Implementing concern-specific languages with abc

Seminar on Aspect-oriented programming
Institut fiir Informationssysteme Fachgebiet Wissensbasierte Systeme
Hannover University

Eric Bodden*
February 2005

Abstract

In this work first we introduce the notion of concern specific languages
(CSL) [Bod05] which are to a specific crosscutting concern, what domain
specific languages are to a specific domain. Implementing such CSLs was
a tedious task in the past since no extensible frameworks for implementing
crosscutting concerns existed. Ostermann and Mezini [OMO5] proposed
a Prolog based implementation of aspect-oriented programming which
would enable easy extension of the programming language. However, it is
not yet clear what runtime impact will be involved with such an approach.
With the AspectBench Compiler (abc) [ACHT05], which was released in
October 2004, researchers now have a powerful extensible compiler for the
aspect-oriented language AspectJ, enabling easy implementation of lan-
guage extensions or even whole CSL for a specific crosscutting concern.
We first motivate CSLs in general and then introduce the abc framework.
In the subsequent chapters we introduce our specific CSL and report on
the steps necessary to implementing it using abc. Finally we recapitu-
late on the ease of use of abc and conclude with a proposal for further
development of this compiler framework.

1 Concern specific languages

Through the advances in model and domain driven development in combination
with more extensible compiler frameworks and code generation technologies, we
have seen a rise of domain specific languages (DSL) for the most different ap-
plications during the last decade. Once given an implementation for a DSL,
such a language is usually easier to understand and maintain with respect to
the problem it solves [vDKV00]. DSLs have the advantage that they usually
use a notation that comes close to notations that people are used to who are
concerned with the problem domain. This enables a straightforward transla-
tion from specification and models into the DSL and with such into a running
implementation.

*Eric Bodden is currently commencing his diploma thesis at RWTH Aachen University

Another upcoming tendency in software engineering during the last years
was and still is the wish to separate crosscutting concerns. Such concerns typi-
cally consist of code which functionally builds a single unit but is though usually
scattered throughout the whole application due to limitations of the implemen-
tation language. Aspect-oriented programming tries to overcome this problem
by separating such concerns into single units called aspects and has proven very
powerful in a lot of applications domains in the past.

Though, implementation of such aspects can still be very tedious as long
as implementors are bound to an aspect-oriented programming language such
as AspectJ. In the same way DSLs aid the development process of software
for a certain domain, CSL can here aid the development process for a single
concern. As an example, in this paper, we will consider the concern of Runtime
Verification (RV), which is in general applicable to any problem domain but
always implements the same functionality: To check if a program satisfies certain
formalized conditions at runtime. This concern is usually not only scattered
through the whole application (RV could be applied to any part of the system)
but also exists in basically any software development process. Thus a language
that would ease implementation of this concern would not be domain specific
but rather specific to this single concern.

It is only natural that aspect-oriented languages such as AspectJ facilitate
the implementation of CSLs since AOP enables modular implementation of
crosscutting concerns. The implementation of a specific CSL can thus be per-
formed by reducing input in the CSL to aspect-oriented code in Aspect]J by
a preprocessing approach rewriting the abstract syntax tree in the CSL to an
equivalent syntax tree holding only AspectJ constructs.

In this work we demonstrate how the open compiler framework AspectBench
(abc) [ACHT05] can be used in order to implement in particular CSLs, as well
as AspectJ language extensions, through code generation. abc is an extensible
compiler for the aspect-oriented language AspectJ [KHHT01], which supports
modular implementation of so-called crosscutting concerns. In addition to usual
Java, exploiting the support for crosscutting concerns, which AspectJ provides,
we show, that using abc, one can easily implement CSLs which are very expres-
sive, since they can reason about entire sets of events in the execution flow of a
program and thus implement a whole concern in a single aspect unit.

As an example we define a linear-time temporal logic (LTL) over pointcuts,
which is usually the language of choice for reasoning about paths, here specifi-
cally about runtime execution paths. Thus it is mostly the natural language for
this concern. People that are meant to implement this concern will find writ-
ing code in LTL much easier than writing the appropriate aspect that actually
implements the functionality. The proposed CSL enables the user to annotate
given source code with temporal formulas that should be verified during pro-
gram execution. We extend abc to implement this language by reducing specifi-
cations in the CSL to code in the AspectJ language, which in turn is translated
to usual Java code using the abc core implementation. The aforementioned an-
notations are implemented as annotation types, which were introduced in Java
5 [JSR]. They are extracted employing the bytecode analysis kit BAT!. This is
not shipped with abc. An implementation of the annotation extraction code is
available form the author on request.

Isee http://www.st.informatik.tu-darmstadt.de/

2 AQOP: History and Introduction

AspectJ is today the most widely used aspect-oriented programming (AOP) lan-
guage. It was originally developed by Xerox PARC?in the late 90’s. Furtheron
various companies and researchers contributed to its development. Particularly
IBM keeps pushing forward AspectJ till this date and provides powerful tool
integration for several IDEs, especially Eclipse® which originated from IBM.
They are also using AOP excessively today in a production environment for
their application middleware products.

The purpose of AOP is to separate crosscutting concerns. Such concerns are
typically technical features that scatter throughout a given program and whose
implementation is usually not part of the application core. Though there have
been several workshops on aspect mining? in the past, some people suggest that
aspects do mostly not occur as natural roles when specifying applications but
rather tend to capture technical implementation details [Ste04].

