the buffers right before a vulner-
able function like strcpy is called.

Listing [2] shows what language constructs in CODANA could look like that
could support such a use case. We here use a syntax roughly based on a re-
lated static-analysis approach by Le and Soffa [28]. Anytime the strcpy function
is called, the CODANA program compares the lengths of the two parameters
and, in case the length of the source buffer exceeds the length of the destination
buffer, raises a violation. To support the user with a concise syntax, the language



1|Buffer a,b;

2lat ’strcpy(a,b)’ if len(a) < len(b) violation(a)
3|violation(Buffer a) {

4 print ("buffer overflow detected in variable " +
5 name(a) + " at " + location); }

Listing 2: Detecting buffer overflows with CoDANA (based on [28])

will provide built-in constructs such as len, which represents the length of a se-
lected buffer, and location, which represents the current code location. Most of
those constructs will require runtime support. For instance, to be able to tell the
length of a buffer, the CODANA runtime must track this value in the first place.
We plan to provide the necessary program instrumentation through technolo-
gies from aspect-oriented programming [27]. The difference between CODANA
and general-purpose aspect-oriented programming languages is that CODANA
requires a more fine-grained approach. For instance, languages like AspectJ [8]
allow users to instrument calls to methods and assignments to fields but not
assignments between local variables. In this respect, CODANA can be seen as a
domain-specific aspect language, for the domain of security monitoring.

As another example of a use case that we envision the CODANA language to
support, consider the problem of access control. To this end, we plan to have
CODANA support specially associative arraysﬂ that can be used to keep track of
a user’s authorizations.

Listing[3]shows how one could use an enum construct and associative arrays to
model a dynamic analysis detecting access violations. In the security community,
such dynamic analyses are frequently called security automata [33] or inline
reference monitors [23]. Lines define two different classes of internal states
that we use to keep track of whether a user is currently logged in and whether
or not the user has been granted access to a given file. Note that we include such
constructs for modeling finite states on purpose. We plan to conduct effective,
domains-specific optimizations to CODANA programs (see Section , and those
are easier to conduct when data structures are known to be finite. In lines
we use two associative arrays to map users and files to their respective states.
Note that often one will encounter situations in which states must be associated
with combinations of objects such as in line [5] where we associate a state with
a user and file. Line [ defines local variables u and £. The remainder of the code
uses those typed variables as place holders for runtime objects. Lines[0HI2] define
four rules (or pieces of advice) to update the security monitor’s state based on a
range of concrete program events. Lines define an error handler. Whenever
the underlying program calls the method fgets, we check whether the third

2 An associative array is an array that can be indexed not just by numbers but by
objects. Although associative array appears syntactically just as normal arrays, they
are typically implemented through map data structures.



enum LoginState { LOGGED_OUT, LOGGED_IN 3}
enum Access { GRANTED, FORBIDDEN }

LoginState [User] loginState = LOGGED_OUT;
Access[User ,File] access = FORBIDDEN;

User u, File f£f;

O~ O O W N

Ne)

after ’u=login()’ loginState [ul LOGGED_IN;

after ’logout(u)’ loginState [u] LOGGED_OUT;
after ’grantAccess(u,f)’ access[u,f] = GRANTED;
after ’revokeAccess(u,f)’ access[u,f] = FORBIDDEN;

= e
W N = O
[}

—_
>

at ’fgets(x,*,f)’ with ’u=curr_user ()’
15| if loginState[u] != LOGGED_IN ||
access[u,f] !'= GRANTED violation(u,f);

—
D

Listing 3: Access control with CoODANA

argument, the file £, may be accessed by user u, who is fetched from the current
context.

Ezxpressiveness vs. simplicity We plan to design CODANA in such a way that it
is not only simple to use, but also is amenable to correctness proofs and static
optimizations. Efficiency is a big concern for CODANA. If no due care is taken,
dynamic analysis can slow down a program’s execution considerably [14}/19]. This
calls for a language design that focuses on simplicity. The simpler the language
constructs that CODANA supports the easier it will be, both for compilers and
for programmers, to prove properties about CODANA-based analyses. Frequently
found features in general-purpose programming languages that cause problems
for static analyses are infinite state, pointers and aliasing, loops and recursion as
well as exceptions. While it may be necessary for CODANA to comprise some of
those features, we plan to thoroughly investigate, which features to include, and
how to make programmers aware of the performance or maintenance penalties
that their use may entail.

