
Heaps’n Leaks: How Heap Snapshots Improve Android Taint
Analysis

Manuel Benz
Department of Computer Science

Paderborn University
Germany

manuel.benz@upb.de

Erik Krogh Kristensen
Department of Computer Science

Aarhus University
Denmark

erik@cs.au.dk

Linghui Luo
Department of Computer Science

Paderborn University
Germany

linghui.luo@upb.de

Nataniel P. Borges Jr.
CISPA Helmholtz Center for

Information Security
Germany

nataniel.borges@cispa.saarland

Eric Bodden
Paderborn University & Fraunhofer

IEM
Germany

eric.bodden@upb.de

Andreas Zeller
CISPA Helmholtz Center for

Information Security
Germany

zeller@cispa.saarland

ABSTRACT

The assessment of information flows is an essential part of ana-

lyzing Android apps, and is frequently supported by static taint

analysis. Its precision, however, can suffer from the analysis not

being able to precisely determine what elements a pointer can (and

cannot) point to. Recent advances in static analysis suggest that

incorporating dynamic heap snapshots, taken at one point at run-

time, can significantly improve general static analysis. In this paper,

we investigate to what extent this also holds for taint analysis, and

how various design decisions, such as when and how many snap-

shots are collected during execution, and how exactly they are used,

impact soundness and precision. We have extended FlowDroid to

incorporate heap snapshots, yielding our prototype Heapster, and

evaluated it on DroidMacroBench, a novel benchmark comprising

real-world Android apps that we also make available as an artifact.

The results show (1) the use of heap snapshots lowers analysis time

and memory consumption while increasing precision; (2) a very

good trade-off between precision and recall is achieved by a mixed

mode in which the analysis falls back to static points-to relations

for objects for which no dynamic data was recorded; and (3) while

a single heap snapshot (ideally taken at the end of the execution)

suffices to improve performance and precision, a better trade-off

can be obtained by using multiple snapshots.

CCS CONCEPTS

· Software and its engineering → Software testing and de-

bugging;

KEYWORDS

points-to analysis, heap snapshot, taint analysis, Soot

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’20, May 23ś29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380438

ACM Reference Format:

Manuel Benz, Erik Krogh Kristensen, Linghui Luo, Nataniel P. Borges Jr.,

Eric Bodden, and Andreas Zeller. 2020. Heaps’n Leaks: HowHeap Snapshots

Improve Android Taint Analysis. In 42nd International Conference on Soft-

ware Engineering (ICSE ’20), May 23ś29, 2020, Seoul, Republic of Korea. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3377811.3380438

1 INTRODUCTION

Android is the world’s most popular mobile operating system. Its

official marketplace, Google Play Store, holds more than 3.3 million

apps, which can be installed on billions of devices. To perform their

tasks, apps frequently interact with sensitive informationÐfrom

private images to banking details. Research shows that security-

related bugs introduced by developers frequently put this sensitive

information at risk [5, 6, 9, 27].

To identify such sensitive information leaks, taint analysis de-

tects potential leaks by determining if data acquired on a sensitive

source reaches a sink, where the information would no longer be

secure. Such taint flows can be detected statically or dynamically. A

static taint analysis, which we focus on in this paper, reasons about

all possible execution paths in a program and aims to achieve (close

to) perfect recall, i.e., it seeks to identify virtually all potentially

sensitive information leaks. Static analyses, though, often suffer

from a trade-off between accuracy and scalability. Although exist-

ing taint analysis tools such as FlowDroid [1] can be configured

to conduct a relatively precise flow, context, and field-sensitive

analysis, such configuration needs to be identified by possibly in-

experienced usersÐand imprecise configuration causes the taint

analysis to report substantial amounts of false positives [22].

A recent approach by Grech et al. addresses this problem by

extending static pointer analysis with information extracted from

heap snapshots, collected at runtime. As the authors show, one

can improve soundness [10] by augmenting statically computed

points-to information with additional data from the heap snapshots.

Conversely, one can improve precision by restricting static points-to

computation to such information present in the heap snapshots [11].

In their experiments, Grech’s idea has been proven to be very

effective; however, the utility of the technique is still vastly un-

explored, leaving many questions unanswered. Both their imple-

mentation and evaluation are limited to pure pointer analysis only,

1061

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on May 31,2021 at 12:16:53 UTC from IEEE Xplore. Restrictions apply.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea M. Benz, E. Kristensen, L. Luo, N. Borges Jr., E. Bodden, and A. Zeller

but how does using heap snapshots affect complex client analysis?

Furthermore, their setup was limited to collecting only a single

heap snapshot for each execution of the analyzed application, yet

does a single heap snapshot suffice or are multiple heap snapshots

better? When should they be collected? Last but not least, Grech

et al. considered the two extremes of augmenting and restricting

points-to information based on heap snapshots, as well as proposed

a recall-oriented blended analysis mode where they enhance a static

model with dynamic information. It is an open question, how to

model the middle ground between imprecise static heap models and

unsound dynamic heap snapshots?

In this work, we present an empirical study in which we seek to

reproduce the original experiments revised by Grech et al. but also

go significantly beyond them to address these open questions. We

make the following original contributions:

Using heap snapshots for Android taint analysis. We investi-

gate how heap snapshots impacts the soundness and precision, not

just of simple pointer analysis, but of a concrete client analysis, a

static Android taint analysis.

Assessment of design decisions. We investigate how various es-

sential design decisions impact precision and soundness of the anal-

ysis. In particular, we evaluate the impact of two novel extensions:

• information not only from a single heap snapshot but multiple

ones, e.g., collected at various times during the execution; and

• dynamic heap models collected at runtime (precise, but possibly

unsound) versus pure static heap models (sound, but possibly im-

precise) versusmixed models that seek to define a sensible middle

ground between those two extremes by focusing on precision

and enhancing a dynamic model with static information.

Implementation and Benchmark. To evaluate the above deci-

sions, we implementedHeapster, an extension to FlowDroid that can

incorporate heap dumps. Additionally, we createdDroidMacroBench,

a set of 12 real-world Android applications that wemanually labeled

with ground truth for taint analyses.1

Evaluation. We explore the impact of different design decisions

about when to collect and how to consume heap snapshots. In our

evaluation we show that:

• adding heap snapshots can significantly improve the precision

of taint analysis (from 50.3% to up to 94.7%);

• while restricting points-to information to that of the heap snap-

shots offers high precision it significantly harms recall. Ourmixed

mode solution, however, provides both good precision (77.1%)

and good recall (68.4%). Its F1 score is the highest among all

configurations;

• in all evaluated scenarios, incorporating heap snapshots signifi-

cantly lowers the amount of computational resources required

by the taint analysis, moreover, in 90% of the scenarios it also

improves the analysis performance; and

• while a single heap snapshot, taken at the end of the runtime,

suffices to significantly increase the analysis precision, additional

snapshots, taken at different times, are beneficial for the analysis

recall, achieving the best overall F1 score.

1 Because DroidMacroBench comprises closed-source apps we cannot legally make
it available as open source. We will make it available to other researchers, though,
through a password-protected website. DroidMacroBench will also be made available
to the artifact evaluation.

The remainder of this paper is organized as follows: In Section 2

we discuss limitations of the static analysis and how dynamic infor-

mation can be used to enhance it. We then present Heapster, which

uses heap snapshots to improve taint analysis, in Section 3 and in

Section 4 our experiments showing the impact of different design

decisions on the taint analysis results. After discussing threats to

validity and related work in Sections 5 and 6, we close with the

conclusion and future work.

2 BACKGROUND

2.1 Unsoundness in static analysis

An optimal static analysis would be both sound and precise, that is,

it would report all relevant program information and would report

only information that is, in fact, correct. A points-to analysis, for

instance, is considered sound, if it reports that an allocation site

(e.g. a new-expression) 𝑎 is contained in a points-to set 𝑝𝑡𝑠 (𝑣) of

a variable 𝑣 in every case in which the program under analysis

can assign to 𝑣 an object allocated at 𝑎. A points-to analysis is

maximally precise if it reports such a points-to relation only under

those circumstances.

Points-to analysis is, however, known to be an undecidable prob-

lem, as of other static analyses. Much previous research has at-

tempted to find trade-offs that are optimal for various applications,

some experimenting with different context-sensitivities [16, 30, 32]

and others selectively applying context-sensitivity [19, 35]. While

these approaches are, to some extent, helpful in general, they are

restricted by their limited ahead-of-time knowledge about the pro-

gram under analysis and its actual execution.