AOP can generally be applied to any language. Functional languages like
LISP and SCHEME [CI91] tend to have support for AOP almost builtin [Cos03],
and indeed the idea of AOP, as one of the major inventors Gregor Kiczales
mentions [Lem04], originates from experiences with MacLisp. For instance the
notion of a piece of advice stems from advice in this language. A piece of advice
is a piece of source code that implements some crosscutting functionality. An
aspect in the AspectJ language comprises such pieces of advice plus a set of
so-called pointcuts. A pointcut is a certain kind of regular expression that is
able to describe and pick out points in the runtime control flow of the core
application (so-called joinpoints).

In AspectJ one is able to build such expressions that reason about the static
structure (e.g. every point within a certain class) as well as the execution flow
(e.g. all calls to a certain method within the control flow of another). This is
usually powerful enough to refactor out most crosscutting concerns from a given
business application.

Table 1: AspectJ pointcut and advice logging authentication events

pointcut auth(User u):
call(* Authentication.login(User)) && args(u);

after returning(): auth(User user) {
SecuritylLog.log("User " + user.getId() + " logged in");
}

However there are often applications where reasoning about other proper-
ties of a program is necessary, for instance certain conditions over traces of the
execution flow. Walker et al. [WV04] implemented so-called tracecuts, certain
pointcuts that let the user specify context-free expressions over the execution
flow, which have been matched in order to make such a tracecut apply to a

2Palo Alto Research Center

Shttp://www.eclipse.org/

4 Aspect mining describes the process of revealing crosscutting concerns in a given specifi-
cation or application.

certain joinpoint. Stidholt et al. [DFS05] follow a similar approach using event-
based AOP. The AOP implementation JAsCO [SVJ03] enables a simple notation
of stateful aspects [DFS04]. Sakurai et al. [SMUT04] propose association as-
pects which can be used to easily implement and establish relations between
arbitrary objects in an application. Ostermann and Mezini [OMO05] propose
pointcuts holding expressions in the Prolog logical programming language and
are even more powerful (Turing complete).

In a related work [Bod05], we describe the power of such languages, give
some examples and show how CSLs can be composed and facilitate each other’s
implementation. As it turns out, two of those CSLs, association aspects and
stateful aspects, could indeed have facilitated the implementation we describe
here. We include an example for each of the two CSLs on page 5.

So in general one can conclude that there seems to be a clear interest in
more expressive crosscutting languages and as a consequence in concern specific
languages as well.

3 Why using abc?

Unfortunately in the past, such proposed language extensions have all gone into
different builds of various compilers - mostly into the ajc [HHO04] compiler (the
original implementation by PARC) but also into others like JAsCo [SVJ03],
AspectWerkz [Bon04] or in the form of hand coded preprocessors. The As-
pectBench Compiler which was developed by McGill and Oxford now facilitates
such extensions by providing an extensible, optimizing compiler for the AspectJ
programming language. This will enable researchers henceforth to implement
and/or port such extensions into one common framework and so reuse their
implementations at once [Bod05].

In this paper we demonstrate how concern-specific languages can be imple-
mented using abc. As one will see, employing abc for this purpose has several
benefits over other approaches: On the one hand abc is an open compiler frame-
work that is easy to extend. On the other hand, some language extensions are
already implemented using abc and thus can be used by other extenders at once.
We will make use of this mechanism by reducing free variables in our specific
language extension to so-called pointcut-private variables, which are part of the
EAJ extensions, described in [ACHT05].

An advantage of true CSLs over other language extensions is that they are
usually orthogonal to the (Java) base implementation. That leads to the fact
that in such cases simple rewrites of the abstract syntax tree (AST) suffice for
the language implementation (resulting in a plain AspectJ AST), since their
type system and semantic checks do not interfere with the implementations
that exist already for Java respectively AspectJ. Thus, the CSL implementation
exists really as an addition, not a replacement to existing code.

In the following chapters we will point out, how this can ease the development
process. In particular one consequence is that we do not need to touch any of
the analyses and transformations which are used to implement AspectJ, since
we are not extending AspectJ itself, but rather reducing to it. The type system
and appropriate semantic checks do normally not have to be touched.

However first we will give a brief overview about the structure of abc.

Table 2: Stateful aspects in JAsCO

start>pl;

pl: execute(startmethod) > p3||p2;
p3: execute(stopmethod) > pi;

p2: execute(runningmethod) > p3||p2;

after() p20 {
//do something
}

This specifies a start state pl, from which a transition to p3 or p2 can be taken
by ezecute(startmethod) and so forth. A piece of advice can be bound to each
state.

