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Abstract
Perfect pre-deployment test coverage is notoriously difficult to achieve for large applications. Given enough end users,
however, many more test cases will be encountered during an application’s deployment than during testing. The use of
runtime verification after deployment would enable developers to detect unexpected situations. Unfortunately, the prohibitive
performance cost of runtime monitors prevents their use in deployed code. In this work, we study the feasibility of collaborative
runtime verification, a verification approach which can distribute the burden of runtime verification among multiple users
and over multiple runs. Each user executes a partially instrumented program and therefore suffers only a fraction of the
instrumentation overhead. We focus on runtime verification using tracematches. Tracematches are a specification formalism
that allows users to specify runtime verification properties via regular expressions with free variables over the dynamic
execution trace. We propose two techniques for soundly partitioning the instrumentation required for tracematches: spatial
partitioning, where different copies of a program monitor different program points for violations, and temporal partitioning,
where monitoring is switched on and off over time. We evaluate the relative impact of partitioning on a user’s runtime
overhead by applying each partitioning technique to a collection of benchmarks that would otherwise incur significant
instrumentation overhead. Our results show that spatial partitioning almost completely eliminates runtime overhead (for
any particular benchmark copy) on many of our test cases, and that temporal partitioning scales well and provides runtime
verification on a ‘pay as you go’ basis.

Keywords: Runtime monitoring, verification, randomization, whole-program analysis, aspect-oriented programming.

1 Introduction

In the verification community it is now widely accepted that, especially for large programs,
verification is often incomplete, and hence bugs still arise in deployed code on the machines of
end users. If deployed code carried instrumentation for runtime verification, developers could track
down the causes of observed failures more easily. However, instrumentation code is rarely deployed,
due to large performance penalties induced by current runtime verification approaches. Consequently,
when errors do arise in production environments, their causes are often hard to diagnose: the available
debugging information is very limited.
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Tracematches [1] are one mechanism for specifying runtime monitors that can be used to conduct
runtime verification. Tracematches enable developers to state sequences of program events and
actions to take if the program execution generates sequences of interest.

According to researchers in industry [14], companies would likely be willing to accept runtime
verification in deployed code if the verification overhead was below 5%. In previous work on
tracematches, researchers have shown that, in many cases, static analysis can enable efficient runtime
monitoring. While Avgustinov et al. [2] focused on statically optimizing the implementation of
the runtime monitor, we ourselves used a static whole-program analysis to remove unnecessary
instrumentation from the program under test [4, 5, 11].

Most often, the combination of both techniques can reduce runtime overhead to under 10%.
However, our evaluation also showed that unreasonably large overheads—sometimes >100%—
remained for some classes of specifications and programs. Other techniques for runtime monitoring
also incur similar runtime overheads; for instance, the Program Query Language (PQL) [9] causes
up to 37% overhead on its benchmark applications, and JavaMOP [6] incurs up to 176% overhead
when only automated optimizations are applied.

In this work, we attack the problem of runtime-verification induced overhead by using methods
from remote sampling [8]. Because companies that produce large pieces of software (which are
usually hard to analyse) often have access to a large user base, one can leverage the size of the
user base to deploy different partial instrumentations (‘probes’) for each user. A centralized server
can then combine runtime verification results from runs with different probes. Although sampling-
based approaches have many different applications, we are most interested in using sampling to
reduce instrumentation overhead for individual end users. We have developed two approaches for
partitioning the overhead, spatial partitioning and temporal partitioning.

Spatial partitioning works by partitioning the set of instrumentation points into different subsets.
We call each subset of instrumentation points a probe. Each user is given a program instrumented
with only a few probes. This works very well in many cases, but in some cases a probe may contain
a very hot—that is, expensive—instrumentation point. In those cases, the unlucky user who gets the
hot probe will experience most of the overhead.

Temporal partitioning works by turning the instrumentation on and off periodically, limiting the
total overhead. This method works even if there are very hot probes, because even those probes are
only enabled some of the time. However, since probes are disabled some of the time, any violations
of monitored runtime verification properties may go unnoticed while the probes are disabled.

In both spatial and temporal partitioning, any still-enabled instrumentation must operate correctly.
To avoid additional burden on the developers and maintainers, we further demand that the
partitionings must never cause false positives. False positives could easily arise under a naive
partitioning scheme: some events discard partial matches, resetting runtime monitors to their initial
states. If the discarding events do not execute, the monitor might trigger, even if it would not have
triggered under the complete instrumentation. It might therefore seem that we must always retain
all discarding events. However, we found that, under some conditions, the discarding events would
have no further effect and we implemented an optimization to disable discarding events when these
conditions apply.