Use of infinite state could be excluded or at least discouraged by supporting
language constructs like enum, which we mentioned above. Aliasing could be
excluded by adapting a pass-by-value semantics for variables. In general, this
may increase analysis runtime, as every assignment entails a deep copy. However,
static optimizations could counter this effect. Loops could at least be restricted
to bounded for-each-style loops. Recursion at this point seems unnecessary to
include in CODANA altogether.

Another important matter is concurrency. On the one hand, we wish to in-
clude constructs that enable CODANA to detect data races [16}{17]. On the other
hand, our own data structures need to be thread safe, and preferably, for per-



formance reasons, lock-free as well. We plan to design and implement such data
structures in the back-end of CODANA, e.g. to implement runtime support for
associative arrays.

3 Static Optimization

We envision CODANA to be used to secure end-user programs that are deployed
at the user’s site. But dynamic program analysis often requires an extensive
amount of program instrumentation, which can slow down the analyzed pro-
gram considerably [14,/19]. The fact that CODANA will support the analysis of
data-centric information flows (information-flow analysis) such as insecure in-
formation flows or access-control violations yields CODANA programs that have
to track a considerable amount of runtime information. Much of the overhead
is attributable to the fact that each variable could track different data-centric
or security-centric information. To improve the dynamic analysis, we and others
have shown in the past that a static analysis can be very effective in speed-
ing up dynamic analyses [15H17,/19,/22,/36]. These approaches, also frequently
called hybrid program analyses, usually build on the idea of only instrument-
ing certain program parts, while at the same time proving that instrumentation
of other parts of the program is unnecessary: monitoring those program parts
would have no effect on the outcome of the dynamic analysis. Those parts are
identified in advance, through static analysis of the program to be monitored
with respect to the definition of the dynamic analysis. The static analysis is
used to eliminate useless instrumentations which causes a reduction of events
dispatched to the dynamic-analysis code, hence reducing its evaluation time. In
the past, we have also applied proof techniques to formally show that our static
optimizations are correct, i.e., that they do not change the outcome of the dy-
namic analyses [14,[15]. So far, this approach is based on control-flow analysis,
but we plan to extend the approach to information-flow analysis as well.

Let’s consider a simple data-centric policy rule which is efficiently enforced
by a typestate analysis as described in [14]. The data-centric policy is a modified
version of the secure coding guideline Sanitize the Output taken from Aderhold
et. al [4]. Figure 1| shows the simplified taint-flow finite-state machine which
could be used as a runtime monitor for the detection of Cross-Side-Scripting
attacks. In CODANA, such state machines could be expressed via enums, such as
shown in Listing

This finite-state machine contains three different states whereas sg and s;
are security-irrelevant states, whereas the error state symbols a policy viola-
tion (Cross-Side-Scripting attack). There are also three different kind of events
(tainted, untainted and output) which get activated by different program state-
ments. For example, the event tainted gets activated by $_GET[’tainted_data’],
the untainted event by statements which assign definitely untainted values and
the output event is activated if the data leaks from the program, for instance
when data is printed to the browser.



untainted || output cainted tainted || untainted || output

tainted A output Q
start —( So \—/\\8-1/ error

untainted

Fig.1: Simple taint-flow finite-state machine for the prevention of Cross-Side-
Scripting attacks

An information-flow analysis would associate such a state machine with each
tracked variable. Each variable starts in the initial state (sg) and performs a
transition corresponding to the activated event. Listing [4| shows an example
with tainted and untainted data and also one security-relevant flow along line
— line [f] = line [7] which could allow a Cross-Side-Scripting attack. With the
tracking of the different security events and the corresponding transitions in the
finite-state machine, the analysis is able to identify this kind of attack if one of
the variables reaches an error state.