Table 3: Association aspects by Sakurai et al.

aspect Equality perobjects(Bit, Bit) {
Bit left, right;
Equality(Bit 1, Bit r) {
associate(l, r); //establishes
left = 1; right = r; //association
}
after(Bit 1) : call(void Bit.set())
&& target(l) && associated(l,*){
propagateSet(right); //when left is called,
} //call set on right
after(Bit r) : call(void Bit.set())
&& target(r) && associated(x,r){
propagateSet(left); //when right is called,
} //call set on left
//helper methods go here
}

This association aspect implements an enforced equality relation by associating
an aspect instance which each two Bit objects which should be equal. On a
call to set () on each such bit, the value is propagated to the other bit at once.
Such a relation can be instantiated explicitly using

Bit bl = new Bit(), b2 = new Bit();
Equality al = new Equality(bl,b2);

4 Structure of abc

The major Java based compilers for AOP languages that are around today, are
all so-called weaving compilers: They have two major passes, one compilation
pass, where the aspects are translated into Java bytecode using a special com-
piler for that language, and one weaving pass, where calls to the appropriate
pieces of advice are woven into the actual core application at all the places where
pointcuts apply. Runtime checks are inserted at all the necessary places.

As such a compiler, abc is based on two major frameworks: As compiler
frontend the Polyglot [NCMO03] compiler toolkit is used. Polyglot is a compiler
framework built as front-end to PPG, an extensible LALR parser generator
based on the CUP LALR parser generator for Java. In PPG, existing grammars
can optionally be extended by extending or dropping productions of a base
grammar. Also, Polyglot uses object association in favor over class inheritance
employing a sophisticated delegation model. This allows extenders to add or
replace functionality piece by piece to distinct node types of the abstract syntax
tree which do not need to share common super types.

As the weaving backend, the bytecode analysis and optimization framework
Soot is being employed. Soot is able to load Polyglot ASTs and/or Java byte-
code and transform those into an internal three address code representation
called Jimple. This representation is stackless and as such allows for relatively
easy code transformations and analyses. The weaving process, that implements
the translation from AspectJ into plain Java, makes use of this representation.
Since Soot is also an optimization framework, many intra- and interprocedural
analyses are already builtin and can easily be extended. They can be applied
to the readily woven code at once, thus generating more efficient code than ajc
does, in certain situations. With respect to compile time performance, however
abc tends to be slower than ajc due to it’s heavily object-oriented structure.
Whereas ajc is optimized for compile time performance, abc is optimized for
extensibility and run time performance of the resulting bytecode.

4.1 Polyglot

Polyglot as the abc compiler frontend, facilitates easy extendability in several
dimensions. This is an enormous benefit over earlier approaches in compiler
technologies, which usually only allowed extendability by the means of class in-
heritance, which is truly one-dimensional: Each AST node inherits functionality
from its parent nodes and from nowhere else. During the last years however,
many authors like Gamma et al. have suggested to use object composition
in favor over class inheritance, because it tends to lead to more flexible sys-
tem designs (see [GHIV95], pp. 18-20). Polyglot makes consequent use of the
delegation pattern, that allows for such object composition:

Each AST node, whenever visited, dispatches this message first to its dele-
gate object, which by default is the visited object itself.

Using this mechanism, one can easily replace or extend functionality that
is spread over various node types, which do not need to share common super
types.

In addition to delegates, nodes also support a chain of extension objects. An
extension is meant to add members to a set of node types.

TypeCheckPazs AETHode ASThode

|
|
D typeCheck o

r

P
=

typeCheck

typeCheck

Figure 1: Polyglot delegation model (with call back to original receiver)

Polyglot also supports type checking and other semantic passes for the Java
language. However since we are doing a source to source transformation, we
are not going to extend those facilities. We only make use of them implicitly
through the final transformation processes to Java bytecode.

4.2 Soot

Soot is a bytecode analysis and optimization framework, which provides com-
mon templates for inter- and intraprocedural analyses. Several such analyses
are already builtin. They comprise even complex points-to and flow analyses,
which can be used to reason about control flow, possible method dispatches
at runtime and so forth. Obviously, by making use of information produced
by such static analyses, an AspectJ compiler can generate much more efficient
code under certain circumstances. For instance, the evaluation of cflow could
be dramatically accelerated by replacing stacks with counters, which is possible
in most common situations [DGH™04].

Nevertheless, Soot is, in the first place, used within abc because of the Jimple
representation it provides. A Jimple program consists of a stackless, three-
address code® representation of Java bytecode. In Jimple, all implicit method
invocations (e.g. String concatenation) and implicit references to the current
object (this) have been resolved. As a result, all objects that contribute to the
implementation of a method body are explicitly available in a local variable and
each statement consists only of at most one method call and one assignment.
This makes Jimple easy to process and an ideal base for modifications as they
have to be performed by the advice weaving process. Table 4 on page 8 gives
an example of this representation.

50Object, arguments and result

Table 4: Java class and corresponding Jimple code

public class Foo {
int a;
public int f(int x,int y , int z) {
return a+x*y+z;

¥
}
public class Foo extends java.lang.(Object
{
int a;
public int f(int, int, int)
{
Foo this;
int x, y, z, $i0, $i1, $i2, $i3;
this := @this: Foo;
X := OparameterQO: int;
y := @parameterl: int;
z := Qparameter2: int;
$i0 = this.<Foo: int a>;
$i1 = x * y;
$i2 = $i0 + $iil;
$i3 = $i2 + z;
return $i3;
+
[Implicit constructor omitted]
}

Thus, weaving is implemented by generating a so-called AspectInfo data
structure, which describes transformations on the level of Jimple code. This
code can then, using Soot, be transformed to bytecode or source code again.
The latter is particularly useful for educational purposes, since one can see at
once, how advice weaving affects given classes.

