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1. PROBLEM & MOTIVATION

One of the big advances of software engineering during
the last decades was the development of new techniques to
modularize code into functional units. Object-oriented pro-
gramming (OOP) allows for separation of functionality and
association of functionality with the state it alters. Aspect-
oriented programming (AOP) goes a step further and allows
for the separation of whole crosscutting concerns into single
units, such concerns being code which builds a functional
unit but is though scattered through the whole application
in OOP.

As a result of this development, such units are often being
developed by different teams, who do not necessarily share
any details about each other’s implementations, though they
do share interfaces to the modules they provide. Thus, the
need for clear specification of those interfaces is crucial for
a smooth and safe software development process. In or-
der to specify those interfaces, various techniques have been
proposed. Design by Contract (DBC) [10] is probably the
most famous one: The developer of a unit specifies its usage
through interfaces and some form of specification, which was
so far mostly restricted of pre- and postconditions. Such
specification is usually not part of the programming lan-
guage and often simply marked down as comment and thus
not automatically asserted. Some of the available tools how-
ever already allow for formal specification of such localised
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conditions and automated verification of those during run-
time of the application.

Hitherto, those approaches were all restricted to local rea-
soning: Pre- and postconditions enable reasoning about one
single event, e.g. a method invocation. However they do
not allow for the specification of temporal interdependencies
(TIs) between units. This is a clear restriction, since at de-
sign time, temporal restrictions are usually well known: If
an initialization method exists on a given object, it should
be clear that it has to be called before the object is used.
Also, in an accounting application, certain operations must
not be called until a log on event has taken place. Such
TIs exist at design time and should be part of the interface,
concretised in a formalised way, so that implementers who
program to this interface can have automatically asserted
that their implementation behaves as expected by the inter-
face provider - not only locally but over the whole execution
trace.

1.1 Contributions

The contributions of this work are a new formalism which
allows to build expressive formulae over temporal traces in
an intuitive way as well as a complete implementation of
this formalism, which instruments any given Java applica-
tion in bytecode form with appropriate runtime checks of
those formulae.

e The formalism is based on Next-time free Linear-time
temporal logic [11] over finite traces [7].

e The temporal operators of this logic are applied to a
universe of pointcuts in the aspect-oriented language
AspectJ. This approach is novel and unique in the field.

e Formulae are deployed either by the use of Java 5
metadata annotations or in an XML format.

e The generated instrumentation code is efficient and
generally scalable up to large-sized applications.

e The instrumentation code can be proven to be side-
effect free, meaning, that the base application is obliv-
ious to this code in general.

Since our paper on OOPSLA’04 we have implemented a
prototype which integrates the whole approach into one sin-
gle tool. From the semantically annotated interface with
formula annotations, the readily instrumented application
is just one command away.



1.2 Overview

We proceed with section 2, which gives a bird’s eye view
of the architecture of our application and necessary back-
ground information. Here we also compare to related work.
Section 3 describes our approach in detail, giving informa-
tion about the formalism we provide and about the tech-
niques we use to implement its evaluation. Subsection 3.5
gives some rational for why we call this approach efficient.
Subsection 3.6 reports on some difficulties which arise from
collecting and tracking state over time. Finally in section 4,
we conclude stating the overall results and planned future
work.

2. BACKGROUND & RELATED WORK

Our application allows for the specification of temporal
interdependencies by the means of Java 5 metadata annota-
tions in the formalism of a Linear-time temporal logic over
pointcuts. A pointcut is a notion from aspect-oriented soft-
ware development, specifying a set of events in the dynamic
control flow of an application, joinpoints. Such a set can
be written down by a certain kind of regular expressions
matching on joinpoints, for instance method calls and field
accesses. We decided to use the pointcut model of the pre-
mier Java-based AOP implementation AspectJ because its
model matches our requirements very well. It allows to cap-
ture method calls and state changes, and this is exactly what
specifies the intrinsic and extrinsic behavior of objects.

