
Concern specific languages
and their implementation with abc

Eric Bodden
Chair for Computer Science II

Programming Languages and Program Analysis
RWTH Aachen University
52062 Aachen, Germany

ericbodden@acm.org

ABSTRACT
In this work first we introduce the notion of concern spe-
cific languages (CSL) which are to a specific crosscutting
concern, what domain specific languages are to a specific
domain. Implementing such CSLs was a tedious task in the
past since no extensible frameworks for implementing cross-
cutting concerns existed. With the AspectBench Compiler
(abc) [1], which was released in October, researchers now
have a powerful extensible compiler for the aspect-oriented
language AspectJ [6], enabling easy implementation of lan-
guage extensions or even whole CSL for a specific crosscut-
ting concern. We first motivate CSLs in general and give
examples of such languages which exist already. In the sub-
sequent chapters we introduce one specific CSL and report
on our implementation using abc and specifically about how
CSLs can interact with and reuse each other. We will see
that the use of CSLs in general provides better comprehen-
sibility and analyzability.

1. CONCERN SPECIFIC LANGUAGES
Through the advances in model and domain driven de-

velopment in combination with more extensible compiler
frameworks and code generation technologies, we have seen
a rise of domain specific languages (DSL) for the most dif-
ferent applications during the last decade. Once given an
implementation of a DSL, such a language is easier to un-
derstand and maintain with respect to the problem it solves
[12]. DSLs have the advantage that they use a notation
which comes close to notations that people who are con-
cerned with the problem domain are familiar with. This
enables a straightforward translation from specification and
models into the DSL followed by an automatic conversion
into a running implementation.

Van Deursen et al. [12] refer to a domain specific lan-
guage as a ”programming language or executable specifi-
cation language that offers, through appropriate notations
and abstractions, expressive power focused on, and usually

Copyright is held by the author/owner.
SPLAT Mar. 15th, 2005, Chicago, USA.
ACM 0-89791-88-6/97/05.

restricted to, a particular problem domain”.
Similarly we define a concern specific language as follows:

A concern specific language is a programming language or
executable specification language that offers, through appro-
priate notations and abstractions, expressive power focused
on, and usually restricted to or in support of, a particular
crosscutting concern, comprising implicit or explicit quan-
tification over events in the dynamic control flow.

Concern specific language extensions are likewise defined.
This reflects another tendency in software engineering,

which came up during the last years: the wish to sepa-
rate crosscutting concerns. Such concerns typically consist
of code that functionally represents a single unit but, due to
limitations of the implementation language, is usually scat-
tered throughout the whole application. Aspect-oriented
programming (AOP) tries to overcome this problem by sep-
arating such concerns into single units called aspects and
has proven very powerful for the injection of mostly non-
functional properties into applications. Essential to AOP is
the ability to quantify [4] over events in the control flow of
an application. This enables on to apply functionality not
only at certain singular events but rather whole sets of such.

Thus, in AspectJ, one is able to build expressions similar
to regular expressions, which reason about the static struc-
ture (e.g. every point within a certain class) as well as the
execution flow (e.g. all calls to a certain method within the
control flow of another). This is usually powerful enough to
refactor out most crosscutting concerns from a given busi-
ness application.

However there are often situations where the AOP lan-
guages, which are available today, simply do not match very
well the concern one seeks to implement. The concern is
actually modeled in high level of abstraction but when it
comes to the implementation of that concern, one has to
model it again, this time in code of some AOP language,
which often results in dozens of lines of code for a single
entity in the original model. CSLs provide an additional,
valuable layer of abstraction. In the following we give some
examples of past and currently ongoing research that tries
to overcome this problem by extending AOP languages or
building even new languages. They make use of AOP as an
implementation strategy in order to reuse the power of AOP
languages with respect to quantification.