We explored the feasibility of our approach by applying our modified tracematch compiler to
benchmarks whose overheads persisted after the static analysis in [4]. We first experimented with
spatial partitioning. We found that some benchmarks were very suited to spatial partitioning. In these
cases, each probe produced lower overhead than the complete instrumentation, and many probes
carried <5% overhead. However, in other cases, some probes were so hot that they accounted for
almost all of the overhead; spatial partitioning did not help much in those cases. We also experimented
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with temporal partitioning and examined runtimes when probes were enabled for 10, 30, 50, 70, 90
and 100% of the time. We found that the overhead increased surprisingly steadily with the proportion
of time that the probes were enabled, so that one can gain limited but efficient runtime monitoring
by running probes only some of the time.

The remainder of this article is structured as follows. In Section 2, we give background information
on tracematches and describe the instrumentation for evaluating tracematches at runtime. In Section
3, we explain the spatial and temporal partitioning schemes. We evaluate our work in Section 4,
discuss related work in Section 5 and finally conclude in Section 6.

2 Background

The goal of our research is to monitor executions of programs and ensure that programs never
execute pathological sequences of events. In this project, we monitor executions using tracematches.
A tracematch defines a runtime monitor using a regular expression over an alphabet of user-defined
events in program executions. The developer is responsible for providing a tracematch to be verified
and definitions for each event, or symbol, used in the tracematch. Developers provide definitions
for symbols using AspectJ [7] pointcuts. Pointcuts often specify patterns, which match names of
currently executing methods or types of currently executing objects. Pointcuts may also bind parts
of the execution context. For instance, at a method call pointcut, the developer may bind the method
parameters, the caller object and the callee object and may refer to these objects when the tracematch
matches. If a tracematch does not bind any variables, then the verification of that tracematch reduces
to verifying finite-state properties of the program as a whole. If a tracematch binds a single variable
then the verification of that tracematch is essentially equivalent to statically determining the possible
typestates [15] of each bound object.

2.1 HasNext tracematch

Figure 1 presents the HasNext verification tracematch, matching suspicious traces where a program
calls i.next() twice in a row without any intervening call to i.hasNext().

Tracematch symbols may bind variables; line 1 of the tracematch declares that symbols in the
HasNext tracematch may bind an Iterator i. Lines 2–5 define symbols hasNext and next,
which capture calls to the hasNext() and next()methods of i. These two symbols establish the
alphabet for the tracematch’s regular expression ‘next next’ at line 7. This expression specifies
that the tracematch should execute after seeing next two times, as long as hasNext does not occur

Figure 1. HasNext tracematch: do not call next() twice with no intervening call to hasNext()
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in between calls to next. Every time the regular expression matches, the tracematch will execute
the attached body of code (also on line 7). In this work, we focus on verification tracematches, which
typically encode API usage rules.

2.2 Tracematch matching example

The tracematch runtime matches the regular expression against each suffix of the abstract (symbol
based) execution trace. For instance, consider the abstract event sequence

hasNext next next next.

The ‘next next’ regular expression would match this sequence twice, executing the tracematch
body at the second and third next events.

However, tracematches also contain variables, and matches require their symbols’variable bindings
to be consistent. The above example would therefore only match if two calls to next occurred on the
same iterator. Hence, with iterators i1 and i2, the concrete events for the sequence we considered
earlier could actually be

i1.hasNext() i2.next() i1.next() i2.next(),

giving an abstract event sequence of

hasNext(i=i1) next(i=i2) next(i=i1) next(i=i2).

Conceptually, tracematch matching projects the event sequence onto distinct subsequences as
determined by variable bindings. Our example sequence contains two projections: (1) ‘hasNext
next’ for i=i1, and (2) ‘next next’ for i=i2. Projection (1) is not matched by the tracematch’s
regular expression, but projection (2) is matched, and the tracematch body should execute once, at
the last call to next(), with the binding i=i2.