5 The proposed language extension

As concern-specific language, we propose an extension to the original Java lan-
guage (first introduced in [Bod04]), that implements runtime checks of temporal
formulas enabling developers to reason about the execution trace of a program.
With respect to the original Java language, our extension is orthogonal, since
it does not interfere with the original implementation of the compilation: Just
additional code is added to implement the necessary runtime checks, which trig-
ger tracking of the stated formulas. This is transparent to the core application
- it’s behavior is not modified in any way.

The syntax of our language is as follows.

5.1 Syntax and semantics

We allow the temporal operators of next-time free linear-time temporal logic
(LTL) [Pnu77], which are F, G and U. Those can be cascaded and take usual
AspectJ pointcuts as propositions.

For any given formulas or propositions ¢ and 1, we define the semantics of
G, F, and U at a given joinpoint ¢ as follows:

e G(y) is true at ¢ iff Globally on the path from the start of the application
up to t, ¢ was true.
Example: G(if (User.loggedIn()) || !call(* Account.debit()))
Globally, either the user is logged in or no call to Account.debit() happens.

o F(yp) is true at ¢ iff Finally somewhere on the path from the start of the
application up to ¢, ¢ was true.
Example: F(execution(* Locking.releaseAllLocks()))
All locks are finally released (by executing Locking.releaseAllLocks()).

o (pU) is true at t iff on the path from the start of the application up to
t, ¢ was true Until finally ¢ became true (before t):
(pUv): = ¥V (p A (@U)4) for t' being the next joinpoint after ¢ in the
current control flow. Either 1 is true (release) or ¢ is (still) true and the
whole formula holds on the subsequent path.
Example: (!call(* User.login(Credentials))) U

(if (Time.getTime() > User.lastLogin() + 60000))

We allow no call to User.login(Credentials) until at least 60 seconds after
the last login attempt.

In addition, we allow composition of those constructs as well as free variables
in such formulas, which are internally bound by the contained pointcuts. In the
following example, o1, 02 and bool are such variables. Formulas are put into
an LTL term constructor to allow for easier parsing.

Table 5: Example using variables: (meaning Object.equals(Object) is reflexive)

LTL(
Object o0l,02; boolean bool:
G (
(call(boolean Object.equals(Object)) returning bool
&& target(ol) && args(o2)) ->
(o1!=02 || bool == true)
)
)

5.2 Code generation outline

Since, as mentioned above, this CSL is mostly orthogonal to the Java base code,
we can implement it by simply rewriting the AST, that is generated by Polyglot

Table 6: Example composing temporal operators (meaning all acquired locks
are finally being released)

LTL(
Lock 1:

G (!'call(* Lock.acquire(1)) || F (call(* Lock.release(1l))))
)

into a plain AspectJ AST. This is then automatically rewritten again into a pure
Java AST by the original abc implementation in subsequent compiler passes.
See chapter 6.5 for details.

6 Implementing the language extension

In fact, Aspectd is - in abc - not more than a language extension to Java itself.
Thus, in order to implement our CSL, we simply need to inject appropriate AST
rewriting passes into the chain that abc uses for its own AST transformations.
This section gives some general directions on how abc should be extended in
order to implement a CSL and what we had to do in our specific example.

In general, an extension to abc consists of a single package (here abc.1tl)
with the following subpackages and files:

e ast holds classes for AST nodes of the CSL or language extension. (see
chapter 6.3 on page 13)

e extension holds classes for node extension objects as described above.
e parse holds JFlex lexer and PPG grammar definitions.

e types holds classes building the type system of the CSL or extension.
e visit holds visitor classes implementing the AST rewriting passes.

e abcExtension.java instantiates the extension using a factory method,
optionally adding lexer keywords and specifying a factory for creating
reflective joinpoint objects at runtime.

e ExtensionInfo.java defines the actual extension instantiating the ap-
propriate lexer and parser and arranging the AST rewriting passes.

One also needs to customize the Ant build script, which invokes JFlex, CUP,
PPG, an XSLT transformer and Javadoc in order to generate lexer, parser, a
command line options parser (using XSLT) and optionally the documentation
for the runtime libraries that allow reflective access to AspectJ joinpoints. As a
result of the build process one receives the readily packaged JAR file lib/abc.jar.
In order to run abc with the custom language extension, it is being invoked using
the -ext parameter, here -ext abc.1ltl. This instantiates the appropriate
extension using the factory method abcExtension.makeExtensionInfo.

In order to include a custom extension into the build file, one can simply
have a look at how the default extension eaj was integrated and deal with the
new extension in the very same way.

10

6.1 Scanner/Lexer

Polyglot in general uses a lexer generated by JFlex. If implementing a CSL
which has nothing in common with plain Java code, you may just want to
generate your own custom lexer.

However if you are extending Java or AspectJ with additional functionality
as we are, you may want to reuse the lexer that comes with abc. abc provides
a JFlex input file from which a lexer for AspectJ (which comprises plain Java)
is generated. This lexer can easily be parameterized at runtime, to allow addi-
tional keywords. If you need additional functionality, you might need to extend,
rewrite or replace the abc lexer, though. However, future releases of abc will
likely be providing more extensibility here.