1.1 Stateful aspects

The AOP implementation JAsCO [11], for instance, en-
ables a simple notation of stateful aspects [3]. Such a nota-
tion is not domain specific. Stateful aspects are useful when-
ever state of the system behavior need to be tracked. This
could aid implementation of concerns as e.g. verification, as
described later. The example models a finite state machine

Table 1: Stateful aspects in JAsCO
start>p1;

p1: execute(startmethod) > p3||p2;

p3: execute(stopmethod) > p1;

p2: execute(runningmethod) > p3||p2;

after(): p2() {

//do something

}

starting in state p1. When in p1, it is tried to match the
pointcut execute(startmethod). When that happens, the
state is changed nondeterministically to p3 or p2. Transition
at p3 and p2 are enabled; it is tried to match either the point-
cut execute(stopmethod) or execute(runningmethod), and
so forth. Each state change can be linked to a piece of advice
as shown above with after(): p2().

The language is a CSL because its purpose is the support
of stateful aspects. The typical quantification is built in
through the use of pointcuts. With respect to verification,
this approach could be used to easily model finite state ma-
chines which in turn model logical formulas.

1.2 Association aspects
Sakurai et al. [9] propose association aspects which can

be used to easily implement and establish relations between
arbitrary objects in an application. The example here (Table
2) implements an equality relation. It can be instantiated
using

Bit b1 = new Bit(), b2 = new Bit();

Equality a1 = new Equality(b1,b2);

This calls the explicit constructor of the following aspect.

Table 2: Association aspects by Sakurai et al.
aspect Equality perobjects(Bit, Bit) {

Bit left, right;

Equality(Bit l, Bit r) {

associate(l, r); //establishes

left = l; right = r; //association

}

after(Bit l) : call(void Bit.set())

&& target(l) && associated(l,*){

propagateSet(right); //when left is called,

} //call set on right

after(Bit r) : call(void Bit.set())

&& target(r) && associated(*,r){

propagateSet(left); //when right is called,

} //call set on left

//helper methods go here

}

In the constructor, associate(l,r) is invoked, which as-
sociates the new aspect instance with the input objects l and
r. In pieces of advice, those references can be queried again:
The first piece of advice executes whenever Bit.set() is in-
voked on the instance that is associated as l. In this case,
the value of l is propagated to the right Bit. The second
piece of advice behaves the other way around.

Association aspects are a CSL because their purpose is to
allow the implementation of crosscutting concerns which are
related to specific objects at runtime. Association aspects
allow not only quantification over events but also over sets of
objects, assuming that for instance the above relation could
be instantiated for entire sets of objects by certain pieces
of advice. With respect to verification, this approach could
be used to associate a stateful aspect (e.g. a finite state
machine as above) with a certain set of objects.

1.3 Rich pointcut models
Ostermann and Mezini [7] propose for their programming

language ALPHA pointcuts holding expressions in the Pro-
log logical programming language and are even more power-
ful (Turing complete). They enable reasoning about certain
properties of the static and dynamic structure of a program
(table 3). Through the use of Prolog however, they provide
a language that is extensible by itself by adding new rules,
which is not the case for the other approaches we found.

Table 3: reachable pointcut definition in ALPHA
reachable (Obj1,Obj2) :- store (Obj1, ,Obj2).

reachable (Obj1,Obj2) :- store (Obj1, ,Obj3),

reachable (Obj3,Obj2).

Here an object is reachable from another, if it is in the
transitive hull of the store relation. (store(Obj1, ,Obj2)

means that Obj2 is a field value of Obj1.)

So in general one can conclude that there seems to be a
clear interest in more expressive crosscutting languages and
as a consequence in concern specific languages as well. This
is due to the fact that CSLs offer a high level of abstraction,
which enables with information hiding and high expressive-
ness with respect to a particular concern.

As an example, in this paper, we will consider the concern
of Runtime Verification (RV), which is in general applicable
to any problem domain but always implements the same
functionality: to check if a program satisfies certain formal-
ized conditions at runtime. This concern is usually not only
scattered throughout the whole application (RV could be ap-
plied to any part of the system) but also would its support
aid any possible software development process. Thus a lan-
guage that eased implementation of this concern would not
be domain specific but rather specific to this single concern.