//match all state changes of public fields

//binding the new value to ’newValue’

pointcut publicStateChange(Object newValue):
set(public * *.x) && args(newValue);

//match all calls to methods starting with ’get’
pointcut getMethodAccess():
call(* *.get*(..));

Table 1: Example pointcuts in the AspectJ language

Earlier runtime verification approaches (cf. subsection 2.2
and [12]) made use of special source code annotations pro-
viding hooks to trigger state changes as soon as the dy-
namic control flow reaches one of them. Those hooks were
then picked up by the verification environment. This breaks
the encapsulation, which is natural to OOP, taking behav-
ioral subtyping into account: A condition specified for a
class should also be valid for all of its subclasses. All ear-
lier approaches for trace-based verification we are aware of
do not adhere to this rule. By restricting ourselves to the
interception of communication and state changing events,
we capture exactly the object-oriented nature and provide a
formalism that is exactly as expressive as it should be. Also,
at compile time the formulae only specify where hooks are
to be inserted (by using pointcuts). The actual instrumen-
tation can be performed in a later stage and can even be
deffered to load time, instrumenting even classes the system
was not aware of at specification time.

Related work dates back to the early days of Design by
Contract which became famous with its implementation in
the programming language Eiffel. Eiffel allows for the spec-
ification of localised pre- and postconditions as well as in-
variants.

2.1 Contract4J

Contract4J [5] is a tool implementing DBC for Java: It ex-
tracts Java 5 metadata annotations from source code. Those
annotations hold pre- and postconditions, which are then
transformed into AspectJ code, implementing their verifi-
cation semantics. This approach suffers from several draw-
backs: Firstly for annotation extraction, Sun’s Annotation
Processor Tool (part of the JDK) is being used. This allows
extraction from source code only. We allow extraction of an-
notations from bytecode which is much more flexible since
it is applicable also when source code is not available. The
specification language comprises no pointcuts, which makes
sense, given that the reasoning is purely localised. No tem-
poral interdependencies are taken into account whatsoever.

2.2 Java PathExplorer

One tool which does provide a way to reason about traces,
is the JavaPathExplorer [8] due to Havelund and Rosu, which
uses a similar approach of specifying runtime behavior. They
use the same semantics of LTL over finite paths. However,
their approach is not AOP based and thus does not bene-
fit of any optimizations through static approximations built
into current compilers for AOP languages. Also, it cannot
provide any pointcut language. Instead they use the afore-
mentioned source code annotations as hooks in the program
to match on, with the previously mentioned problems of
breaking encapsulation.

2.3 Tracecuts and tracematches

Walker and Viggers [13] proposed a language extension
to Aspectd, tracecuts. Tracecuts do not match on events
in the execution flow as pointcuts do, but instead match on
traces of such events. Those traces are specified by means of
context-free expressions over pointcuts. Since this approach
provides a language extension, it cannot be used in com-
bination with ordinary Java compilers. Tracecuts do not
provide automatic tracking of state. This issue is currently
being addressed by Allan et al. [1], who implement a varia-
tion of tracecuts, called tracematches as a plugin to the abc
compiler - the same compiler we use. We might indeed ben-
efit from this work when it comes down to associating state
with formulae. We elaborate on this in section 3.6.

3. APPROACH AND UNIQUENESS

The described approach is unique in various ways.

It is the first approach we are aware of, which allows for
specification of expressive temporal formulae, still using a
convenient method for deployment by the means of Java 5
metadata.

It is the first implementation of runtime verification which
employs pointcuts, enabling the user to reason about sets of
events rather than single points on the time line.

It is the best-optimizing runtime verification approach we
are aware of at the time, given the expressiveness we provide.

3.1 Architecture

The tool we developed is a plugin to the AspectBench
Compiler toolkit abe [3], which is an alternative, extensible,
highly optimizing AspectJ implementation (opposed to the
reference implementation ajc).