A general, un-optimized dynamical-analysis approach would instrument each
assignment, as shown inf4 In this example, however, the instrumentation of the
untainted variable $number is completely unnecessary: on this variable, no taint
violations can take place, and hence the analysis would never report taint viola-
tions on this variable. A static information-flow analysis, executed in advance,
would allow the CODANA compiler to omit instrumentation for this variable
from the dynamic analysis. The result after applying the static analysis and
optimization is shown in Listing

$inputl = $_GET[’tainted_data’];
makeTransition(inputl, tainted);

W N =

$ b - 1: 1|$inputl = $_GET[’tainted_data’];
number o, 2 makeTransition(inputl, tainted);
makeTransition (number, 3| $number = 1;
5|$in ut2un=ta$lin;eudt)1;’ 4|$input2 = $inputl;
P P : . 5 propagateTaint (inputl, input2);
6 propagateTaint (inputl, input2); 6| echo ($input2) ;
7|echo ($1nput?) ’ . 7 makeTransition (input2, output);
8 makeTransition (input2, output); 8| echo ($number) :
9| echo ($number) ; Hber sy
10 makeTransition (number, output); LlStlIlg 5: Example exposing a
Listing 4: Example exposing a Cross-Side-Scripting  attack with
Cross-Side-Scripting attack without static optimization

static optimization

A significant challenge to such static optimizations are multi-threaded pro-
grams. For such programs, multiple control-flows can be interleaved. In con-
sequence, a single control-flow graph is not sufficient to simulate all possible
control flows. Moreover, the analysis state quickly grows due to the many pos-
sible different schedules that static analyses need to simulate. Many existing
whole-program analysis (including some of our own previous work [14]) ignore



this problem. A promising escape route are flow-insensitive analyses |19]. Such
analyses do not at all take the program’s control-flow into account. Because of
this, the analyses are, by design, agnostic to the different possible schedules. At
the same time, such analyses can be implemented quite efficiently.

We hence plan to follow a staged analysis approach that applies relatively
inexpensive flow-insensitive analysis first. As we observed in previous work [19],
such analyses can often optimize away already a significant amount of program
optimization. We then execute more expensive, potentially thread-aware, flow-
sensitive analyses only to such parts of the program in which instrumentation
remains after the first analysis stages have been applied.

But multi-threading is not just an annoyance but can also be of help. We
plan to investigate to what extent our static-analysis algorithms can be designed
to exploit parallelism. Rodriguez and Lhotdk have recently shown [31] that such
an approach promises significant speed-ups. In addition, parts of the CODANA
runtime could be designed to support executing the dynamic analysis in separate
threads.

4 Correctness

Dynamic analyses based on CODANA will usually be able to detect bugs and
vulnerabilities just as they are about to be exploited. Because of this, the analyses
are practically the program’s last line of defense. It is hence paramount that
analyses written in CODANA be reliable. We plan to prove the correctness of
CODANA programs on several levels.

One threat to the correctness of CODANA-based analyses are the static op-
timizations that we apply. In previous work we have demonstrated how a proof
technique based on so-called continuation-equivalent analysis configurations can
be used to prove the correctness of such optimizations [15]. In a nutshell, one
must prove that if a static optimization removes instrumentation at a statement
s, then all possible analysis configurations before and after s must be equivalent
with respect to all possible continuations of the control flow that follow s. If they
are equivalent, then this means that dynamically executing the instrumentation
at s would have no effect, and hence it is sound to omit the instrumentation
at this statement. In the past, we have used this approach to prove the cor-
rectness of a flow-sensitive static typestate-analysis |13,/14]. This process also
revealed bugs in previous approaches [20}/30]. For CODANA, we plan to extend
this approach to other classes of static optimizations for dynamic analyses.

CODANA programs consist mainly of program instrumentation and accesses
to a runtime library, both of which need to adhere to correctness guarantees.
In recent work, we have developed a clean semantics for weaving of aspect-
oriented code into Java programs [25]. We assume to be able to reuse some
of the results to prove that our instrumentation preserves the behavior of the
instrumented program. A challenge in this area are race conditions and side-
channel attacks. As the instrumentation caused by our dynamic analysis causes
the program to slow down, this may cause certain race conditions or certain



information leaks, e.g., through timing channels to disappear due to this slow-
down. Such so-called “Heisenbugs” are a general problem in dynamic analysis
that cannot be solved without specific modifications to the program’s scheduler.
Essential parts of CODANA’s runtime library could be proven correct through
tool-assisted functional-correctness proofs [37].

We plan to aid programmers in proving the correctness of analyses formu-
lated in CODANA. Given a high-level security property, programmers should be
able to argue why a given CODANA program establishes this property. To this
end, we first plan to keep the language itself as simple as possible (see Section,
but also plan to include a standard library with CODANA code templates. Along
with those templates, we can provide example proofs that prove important prop-
erties about those templates. Ideally, those proofs could then be composed to
a correctness proof for a CODANA program that uses the respective code tem-
plates.