2.3 Semantics of tracematches

We next present a summary of the semantics of tracematches. See [1] for a full semantics.
Fix a tracematch tm with free variables V ={v1,...,vn}. Let the heap H consist of objects

{o1,...,om}. Define bindings σ :V →H which map the free variables of tm to heap objects. An
event sequence s is a sequence of pairs 〈symi,σi〉 where symi is a symbol of tm and σi is a (possibly
partial) binding. The projection s|σ is the subsequence of s which preserves the events where σ ⊇σi.
Then the runtime must execute the tracematch body if there exists some total function σ such that
the regular expression from tm matches a suffix of the symbols of s|σ .

2.4 Tracematch implementation

The tracematch compiler handles tracematches by (i) creating finite-state machines to track the states
of active partial matches and (ii) creating code that updates the finite-state machine whenever events
of interest occur. The compiler uses constraints to track objects that have partial trace matches; state
q in the finite-state machine has an associated constraint that stores information about groups of
bound heap objects that must or must not be in state q. Constraints are stored in Disjunctive Normal
Form as a set of disjuncts. Each disjunct maps from tracematch variables to objects. Note that the
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Figure 2. Finite-state machine for the tracematch of Figure 1

runtime cost of this approach comes from the large number of simultaneously bound heap objects,
and that the number of tracematch variables does not contribute to the runtime cost.

Figure 2 presents the automaton for the HasNext pattern; we can observe that two calls to next
(on the same i) will cause the automaton to hit its final state q2. Note that state q1 carries a dashed
self-loop. Allan et al.[1] call this loop a skip loop. Skip loops remove partial matches that cannot
extend to complete matches: they discard a partial match whenever an observed event invalidates
that partial match.

As an example, assume that state q1 carries the constraint i= i1 ∨i= i2; that is, the program has
executed next() once, and only once, on each of the iterators i1 and i2, following the most recent
call to hasNext() on each of i1 and i2. If the program then executes hasNext() on i2, we know
that i2 has to leave state q1 (because there is no hasNext self-loop on q1). Skip loops cause the
runtime to discard i2 at q1 as follows: at the skip loop, the runtime will conjoin the original constraint
at q1, i= i1 ∨i= i2, with the skip loop-generated negative binding i �= i2 (‘i2 is not at q1’):

(i= i1 ∨i= i2)∧i �= i2 ≡ (i= i1 ∧i �= i2)

The runtime further simplifies this constraint to i= i1, as i= i1 implies i �= i2. The resulting constraint
i= i1 then states that only i1 is in state q1. To summarize, a skip loop discards a partial match by
forcing a variable binding to leave the state that the loop is attached to.

The tracematch compiler weaves code to monitor tracematches into programs at appropriate
event locations. In particular, the compiler includes instrumentation code that updates the
appropriate disjuncts at every static code location corresponding to a potential event execution.
This instrumentation code is called a shadow [10]. Figure 3 shows an example program that uses
two iterators entryIter and iterator. For this program, the compiler would add hasNext
shadows at lines 3, 10, 13 and 18, and next shadows at lines 4 and 11.

In this article, we use a previously published static analysis that removes shadows if they can be
shown to never contribute to complete matches [4]; for instance, a program which calls hasNext()
but never next() would never trigger the final state of the HasNext automaton, so the hasNext
shadows can be removed.

3 Shadow partitionings

Collaborative runtime verification leverages the fact that many users will execute the same application
many times to reduce the runtime verification overhead for each user. The two basic options are to
(i) reduce the number of active shadows for any particular run; or (ii) reduce the (amortized) amount
of work per active shadow. To explore these options, we devised two partitioning schemes, spatial
and temporal partitioning. Spatial partitioning (Section 3.1) reduces the number of active shadows
per run, while temporal partitioning (Section 3.2) reduces the amortized workload per active shadow
over any particular execution.
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Figure 3. Example program using iterators

Our partitioning schemes are designed to produce false negatives but no false positives. Our
monitoring may miss some pattern matches (which will be caught eventually given enough and long
enough executions), but any reported match must actually occur.

3.1 Spatial partitioning

Spatial partitioning reduces the overhead of runtime verification by only leaving in a subset of a
program’s shadows. However, choosing an arbitrary subset of shadows is more than unsatisfactory; in
particular, arbitrarily disabling skip shadows may lead to false positives. Consider again the example
from Figure 3, in combination with the HasNext pattern. In this case, one safe spatial partitioning
would be to disable all shadows in the program except for those referring to entryIter (lines 3, 4
and 18). However, many partitionings are unsafe; for instance, disabling the hasNext shadow on
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line 3 (the shadow of a skip loop) but enabling the next shadow on line 4 on a map with two or
more entries gives a false positive, since the monitor ‘sees’ two calls to next() and not the call to
hasNext() which would prevent the match.