In general, even the work that attempts to counter unsoundness

so far has always been incomplete [21] due to complicated usage of

reflection inside some programs. In such scenarios a sound model of

these reflective features could cause a massive drop in performance,

precision or both. While Smaragdakis et al. [31] showed that one

could achieve provably sound results for parts of a program under

analysis, the general undecidability makes the general problem

unsolvable. Most work in the area of point-to analysis of Java thus

attempts to reach some middle ground, where most features of the

language are modeled soundly, while a small part of the language

is modeled unsoundly.

2.2 Blended analysis

A blended analysis [4] is a static analysis that incorporates dynamic

information obtained while executing the analyzed program. While

dynamic information of various kind can be obtained and incorpo-

rated into the static analysis, in the following, we focus on heap

snapshots.

Heap snapshots. A heap snapshot is a representation of objects

from a running program, with the values and relationships that the

objects had at the specific point in time in which the snapshot was

collected. Many different industrial language/runtime implementa-

tions directly support collecting heap snapshots with little or no

performance overhead [10, 20, 24, 33].

Heap snapshots are commonly used for debugging applications

or findingmemory leaks and are sometimes even collected from run-

ning production servers [26]. Besides being useful for debugging

1062

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on May 31,2021 at 12:16:53 UTC from IEEE Xplore. Restrictions apply.

Heaps’n Leaks: How Heap Snapshots Improve Android Taint Analysis ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

purposes, heap snapshots can be used to augment static analy-

sis, since they provide a 100% accurate view of a single concrete

heap. Uses of this concrete heap data include skipping parts of the

analysis [7, 13] and improving the abstract heap precision in an

analysis [11].

Even if enhanced with a complete picture of the heap, a static

analysis must still perform approximations. Heap snapshots provide

information only about objects in the heap. They lack information,

e.g., about stack variables. Also, a heap does not allow the static

analysis to determine which branches will be taken during run-

time. Finally, given that heap snapshots only contain information

about objects that existed at a particular point in time, the snapshot

might fail to capture short-lived objects that only exist during a

brief computation. These temporary objects are especially hard

to capture given that some runtimes perform a garbage collection

before creating a heap snapshot.

3 APPROACH

We designed a blended taint analysis Heapster, where we use heap

snapshots as an upper bound in the static points-to analysis. We,

therefore, obtain points-to sets that are strict subsets of the ones

obtained through a purely static analysis. As our results show, this

leads to a more precise analysis than using a strictly static heap

model. However, by design, this also means that Heapster may

sacrifice some level of soundness (or recall), i.e., Heapster may miss

reporting some true positives. Yet, as our evaluation shows, useful

tradeoffs do exist that keep recall high while nonetheless increasing

precision significantly, resulting in an F1 score higher than that of

purely static analysis.

To obtain such tradeoffs, it is crucial to understand and appreciate

that the incorporation of heap snapshots is not just a binary łyes

or nož decision. It opens up a design space within which one can

make a number of sensible design choicesÐfrom how to use the

heap snapshots to when to collect themÐall of which affect the

trade-off between the analysis’ precision and soundness.

We implemented Heapster on top of FlowDroid [1], the leading

tool for static taint analysis of Android applications. FlowDroid

itself is built on top of the program-analysis framework Soot [14]

and uses Soot’s points-to analysis engine SPARK [15]. Thus, in our

quest for improved precision and performance in FlowDroid, we

modify SPARK to incorporate information from heap snapshots.

To explain our approach, we first present the inference rules

used by the heap analysis in SPARK, and we then explain our

incorporation of heap snapshots as modifications to these inference

rules. We only present the rules for object allocation, field stores,

field reads, and variable assignment, as these rules are the only

relevant rules for our approach. Adding, e.g. context-sensitivity

or method calls is orthogonal to our approach. Also, while our

implementation was applied to Android, our modifications contain

no Android-specific code; thus the same implementation can also

be used to analyze Java applications.

Figure 1 depicts these inference rules. The following syntax is

used in the rules:𝑂𝑖 denotes a concrete object, where𝑛𝑒𝑤 𝑂𝑖 creates

a new object. 𝑣 denotes a variable. 𝑥 .𝑓 denotes a field access of the

field 𝑓 of variable or object 𝑥 . 𝑙 := 𝑟 denotes an assignment from

𝑟 to 𝑙 . The "→" symbol denotes a relation where the left side is a

pointer, i.e., a variable or field reference, and the right side is the

object the pointer points to. E.g., 𝑣 → 𝑂1 and 𝑣 → 𝑂2 denotes

that the points-to set of 𝑣 includes {𝑂1,𝑂2}. The analysis works by

initializing all points-to sets as empty, and then applying the rules,

thereby adding allocation sites to the points-to sets, until it reaches

a fixed point.

(Store)
𝑜.𝑓 := 𝑣 𝑜 → 𝑂1 𝑣 → 𝑂2

𝑂1 .𝑓 → 𝑂2

(Read)
𝑣 := 𝑜.𝑓 𝑜 → 𝑂1 𝑂1 .𝑓 → 𝑂2

𝑣 → 𝑂2

(Alloc)
𝑣 := 𝑛𝑒𝑤 𝑂𝑖 ()

𝑣 → 𝑂𝑖

(Assignment)
𝑣 := 𝑡 𝑡 → 𝑂1

𝑣 → 𝑂1

Figure 1: The four inference rules related to the heap used

by the pointer analysis SPARK in FlowDroid

In the following we explain three different designs that differ in

the way in which they incorporate the dynamic heap information

into SPARK’s static pointer analysis.

3.1 Using Heap Snapshots in Static Analysis

To incorporate heap snapshots into the points-to analysis, we mod-

ify the Store rule in Figure 1 to only apply if the same relation can

be found in a given heap snapshot.

Grech et al. [11] instead remove the Store rule and modify the

Read rule such that it directly reads points-to sets from their heap

snapshot, Grech et al. [11] can thereby skip the static heap analysis

altogether and achieve incredible performance. However, their ap-

proach leaves little room for modification. By modifying the Store

rule, our approach makes the heap analysis in FlowDroid more pre-

cise, without entirely skipping it. We can thereby later selectively

reenable the full heap analysis in FlowDroid, which we will do later

in this section.

Loading our heap snapshots into the analysis exposes two new

functions: Heap and Field. Heap is a function that accepts an alloca-

tion site and returns a set of heap objects, and Field is a function

that, given a heap object and a field name, returns an allocation

site or null. These two functions trivially work with multiple heap

snapshots. Particularly, Heap will return the union of all the heap

objects, that have been allocated at the given allocation site, from

the heap snapshots.

Heapster treats the heap snapshots as being a ground truth, and

this is achieved by restricting the statically computed points-to sets

to contain only allocation sites also found in the heap snapshots.

This can be expressed by replacing the Store rule from Figure 1 with

the one presented in Figure 22

(Store-d)
𝑜.𝑓 := 𝑣 𝑜 → 𝑂1 𝑣 → 𝑂2 ℎ𝑖 ∈ 𝐻𝑒𝑎𝑝 (𝑂1) 𝐹𝑖𝑒𝑙𝑑 (ℎ𝑖 , 𝑓) = 𝑂2

𝑂1 .𝑓 → 𝑂2

Figure 2: Replacement Store rule for SPARK

Generally, in Heapster, it is possible to derive points-to informa-

tion from multiple heap snapshots gathered throughout the target

application’s runtime. We propose three variants to consume heap

snapshots during static analysis: (1) separate-heaps, in which we

2 Note that = is used as equality in this rule.

1063

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on May 31,2021 at 12:16:53 UTC from IEEE Xplore. Restrictions apply.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea M. Benz, E. Kristensen, L. Luo, N. Borges Jr., E. Bodden, and A. Zeller

restrict the static points-to information to what is present in a sin-

gle heap snapshot, and run the analysis once for each snapshot

given. (2) merged-heaps, which acts like separate-heaps but with all

given heap snapshots used together in one single analysis run. (3)

static-fallback, where the heap snapshots are used in combination

with the abstract heaps.

separate-heaps. This variant essentially computes taint flows for

a single realistic application state. To nonetheless obtain a broader

picture of the apps’ behavior, we execute the analysis once for

each heap snapshot collected and merge the findings as produced

by FlowDroid. The separate-heaps configuration assures that no

points-to information is merged among different heap snapshots,

and thus eliminates yet another source of imprecision. This is be-

cause merging different states of an app’s heap can lead to pointer

combinations that are not feasible in any real execution.