First we extract formulae stated in the form of Java 5
metadata annotations from bytecode. This allows for de-
ployment of such formulae with readily compiled applica-



tions. So for instance a framework provider could ship its
framework with such formulae contained in the bytecode to
have clients automatically check their implementation for
correctness. In this sense, we allow the specification of se-
mantically enriched interfaces. Table 2 gives an example for
the automatic assertion of initialization. It makes use of the
keywords thisMember and this Type which are automatically
substituted by the according signatures.

@QLTL("!call(thisMember) U call(thisType.init())")
void someMethodRequiringInitialization() {...}

Table 2: Java 5 metadata annotation

Those formulae are then parsed by the abc parser we have
extended with our plugin. Syntax errors are recognised at
once. If syntactically correct, the formula is transformed
into an automaton-based evaluator (see chapter 3.4). The
generated verification code is modular in the sense, that we
generate one single aspect unit per formula. Those aspects
are then woven into the original application by subsequent
passes, which is so being instrumented to trigger evaluation
of the formulae during runtime.

The whole tool is fully integrated. From the original appli-
cation to the instrumented code there is just one single com-
mand line invocation necessary or a button click in Eclipse
respectively.

In the following we briefly describe the provided formalism
and its semantics.

3.2 LTL over pointcuts

We implemented a Linear-time temporal logic over point-
cuts. LTL is a subset of the computation tree logic CTL*. Tt
allows for reasoning about one single path of a computation
tree. Its syntax and semantics are defined as follows:

For any formulae ¢ and v:

e X ¢ - Next: ¢ holds at the next state.
e G ¢ - Globally: ¢ holds on the remaining path.

e F ¢ - Finally: ¢ holds eventually (somewhere on the
subsequent path).

e © U ¢ - Until: ¥ holds somewhere and ¢ holds up till
then.

Also we allow the usual logical connectives V,A,— and —.
Note that in our interpretation, a state is actually any join-
point of the dynamic control flow of the application, which
AspectJ exposes to the runtime.

To avoid ambiguous semantics we do not expose the Next
operator because of severe semantically difficulties, which
arise for the user when reasoning about the next joinpoint,
and in order to get the logic resistant with respect to stut-
tering [8]. However, the operator is internally used for eval-
uation.

3.3 Examples

Consider as example the implementation of an ATM, hav-
ing specified requirements with respect to authentication.

Always, the user is logged in or we see no call to debit.
G( if (User.isLoggedIn())

|l 'call(* Account.debit()) )

We also allow for the collection of state, which then can
be reasoned about:

For all users u, we do not see a call to login until at least
60 seconds after the last login attempt.

User u:
('call(* u.login(Credentials))) U
(if (Time.getTime() > u.lastLogin()+60000))

Note that this formula accumulates state. As described
in chapter 3.6, this feature is a real challenge for the imple-
mentation.

As noted earlier, those formulae are being transformed
into an automaton, which is explained in the next subsec-
tion.

3.4 Automaton-based evaluation

For maximum efficiency of the instrumented application,
we transform the LTL formulae to non-deterministic Biichi
automata (NBA). It is known [6] that an efficient transfor-
mation into non-deterministic BA exists:

A non-deterministic Biichi automaton is a quintupel A =
(Q,%,q0, A, F) with

e () finite state set,

e Y finite alphabet (here set of contained pointcuts),
e (o initial state,

e A C(@Q x X x Q@ transition relation and

e [ a set of final states.

A accepts an infinite input word w if there exists an infi-
nite run of A on w such that a state in F' is visited infinitely
often. Figure 1 gives an example.

Figure 1: NBA for formula G(p — (—qUr))

Such NBAs are of little help in our case since an imple-
mentation needs to behave deterministically. Unfortunately,
determinization of BAs in general, is not possible without
loss of expressiveness. However, it can easily be shown that
in our case a simple power set construction suffices and yields
sound results. The result is a deterministic BA (DBA) as
shown in figure 2.