To our best knowledge there are no Java-based RV ap-
proaches around at the moment, that would provide the
same semantic power, our system provides to the user. This
is because through the use of AOP we are able to use quan-
tification in an implicit, elegant way, by the means of point-
cuts. Indeed RV is a truly crosscutting concern with a strong
need for such quantification since it affects the whole system.
Stolz and Huch [10] showed for the functional programming
language Haskell, that there the language itself is extensible
enough to provide powerful verification at runtime, because
means to implement quantification are already built in.

In non-functional languages as Java, however, without
support for such crosscuts, implementation of RV is a te-
dious task, if not infeasible at all.

AOP languages as AspectJ give a first necessary level of
abstraction. However as we will show, CSLs add another
valuable such level, which provides for better understand-
ability and maintainability. Thus we present an implemen-
tation based on a combined approach of a custom CSL with
AspectJ backend.

2. AN EXAMPLE LANGUAGE:
LTL OVER POINTCUTS

As concern-specific language, we define a linear-time tem-
poral logic (LTL, [8]), which is usually the language of choice
for reasoning about paths (here specifically about runtime
execution paths), over pointcuts (see also [2]). We do so by
adding the operators of the next-free1 linear-time temporal
logic to the usual pointcut designators.

2.1 Syntax and semantics
The temporal operators of LTL are F, G and U. Those

can be cascaded and take usual AspectJ pointcuts as propo-
sitions.

For any given formulas or propositions ϕ and ψ, we define
the semantics ofG, F , and U at a given joinpoint t as follows:

• G(ϕ) is true iff ϕ holds Globally on the execution path.

Example: Always, either the user is logged in or we see
no call to debit.
G(if(User.isLoggedIn())

|| !call(* Account.debit()))

• F (ϕ) is true iff ϕ holds Finally somewhere on the
execution path.

Example: At some point in time all locks are released
(by execution the appropriate method).
F(execution(* Locking.releaseAllLocks()))

• (ϕUψ) holds iff ϕ holds Until finally ψ holds some-
where on the execution path. It can be evaluated as:
(ϕUψ)t = ψ∨ (ϕ∧ (ϕUψ)t′) for t′ being the next join-
point after t in the current control flow.

Example: We do not see a call to login until at least
60 seconds after the last login attempt.
(!call(* User.login(Credentials))) U

(if(Time.getTime() > User.lastLogin()+60000))

In addition, we allow composition of those constructs (ta-
ble 5) as well as free variables in such formulas, which are
internally bound by the contained pointcuts. In the example
shown in table 4, o1, o2 and bool are such variables.

3. IMPLEMENTING THE LANGUAGE EX-
TENSION

In general we implement the verification of a given formula
by creating the appropriate Büchi automaton (see figure 1)
and modeling it in a given base language. This could be

1We exclude the usual neXt operator because reasoning
about the next joinpoint does lead to a lot semantic diffi-
culties for the user.

Table 4: Example using variables:
(meaning Object.equals(Object) is reflexive)

Object o1,o2; boolean bool:

G (

(call(boolean Object.equals(Object))

returning bool

&& target(o1) && args(o2)) ->

(o1==o2 -> bool == true)

)

Table 5: Example composing temporal operators
(meaning all acquired locks are finally being released)

Lock l:

G (!call(* Lock.acquire(l)) ||

F (call(* Lock.release(l))))

AspectJ but also another CSL. Note that in this specific
example, one instance of the automaton has to be associated
with each appropriate Lock object.

Given the examples of concern specific languages above,
one can easily estimate that it would be very sensible to
have all those languages or language extensions under one
common framework. If that was the case, the implementa-
tion would had been much more straightforward. In the fol-
lowing we first present an implementation using ”low level”
AspectJ and in the subsequent chapter we demonstrate, how
the use of other CSLs could improve comprehensibility and
maintainability.

For our implementation of the runtime verification engine
described above, we decided to use the open AspectJ com-
piler framework abc, which builds a very good platform for
implementing concern specific languages and language ex-
tensions, since those can simply inherit implementation of
crosscutting functionality from the AspectJ base implemen-
tation.