Enabling arbitrary subsets of shadows can also lead to wasted work. Disabling the next shadow
in the above example and keeping the hasNext shadow would, of course, lead to overhead from
the hasNext shadow. But, on their own, hasNext shadows can never lead to a complete match
without any next shadows.

We therefore need a more principled way of determining sensible groups of shadows to enable or
disable. In previous work [4], we have described the notion of a shadow group, which approximates
(i) the shadows needed to keep tracematches triggerable and (ii) the skip shadows which must remain
enabled to avoid false positives triggered by the former. We will now summarize the relevant points.

Note that we have moved from the dynamic view of the program’s execution, as described in
Section 2, to a static (compile time) view. In particular, instead of tracking runtime objects, we track
their compile-time analogue, points-to sets. We continue by defining the notion of a static joinpoint
shadow.

Definition 1 (Shadow)
A shadow s of a tracematch tm is a pair (syms,σs), where syms is the label of a symbol of tm (e.g.
hasNext or next) and σs is a variable binding, modelled as a mapping from tracematch variables
(e.g. i) to points-to sets. A points-to set is a set of object-creation sites in the program. The points-to
set pts(v)={v1,...,vn} for a program variable v contains the creation sites of all objects which could
possibly be created at runtime and assigned to v. For a tracematch variable t, we write t ={v1,...,vn}
if t was assigned the value of program variable v at a given shadow. This models the runtime situation
where t is assigned an object that was created at any of the creation sides {v1,...,vn}.

In our running example from Figure 3, the hasNext shadow in line 3 would be denoted by
(hasNext,{i={i1}}), assuming that we denote the creation site of entryIter by i1.

Definition 2 (Shadow group)
A shadow group is a pair of (i) a set of shadows called progress-shadows and (ii) a set of shadows
called skip-shadows. All shadows in progress-shadows are labelled with labels of non-skip edges—
progress edges—on some path to a final state, while all shadows in skip-shadows are labelled with
a label of a skip loop.

In our running example, the next shadows are progress-shadows while the hasNext shadows
are skip-shadows. Note that, in general, a symbol can induce both skip loops and normal edges
(since an object might move from q to q′ and yet always leave q); therefore, progress-shadows and
skip-shadows are not necessarily disjoint.

Definition 3 (Consistent shadow group)
A consistent shadow group g is a shadow group for which all variable bindings of all shadows in the
group have points-to sets with a non-empty intersection for each variable.

For the HasNext tracematch, a consistent shadow group could have this form:

progress-shadows={ (next,i={i1,i2}) , (next,i={i1}) },
skip-shadows={ (hasNext,i={i1}) , (hasNext,i={i1,i3}) }

This shadow group is consistent—it may lead to a match at runtime—because the variable bindings for
i could potentially point to the same object, namely an object created at creation site i1. The shadow
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group holds two progress shadows (labelled with the progress label next). If the label shadows had
disjoint points-to sets, then no execution would consistently bind the tracematch variables to objects,
and the shadow group would not correspond to a possible runtime match. In addition, the shadow
group holds all skip shadows that have points-to sets that overlap with the progress shadows in the
shadow group.

Conceptually, a consistent shadow group is the static representation of a possibly complete match
at runtime. Every consistent shadow group may potentially cause its associated tracematch to match,
if the progress shadows execute in the proper order. Furthermore, only the skip shadows in the shadow
group can prevent a match based on the shadow group’s progress shadows. For further discussion
on efficiently computing consistent shadow groups, please refer to [4].

Our definition of a shadow group is well-suited to finding sets of shadows that can be enabled or
disabled in different spatial partitions. We therefore define a probe to be the union of all progress
shadows and skip shadows of a given consistent shadow group. Probes ‘make sense’ because they
contain a set of shadows that can lead to a complete match and they are sound because they also
contain all of the skip shadows that can prevent that match. (We will explain why skip shadows are
crucial for probes in Section 3.2.)

We can now present our algorithm for spatial partitioning.

− Compute all probes (based on the flow-insensitive analysis from [4]).
− Generate bytecode with two arrays: a ‘map’ array mapping from probes to shadows and a ‘flag’

array with one entry per shadow.
− When emitting code for shadows, guard each shadow’s execution with appropriate array

look-ups.