For our approach, it suffices to add keywords to the appropriate lexer states.
This can be done by overriding the appropriate method of abcExtension:

public void initLexerKeywords(AbcLexer lexer) {
// Add the base keywords
super.initLexerKeywords (lexer) ;

lexer.addAspectJKeyword ("LTL",
new LexerAction_c(
new Integer(abc.ltl.parse.sym.LTL_DECL_PREFIX),
//switch to pointcut state when scanning this keyword
new Integer(lexer.pointcut_state()))

)

lexer.addPointcutKeyword ("F",
new LexerAction_c(
new Integer(abc.ltl.parse.sym.LTL_FINALLY))
)3

lexer.addPointcutKeyword("G",
new LexerAction_c(
new Integer(abc.ltl.parse.sym.LTL_GLOBALLY))
)3

lexer.addPointcutKeyword ("U",
new LexerAction_c(
new Integer(abc.ltl.parse.sym.LTL_UNTIL))
)3

Note that the token constants abc.ltl.parse.sym.* are generated by the
PPG parser generator and so they match the appropriate parser implementa-
tion.

6.2 Parser

The parser consumes those tokens with the productions defined in its grammar,
optionally building an AST in its action rules. Tokens are defined by defining
the appropriate terminal symbols in the PPG grammar. Here:

11

terminal Token LTL_DECL_PREFIX; //LTL

terminal Token LTL_FINALLY; //F
terminal Token LTL_GLOBALLY; //G
terminal Token LTL_UNTIL; //U

If your CSL extends Java or AspectJ as here, you might want to make use of
PPG’s grammar extension facility: Just include the Java respectively AspectJ
base grammar. Here we use include "../../aspectj/parse/aspectj.ppg"
Existing productions can then be altered using drop and extend keywords.

In any case you will have to define the new non-terminal symbols and pro-
ductions. The former may be typed. In that case an object of that type may
be generated by the appropriate production rule and returned using the RESULT
variable. The abstract syntax tree is so built automatically by cascading those
result objects.

Table 7: Extract of the grammar for the proposed language extension

//The whole LTL formula pointcut.

non terminal PCLTLGeneral 1ltl_formula;

//The optional private variable list.

non terminal List 1tl_formula_private_var_decl_opt;
//The formula body.

non terminal PCLTLGeneral 1ltl_formula_body;

//1t1l formula body
1tl_formula_body ::=
//LTL operators with inner pointcuts
LTL_FINALLY:x LPAREN pointcut_expr:a RPAREN:y
{:
//ask the factory to create a PCLTLFinally node
RESULT = parser.nf.PCLTLFinally(parser.pos(x,y),a);
3

LTL_GLOBALLY:x LPAREN pointcut_expr:a RPAREN:y
{:
//ask the factory to create a PCLTLGlobally node
RESULT = parser.nf.PCLTLGlobally(parser.pos(x,y),a);
)

LPAREN:x pointcut_expr:1 RPAREN LTL_UNTIL
LPAREN pointcut_expr:r RPAREN:y
{:
//ask the factory to create a PCLTLUntil node
RESULT = parser.nf.PCLTLUntil(parser.pos(x,y),1l,r);
3

Note that child AST nodes may be referred to using labels (here a,x,y,1,r).
also nodes are not instantiated directly but rather using an associated Node

12

factory nf (see chapter 6.4 for details). This has the advantage, that further
extensions can easily replace nodes by custom implementations by simply over-
riding the appropriate factory methods.

For debugging purposes, we recommend to set parserTraceOn = true; in
the constructor of your parser. This will produce a parse trace. Messages can be
passed to the trace using the parseTrace(String) method. The classes Debug
and Report allow tracing various rewriting passes.

6.3 AST nodes

The AST nodes themselves have to be written in accordance to the AST node
types that have been stated in the above grammar. Those nodes will be in-
stantiated by the appropriate node factory. All nodes have to adhere to the
delegation model as described in chapter 4.1. In addition, they (and their op-
tionally associated node extensions) implement major functionality to support
AST rewriting passes.

For each implementation of a node type (whose name usually ends on _c),
an appropriate interface type must be given, which exposes those methods that
should be visible to the parser. The parser must never be aware of any imple-
mentation details. Thus only interface types must be used in the parser imple-
mentation. The connection between those interfaces and their implementations
is performed by the node factory.

6.4 AST node factory

The node factory instantiates new AST nodes of the appropriate implementing
classes for a given interface. Thus, the factory must hold a method for each
constructor of each AST node, that may be created by the parser, e.g. for the
node for the finally pointcut:

public PCLTLFinally PCLTLFinally(Position pos, Pointcut pc) {
return new PCLTLFinally_c(pos,pc);
}

By employing this mechanism, node types can later on easily be exchanged by
simply extending the node factory. Delegates and extensions can be added to a
node by simply setting its extension using the appropriate del and ext methods
(see [NCMO3)).

6.5 Visitor passes

The AST passes implement the major code transformation and generation fa-
cility. Such passes can be of different nature. Usually they rewrite the AST
as visitor ([GHJV95]) to implement the actual code transformation. However
there are also passes that implement semantic checks or dump code as well
as so-called barrier passes which synchronize rewriting passes. A barrier pass
ensures that all jobs® of this pass have at least reached this barrier.

Each rewriting pass implements a visitor, looking out for AST nodes it af-
fects, and then dispatches the methods actually implementing the pass on the
node object and/or its extension objects.

6A job in Polyglot reflects basically a compilation unit in its currently rewritten state.