3.1 Implementation with abc using plain
AspectJ

In general, for implementing a CSL with abc, the following
steps are necessary:

• define keywords (lexer)

• define syntax (grammar)

• define semantics (AST rewriting passes or generation
of AspectInfo)

When defining the actual semantics, the implementation
strategy depends on the nature of the CSL. If the language
defines semantical differences to the AspectJ base imple-
mentation, the appropriate AspectInfos have to be modi-
fied. An AspectInfo implements the semantics of an As-
pectJ constructs in pure Java. Otherwise, if the AspectJ
base semantics are untouched, simple AST rewriting passes
suffice, which in the end lead to a valid AST for the AspectJ
programming language, which can then be further processed
automatically.

acq.rel.

release

acquire

acquire

!acquire

Figure 1: Simple automaton for formula in table 5

For our specific case, the second approach suffices. The
rewritten AST corresponds to the following AspectJ code
for the example formula.

aspect Formula issingleton {

List<Lock> affectedObjects$l;

int Lock.state$Formula = 1;

pointcut p1(Lock l): call(* Lock.acquire(l));

pointcut p2(Lock l): call(* Lock.release(l));

after(Lock l): p1(l) {

switch(l.state$Formula) {

case 1: l.state$Formula = 2;

case 2: l.state$Formula = 2;

}

}

after(Lock l): p2(l) {

switch(l.state$Formula) {

case 1: l.state$Formula = 1;

case 2: l.state$Formula = 1;

}

}

//associate aspect

before(Lock l): p1(l) || p2(l) {

if(!affectedObjects$l.contains(l)) {

affectedObjects$l.add(l);

}

}

//assume pointcut "shutdown" given

before(): shutdown() {

for(Lock l: affectedObjects$l)

{

if(l.state$Formula==2)

Verifier.reportError(this);

}

}

}

As one can easily see, this implementation naturally suf-
fers from several drawbacks compared to the one presented
first: On the one hand the state has to be tracked manu-
ally. Here we decided for a state variable introduced by the

aspect on the object whose state is actually being affected
by the evaluation. Another implementation strategy could
employ lists or hash tables for this purpose but that would
even be more tedious.

On the other hand we had to associate the aspect man-
ually with the objects it should track by putting it into a
list. With respect to efficiency this may make no difference,
since association aspects internally rely on lists and hash ta-
bles, too, however, the mental effort an implementor needs
to invest for this specific implementation seems to be much
larger than using the approach building on top of existing
CSLs.

3.2 Possible implementation using stateful as-
pects and association aspects

Employing both, association aspects an stateful aspects,
would ease development in the following way: Association
aspects allow one to associate a formula, that is to be checked,
directly with the objects which it deals with. Employing
stateful aspects, the appropriate automaton can be modeled
in a concise and readable form.

aspect VerificationAspect {

hook Formula {

Formula(Lock l) {

associate(l);

//aspect states

start>rel;

rel: call(* Lock.acquire(l)) > acq;

rel: !call(* Lock.acquire(l)) > rel;

acq: call(* Lock.release(l)) > rel;

acq: call(* Lock.acquire(l)) > acq;

}

//assume pointcut "shutdown" given

before(): shutdown() {

if(!inState(rel))

Verifier.reportError(this);

}

//automatic instantiation

before(Lock l): call(* Lock.acquire(l)) {

new Formula(l);

}

}}

Unfortunately, JAsCO build an own implementation of
AOP and association aspects were implemented as a proto-
type to the original AspectJ implementation ajc [5].

In the following we would like to perform a short evalua-
tion of the benefits of the latter approach:

4. RESULTS

4.1 Comprehensibility/Maintainability
We see a largely increased comprehensibility by the use

and combination of the proposed CSLs. The version employ-
ing both, stateful aspects and association aspects, proves
to be much more intuitive than the raw ApsectJ approach.
Codebloat is reduced to a minimum.