Since the whole taint analysis and all its pre- and post- analyses

are executed for each snapshot, the overall runtime of this variant is

expected to be comparatively long, even though a single run should,

in theory, be faster than with the other variants due to having the

least pointer information available at a single time.

Taint-flows are merged by simply aggregating flows with equal

source-sink pairs after all analysis runs have completed.

merged-heaps. This variant is conceptually similar to the separate-

heaps one. Also here we restrict the points-to information to what

is present in the given heap snapshots. In contrast to separate-

heaps, however, the analysis is executed a single time with a set of

heap snapshot merged together as the single source of points-to

information.

Since only one analysis run is required, the analysis usually ter-

minates faster. As previously stated, however, merging the findings

of different heap snapshots might lead to an over-approximation

due to generating unrealistic permutations of points-to information

between multiple pointers.

static-fallback. There are two situations for which the separate-

heaps and merged-heaps variants can cause the points-to set for an

object field 𝑂1 .𝑓 to be empty: (1) The heap snapshot only contains

such objects allocated at 𝑂1 for which the 𝑓 field is 𝑛𝑢𝑙𝑙 , or (2) the

heap snapshot contains no objects allocated at 𝑂1 at all. The latter

case can be caused by objects of type 𝑂1 never being allocated, or

by the dynamic exploration failing to explore that part of the app,

or because the heap snapshotÐby chanceÐdid not contain a short-

lived𝑂1 object. Depending on the relevance of𝑂1 .𝑓 in the analyzed

program, the analysis might erroneously produce wildly unsound

points-to sets, which, due to the call graph becoming smaller, can

result in large parts of the application never being analyzed.

This łmixedž analysis mode addresses these limitations with a

middle-ground approach. We reuse the heap snapshots from the

merged-heaps approach, but we no longer consider the heap snap-

shot as the single source of points-to information. In this approach,

we use the static points-to information as a fallback option for fields

that do not exist in the merged snapshot.

Our approach, just as Gretch et al. combines dynamic informa-

tion extracted from heap snapshots with static analysis. However,

while they enhanced a static points-to model with dynamic infor-

mation to increase the soundness of the analysis, we follow the

opposite direction, that is, we enhance the dynamic heapmodel with

static points-to information to increase precision by only falling

back to static points-to information where the dynamic is missing.

This approach introduces the following changes to SPARK’s in-

ference rules: We use the Store-d rule from the Section 3.1 when the

Heap function returns a non-empty set of heap objects, otherwise

we use the Store rule from Figure 1. We achieve this behavior by

replacing the Store rule from Figure 1 with the Store-d rule from

the Figure 2 plus the one from Figure 3.

(Store-sf)
𝑜.𝑓 := 𝑣 𝑜 → 𝑂1 𝑣 → 𝑂2 𝐻𝑒𝑎𝑝 (𝑂1) = ∅

𝑂1 .𝑓 → 𝑂2

Figure 3: Additional Store rule for SPARK

In comparison to themerged-heaps and separate-heaps approaches,

static-fallback forces only such points-to sets to be empty whose

base object is indeed contained in the heap snapshot, and where

the specific field was observed to have the value null. Specifically,

static-fallback retains static points-to sets for such objects that the

heap snapshot gives no information about.

Note that we decided to not run the experiments with separate

heaps in combination with static fallback. Each snapshot will have

some area of the app that is uncovered, and where the analysis

therefore falls back to static analysis. Thus, the combination would

probably behave close to the fully static approach due to combin-

ing all the static pointer information for the uncovered parts of

each snapshot. Additionally, considering the huge amount of exper-

iments to conduct for all apps, snapshots and heuristic, this would

lead to an enormous time effort which is out of scope for this work.

3.2 Collecting Heap Snapshots

Heap snapshots can be collected at distinct points of app execution

and with different frequency, opening up a virtually infinite set of

design possibilities. They can be collected at regular intervals or at

specific points of execution.

In this work, we chose to acquire heap snapshots after an input

event was triggered. While an event could be triggered by the user,

by clicking on the screen for example, or by the system, by receiving

a message, we restricted our snapshot collection to user events, so

that it could be executed on any stock Android device. We take

snapshots after the app has finished its initialization and after each

user action, e.g., clicks, text input, etc. For this, we ensure the UI

is stable and the app is waiting for user input. From a set of heap

snapshots we propose the following heuristics to select which ones

to use during static analysis:

first. Uses only the snapshot acquired immediately after the app

starts with no input given. With this heuristic, it is possible to au-

tomatically acquire heap snapshots for any app, without additional

use of test generators or a manual app exploration.

last. Uses only the last snapshot taken during the app execution.

The rationale behind this heuristic is that by interacting with the

app new elements are allocated into the heap and, by collecting

the last element, the heap would contain more information than

collecting only the first one.

1064

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on May 31,2021 at 12:16:53 UTC from IEEE Xplore. Restrictions apply.

Heaps’n Leaks: How Heap Snapshots Improve Android Taint Analysis ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

all. Uses all collected snapshots during the analysis. Since we

take snapshots after each user action executed on the phone, this

heuristic is equivalent to picking a snapshot for each user action.

unique-activity. Use a single snapshot for each activity. By ex-

tracting meta-data when taking a snapshot, such as the current user

interface state, we can map snapshots to activities after collecting

the snapshots. If multiple snapshots were collected for the same

activity, only the last one is chosen. We opted for the last snapshot as

it is more likely to contain the most substantial amount of points-to

information, due to previous user interactions with the activity.

4 EVALUATION

We used Heapster to evaluate the effect of using heap snapshots

for taint analysis of Android applications. Specifically, we aim to

answer the following research questions:

RQ1:How are the precision and soundness of FlowDroid impacted

by using heap snapshots as an upper bound for the static analysis?

RQ2: How do precision and soundness change when using the

static-fallback approach?

RQ3: How often and when should heap snapshots be collected to

gain a useful level of precision and soundness?

RQ4: How does using heap snapshots impact the runtime perfor-

mance and memory consumption of the taint analysis?

4.1 Experimental Setup

Hardware Setup. We performed all experiments on a virtual ma-

chine with 4 CPU cores from an Intel Xeon E5-2695 v3 CPU and

100GB of RAM of which we assigned 80GB as Java virtual machine

heap space.

Dataset. For our experiments, we chose the 200most downloaded

apps from the Google Play Store according to https://www.appbrain.

com/apps/popular/.3 We opted for large real-world applications for

two major reasons: first, they resemble the most realistic use-case

scenario for Heapster, as we expect it to be best suited for large

applications with hard to analyze code. Second, we were unable

to find an existing benchmark collection containing taint flows in

real-world apps where we were ableÐand willing4Ðto execute the

apps on our Android phones.

We then filtered the apps for which we could obtain heap snap-

shots. On a stock Android it is not possible to extract heap snapshots

from a non-debuggable app, that is, where its AndroidManifest.xml

file does not contain debbugable=true. To enable the acquisition

of heap snapshots we unpacked, updated and re-packed all 200

downloaded apps using Apktool.5 We then proceeded with the 143

apps (≈ 72%) which could be successfully re-packed.

We then filtered out apps which did not contain any taint flows.

For that, we analyzed the 143 re-packed apps with an unmodified

version of FlowDroid, configured with its default list of sources and

sinks, which resulted in taint flows being identified in 78 apps.

Finally, we filtered out apps that we were unable to install and

execute on a device successfully. For instance, some apps could not

be used after re-packing due to security countermeasures, such as

3 The full list of apps is available at https://goo.gl/7NwTMu
4 Annotated taint flows for Android apps are provided for known malware.
5 https://ibotpeaches.github.io/Apktool/

certificate and signature checks. Other, also popular apps did not

have a launchable activity and were meant to be either integrated

or invoked from other apps, such as Samsung Push Service6. Inter-

estingly, one app in our dataset (YouCam Makeup) launched into

a developer mode after re-packing. The app behaved as usual but

included extra options such as dump db, dump logcat, and an op-

tion to switch from production to development backend. In the end,

we were able to install, execute and obtain heap snapshots from 49

apps, which we used for the remaining of this evaluation. As we

will explain later, we chose a subset of those 49 apps to establish

our artifact DroidMacroBench.

App Exploration. To get a reasonably good coverage of the used

apps, we manually explored all of them on a OnePlus 6 phone

and collected heap snapshots after each conducted user action. We

thereby tried to capture all reachable app functionality and created

accounts to pass login screens if the apps asked for it.

Experimental Configurations. In our experiments, we aimed to

evaluate not only how different usages of the heap snapshots impact

taint analysis but also when should the heap snapshots be collected.