We maintain soundness because we perform runtime ver-
ification (opposed to static model checking) and thus can
constrain the input of the automaton to finite words gener-
ating finite runs. There are only two situations, in which a
BA can be known to accept an infinite input after reading a
finite prefix: In a minimised DBA there may only exist two
sink states, the positive sink T'T and the negative sink FF'.
TT has a loop to itself, no other outgoing edge and is final,
FF is non-final respectively.
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Figure 2: DBA for formula G(p — (—qUr))

After a finite amount of time, at the latest after the whole
runtime of the application, three situations can occur:

1. The formula is satisfied. This is exactly the case when
the DBA is in TT, since then a final state is known to
be visited infinitely often.

2. The formula is falsified. This is exactly the case when
the DBA is in FF, since in this case no final state can
be reached any more.

3. The formula could not be fully evaluated. This is ex-
actly the case when the DBA is in a productive state
but not T'T. In the optimised automata this is equiv-
alent to being neither in TT nor FF.

If neither T'T nor FF exist in an optimised DBA, we can
already decide statically, that the original formula cannot
be evaluated during runtime and emit an error message at
once. In all other cases we know that evaluation after a finite
amount of time, and thus runtime verification, is effectively
possible.

The aspect code that we generate from such an automaton
looks as follows:

aspect DBA1 {
int state = 0;
pointcut p(): ...; pointcut r(O: ...;

after(): if(state=={0})

& ('pO |11 rO) {
state = {0};

}

after(): if(state=={1})
& (O |1 qO 11 pO 11 'rO) {
state = {}; /* report error */
}
}

As the example demonstrates, each transition of the au-
tomaton is implemented as so-called advice in AspectJ. An
advice is a piece of code that is executed whenever the con-
nected pointcut matches. The first advice, is superfluous in
this example, since it would only switch the state from {0}
to {0}. This behavior is reflected by trivial loops in the au-
tomaton. Thus, in a last step we eliminate such loops before
we proceed to the actual code generation. We call the result
of this process a Runtime Verification Automaton.In figure
2, the dashed edges would be removed.

3.5 Efficiency

Runtime Verification in general must introduce some kind
of runtime overhead on the instrumented application be-
cause of the hooks that trigger the evaluation of the system.
This overhead is generally linear to the number of formu-
lae, and linear to their length. In our case however, the
propositions contained in the formulae may be expensive to
evaluate. While call, execution, set pointcuts are trig-
gered only when necessary by the AspectJ implementation,
an if (someExpensiveEvaluation()) pointcut may result in
an arbitrarily large overhead. Thus, such expensive eval-
uations should simply not be performed within formulae.
As long as if pointcuts are restricted to field matches like
if (User.loggedIn), the overhead is considerably low.

Since we make use of AspectJ as an implementation strat-
egy, we automatically inherit all the powerful optimizations
which come with the AspectJ implementation. In particular
and opposed to earlier approaches, every formula is not eval-
uated at every single joinpoint but only at those which are
necessary for its evaluation. Aspectd filters the state space
by the use and implementation of pointcuts. For instance,
a formula G(!call(A.foo())) will only be evaluated when
A .foo() is ever really called.

By using abc as AspectJ implementation, which is proba-
bly the best-optimizing AspectJ implementation around [4],
we can assure that our implementation generates code that
is as efficient as it can be at the current time.

We believe that our implementation is maximally efficient,
given the expressiveness of our formalism, except the usual
overhead introduced by the usage of aspect-oriented pro-
gramming, which is known to be in the region of not more
than two percent compared to an implementation based on
non-modular instrumentation [9]. This overhead might still
be reduced by ongoing improvements in the abc compiler.

The Aspect] weaver makes sure that necessary code is
only inserted at those places, which necessarily need instru-
mentation in order to trigger the evaluation. With respect
to this, the implementation has an optimally low overhead.
The cost we pay at each such instrumentation point can be
split into

e the cost of a virtual method call to the aspect instance,

e a state change of the associated automaton, which is
composed of one integer comparison and one integer
assignment.