5 Reuse, Sharing & Composition

In the previous section, we have already explained the advantages of a standard
library for CODANA programs. In addition to this kind of reuse, we still plan to
support reuse on other levels.

For instance, a common use case will be that programs execute augmented
not with only one single dynamic analysis but with multiple ones. For instance,
one may want to secure a program against information-flow violations and buffer
overflows at the same time. Both of those information need to track assignments
to certain classes of variables. When both analyses are performed at the same
time, it is hence advisable to share information among those analyses. This
sharing must be correct, however, it must not lead to unintentional alterations
of the analysis information.

There are multiple ways to implement such information sharing. A simple way
would be to provide certain common analysis elements as parts of the CODANA
runtime library. If multiple analyses include the same elements and are executed
at the same time, then this could lead to automatic sharing. A drawback of this
approach is that we as CODANA designers must be able to anticipate common use
cases for sharing to provide them in such a library. Another, more sophisticated
approach, could try to identify the potential for information sharing irrespective
of the origin of the analysis code. Such an approach would require a sophis-
ticated analysis of the CODANA programs. In recent work, we have outlined
the challenges that arise from composing instrumentations for multiple dynamic
analyses [7].

Many of our static analyses and optimizations, although domain specific,
may have parts that are reusable also for other static-analysis problems. We
plan to encapsulate those analyses such that they can be reused by others. In
the past, we have made accessible static analyses through simple domain-specific
extensions to AspectJ |[16H18\/21]. A similar approach could be taken also in this
project.



In addition, we plan to open our compiler implementation up to others. That
way, other researchers could extend CODANA with additional language constructs
or different static optimizations, such as we and others have previously done
with AspectJ [10]. In the past, we have developed the Clara framework, which
is explicitly designed to allow analysis extensions by others [18}21].

6 Related Work

One of the most closely related projects is ConSpec [6], another formal specifi-
cation language for security policies. As we propose for CODANA, also ConSpec
supports advice-like before/after blocks that allow users to update a finite set of
state variables. ConSpec allows for the definition of two different entities, called
policies and contracts, both of which are defined manually by the user and are
written in the ConSpec language. Contracts are application specific and describe
the kinds of security properties that an application guarantees. Contracts can
be checked against applications through a translation into Spec# [11] and sub-
sequent static verification [5]. Policies are more general than contracts. They are
specific with respect to an execution environment, e.g., a device on which the
program is to be executed. ConSpec assumes that both policies and contracts are
finite-state, which allows ConSpec to use simple algorithms for deciding regular-
language inclusion to decide whether a contract complies with a policy. Further,
ConSpec allows the monitoring of policies against applications, either through
an external monitor or through an inline reference monitor [23]. We believe that
the distinction between policy and contract is an interesting and valuable one.
Similar concepts may be useful also for CODANA. On the other hand, CODANA
will go much beyond what is supported by ConSpec, in that it will allow the
generation runtime monitors that are statically optimized, and nevertheless will
provide language constructs like associative arrays, which go beyond finite state.
In previous work, we have developed Join Point Interfaces [2425], a mechanism
to establish clean interfaces for aspect-oriented programs. Those interfaces cur-
rently focus on establishing the ability to type-check aspects independent of the
base program’s code. It may be useful to combine mechanisms of those join point
interfaces with some of those of ConSpec within CODANA to achieve a separation
between policies and contracts.

Le and Soffa present a generative approach that has some similarity to
CODANA |[28]. The approach provides a domain-specific specification language
for program analyses. In the case of Le and Soffa, however, this approach is
restricted to purely static analyses. Programmers can use the language to de-
fine how static-analysis information needs to be updated at particular classes of
statements, and which conditions on the analysis information signal property vi-
olations. Based on the specification, the approach then automatically generates
an appropriate flow-sensitive and path-sensitive static analysis for C/C++ pro-
grams. The authors demonstrate the efficacy of their approach by implementing
analyses to detect buffer overflows, integer violations, null-pointer de-references
and memory leaks. Our approach will provide a language that may have simi-



larities with what Le and Soffa propose. However, due to the fact that we focus
on dynamic analysis, we may be able to provide certain language features that
static analyses cannot provide, and vice versa. Moreover, we plan to not focus
on C/C++ programs but rather on an intermediate representation that allows
us to instrument and analyze programs written in a range of different languages.