The arrays, along with some glue code in the AspectJ runtime, allow us to dynamically enable and
disable probes as desired (using array look-ups). In the context of spatial partitioning, we choose one
probe to enable at the start of each execution; however, our infrastructure permits experimentation
with more sophisticated partitioning schemes.

3.1.1 Spatial partitioning example
In our running example, the ‘map’ array, which maps from probes to shadows, would look like this:

map 3 4 10 11 13 18
1 x x x
2 x x x

This array encodes the information that the shadows at lines 3, 4 and 18 all belong to probe number
1, and the shadows at lines 10, 11 and 13 belong to probe number 2. To index into the array we assign
each probe and each shadow a unique number, starting at 0. Note that different probes may overlap,
i.e. there may be multiple rows with an ‘x’ entry in the same column; indeed, as Section 4 shows,
many similar probes share the same hot shadows.

The ‘flag’ array, with one entry per shadow, would initially be initialized to all false:

flag 3 4 10 11 13 18

If we then assume that the user chooses to enable probe number p, the tracematch runtime sets
the Boolean flags in the ‘flag’ array for all shadows of this probe (as determined by the ‘map’ array)
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to true.

∀i∈{0,...,|shadows|−1} : flag[i] :=flag[i]∨map[p,i]
For our example, with p=1, this would result in:

flag 3 4 10 11 13 18
x x x

3.2 Temporal partitioning

We found that spatial partitioning was effective in distributing the workload of runtime verification in
many cases. However, in some cases, we found that a single probe could still lead to large overheads
for some unlucky users. Two potential reasons for large overheads are: (i) a shadow group may
contain a large number of shadows if all those shadows have overlapping points-to sets, leading to
large probes; or (ii) if shadows belonging to a probe are repeatedly executed within a tight loop which
would otherwise be quite cheap, any overhead due to such shadows would quickly accumulate. The
HasNext pattern is especially prone to case (ii), as calls to next() and hasNext() are cheap
operations and are almost always contained in loops.

In such situations, one way to further reduce the runtime overhead is by sampling: instead of
monitoring a given probe all the time, we monitor it from time to time and hope that the program is
executed long enough that any violations eventually get caught. However, it is unsound to disable an
entire probe and then re-enable it again on the same run: missing a skip shadow can lead to a false
positive.

Consider again the example from Figure 3 in combination with the HasNext pattern. If we
disabled monitoring during the call to hasNext at line 3, we could get a false positive after seeing
two calls to next at line 4, since the intermediate call to hasNext went unnoticed.

Because false positives arise from disabling skip shadows, one sound solution is to simply not
disable skip shadows at all. Unfortunately, the execution of skip shadows can be quite expensive;
we found that leaving skip shadows enabled also leaves a lot of overhead, defeating the purpose of
temporal partitioning.

However, we then observed that when a state q holds an empty constraint (i.e. no disjuncts), then
transitions originating at q no longer need to execute, including skip loops. We therefore implemented
a ‘skip-disabling’ optimization that disables shadows in the presence of empty constraints; this
optimization is safe if all variables are known to be bound at q. That is, if all variables are bound,
then whenever we generate a negative binding of the form i �= i2, there already has to be a positive
binding of the form i= i1, and as we discussed in Section 2 (i= i1 ∧i �= i2) reduces to i= i1; the
negative binding i �= i2 therefore need not be stored. Had i been unbound at q, then i �= i2 would have
to be stored explicitly in the constraint, and the disabling optimization would not apply. However, for
all patterns we used in this work, and for almost all patterns we know, all variables are bound on the
first transition. Our implementation statically checks this property and only applies the optimization
if it holds.

− At each state q for which it is guaranteed that all tracematch variables are bound to an object
when reaching q, insert code that disables all skip loops on q for as long as q holds the empty
constraint. Insert code that re-enables the skip loops as soon as a new disjunct is added to q
again.
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Figure 4. Parameters for temporal partitioning, with increase period of n=2

We implemented this skip-disabling optimization for our temporal partitioning and found it to
be quite effective: Section 4 shows that our temporal partitioning, with this optimization, does not
incur much partitioning-related overhead; most of the overhead is due only to the executing monitors.
Intuitively, this optimization works because, while all progress shadows are disabled, no new disjuncts
are being generated. Hence, the associated constraint will become empty after few—often just one—
iterations of the shadow, degenerating the shadow to a costly no-op. Our optimization significantly
reduces the runtime cost of this no-op.