The former is likely to be eliminated as the weaver imple-
mentation improves. As soon as inlining is fully supported,
even this virtual method call will disappear. The latter is
unavoidable.

3.6 Exposing state

When exposing state, as shown in the second example of
section 3.3, we need to perform some bookkeeping. This is
done by associating distinct aspect instances with each tuple
of exposed objects:

Assume we have given a formula ¢(T101, ..., Tnon) where
01, ..., 0n are bound by pointcut predicates pi(01), ..., pn(0n).
We denote the set of all automata containing p; as A®),
Whenever a pointcut p; associated with o; matches the cur-
rent joinpoint, for each automaton in A(’”)7 we generate
a new automaton instance A, (T4, ..., Ti—1,0:, Titx1, ..., Tn),
where the position p; is bound to o;.



The implementation of this functionality is still unfinished
work. Unfortunately, AspectJ does not directly support the
necessary quantification over such tuples of objects: The
iteration for each automaton in A®D) cannot be directly ex-
pressed in the language. This feature was discussed with
the developers of AspectJ on the AOSD’05 conference [2]
and in the end we found a way to define a reusable aspect
that encapsulated this bookkeeping in a modularised way.
The proposal by Allan et al. [1], however seems even better
suited and might provide a solid base for our effort. Nat-
urally, there is an additional overhead introduced by the
procedure of assembling state, but again, this overhead is
due to an intrisic complexity of the problem, not due to our
implementation strategy.

4. RESULTS AND CONTRIBUTIONS

Initial evaluation of our prototype implementation indeed
show the expected low runtime overhead. As long as only
cheap pointcuts, matching on method call/execution or field
access is used, the overhead is negligible. The use of the if-
pointcut however, may lead to a slowdown, depending on
the type of the boolean expression which is passed in.

To our best knowledge we present the first Java based
tool for runtime verification which is expressive enough to
reason about the temporal order in which sets of events in
the dynamic control flow occur.

Also we were the first to provide a tool which is able to
generate instrumented code based on a specification marked
down as Java annotations extracted from bytecode. The use
of bytecode allows for the separation of compilation and ver-
ification into two distinct phases. One party may specify
formulae at compile time. Another party may have the
application instrument at some lateron, even still at load
time, spreading the instrumentation even over previously
unknown, incoming classes - still in a well-defined way.

Opposed to some former research prototypes, we can also
give rationale for why our application is highly optimized
with respect to time consumption at runtime. For each for-
mula only a linear overhead is added.

The provided tool assures that the instrumentation is side-
effect free in most of the cases. In the remaining situations,
where runtime behavior may be altered, a warning is issued
at instrumentation time. Thus, verification results obtained
by our tool are fully comprehensible and reproducable.

Also, with our work we have taken a first initial step into
the field of semantically enriched interfaces. Such interfaces
specify behaviour rather than plain lexical structure as it
is usual for ordinary Java interfaces. Since our approach
covers the well-known pre- and postconditions as well as
all kinds of arbitrary temporal interdependencies between
object interactions, we believe that our formalism is actually
rich enough to cover most of the semantic specifications one
could think of.

5. FUTURE WORK

Part of the future work will be a formal proof of correct-
ness, conducted by prooving the equivalence of our declar-
ative and operational semantics. Also we will elaborate on
what exact performance overhead to expect under each pos-
sible given circumstances. We plan to apply our tool to a
large-scale example application in order to test scalability
and expressiveness.

Also some studies with respect to usability seem quite use-
ful. LTL is a formalism which is very-well known in the field
of verification by formal methods. However, many average
software developers might find LTL not so easy to compre-
hend. A field study would shine some light on the optimality
of this notation. An additional layer of abstraction might
seem suitable for better comprehensibility.
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