We analyzed every app in 11 different configurations comprised

of all sensible permutations of the analysis mode and the snap-

shot acquisition time (c.f. Section 3.2). For each analysis, we used

FlowDroidÐor our extended version HeapsterÐwith its default

parameters. We opted for the default configuration since it is the

most widely accepted baseline and allows direct comparisons to

previous work that is also based on FlowDroid. Table 1 presents

the different experimental configurationsÐincluding a traditional

static analysis, without any heap snapshotÐalongside the average

and the accumulated number of snapshots over all analyzed apps.

∅ #Snapshots
∑

#Snapshots
Mode Heuristic

full static none 0 0

merged-heaps

all 48 2353
unique-activity 10 483
first 1 49
last 1 49

separate-heaps7
all 48 2353
unique-activity 10 483

static-fallback

all 48 2353
unique-activity 10 483
first 1 49
last 1 49

Table 1: Average and accumulated number of heap snap-

shots used per configuration

Runtime restriction. Since a single analysis run of some of the

larger apps took multiple hours to complete, we limit the runtime

of the separate-heaps approach to a maximum of two times the

runtime of the pure static approach. This prevents the separate-

heaps approach from takingmultiple days to complete when several

snapshots are used for those apps. To still leave a chance for the

separate-heaps approach to complete on small apps that do not

6 https://play.google.com/store/apps/details?id=com.sec.spp.push.
7 We omit first/last for the separate-heaps analysis mode because it is equivalent to use
first/last with merged-heaps mode.

1065

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on May 31,2021 at 12:16:53 UTC from IEEE Xplore. Restrictions apply.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea M. Benz, E. Kristensen, L. Luo, N. Borges Jr., E. Bodden, and A. Zeller

take as much time, we also allow it to run at least one additional

hour to what the pure static approach needed.

4.2 DroidMacroBench

As one contribution of this work, we provide DroidMacroBench,

a benchmark of 12 of the 200 top most downloaded real-world

Android applications with labeled taint flows. Similar to the popular

DroidBench [1] micro benchmark, also DroidMacroBench provides

Android applications labeled with ground truth for taint analyses.

However, in contrast to DroidBench, DroidMacroBench comprises

real-world Android applications which are, in essence, much larger,

more complex and altogethermore realistic benchmarks for analysis

at hand.

Using DroidBench for assessing Heapster was not an option

since its apps are not executable. Moreover, even if they were, the

DroidBench apps are too small and trivial to cause a realistic static

over-approximation which Heapster aims to counter. Furthermore,

due to the missing complexity, such small apps are not able to profit

from the performance gains possible when using heap snapshots.

To establish DroidMacroBench, we manually investigated and

labeled FlowDroid’s findings for 12 of the 49 apps as feasible/infeasi-

ble taint flow. Investigating a large number of apps manually would

be a worthwhile future endeavor but due to the significant amount

of manual labor involved would probably have to be conducted as a

community effort. By exposing DroidMacroBench we hope to seed

such an effort.

We classify a taint flow as infeasible if during a manual investi-

gation we find it impossible for data from a given source to flow to

a given sink. This manual investigation was done by having one

author initially classify a taint flow as produced by FlowDroid, and

this classification was then independently confirmed by another au-

thor. In the remainder of this paper, we consider reports of feasible

flows as true positives, other taint reports as false positives.

In our classification, of FlowDroid’s findings, we label the re-

ported taint flows as feasible or infeasible, but we make no deter-

mination as to what kind of data flows, and whether this data is

sensitive. The high complexity of the code and in particular the fre-

quently employed obfuscation made this determination impossible.

To evaluate DroidMacroBench, however, this information is also

not required.

DroidMacroBench comprises 12 real-world Android applications

with a total of 199 taint flows found by FlowDroid, of which we

were able to classify 157 into 79 feasible and 78 infeasible taint

flows. For the unclassified flows, the taint flows are so complex that

we were not able to classify them with the necessary certainty.

In the future, we plan to provide DroidMacroBench and the

corresponding ground truth as a benchmark suite compliant to

the ReproDroid [25] framework, to allow others to reproduce our

experiments easily, but also to run their experiments on DroidMac-

roBench.

4.3 RQ1: How are the precision and soundness
of FlowDroid impacted by using heap
snapshots as an upper bound for the static
analysis?

To answer this question, we used the apps from DroidMac-

roBench and analyzed them with both separate-heaps and merged-

heaps approaches, which consider the heap snapshots as upper

bounds for the static analysis. We used all the collected heap snap-

shots. We then compared these results with those from the bench-

mark’s ground truth. Since we use real, commercial, applications,

the total number of existing taint flows is unknown. For our analy-

sis, we assume that the taint flows found by FlowDroid represent

all possible taint-flows that can exist in the apps and we, thus, mea-

sure precision and recall relative to the findings of the purely static

approach. This assumption is sensible since we seek to determine

exactly to what extend the incorporation of heap snapshots allows

one to change FlowDroid’s original precision and recall curve. Our

results are shown in Table 2.

Separate-heaps approach. The separate-heaps approach identified

a total of 19 taint flows, 18 of which are feasible, resulting in a

precision of 94.7%, compared to 50.3% precision with the purely

static analysis.

The separate-heaps approach missed 61 out of 79 feasible taint

flows found by the purely static analysis, resulting in a recall of

24.1%. This high precision/low recall trade-off resulted in an F1

Score of 0.37.

Merged-heaps approach. The merged-heaps approach identified

21 taint flows, of which 19 are feasible. That is, by merging multiple

heap snapshots into a single one, the analysis was able to identify 2

new taint flows, 1 of which is a true positive, which were not iden-

tified by multiple single heap experiments. Overall, compared to

separate-heaps, merged-heaps obtained marginally lower precision

(-4.2%) and higher recall (+1.3%), resulting in an F1 score improve-

ment of 0.01. While these values are pretty similar, the runtime

performance of these approaches differ significantly, as we show

further in our experiments.

These results suggest that, while restricting the points-to in-

formation to what was observed dynamically, leads to excellent

precision, but at the same time the overall trade-off between preci-

sion and recall is rather drastic: both approaches show an F1 score

smaller than that of the purely static approach (0.67). Nevertheless,

given that developers tend to abandon tools with high false positive

rates [3], this high precision/low recall trade-off may be adequate

under specific scenarios.

Generally, different analysis scenarios require different trade-offs

between precision and recall. In our work, we empirically explore

which trade-offs the use of heap dumps offer. We leave to related

work [29] to judge in which scenarios which trade-off is ideal.

Using heap snapshots as an upper bound increases precision

from 50.3% to up to 94.7%, but sacrifices at least 77.2% of

recall. The use of multiple heap snapshots has limited effect.

1066

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on May 31,2021 at 12:16:53 UTC from IEEE Xplore. Restrictions apply.

Heaps’n Leaks: How Heap Snapshots Improve Android Taint Analysis ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Full Static
Classified as

Input True False Total
True TP = 79 FN = 0 79
False FP = 78 TN = 0 78
Total 157 0 157
Precision = 50.3% Recall = 100.0%
Accuracy = 50.3% F1 Score = 0.67

Separate-heaps
Classified as

Input True False Total
True TP = 18 FN = 61 79
False FP = 1 TN = 77 78
Total 19 138 157
Precision = 94.7% Recall = 22.8%
Accuracy = 60.5% F1 Score = 0.37

Merged-heaps
Classified as

Input True False Total
True TP = 19 FN = 60 79
False FP = 2 TN = 76 78
Total 21 136 157
Precision = 90.5% Recall = 24.1%
Accuracy = 60.5% F1 Score = 0.38

Table 2: Confusion matrix for static analysis and our merged-heaps and separate-heaps approaches using all collected heap

snapshots as upper bound for analysis. Note: For Full Static, the recall is 100% by definition as we measure recall relative to it.

Those results also motivate the static-fallback approach, which

we evaluate next.

4.4 RQ2: How do precision and soundness
change when using the static-fallback
approach?

By construction, the static-fallback approach from Section 3.1

should produce strictly larger sets of taint flows compared to the

merged-heaps approach and strictly smaller sets compared to the

purely static one. It is thus interesting to see how these addition-

al/missing flows impact precision and recall compared to the other

approaches. To answer this question, we analyzed the apps from

DroidMacroBench with the static-fallback approach and compared

these results with the ground truth from DroidMacroBench and the

results from our previous experiments. Table 3 shows the results of

our experiments with the static-fallback approach when all heap

snapshots were used and merged together.