4.2 Evolvability
The combination of different CSLs can facilitate, as we

showed, the development of new CSLs a lot. Thus we con-
clude that a repository of such CSLs can lead to a system
that is very evolvable as a whole. Approaches as described in
[7] go still a step further by allowing to extend the language
by its own language constructs.

4.3 Modularity
We conclude that modularity is neither increased nor de-

creased by the use of CSLs with respect to a low level AOP
approach, since each aspect in a CSL can usually be mapped
uniquely to one aspect in the AOP base language.

5. CONCLUSION
In this work we introduced a definition of concern spe-

cific languages. We showed through several examples that
a lot of research with respect to such languages is already
underway. Using the concern of runtime verification as an
example, we proposed a powerful CSL to model and imple-
ment the problem. The proposed LTL is a premier example
for such a CSL since its power derives from the ability to
quantify over whole sets of events. We gave an outline of
possible implementation strategies using the abc compiler
framework, noting that researchers and practitioners could
benefit a lot from reuse of CSLs since they may well work
together or be implemented on top of each other. This strat-
egy enhances comprehensibility, while the use of AOP as
such increases modularity. abc is generally capable of and
suitable for such approaches, due to its own high degree of
modularity and built in support for crosscutting concerns.

6. ACKNOWLEDGEMENTS
I wish to thank Volker Stolz and Friedrich Steimann for

reviewing an initial draft of this work. Also I wish to ex-
press my gratitude to the whole abc team for providing their
framework and for helping me to extend it.

7. REFERENCES
[1] P. Avgustinov, A. S. Christensen, L. Hendren,

S. Kuzins, J. Lhot, O. Lhot, O. de Moor, D. Sereni,
G. Sittampalam, and J. Tibble. An extensible AspectJ
compiler. In Proceedings of the Fourth ACM SIG
International Conference on Aspect-Oriented Software
Development (AOSD’05), Chicago, USA, March 2005.
ACM Press.

[2] E. Bodden. A lightweight LTL runtime verification
tool for Java. In OOPSLA ’04: Companion to the 19th
annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications,
pages 306–307. ACM Press, 2004.

[3] R. Douence, P. Fradet, and M. Südholt. Composition,
reuse and interaction analysis of stateful aspects. In
AOSD ’04: Proceedings of the 3rd international
conference on Aspect-oriented software development,
pages 141–150. ACM Press, 2004.

[4] R. Filman and D. Friedman. Aspect-oriented
programming is quantification and obliviousness, 2000.

[5] E. Hilsdale and J. Hugunin. Advice weaving in
AspectJ. In G. C. Murphy and K. J. Lieberherr,
editors, AOSD, pages 26–35. ACM, 2004.

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In J. L. Knudsen, editor, ECOOP, volume
2072 of Lecture Notes in Computer Science, pages
327–353. Springer, 2001.

[7] K. Ostermann and M. Mezini. Design and
implementation of pointcuts over rich program
models. TechReport TU Darmstadt, 2005.
http://www.st.informatik.tu-darmstadt.de/.

[8] A. Pnueli. The temporal logic of programs. In
Proceedings of the 18th IEEE Symposium on the
Foundations of Computer Science, pages 46–57. IEEE
Computer Society Press, 1977.

[9] K. Sakurai, H. Masuhara, N. Ubayashi, S. Matsuura,
and S. Komiya. Association aspects. In AOSD ’04:
Proceedings of the 3rd international conference on
Aspect-oriented software development, pages 16–25.
ACM Press, 2004.

[10] V. Stolz and F. Huch. Runtime verification of
Concurrent Haskell programs. In Proceedings of the
Fourth Workshop on Runtime Verification, volume
113 of ENTCS. Elsevier Science Publishers, 2004.

[11] D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo:
an aspect-oriented approach tailored for component
based software development. In AOSD, pages 21–29,
2003.

[12] A. van Deursen, P. Klint, and J. Visser.
Domain-specific languages: an annotated bibliography.
SIGPLAN Not., 35(6):26–36, 2000.