Let us again consider our running example from Figure 3, denoting the object
stored in a program variable v with o(v). If we disable progress transitions with a
constraint i=o(entryIter)∨i=o(iterator) on state q1, and then monitor a call to
iterator.hasNext() (at line 10), then the constraint on q1 reduces to i=o(entryIter)
(cf. Section 2). When monitoring a subsequent call to entryIter.hasNext() (at line 18), this
constraint reduces to false, the empty constraint, which enables our optimization.

We implemented temporal partitioning as follows.

− Generate a Boolean flag per tracematch.
− When emitting code for shadows, guard each progress shadow with the appropriate flag.
− Change the runtime to start up an additional instrumentation control thread.

The control thread switches the instrumentation on and off at various time intervals. Figure 4
presents the parameters that the instrumentation control thread accepts; progress edges are enabled
and then disabled after ton milliseconds. Next, after another toff milliseconds, the progress edges are
enabled again.

Note that the Boolean flag we generate is independent of the Boolean array we use for spatial
partitioning. If both spatial and temporal partitioning are used, a progress shadow is only enabled
if both the Boolean array flag (from spatial partitioning) for that particular shadow and the Boolean
flag (from temporal partitioning) for its tracematch are enabled. A skip shadow will be enabled all
the time if the Boolean array flag (from spatial partitioning) for its tracematch is enabled at program
start-up.

The thread can also scale the activation periods: every n periods, it can scale ton by a factor ion

and toff by ioff. This technique—a well-known technique from adaptive systems such as just-in-time
compilers—allows us to keep progress edges enabled for longer as the program runs longer, which
gives our temporal partitioning a better chance of catching tracematches that require a long execution
time to match. Because we increase the monitoring periods over time, the cost of monitoring scales
with the total execution time of the program.
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Table 1. Tracematches applied to the DaCapo benchmarks

Pattern name Description

FailSafeIter do not update a collection while iterating over it
HasNextElem do not call Enumeration.nextElement twice without calling

hasNextElement in between
HasNext do not call Iterator.next twice without calling hasNext in between
Reader do not use a Reader after closing its InputStream

4 Benchmarks

To demonstrate the feasibility of our approach, we applied our modified tracematch compiler to five
of the hardest benchmark/tracematch combinations from previous evaluations [4]. These benchmarks
continue to exhibit >10% of runtime overhead, even after we applied all available static optimizations.
They all consist of tracematches that verify properties of frequently used data structures, such as
iterators and streams, in the applications of version 2006-10 of the DaCapo benchmark suite [3]. All
our benchmarks are available on http://www.aspectbench.org/, along with a version of
the AspectBench Compiler implementing our optimization. Table 1 explains the tracematches that
we used.

4.1 Spatial partitioning

We evaluated spatial partitioning by applying the algorithm from Section 3.1 to our five
benchmark/tracematch combinations, after running the flow-insensitive static analysis described in
[4]. Table 2 shows the runtime overheads with full instrumentation. All of these overheads exceed
10%, and the overhead for antlr-Reader is almost 500%. Table 2 also presents the number of probes
generated for each benchmark. Recall that the number of probes depends heavily on the precision
of the underlying points-to analysis, as well as intrinsic properties of the benchmark, for instance
the lifetimes of bound objects: if objects are longer lived then they tend to be referenced at more
program places than the short-lived objects. Therefore, in these cases many variables share the same
points-to sets, yielding larger probes. If the points-to analysis is imprecise (e.g. because it soundly
over-approximates dynamic class loading) this may lead to larger points-to sets that overlap a lot
with among another, which in turn causes probes to be merged that would otherwise remain separate
had the points-to analysis been more precise. Consequently the number of probes varies a lot from
case to case depending on these properties.

Under the spatial partitioning approach, our compiler emits instrumented benchmarks which can
enable or disable each probe at program start-up. We tested the effect of each probe individually
by executing each benchmark with one probe enabled at a time; this gave us 1210 benchmark
configurations to test. (Note that it is possible to enable multiple probes at the same time without
jeopardizing soundness.) For our experiments, we used the Sun Hotspot JVM version 1.4.2_12 with
2GB RAM on a machine with an AMD Athlon 64 X2 Dual Core Processor 3800+. We used the
-s large option of the DaCapo suite to provide extra-large inputs, which made it easier for us to
measure changes in runtimes. Figure 5 shows runtime overheads for the probes in our benchmarks.