Static-fallback detects a total of 70 taint flows in DroidMac-

roBench, of which 54 are feasible. Compared to separate-heaps

and merged-heaps this represents 49 more taint flows detected,

with 35 more feasible taint flows detected. Compared to the purely

static approach, the static-fallback analysis identified 45% of all

known taint flows and 68% of the feasible ones, with a precision of

77.1% (+26,8%) and a recall of 68.4% (-31.6%).

We conclude that due to the increased recall compared to the

separate-heaps and merged-heaps approaches, and the increased

precision compared to the purely static approach, static-fallback

yields a very favorable trade-off between precision and recall with

a F1 Score of 0.72, compared to themerged-heaps’s score of 0.38 and

to the purely static one of 0.67 (even only 0.37 for separate-heaps).

Static-fallback
Classified as

Input True False Total
True TP = 54 FN = 25 79
False FP = 16 TN = 65 81
Total 70 90 160
Precision = 77.1% Recall = 68.4%
Accuracy = 74.4% F1 Score = 0.72

Table 3: Confusion matrix for our static-fallback approach

when all collected heap snapshots are used for analysis.

Heap snapshots with static-fallback offered the best trade-off

between precision (77.1%) and recall (68.4%), with the highest

F1 score overall (0.72).

4.5 RQ3: How often and when should heap
snapshots be collected to gain a useful level
of precision and soundness?

We discussed in Section 3 that using heap snapshots alongside

static analysis is not a binary choice, but opens up different design

decisions. In Sections 4.3 and 4.4 we evaluated how the way heap

snapshots are used impact the analysis results. In this section our

goal is to gather empirical evidence about the impact of how often

and when heap snapshots are collected on the analysis findings.

To evaluate this research question we measured how many fea-

sible/infeasible taint flows were found with all possible Heapster

configurations. The results of all experiments are shown in Figure 4

and summarized in Table 4. In Figure 4 each color represents a dif-

ferent app, and the same color applies to the same app throughout

the chart.

From Figure 4 it is possible to see that using heap snapshots al-

ways improves precision and worsens recall, independently of how

they are used. Nevertheless, the choice of which heap snapshots are

used does, in fact, affect the results. Using only the snapshot of the

first action appears to restrict the taint analysis, resulting in the low-

est number of correctly detected taint flows in both merged-heaps

(11) and static-fallback (47). The same behavior is also observed

when using only the heap snapshot of the last action, however, with

slightly better resultsÐ16 and 51 feasible flows detected.

Note that it might seem counter-intuitive at first, that for static-

fallback/all, the analysis reports fewer findings than for static-

fallback/unique-activity. After all, the former uses more heap snap-

shots than the latter. However, while for the configurations merged-

heaps and separate-heaps it is, in fact, true, that there the łallž

option yields the highest recall by definition, for static-fallback this

does not hold. This is because, when adding a further snapshot in

static-fallback, this new snapshot might well add a heap object for

an allocation site where none of the previous snapshots contained

objects for that allocation site. This then prevents the static fallback

from falling back to the purely static analysis for this allocation site,

hence showing a tendency to increase precision but lower recall.

1067

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on May 31,2021 at 12:16:53 UTC from IEEE Xplore. Restrictions apply.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea M. Benz, E. Kristensen, L. Luo, N. Borges Jr., E. Bodden, and A. Zeller

Nonetheless, the recall generally benefited from using multiple

snapshots. For the static-fallback approach, when compared to

a single snapshot, using multiple heap snapshots improved the

precision significantly, by more than 10%, with the best results

overallÐan F1 Score of 0.77Ðbeing achieved with unique-activity,

where Heapster takes a snapshot after each activity.

Table 4 shows that in many cases using all snapshots yields sim-

ilar results to only using the last snapshot for each activity. Since

pointer information is only lost on garbage collection and when

a field is re-assigned, similar performance of those two heuristics

shows that this does not happen often, i.e., there is not much ad-

ditional pointer information when taking all snapshots instead of

only the last for each activity.

From Figure 4 it is also possible to observe that the results vary

depending on which app is analyzed. When analyzed with the

static-fallback approach with first and last heuristics, the apps

com.contextlogic.wish and com.bitstrips.imoji exhibit the

opposite trend as the one observed on the aggregated result, with

both the apps finding more feasible taint flows with the first heuris-

tic.

In conclusion, the experiments suggest that two different snapshot-

collection strategies should be used, depending on what level of

precision is desired. If precision is critical, a snapshot collected right

as the app is started should be used as the only snapshot, as this

achieved 100% precision with our merged-heaps approach. If preci-

sion is less critical, a snapshot should be collected for each activity

in the app. This gives a good trade-off with both high precision and

recall, and only requires an average of 10 collected heap snapshots

on our benchmark applications.

When and how often a heap snapshot is collected has an

impact of up to 16.4% on the precision and 13% on the recall,

with the best overall results being achieved with a single

snapshot per activity and the static-fallback approach.

4.6 RQ4: How does using heap snapshots
impact the runtime performance and
memory consumption of the taint analysis?

A major reason for developers to use less precise static-analysis

configurations is to improve scalability, i.e., to reduce the amount

of time taken by the analysis and the amount of computational

resources needed. In this section, we aim to measure how the use

of heap snapshots impacts these factors.

Analysis duration. Figure 5 depicts the relative speedups in

analysis time for of our 10 configurations across all 49 apps, with

higher values representing faster analysis. The green line shows

the median speedup, and the red line shows the average one. The

time reported includes all parts of the analysis, including loading

the heap snapshots into memory.

Regarding the analysis duration, the average analysis time for

the purely static configuration was 1 hour and 3 minutes, while the

average running time for merged-heaps/last (the fastest on average)

was only 13 minutes.

separate-heaps. The separate-heaps configurations were slower

for most of our applications, with the separate-heaps/all resulting

in a slowdown factor of 27, the largest among all. The difference

between the separate-heaps/all and separate-heaps/unique-activity

configurations is entirely explained by the larger numbers of snap-

shots the analysis has to run on in the separate-heaps/all configu-

ration.

With the separate-heaps approach the analysis timed out for 21

of the 988 experiments runs. The apps where the analysis timed

out overlap with the apps for which we witnessed out-of-memory

errors (which will be discussed later in this section). However, the

analysis never timed out for any of the apps in DroidMacroBench.

This result shows that even though Heapster scales, it does not

scale to the point where it is feasible to run the analysis repeatedly

with many different heap snapshots.

merged-heaps. In Section 4.5 the merged-heaps and separate-

heaps approach had very similar precision and recall results when

using multiple heap snapshots. However, as can be seen in Figure 5,

while the separate-heaps approach did not scale, the merged-heaps

approach achieved by far the best performance, with the average

speedup from the separate-heaps to the merged-heaps approach

improving from 3.7 to 9.1 and 0.6 to 3.4 for the all and unique-

activity configurations respectively.

Moreover, the performance of the approach is better if a smaller

collection of heap snapshots are used. The best-scaling configura-

tion on average is using only the heap snapshot collected as the

application has started up, with an average speedup of 19.5 and

max of 149.

This is not surprising, as the merged-heaps approach shouldÐby

constructionÐbe the most scalable of all our evaluated approaches.

The relatively worse performance of using multiple snapshots is

also unsurprising, as these configurations produce larger points-to

sets, and take longer loading the heap snapshots from the file sys-

tem. Some apps experienced a performance slowdown when using

the merged-heaps approach. These are apps where the analysis

itself took very little time (down to about 5 seconds), and thus the

overhead caused by loading the heap snapshots from the file system

was significant.

static-fallback. The results for our static-fallback approach reveal

performance gains between 3 and 10 times on average, with an

analysis duration time between 31 and 39minutes on average. These

improvements are not as high as those obtained by separate-heaps

and merged-heaps due to the many cases in which the analysis ends

up inspecting parts of the app with no heap snapshots information.

Looking back at our F1 scores from Section 4.5, static-fallback

with both multiple heap snapshots heuristics had comparable, and

great, precision results. Given that the static-fallback/unique-activity

approach also has better runtime performance, our experiments

indicate that it presents the best trade-off.

Memory consumption. Figure 6 depicts the average memory

usage by the analysis of our 11 configurations across all 49 apps.

8 separate-heaps/all and separate-heaps/unique-activity across 49 apps.

1068

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on May 31,2021 at 12:16:53 UTC from IEEE Xplore. Restrictions apply.