13

Partial ASTs can also be generated using Polyglots quasiquoting facilities:
Using the class QQ, one can convert Java code in String format into readily
parsed partial ASTs. Unfortunately this powerful tool is only available for the
base implementation (Java) at the moment, neither for AspectJ nor for any
other extension. Using such partial ASTs, code generation could by eased a
lot, because AST rewrites could be simulated by simple String rewrites in many
cases.

Generally, passes are scheduled by overriding ExtensionInfo.passes(Job).
For implementing a CSL, one should first call the appropriate parsing (and
optionally type checking) passes of abe, then schedule the transformation passes
which convert the AST of the CSL into a plain AspectJ or Java AST and finally
schedule the passes that convert AspectJ into Java and write the resulting Java
code to disk.

For our specific example of LTL we employ the following passes:

e Parse the annotated bytecode using the BAT bytecode toolkit, extract-
ing the LTL formulas. Generate initial SyntheticSource (see below)
instances holding only those formulas, e.g.:

public aspect F302749537 {
F(staticinitialization(SomeClass))

}

The generated sources are injected into the compilation process as follows:

— We derived a new class SyntheticSource from FileSource. The
latter comes with Polyglot and represents a source File in the file
system. Thus its major task is to provide an input stream to the
content of the associated file. Since we generate units on the fly
without disk access, SyntheticSource generates this stream from a
byte array that holds the class definition in String format.

— Those synthetic sources were then passed to the framework using
ExtensionInfo.addJob(Source) (still before the first pass is sched-
uled to run, but after the compiler is initialized - we found the method
ExtensionInfo.initCompiler(Compiler) to be the right place, af-
ter the call to super).

e Parse those sources to generate an AST comprising the AST nodes for
the contained formulas. For this purpose, we reuse the given method
ExtensionInfo.passes_parse_and_clean().

e Resolve all types for variables contained in those formulas. The passes
added by ExtensionInfo.passes_disambiguate_signatures() can be
reused for this purpose. Also the corresponding new AST nodes need to
override the appropriate disambiguation methods, this pass delegates to.

e Bring the formulas into Disjoint Normal Form (DNF). This is necessary,
since each conjunct represents one primitive pointcut which describes a
single set of joinpoints to match. abc already provides a class DNF for
this purpose in the appropriate Pointcut class in the weavinginfo pack-
age. Weaving infos represent the implementation strategy that is associ-
ated with a certain AspectJ construct. Again we override the appropriate

14

implementing methods in the new weaving info nodes to not only convert
the contained AspectJ pointcuts but the whole formulas including LTL
operators in DNF.

e Transform the AST for the formula into an AST holding a piece of ad-
vice for every conjunct. This advice switches the aspect-internal state
whenever an appropriate joinpoint is matched on the execution trace at
runtime. Formula-private variables are partially translated to aspect in-
stance variables and partly to pointcut-private variables provided by the
eaj extension that comes with abc.

e Generate additional inter-type declarations on types for objects that are
to be tracked (see example on page 9) in order to indicate that a cer-
tain formula holds for this particular object. They track, which pointcut
conjucts already matched on the associated object.

e Generate some additional code that keeps track of the implementing as-
pects and shows results during the later program execution.

6.6 Work flow of the extended abc implementation

With the now implemented compiler for the given CSL, one invokes abc using
-ext abc.ltl. This instantiates the appropriate ExtensionInfo as well as the
connected lexer and parser, and finally schedules and executes the AST passes
previously arranged. As output one receives plain Java source code or bytecode
implementing the concern specific language.

The following section gives a quick glance at what the implemented code
transformations produce.

6.7 Example transformation

The following formula models that for a given web shop it should not happen
that a purchase is being tried although the shop was put into standby mode
(which might happen for maintenance activities) or shut down’:

G(
1'((call(* WebShop.standby()) || call(* WebShop.shutdown()))
&& F(call(* Webshop.purchaseIltem(Item)))
)
)

Translation into AspectJ leads to the following aspect:
public aspect G123 {
boolean matched_pcl, matched_pc2, matched_pc3;
pointcut pcl(): call(* WebShop.standby());

pointcut pc2(): call(* WebShop.shutdown());
pointcut pc3(): call(* WebShop.purchaseIltem(Item));

"The example omits checks on re-enabling of the web shop for brevity. We will very likely
provide macros for easy formulations of formulas as Call to a but not yet to b.

15

after(): pc1() {
matched_pcl = true;

3

after(): pc2() {
matched_pc2 = true;

}

after(): pc3() && if (matched_pcl || matched_pc2) {
//if pcl or pc2 were seen previously, match pc3
matched_pc3 = true;

}

boolean globalCheck() {

//implementation of the outermost check

return !((matched_pcl && matched_pc3)
|| (matched_pc2 && matched_pc3));

}

after(): set(matched_pcl) || set(matched_pc2)
|| set(matched_pc3) {

//if any state is changed, apply the check

if (1globalCheck()) {
RuntimeVerifier.reportError(this);

¥

}

}

After this step, the AspectJ weaver, which is integrated into abc instruments
the core implementation with the aspect stated above.

In the following we would like to recapitulate and conclude with an evalua-
tion of the abc architecture.