http://www.aspectbench.org/
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Table 2. Number of classes and methods per benchmark (taken from [3]), plus overhead of the
fully instrumented benchmark and number of probes generated for each benchmark

Benchmark Classes Methods Complete overhead Number of probes

antlr-Reader 307 3517 471.45% 4
chart-FailSafeIter 706 8972 25.08% 742
lucene-HasNextElem 309 3118 12.53% 6
pmd-FailSafeIter 619 6163 44.36% 426
pmd-HasNext 619 6163 66.53% 32
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Figure 5. Runtime overheads per probe in spatial partitioning (in percent; bars indicate clumps of
probes, labelled by size of clump)

Dots indicate overheads for individual probes. For some benchmarks, many probes were almost
identical, sharing the same hot shadows. These probes therefore also had almost identical overheads.
We grouped these probes into clumps and present them as a bar, labelled with the number of probes
in the clump.

Our results demonstrate that, in some cases, the different probes manage to spatially distribute the
overhead quite well. However, spatial partitioning does not always suffice. For pmd-FailSafeIter,
42 probes out of 426 have overheads exceeding 5%, while for chart-FailSafeIter, 56 such cases
exist, out of 742 probes in total. On the other hand, the lucene-HasNextElem and pmd-HasNext
benchmarks contain only one hot probe each; spatial partitioning is clearly insufficient in these cases.

Finally, antlr-Reader still shows high overheads, but these overheads are much lower than the
original overhead of 471.45%. Interestingly, the four different overheads do not add up to 471.45%.
Upon further investigation, we found that two probes generate many more disjuncts than others. In
the fully instrumented program, each shadow in each probe has to look-up all the disjuncts, even
if they are generated by other probes, which might lead to overheads larger than the sum of the
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overheads for each individual probe. We are currently thinking about whether this observation could
lead to an optimization of the tracematch implementation in general. (Avgustinov et al. [2] describe
the current implementation of disjunct look-up—indexing—in greater detail.)

We conclude that spatial partitioning can sometimes be effective in spreading the overhead among
different probes. However, in some cases, a small number of probes can account for a large fraction of
the original total overhead. In those cases, spatial partitioning does not suffice for reducing overhead,
and we next explore our temporal partitioning technique for improving runtime performance.

4.2 Temporal partitioning

To evaluate the effectiveness of temporal partitioning, we measured 10 different configurations
for each of the five benchmark/tracematch combinations. Figure 6 presents runtimes for each of
these configurations. The DaCapo framework collects these runtimes by repeatedly running each
benchmark until the normalized standard deviation of the most recent runs is suitably small.

Diamond-shaped data points depict measurements of runtimes with no temporal partitioning; the
left data point includes all probes (maximal overhead), while the right data point includes no probes
(no overhead). The gap between the right diamond data point and the grey baseline, which denotes
the runtime of the completely uninstrumented program, shows the cost of checking the Boolean
flags that we inserted. Note that spatial partitioning will always cost at least as much as the right
diamond.

The circle-shaped data points present the effect of temporal partitioning. We measured the runtimes
resulting from enabling progress edges 10, 30, 50, 70, 90 and 100% of the time.

Our first experiment sought to determine the effect of changing the swapping interval
for temporal partitioning. At first, we executed four different runs for each of those seven
configurations, with four different increase periods n. We doubled the duration of the on/off
intervals every n=10,40,160 and 640 periods. As expected, n has no measurable effect on runtime
performance. We therefore plotted the arithmetic mean of the results over the different increase
periods. The full set of numbers is available on the website of the AspectBench Compiler:
http://www.aspectbench.org/

Figure 6f overlays the results from all of our benchmark/tracematch combinations. Note that
the shape of the overhead curve is quite similar in all of the configurations. In all cases, temporal
partitioning can smoothly scale down from 100% overhead, when all progress edges are always
enabled, to just above 0%, when progress edges are never enabled. We were surprised to find that
the decrease in runtime overhead did not scale linearly with a decrease in monitoring intervals (note
that the figure uses a log scale). This data suggest that there might exist a ‘sweet spot’ where the
overhead is consistently lowest compared to the employed monitoring time.