Heaps’n Leaks: How Heap Snapshots Improve Android Taint Analysis ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

#TP #FP #TN #FN Precision Recall F1 Score
Mode Heuristic

full static none 79 78 0 0 50.3% 100.0% 0.67

separate-heaps
unique-activity 18 2 76 61 90.0 22.8% 0.36
all 18 1 77 61 94.7% 22.8% 0.37

merged-heaps

first 11 0 78 68 100.0% 13.9% 0.24
last 16 1 77 63 94.1% 20.3% 0.33
unique-activity 19 2 76 60 90.5% 24.1% 0.38
all 19 2 76 60 90.5% 24.1% 0.38

static-fallback

first 47 25 56 32 65.3% 59.5% 0.62
last 51 25 55 29 67.1% 63.8% 0.65
unique-activity 58 13 67 22 81.7% 72.5% 0.77
all 54 16 65 25 77.1% 68.4% 0.72

Table 4: Aggregated true/false positives/negatives and relative recall/precision/F1-score per configuration.

103 out of the 539 runs (≈19%) could not be completed due lack

of sufficient memory, even with the substantial 80GB heap space

reserved for the JVM. This error happened on 13 different apps,

none of which are contained in DroidMacroBench nor were used

in the previous evaluations.

On average the entirely static analysis, without any heap snap-

shot required the most substantial amount of memory, 44.29GB.

The separate-heaps and merged-heaps approaches required the

least amount of memory (18.2GB) when using the only the last

collected snapshot, with the separate-heaps approach requiring the

lest overall amount of memory (≈23.13GB)9.

The static-fallbackapproach required more memory than both

separate-heaps and merged-heaps when using the same heuristic.

However, it still required more than 10% less memory then its

entirely static counterpart. Considering the static-fallbackapproach

with the unique-activity heuristic, which achieved the highest F1

score in our previous evaluations, it led to an average reduction of

≈27% in memory consumption.

If running time/scalability is a concern, then merged-heaps

configurations should be chosen, as it requires significantly

less time and resources. static-fallback achieved the best

trade-off between precision, recall and runtime performance,

reducing analysis time by ≈ 47% and memory consumption

by ≈27%.

5 THREATS TO VALIDITY

We here describe four limitations that might threaten the validity

of the results we have presented.

Non-deterministic taint flows. During our experiments we noticed

that FlowDroid’s results are non-deterministic, i.e., two runs of

FlowDroid for the same app with the same configuration might

produce different results.We clarifiedwith FlowDroid’s authors that

this is a known bug in a post-analysis component that reconstructs

context-sensitive path information for an identified taint flow.

It remains unfixed in the latest version and it is not planned to

get fixed10. The bug makes our ground truth slightly uncertain,

9 The separate-heaps and merged-heaps approaches are equivalent when using the
first or last snapshot heuristics, thus for the average memory consumption we them
on both approaches.

10 The authors are working on a complete overhaul of their taint propagation algorithm
which will fix the problem. There is, however, no release scheduled yet.

due to the ground truth being build from FlowDroid’s findings.

However, others using FlowDroid for their experiments also fell

victim to the same non-determinism, yet we are the first reporting

it.

In our experiments, this non-determinism can lead to unintu-

itive findings. In particular, all our analysis configurations refine the

static points-to information, which means that Ðby constructionÐ

we should always find a subset of the taint flows found by the full

static configuration. In our experiments, however, we sometimes

encountered taint flows, that are not found by the full static con-

figuration. For example in the com.soundcloud.android app 2,

respectively 4, taint flows were not found with the full static con-

figuration but were found when using the static fallback approach

with the first and last snapshot respectively. (No other configura-

tion had such taint flows for this app.) In the evaluation, we limit

the results to only consider those we had found as being feasible/in-

feasible with the full static configuration.

102 of the total 574 taint flows (including unclassified ones) found

across 120 experiment runs11 were false positives not found by the

full static configuration (≈ 0.85 per run).

We compared the findings to some of the apps in DroidMac-

roBench and found that the deviance comprises not more than a

handful of findings per run and that the distribution of false to true

positives among the deviating findings is random but corresponds

to the overall distribution of false to true positives in all findings.

Hence, the overall findings remain valid.

App selection. The chosen apps for building the ground truth

might not be representative for all Android applications. The selec-

tion of apps for manual investigation was arbitrary among all the

evaluated apps. However, the selection was not influenced by any a

priori knowledge of taint flow feasibility, since feasibility was only

assessed thereafter.

User action order and code-coverage might influence heap-data.

Our current experiments only measure how user interaction influ-

ences the heap-data and, therefore, the analysis results in general

(section 4.5). We do not meassure in which manner the order of user

actions or the amount of covered code influences the heap-data and

the analysis results. To study the correlation between user-action-

order or coverage and analysis performance, we have to design

our experiment differently by exploring the apps aiming for these

11 10 configurations using heap snapshots across 12 benchmark applications results in
120 runs.

1069

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on May 31,2021 at 12:16:53 UTC from IEEE Xplore. Restrictions apply.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea M. Benz, E. Kristensen, L. Luo, N. Borges Jr., E. Bodden, and A. Zeller

com.UCMobile.intl

com.contextlogic.wish

com.spotify.music

com.fgol.HungrySharkEvolution

com.microsoft.office.outlook

com.microsoft.skydrive

com.soundcloud.android

com.sgiggle.production

com.uc.browser.en

com.natenai.glowhockey

com.forthblue.pool

com.bitstrips.imoji

full static

infeasible

feasible
78

79

merged-heaps ś first

infeasible

feasible
0

11

merged-heaps ś last

infeasible

feasible
1

16

merged-heaps ś unique-activity

infeasible

feasible
2

19

merged-heaps ś all

infeasible

feasible
2

19

separate-heaps ś unique-activity

infeasible

feasible
2

18

separate-heaps ś all

infeasible

feasible
1

18

static-fallback ś first

infeasible

feasible
25

47

static-fallback ś last

infeasible

feasible
25

51

static-fallback ś unique-activity

infeasible

feasible
13

58

static-fallback ś all

infeasible

feasible
16

54

Figure 4: A barchart showing how many feasible/infeasible

taint flows were foundwith each configuration. The individ-

ual apps are represented using different colors.

m
er
ge
d-
he
ap
s,
al
l

m
er
ge
d-
he
ap
s,
un
iq
ue
-a
ct
iv
ity

m
er
ge
d-
he
ap
s,
fir
st

m
er
ge
d-
he
ap
s,
la
st

se
pa
ra
te
-h
ea
ps
, a
ll

se
pa
ra
te
-h
ea
ps
, u
ni
qu
e-
ac
tiv
ity

st
at
ic
-fa
llb
ac
k,
al
l

st
at
ic
-fa
llb
ac
k,
un
iq
ue
-a
ct
iv
ity

st
at
ic
-fa
llb
ac
k,
fir
st

st
at
ic
-fa
llb
ac
k,
la
st

0.1

1.0

10.0

100.0

S
p
ee
d
u
p

Figure 5: Execution time speedup compared to full-static

full-static
merged-heaps-first
merged-heaps-last

merged-heaps-unique-activity
merged-heaps-all

separate-heaps-unique-activity
separate-heaps-all

static-fallback-first
static-fallback-last

static-fallback-unique-activity

static-fallback-all

44.29
18.55
18.2

27.03
36.16

27.32
28.44
29.29
28.28

32.34
40

Figure 6: Average Memory (GB) for each experiment config-

uration

metrics. Obviously there is also a tradeoff: adding two additional

dimensions to the experiments leads to many more experiment

permutations and the payoff may be unclear. Nonetheless, this is an

interesting research question that could be addressed in the future.

Feasible labeled flows might not be realizable during runtime.

We only checked data-flow of the found taint-paths for feasibility

assessment. We were not able to make a 100% confident assessment

of control-flow feasibility. Hence, it is possible that some of the flows

labeled as feasible cannot be realized in any dynamic execution.

In such cases, the recall given for the heap snapshot approaches

might actually be higher than reported.

6 RELATED WORK

Taint analysis has been primarily used on Android applications to

discover security and privacy issues. According to Li et al.’s liter-

ature review [18], 46 approaches using static taint analysis focus

on detecting private data leaks in Android apps. These approaches

achieved good precision by regarding multiple analysis sensitivi-

ties from context-, flow-, field-, object- and path-sensitivity when

applied to artificial benchmarks [1, 8, 17, 34]. However, very few of

them evaluated real-world applications due to the lack of ground

truth. Studies have shown that static tools are most likely to be

adopted by developers when they yield a low rate of false posi-

tives [3, 12]. Thus, it is essential to know how good these tools

perform when applied to real-world applications. In our paper, we

evaluated both a static (FlowDroid) and our hybrid approach (Heap-

ster) with top Android applications from the Google Play Store.