7 Experience report

7.1 Ease of use

When starting our implementation we first came forward very quickly. Writing
a skeleton extension and linking it using the Ant build script took not more than
an hour. Extending the lexer and grammar was also quite straightforward. The
parsing passes of abc could be completely reused in order to gain an initial AST
in our CSL.

When implementing the actual transformations, we found the sophisticated
delegation model to be the initial challenge which abc extenders have to over-
come. In general the delegation model provides for scalable extensibility and
good modularity, however we found that it might take some time to get the
implementation right.

16

With regard to the aspect-oriented extensions that abc adds to the Polyglot
base compiler, we found that little documentation is available at the current time
about the contained compiler passes and especially the generation and consump-
tion of the AspectInfo which states how pieces of advice are woven into the core
application. Some high level information is available in [ACH05], however this
document does not go deep enough to completely reflect the code generation
process. Also the code comments leave quite some room for improvements at
the moment.

In general, however, we conclude that abc is a very powerful framework,
making implementation of CSLs and language extensions to AspectJ a rather
straightforward task. Code reuse is indeed maximized as far as possible through
the delegation model. Parsers can easily be generated using PPG, even extend-
ing existing grammars in a convenient way. Thus extenders can concentrate on
the actual translation of their CSL into plain AspectJ code. Once the AST was
rewritten to a plain AspectJ AST, the actual source code or bytecode generation
can simply be delegated to abc. This accelerates the development process a lot.

It should be noted that a lot of this power already derives from the Polyglot
base implementation. However, the crosscutting concerns, which may be imple-
mented only in combination using abc, prove often very powerful - especially
for CSLs.

7.2 Suggestions for abc extenders

For abc extenders we recommend in addition to this paper the publication
[ACHT05] which gives more high-level information about abc and about its
extendability. Also we would like to encourage people extending abc to publish
their extensions and inform other users about the abc-dev mailing list®. This
enables others to reuse those language extensions and build their extensions on
top of those. If all available AspectJ extensions, which are already available
today had gone into a common framework as abc, this would certainly have
made prototyping of new research ideas a lot easier [Bod05].

7.3 Suggestions for abc developers

First we wish to thank the abc team for providing this framework which made
the job of implementing our CSL a lot easier than first expected. However, since
abc is still in is first version, we see still room for improvement.

As stated above, code comments are often not available or very concise.
Especially some more comments on the rewriting passes and how they interact
with or depend on each other would be quite helpful.

The lexer is currently only extensible with additional keywords, which often
suffices. However we think it would be desirable if it would support addition of
states as well.

Also we found the quasiquoting facility of Polyglot to be a great feature,
which is unfortunately only available for the base language (Java) at the mo-
ment. It would be very helpful if this facility was extended to support AspectJ
constructs as well, or even better constructs of any possible abc extension. It
might be helpful to compare to META-AspectJ (see below) [ZHS04].

8available at http://abc.comlab.ox.ac.uk/lists

17

Also it might be worthwhile looking into something suggested in [Wil05] : An
XML based interface for intermediate code transformations. This would proba-
bly suffice for some language enhancements and would eliminate the immediate
need to extend the actual abc framework at all. Simple XML transformations
could be implemented in XSLT, XQuery or similar formalisms.

8 Related Work

To our best knowledge this is the first report about extending abc written by
someone not being member of the abc development team. Also it seems to be the
first report describing the implementation of a real concern specific language,
in contrast to the EAJ extensions mentioned in [ACH'05], which implement
rather small additions to the AspectJ syntax and semantics.

Related work regarding abc momentarily seems to be constrained to the tool
META-AspectJ (MAJ) [ZHS04] by the Georgia Institute of Technology. MAJ
can be seen as an AspectJ code generator with extended quasiquoting facilities.
Its most powerful feature is a fully-automatic type inference algorithm: For vir-
tually any syntactically correct AspectJ construct, given in String format, this
construct can be parsed. The type of the root AST node for this construct is au-
tomatically inferred using a sophisticated algorithm with backtracking facilities.
This feature heavily eases the development process since only one single inter-
face is necessary to convert Strings to AST nodes and the developer does not
even need to bother about the actual AST implementation. However, META-
AspectJ is an AspectJ code generator and not more. This means in particular,
that it provides no support at all for parsing a CSL or language extension, such
as abc does. (It has no frontend.) Also it does not provide any weaving of
AspectJ code to plain Java code, nor does it provide any of the static analyses
available in abc through Soot (no backend). As mentioned above, quasiquoting
facilities with type inference as in META-AspectJ could however be a valuable
addition to abc in the future.

9 Conclusion

We hope this paper to be a valuable guide for implementors of concern specific
languages or language extensions to AspectJ. We have described how to parse
a CSL using abc, what steps are necessary to convert the AST in the CSL
into a plain AspectJ AST and how to finally compile this AST into plain Java
source or bytecode. We have pointed out major implementation details which
are important to understand the design and internal processes of abc. Also we
have given hints on how an implementation can be debugged and traced. We
gave suggestions for future development.

We conclude that abc makes implementing such CSL or language extensions
as straightforward as it can be and want to encourage others to try themselves
and publish their extensions for further reuse and cooperation.