DiSL, a domain-specific language for bytecode instrumentation by Marek et
al., is another very related project [29]. DiSL is currently implemented not as a
programming language with own, domain-specific syntax, but rather as a set of
annotations and conventions over syntactic constructs defined in pure Java. Us-
ing DiSL, programmers can define pieces of advice to be applied before or after
certain sequences of Java bytecode. DiSL further provides convenience methods
for accessing elements on the stack or from other parts of the execution context.
As DiSL programs are compiled, accesses to those methods are then automati-
cally replaced by low-level (stack) operations. One important advantage of DiSL
over other instrumentation tools is that DiSL allows for the uniform instrumen-
tation of entire Java programs, including relevant parts of the Java runtime
library. CopANA differs from DiSL in that it will provide domain-specific pro-
gramming constructs with a simple and well-defined semantics. The intricacies
of bytecode instrumentation will be hidden from the user. This not only suggests
that CODANA programs may be easier to read and understand that programs
written in DiSL, but also that they are more amenable to static optimizations.
It may be interesting, though, for CODANA to use DiSL as a back-end instru-
mentation technology, and we are currently discussing this opportunity with the
developers of DiSL.

In the past, the first author has developed the Clara [18,21] framework for
static typestate analysis. Similar to the approach we propose here, also Clara
uses static optimizations to speed up dynamic analyses. Also Clara provides
a domain-specific aspect language for this purpose. In contrast to CODANA,
however, Clara is restricted to finite-state runtime monitors, and hence only
supports static typestate analyses. While CODANA will reuse some ideas of Clara,
in this paper we showed that implementing a language such as CODANA comes
with many challenges that go beyond our previous experience with Clara.

Austin and Flanagan present a purely dynamic information-flow analysis for
JavaScript. Their approach “detects problems with implicit paths via a dynamic
check that avoids the need for an approximate static analyses while still guaran-
teeing non-interference” [9]. We plan to investigate whether we can use similar
tricks in our implementation of CODANA. Zhivich et al. compare seven different
dynamic-analysis tools for buffer overflows [38]. XSS-Guard [12] by Bisht and
Venkatakrishnan is a dynamic approach for detecting cross-site scripting attacks.
The approached is based on a learning strategy; it learns the set of scripts that
a web application can create for any given HTML request. This is different from
CODANA in that it gathers information among multiple program runs. We will
investigate whether such an extension of the scope of CODANA can be of more
general use. Vogt et al. [34] implement a hybrid dynamic/static analysis to find
cross-site scripting vulnerabilities. Interestingly, they use static analysis not to



enhance efficiency, but to detect attacks that through a purely dynamic analysis
may go unnoticed. We plan to investigate whether such analyses would be useful
to have within CODANA.

Jones and Kelly propose an approach to dynamically enforce array bounds
through the use of a table which holds information about all valid storage el-
ements [26]. The table is used to map a pointer to a descriptor of the object
to which it points, which contains its base and extent. To determine whether
an address computed off an in-bounds pointer is in bounds, the checker locates
the referent object by comparing the pointer with the base and size information
stored in the table. Then it checks if the new address falls within the extent
of the referent object. The authors implemented their bounds checking scheme
in the GNU C compiler (GCC), where it intercepts all object creation, address
manipulation and de-reference operations and replaces them with their own rou-
tines. A problem observed with their approach is that it sometimes incorrectly
crashes working code and that it considerably slows down program execution.
Ruwase and Lam took the basic concepts, improved them and created CRED
(C Range Error Detector) [32], which eradicated mentioned problems. We will
investigate if some of the basic ideas used in either of the approaches could be
adapted for CODANA.

7 Conclusion

We have presented a range of important design decisions involving the develop-
ment of CODANA, a novel programming language for correct dynamic analysis.
Challenges arise in the areas of dynamic analysis, static optimization, correct-
ness, as well as reuse, information sharing and analysis composition. CODANA
has the goal to allow programmers to write dynamic program analyses that will
be simple to write, read and prove correct, easy to maintain and reuse, efficient
to compile, easy to parallelize, and maximally amenable to static optimizations.
We have explained how we wish to achieve those goals, and which implications
those goals will probably have on the language design.
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