Our results show, in comparison to FlowDroid, that using heap

snapshots always improves the precision in all configurations we

tried. The measured F1-scores also suggest that our mixed-mode

static-fallback configuration can achieve a better trade-off between

precision and recall than other configurations that extend or restrict

points-to computations in all cases (see Table 4).

In the area of dynamic analysis for Android applications, Taint-

Droid [5] is one of the most prominent tools. However, TaintDroid

was implemented as an extension to the Android platform (i.e., taint

tracking within the Dalvik VM Interpreter) rather than a standalone

tool, which makes it hard to maintain for every new version of An-

droid (i.e., the last supported version was Android 4.3 in 2013). Our

tool, instead, is built on top of FlowDroid, which is well maintained

since its first appearance. We were able to apply our tool to the

top most downloaded Android applications targeted to the recent

1070

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on May 31,2021 at 12:16:53 UTC from IEEE Xplore. Restrictions apply.

Heaps’n Leaks: How Heap Snapshots Improve Android Taint Analysis ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Android versions (e.g. com.spotify.music was targeted for Android

8.0 and com.contextlogic.wish was for Android 8.1).

Hybrid approaches that combine static and dynamic analysis

seem to become more promising in recent researches [11, 23, 28, 36,

37]. Dufour et al. were probably the first to propose łblended anal-

ysesž (and to coin this term), in which static analyses incorporate

dynamic information information to optimize precision and/or re-

call [4]. The authors present a concrete example of a blended escape

analysis. Our work is inspired by the blended/hybrid approach of

Grech et al. [10, 11], in which they used heap snapshots to reduce

the cost of modeling the heap in static analysis and achieved excel-

lent scalability, precision, and recall according to their evaluation

using the DaCapo Java benchmark suite [2]. In their approach, the

heap snapshots were taken on JVM exit for each application [10].

To maintain more information (e.g. the actual linking between ob-

jects and references) which can be preserved in the heap snapshots,

they used the standard JVM instrumentation agents to inject code

into the applications. However, such enrichment method cannot be

easily applied for Android, because no standard instrumentation

agent exists. In addition, determining the optimal timing to collect

heap snapshots is not trivial, since Android applications are no

standalone applications, but rather plugins for the Android frame-

work. They consist of multiple components such as activity, service,

broadcast receiver, and content provider, which have distinct life-

cycles, and often dozens of callbacks that respond to various user

actions such as clicks or inputs. Our approach does not require

any instrumentation of the Android applications being analyzed,

but consider heuristics with regard to actions and activities in our

experiments. Our results show that a good trade-off between pre-

cision and recall can be achieved by using snapshot collected at

different times during application execution.

7 CONCLUSION

We showed that heap snapshots, collected from unmodified apps on

a stock Android runtime, can be used to improve the performance

and precision of taint analysis for Android. Our approach achieves

this bymodifying FlowDroid to use heap snapshots as upper bounds

for the computed points-to sets during its static analysis.

We introduced a new novel middle-ground approach for us-

ing heap snapshots, which selectively falls back to a purely static

analysis when the heap snapshots contain no information about

an allocation site. Compared to a fully static analysis, we demon-

strated that this middle-ground achieves the best trade-off between

precision, recall, runtime performance and scalability.

We additionally investigated how multiple heap snapshots affect

analysis results and performance. We observed that, in all cases,

multiple snapshots lead to a better recall. Nevertheless, single heap

snapshots, taken before closing the app, produced great runtime

performance and very high precision, indicating that this approach

may be more adequate for specific scenarios.

Finally, we introducedDroidMacroBench, a collection of 12 realis-

tic Android apps, which are all among the top 200 most downloaded

Android apps on the Google Play Store, along with annotated taint

flows from FlowDroid annotated as being feasible/infeasible, and

use these 12 apps for evaluating our approach.

In the future, we plan to provide DroidMacroBench and the

corresponding ground truth as a benchmark suite compliant to

the ReproDroid [25] framework, to allow others to reproduce our

experiments easily, but also to run their experiments on DroidMac-

roBench. Additionally we plan to explore an iterative refinement of

the static taint analysis with heap snapshots such that our approach

could be used online, i.e, identify leaks which could happen given

the current app state.

We hope that our work inspires more research into how heap

snapshots can be used to augment a static analysis, and that Droid-

MacroBench becomes a starting point for Android static analysis

developers to use more realistic apps in the evaluations.

Replicability: To facilitate replication and extension, our work

is available as open source at: https://bit.ly/38F5tUH

8 ACKNOWLEDGEMENTS

This research was supported by the German Research Foundation

(DFG) within the Finding and Demonstrating Undesired Program

Behavior (TESTIFY) project and the research training group Human

Centered Systems Security (NERD.NRW) sponsored by the state of

North Rhine-Westphalia in Germany.

REFERENCES
[1] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick D. McDaniel. 2014.
FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09
- 11, 2014. 259ś269. https://doi.org/10.1145/2594291.2594299

[2] StephenM. Blackburn, Robin Garner, Chris Hoffmann, AsjadM. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee,
J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen,
Daniel von Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks:
Java Benchmarking Development and Analysis. In Proceedings of the 21st An-
nual ACM SIGPLAN Conference on Object-oriented Programming Systems, Lan-
guages, and Applications (OOPSLA ’06). ACM, New York, NY, USA, 169ś190.
https://doi.org/10.1145/1167473.1167488

[3] Maria Christakis and Christian Bird. 2016. What Developers Want and Need
from Program Analysis : An Empirical Study. ASE16 (2016), 332ś343. https:
//doi.org/10.1145/2970276.2970347

[4] Bruno Dufour, Barbara G Ryder, and Gary Sevitsky. 2007. Blended analysis for
performance understanding of framework-based applications. In Proceedings of
the 2007 international symposium on Software testing and analysis. ACM, 118ś128.

[5] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. 2014. TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on SmartphonesWilliam. Com-
mun. ACM 57, 3 (2014), 99ś106. https://doi.org/10.1145/2494522 arXiv:1005.3014

[6] William Enck, Damien Octeau, Patrick D. McDaniel, and Swarat Chaudhuri. 2011.
A Study of Android Application Security. In 20th USENIX Security Symposium,
San Francisco, CA, USA, August 8-12, 2011, Proceedings. USENIX Association.
http://static.usenix.org/events/sec11/tech/full_papers/Enck.pdf

[7] Asger Feldthaus and Anders Mùller. 2014. Checking correctness of Type-
Script interfaces for JavaScript libraries. In Proceedings of the 2014 ACM In-
ternational Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA, Octo-
ber 20-24, 2014, Andrew P. Black and Todd D. Millstein (Eds.). ACM, 1ś16.
https://doi.org/10.1145/2660193.2660215

[8] Michael I. Gordon, Deokhwan Kim, Jeff H. Perkins, Limei Gilham, Nguyen
Nguyen, and Martin C. Rinard. 2015. Information Flow Analysis of Android Ap-
plications in DroidSafe. In 22nd Annual Network and Distributed System Security
Symposium, NDSS 2015, San Diego, California, USA, February 8-11, 2015.

[9] Michael C. Grace,Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi. 2012. Unsafe
exposure analysis of mobile in-app advertisements. In Proceedings of the Fifth
ACM Conference on Security and Privacy in Wireless and Mobile Networks, WISEC
2012, Tucson, AZ, USA, April 16-18, 2012, Marwan Krunz, Loukas Lazos, Roberto Di
Pietro, and Wade Trappe (Eds.). ACM, 101ś112. https://doi.org/10.1145/2185448.
2185464

1071

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on May 31,2021 at 12:16:53 UTC from IEEE Xplore. Restrictions apply.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea M. Benz, E. Kristensen, L. Luo, N. Borges Jr., E. Bodden, and A. Zeller

[10] Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis.
2017. Heaps don’t lie: countering unsoundness with heap snapshots. PACMPL 1,
OOPSLA (2017), 68:1ś68:27. https://doi.org/10.1145/3133892

[11] Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis.
2018. Shooting from the heap: ultra-scalable static analysis with heap snapshots.
Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis - ISSTA 2018 (2018), 198ś208. https://doi.org/10.1145/3213846.
3213860

[12] Brittany Johnson, Yoonki Song, Emerson R. Murphy-Hill, and Robert W. Bow-
didge. 2013. Why don’t software developers use static analysis tools to find bugs?
672ś681.