18

References

[ACH™05]

[Bod04]

[Bod05]

[Bon04]

[CI91]

[Cos03]

[DFS04]

[DFS05]

[DGH*04]

[GHJIV95)

[HHO04]

[JSR]

Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha
Kuzins, Jennifer Lhotk, Ondrj Lhotk, Oege de Moor, Damien Sereni,
Ganesh Sittampalam, and Julian Tibble. An extensible AspectJ
compiler. In Proceedings of the Fourth ACM SIG International
Conference on Aspect-Oriented Software Development (AOSD’05),
Chicago, USA, March 2005. ACM Press.

Eric Bodden. A lightweight LTL runtime verification tool for Java.
In OOPSLA °04: Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and
applications, pages 306-307. ACM Press, 2004.

Eric Bodden. Concern specific languages and their implementation
with abc. Download: http://www.bodden.de/publications, 2005.

Jonas Bonér. What are the key issues for commercial AOP use:
how does AspectWerkz address them? In Murphy and Lieberherr
[MLO04], pages 5-6.

Inc. Staff CORPORATE IEEE. IEEE Std 1178-1990, IEEE Stan-
dard for the Scheme Programming Language. IEEE Standards Office,
1991.

Pascal Costanza. Dynamically scoped functions as the essence of
AOP. SIGPLAN Notices, 38(8):29-36, 2003.

Rémi Douence, Pascal Fradet, and Mario Siidholt. Composition,
reuse and interaction analysis of stateful aspects. In AOSD ’0/:
Proceedings of the 3rd international conference on Aspect-oriented
software development, pages 141-150. ACM Press, 2004.

Rémi Douence, Pascal Fradet, and Mario Siidholt. Trace-based
aspects. In Robert E. Filman, Tzilla Elrad, Siobhdn Clarke,
and Mehmet Aksit, editors, Aspect-Oriented Software Development,
pages 201-217. Addison-Wesley, Boston, 2005.

Bruno Dufour, Christopher Goard, Laurie Hendren, Oege de Moor,
Ganesh Sittampalam, and Clark Verbrugge. Measuring the dy-
namic behaviour of AspectJ programs. In OOPSLA ’04: Proceedings
of the 19th annual ACM SIGPLAN Conference on Object-oriented
programmang, systems, languages, and applications, pages 150-169.
ACM Press, 2004.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design patterns: elements of reusable object-oriented software.
Addison-Wesley Longman Publishing Co., Inc., 1995.

Erik Hilsdale and Jim Hugunin. Advice weaving in AspectJ. In
Murphy and Lieberherr [MLO04], pages 26-35.

Java specification request for standardized metadata annotations
(JSR175). http://jcp.org/en/jsr/detail?id=175.

19

[KHH™01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jef-

[Lem04]

[MLO04]

[NCMO03]

[OMO5]

[Pnu77)

[SMU*04]

[Ste04]

[SVJ03]

[VDKV00]

[Wil05]

[WV04]

[ZHS04]

frey Palm, and William G. Griswold. An overview of Aspect]J. In
Jorgen Lindskov Knudsen, editor, ECOOP, volume 2072 of Lecture
Notes in Computer Science, pages 327-353. Springer, 2001.

Otvio Augusto Lazzarini Lemos. Is ’advice’ adequate?, 08 2004.
Thread in the aosd-discuss mailing list (http://www.aosd.net/).

Gail C. Murphy and Karl J. Lieberherr, editors. Proceedings of the
3rd International Conference on Aspect-Oriented Software Develop-
ment, AOSD 2004, Lancaster, UK, March 22-24, 2004. ACM, 2004.

Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers.
Polyglot: An extensible compiler framework for Java. In Gorel
Hedin, editor, C'C, volume 2622 of Lecture Notes in Computer Sci-
ence, pages 138-152. Springer, 2003.

Klaus Ostermann and Mira Mezini. Design and implementation of
pointcuts over rich program models. TechReport TU Darmstadt,
2005. http://www.st.informatik.tu-darmstadt.de/.

Amir Pnueli. The temporal logic of programs. In Proceedings of the
18th IEEE Symposium on the Foundations of Computer Science,
pages 46-57. IEEE Computer Society Press, 1977.

Kouhei Sakurai, Hidehiko Masuhara, Naoyasu Ubayashi, Sacko Mat-
suura, and Seiichi Komiya. Association aspects. In AOSD 04:
Proceedings of the 3rd international conference on Aspect-oriented
software development, pages 16-25. ACM Press, 2004.

Friedrich Steimann. Why most domain models are aspect free. In
5th Aspect-Oriented Modeling Workshop AOM/UML, 2004.

Davy Suvée, Wim Vanderperren, and Viviane Jonckers. JAsCo:
an aspect-oriented approach tailored for component based software
development. In AOSD, pages 21-29, 2003.

Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific
languages: an annotated bibliography. SIGPLAN Not., 35(6):26—
36, 2000.

Gregory V. Wilson. Extensible programming for the 21st century.
ACM Queue, 2(9):48-57, 2005.

Robert J. Walker and Kevin Viggers. Implementing protocols via
declarative event patterns. In Richard N. Taylor and Matthew B.
Dwyer, editors, SIGSOFT FSE, pages 159-169. ACM, 2004.

David Zook, Shan Shan Huang, and Yannis Smaragdakis. Gen-
erating AspectJ programs with meta-AspectJ. In Generative Pro-
gramming and Component Engineering (GPCE). Springer-Verlag,
October 2004.

20