The relationship between ‘no temporal partitioning’ with all probes enabled and the 100%
measurement with temporal partitioning enabled might seem surprising at first: we added additional
runtime checks for temporal partitioning, and yet, in the cases of chart-FailSafeIter, lucene-
HasNextElem and pmd-FailSafeIter, the code executes significantly faster. We believe that this
speedup is due to the skip loop optimization that we implemented for temporal partitioning:
this optimization is applied even when progress edges are enabled, thereby improving overall
performance.

The far right end of the graphs shows that the overhead of the runtime checks for spatial and
temporal partitioning are virtually negligible. They are not zero but close enough to the baseline to
not hinder the applicability of the approach.

http://www.aspectbench.org/
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Figure 6. Results of temporal partitioning for five benchmark/tracematch combinations
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5 Related work

Our work on collaborative runtime verification is most closely related to the work of Liblit et al. [8]
for automatic bug isolation. The key insight in automatic bug isolation is that a large user community
can help isolate bugs in deployed software using statistical methods. The idea behind Cooperative
Bug Isolation is to use sparse random sampling of a large number of program executions to gather
information. Hence, one can amortize the cost of executing assertion-dense code by distributing it to
many users, each user only executing a small randomly selected number of assertions. This minimizes
the overhead experienced by each user. Although each execution report in isolation gives only very
limited information, the aggregate of all such reports provides a wealth of debugging information
for analysis and a high chance of finding violations of an assertion, if such violations exist.

Pavlopoulou et al. [13] describe a residual test coverage monitoring tool which starts off by
instrumenting all the code. As different parts of the program are executed, the code is periodically
re-instrumented, with probes added only in places which have not been covered by the testing criteria.
Probes from frequently executed regions are therefore removed in the first few re-instrumentation
cycles, reducing the overhead in the long term, since the program spends more and more time in
code regions without any probes. Such an adaptive instrumentation should also be applicable to our
setting. To avoid false positives, one would have to disable entire shadow groups at a time.

Patil et al. [12] propose two different approaches to minimize overhead due to runtime checking
of pointer and array accesses in C programs. Customization uses program slicing to decouple the
runtime checking from the original program execution. The second approach, shadow processing,
uses idle processors in multiprocessor workstations to perform runtime checking in the background.
The shadow-processing approach uses two processes: a main process that executes the original user
program, i.e. without any run-time checking, and a shadow process that follows the main process and
performs the intended dynamic analysis. The main process has minimal overhead (5–10%), mostly
arising from the need for synchronization and sharing of values between the two processes. Such
an approach would not work for arbitrary tracematches, which might arbitrarily modify the program
state, but could work for the verification-oriented tracematches we are investigating.

Recently, Microsoft, Mozilla, GNOME, KDE and others have all developed opt-in services for
reporting crash data. When a program crashes, recovery code generates and transmits a report
summarizing the state of the program. Recently, Microsoft’s system has been extended to gather
data about abnormal program behaviour in the background; reports are then automatically sent every
few days (subject to user permission). Reports from all users can then be aggregated and analysed
for information about causes of crashes.

We briefly mention a number of alternative approaches for specifying properties for runtime
verification. The PQL [9] is similar to tracematches in that it enables developers to specify properties
of Java programs, where each property may bind free variables to runtime heap objects. PQL supports
a richer specification language than tracematches, since it is based on stack automata rather than finite-
state machines. Monitoring-Oriented Programming (MOP) [6] is a generic framework for specifying
properties for runtime monitoring; developers use MOP logic plug-ins to state properties of interest.
PQL, MOP, and related approaches can all benefit from collaborative runtime verification techniques.

6 Conclusion and future work

In this article, we have presented two techniques for implementing collaborative runtime verification
with tracematches. The main idea is to share the instrumentation over many users, so that any one user
pays only part of the cost of the runtime verification. Our article has described the spatial and temporal
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partitioning techniques and demonstrated their applicability to a collection of benchmarks, which
exhibit high instrumentation overheads. Both partitioning approaches are sound, i.e. they produce
no false positives.

Spatial partitioning allocates different probes—consistent subsets of instrumentation points—
to different users; probes generally have lower overheads than the entire instrumentation. Our
experimental evaluation showed that spatial partitioning works well when there are no particularly
hot probes.

Temporal partitioning handles the situation where some probes are disproportionately hot, by
periodically enabling and disabling instrumentation. We demonstrated a good correspondence
between the proportion of time that probes were enabled and the runtime overhead.

We are continuing our work on making tracematches more efficient on many fronts, including
further static analyses [5, 11]. We are also continuing to build up our benchmark library of base
programs and interesting tracematches.
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