[13] Erik Krogh Kristensen and Anders Mùller. 2017. Inference and Evolution of
TypeScript Declaration Files. In Fundamental Approaches to Software Engineering
- 20th International Conference, FASE 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April
22-29, 2017, Proceedings (Lecture Notes in Computer Science), Marieke Huisman
and Julia Rubin (Eds.), Vol. 10202. Springer, 99ś115. https://doi.org/10.1007/978-
3-662-54494-5_6

[14] Patrick Lam, Eric Bodden, Ondřej Lhoták, and Laurie Hendren. 2011. The Soot
framework for Java program analysis: a retrospective. In Cetus Users and Compiler
Infrastructure Workshop (CETUS 2011). http://www.bodden.de/pubs/lblh11soot.
pdf

[15] Ondrej Lhoták and Laurie J. Hendren. 2003. Scaling Java Points-to Analysis Using
SPARK. In Compiler Construction, 12th International Conference, CC 2003, Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2003, Warsaw, Poland, April 7-11, 2003, Proceedings (Lecture Notes in Computer
Science), Görel Hedin (Ed.), Vol. 2622. Springer, 153ś169. https://doi.org/10.1007/
3-540-36579-6_12

[16] Ondrej Lhoták and Laurie J. Hendren. 2006. Context-Sensitive Points-to Analysis:
Is It Worth It?. In Compiler Construction, 15th International Conference, CC 2006,
Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2006, Vienna, Austria, March 30-31, 2006, Proceedings (Lecture Notes in
Computer Science), Alan Mycroft and Andreas Zeller (Eds.), Vol. 3923. Springer,
47ś64. https://doi.org/10.1007/11688839_5

[17] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick D.
McDaniel. 2015. IccTA: Detecting Inter-Component Privacy Leaks in Android
Apps. In 37th IEEE/ACM International Conference on Software Engineering, ICSE
2015, Florence, Italy, May 16-24, 2015, Volume 1. 280ś291. https://doi.org/10.1109/
ICSE.2015.48

[18] Li Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre
Bartel, Damien Octeau, Jacques Klein, and Yves Le Traon. 2017. Static analysis of
android apps: A systematic literature review. Information & Software Technology
88 (2017), 67ś95. https://doi.org/10.1016/j.infsof.2017.04.001

[19] Yue Li, Tian Tan, Anders Mùller, and Yannis Smaragdakis. 2018. Scalability-first
pointer analysis with self-tuning context-sensitivity. In Proceedings of the 2018
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena
Vista, FL, USA, November 04-09, 2018, Gary T. Leavens, Alessandro Garcia, and
Corina S. Pasareanu (Eds.). ACM, 129ś140. https://doi.org/10.1145/3236024.
3236041

[20] Sheng Liang and Deepa Viswanathan. 1999. Comprehensive Profiling Support
in the Java Virtual Machine. In Proceedings of the 5th USENIX Conference on
Object-Oriented Technologies & Systems, May 3-7, 1999, The Town & Country Resort
Hotel, San Diego, California, USA, Murthy V. Devarakonda (Ed.). USENIX, 229ś242.
http://www.usenix.org/publications/library/proceedings/coots99/liang.html

[21] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhoták, José Nel-
son Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders
Mùller, and Dimitrios Vardoulakis. 2015. In defense of soundiness: a manifesto.
Commun. ACM 58, 2 (2015), 44ś46. https://doi.org/10.1145/2644805

[22] Linghui Luo, Eric Bodden, and Johannes Späth. 2018. A Qualitative Analysis
of Taint-Analysis Results. Technical Report. Heinz Nixdorf Institute, Paderborn
University.

[23] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective Automated
Testing for Android Applications. In Proceedings of the 25th International Sympo-
sium on Software Testing and Analysis (ISSTA 2016). ACM, New York, NY, USA,
94ś105. https://doi.org/10.1145/2931037.2931054

[24] József Mihalicza, Zoltán Porkoláb, and Abel Gabor. 2011. Type-preserving heap
profiler for C++. In IEEE 27th International Conference on Software Maintenance,
ICSM 2011, Williamsburg, VA, USA, September 25-30, 2011. IEEE Computer Society,
457ś466. https://doi.org/10.1109/ICSM.2011.6080813

[25] Felix Pauck, Eric Bodden, and Heike Wehrheim. 2018. Do Android Taint Analysis
Tools Keep Their Promises?. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE 2018). ACM, New York, NY, USA, 331ś341.
https://doi.org/10.1145/3236024.3236029

[26] Wim De Pauw and Gary Sevitsky. 1999. Visualizing Reference Patterns for
Solving Memory Leaks in Java. In ECOOP’99 - Object-Oriented Programming,

13th European Conference, Lisbon, Portugal, June 14-18, 1999, Proceedings (Lecture
Notes in Computer Science), Rachid Guerraoui (Ed.), Vol. 1628. Springer, 116ś134.
https://doi.org/10.1007/3-540-48743-3_6

[27] Siegfried Rasthofer, Steven Arzt, Robert Hahn, Max Kohlhagen, and Eric Bodden.
2015. (In)Security of Backend-as-a-Service. In blackhat europe 2015. http://
bodden.de/pubs/rah+15backend.pdf

[28] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. 2016.
Harvesting Runtime Values in Android Applications That Feature Anti-Analysis
Techniques. In Network and Distributed System Security Symposium (NDSS).

[29] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, LiamMiller-Cushon, and Ciera
Jaspan. 2018. Lessons from Building Static Analysis Tools at Google. Commun.
ACM 61, 4 (March 2018), 58ś66. https://doi.org/10.1145/3188720

[30] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick Your
ContextsWell: Understanding Object-sensitivity. In Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’11). ACM, New York, NY, USA, 17ś30. https://doi.org/10.1145/1926385.
1926390

[31] Yannis Smaragdakis and George Kastrinis. 2018. Defensive Points-To Analysis:
Effective Soundness via Laziness. In 32nd European Conference on Object-Oriented
Programming (ECOOP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[32] Manu Sridharan and Rastislav Bodík. 2006. Refinement-based context-sensitive
points-to analysis for Java. In Proceedings of the ACM SIGPLAN 2006 Conference
on Programming Language Design and Implementation, Ottawa, Ontario, Canada,
June 11-14, 2006, Michael I. Schwartzbach and Thomas Ball (Eds.). ACM, 387ś400.
https://doi.org/10.1145/1133981.1134027

[33] Pasquale Stirparo, Igor Nai Fovino, and Ioannis Kounelis. 2013. Data-in-use
leakages from Android memory - Test and analysis. In 9th IEEE International
Conference on Wireless and Mobile Computing, Networking and Communications,
WiMob 2013, Lyon, France, October 7-9, 2013. IEEE Computer Society, 701ś708.
https://doi.org/10.1109/WiMOB.2013.6673433

[34] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2014. Amandroid: A
Precise and General Inter-component Data FlowAnalysis Framework for Security
Vetting of Android Apps. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, Scottsdale, AZ, USA, November 3-7, 2014.
1329ś1341. https://doi.org/10.1145/2660267.2660357

[35] Shiyi Wei and Barbara G. Ryder. 2015. Adaptive Context-sensitive Analysis
for JavaScript. In 29th European Conference on Object-Oriented Programming,
ECOOP 2015, July 5-10, 2015, Prague, Czech Republic (LIPIcs), John Tang Boyland
(Ed.), Vol. 37. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 712ś734.
https://doi.org/10.4230/LIPIcs.ECOOP.2015.712

[36] Michelle Y. Wong and David Lie. 2016. IntelliDroid: A Targeted Input Generator
for the Dynamic Analysis of Android Malware. In 23rd Annual Network and
Distributed System Security Symposium, NDSS 2016, San Diego, California, USA,
February 21-24, 2016. The Internet Society. http://wp.internetsociety.org/ndss/
wp-content/uploads/sites/25/2017/09/intellidroid-targeted- input-generator-
dynamic-analysis-android-malware.pdf

[37] Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong, Xinhui Han,
and Wei Zou. 2012. SmartDroid. Proceedings of the second ACM workshop on
Security and privacy in smartphones and mobile devices - SPSM ’12 (2012), 93.
https://doi.org/10.1145/2381934.2381950

1072

Authorized licensed use limited to: UNIVERSITÄTSBIBLIOTHEK PADERBORN. Downloaded on May 31,2021 at 12:16:53 UTC from IEEE Xplore. Restrictions apply.

