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Abstract

We present a Runtime Verification framework for Java programs called the Java

Logical Observer, J-LO for short. Properties can be specified in Linear-time

Temporal Logic (LTL) over AspectJ pointcuts. These properties are checked

during program-execution by an automaton-based approach where transitions

are triggered through aspects. No Java source code is necessary since AspectJ

works on the bytecode level, thus even allowing instrumentation of third-party

applications. As an example, we discuss safety properties and lock-order rever-

sal. A novelty of our approach is that we provide a special form of LTL allowing

free variables in propositions which can bind objects on the execution trace.

Zusammenfassung

In dieser Arbeit stellen wir ein Runtime Verification Framework für Java-

Programme vor, den Java Logical Observer, kurz J-LO. Eigenschaften können

in Linear Time Logic (LTL) über AspectJ Pointcuts spezifiziert werden. Diese

Eigenschaften werden zur Laufzeit durch einen automatenbasierten Ansatz über-

prüft, in welchem Zustandsübergänge durch Aspekte ausgelöst werden. Unser

Ansatz benötigt nicht notwendigerweise den Java-Quelltext der zu instrumen-

tierenden Anwendung, da AspectJ auf dem Bytecode arbeitet und somit auch

Anwendungen Dritter instrumentiert werden können. Die Hauptneuheit un-

seres Ansatzes besteht darin, dass wir eine spezielle Ausprägung der LTL be-

reitstellen, die es erlaubt freie Variablen in Propositionen zu definieren, die dann

zur Laufzeit durch Objekte entlang des Ausführungspfades belegt werden.
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Organization of this thesis

This thesis is organized as follows:

Chapter 1 gives some reasons for the necessity of temporal assertions. Such

assertions allow to verify temporal interdependency between events occurring

during the execution of an application. We give examples from the literature

as motivation and present problems which arise due to the constraint support

for Runtime Verification in Java. We give an overview of how J-LO addresses

those shortcomings.

Chapter 2 provides sufficient background knowledge to be able to follow the rest

of this work. In section 2.1 introduce the basic techniques of formal verification

including static approaches as Model Checking opposed to dynamic approaches

from the field of Runtime Verification. We show up similarities and differences

between both fields. Section 2.2 explains the concept of metadata in Java 5 and

how it can be used to specify annotations in the Java source code. We introduce

the various forms of annotations and justify our choice of metadata annotations

in J-LO . Section 2.3 introduces the concept of aspect-oriented programming,

its history and its most popular implementation in form of the programming

language AspectJ. Section 2.4 explains how metadata annotations and aspect-

oriented programming can be used in combination.

In chapter 3 we introduce the Dynamic Linear Temporal Logic (DLTL), a spe-

cial kind of LTL with free variables in propositions which can be bound to

objects along the execution trace at runtime. Section 3.1 explains its syntax,

while in sections 3.2 and 3.3 we derive the declarative semantics. There might

be formulae which are syntactically correct but whose static semantics are un-

defined. Section 3.4 introduces a static analysis for detecting such formulae.

Section 3.5 explains the operational semantics and proves them equivalent to

the declarational counterpart.

Chapter 4 is designated to the implementation of J-LO . We explain in detail

how the operational semantics can be rendered into executable code. We give

an overview of all employed tools and describe how we assure that despite the

instrumentation J-LO performs we can guarantee that all runtime properties

which can be specified in DLTL remain unaffected by this instrumentation.

In chapter 5 we explain how we tried to gain maximal confidence in this im-

plementation by applying various metrics and give reasons for the theoretical
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6 CONTENTS

performance of the algorithms implemented in J-LO . In addition we also pro-

vide benchmarks which allow to make assumptions about the overall actual

performance of J-LO. In particular we discuss the problem of lock order rever-

sal — a problem which may potentially lead to deadlocks.

Related work is discussed in chapter 6. Here we compare to related approaches

in the fields of formal verification, Runtime Verification in particular as well

as aspect-oriented programming. In case of the latter we focus on various new

trace languages that have been proposed and compare those languages to DLTL.

We conclude this thesis in chapter 7.

The appendix lists own publications which were derived from this work, states

some pitfalls we came across during our research, and contains a detailed expla-

nation of the various types of pointcuts in the aspect-oriented language AspectJ.

In addition, we briefly list the contents of the attached CD-ROM and give a

list of symbols and notations.



Chapter 1

Motivation

1.1 Semantic Interfaces and Temporal Interdepen-

dencies

The goal of this project was to develop a tool which provides a convenient means

of reasoning about the behaviour of an application at runtime. This raises the

question how runtime behaviour is specified today, without such a tool.

A survey we conducted during this research showed that almost none of the

programming languages around has rich support for verification built-in. The

only concept Java provides are assertions: An assertion over a Boolean ex-

pression states that this expression has to hold during runtime, whenever the

assertion is reached. It can be used for checking pre- and postconditions as

table 1.1 shows. Line 10 implements the precondition child != null, which

is informally stated in the documentation of the application interface (API)

in line 7. If the application is started with the command line parameter

-enableassertions, the control flow reaches this assertion statement, and

child is null, an AssertionError is thrown by the Java runtime. If this

command line parameter is not given, assertions are not taken into account.

Disabled assertions impose no runtime overhead (cf. http://java.sun.com/

j2se/1.5.0/docs/guide/language/assert.html).

With respect to software design, from the example from table 1.1 one can learn

two important things: First of all, assertions in Java are restricted to localised

reasoning. Without additional code, a single assertion can only refer to state

which is visible to the currently executing object and available at the time the

assertion itself is evaluated. As a result, temporal reasoning about the control

flow of an application is impossible. Secondly, the assertion implements a check

which is already informally stated in the API documentation just above the

constructor declaration itself. Thus, the check is actually redundant. It could

have been automatically inferred if the condition child != null had been

7



8 CHAPTER 1. MOTIVATION

1 public class InnerNode implements TreeNode {

2

3 private TreeNode child;

4

5 /** Constructs a new inner node

6 * with child <code>child</code>.

7 * @param child The child node.

8 * May not be <code>null</code>. */

9 public InnerNode(TreeNode child) {

10 assert child != null;

11 this. child = child

12 }

13

14 ...

15 }

Table 1.1: Java assertion checking for non-nullness

stated in the documentation in a formalized way. The tool we introduce will

overcome both problems: It provides an expressive formalism which enables

the notation of temporal assertions. Those assertions become part of the API

documentation using Java 5 metadata annotations.

1.2 Motivating Examples

Motivating examples can for instance be found in [All02], which is an excellent

article about temporal bug patterns. Bug patterns are patterns of recurring

faults arising through common coding errors. Temporal bug patterns describe

faults arising through misuse of objects or functions with respect to the time

line. This will become clearer as we quote some of those bug patterns here.

1.2.1 A simple stack

The article [All02] states amongst others several requirements that typically

have to be fulfilled when using a stack:

1. Once push(x) occurs, top() will return x until a push or a pop occurs.

Always{push(x) implies {{top()==x} until {push(y) || pop()}}

2. If the stack is empty, there should be no pops until a push occurs.

Always{isEmpty() implies {{!pop()} until {push(x)}}}
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3. Given we have a length operation, if the length is n, and a push occurs,

then in the next step, the length will be n+1.

Always{{length==n && push(x)} implies {Next{length==n+1}}}

The above specification already tells us a lot about the behaviour of a stack.

We want to use this small example as an example for what temporal condi-

tions need to be checked in real world application and how J-LO addresses the

implementation of the appropriate checks.

Please note that all of the above specifications could very well be stated right in a

formal interface documentation. In J-LO this is exactly the case: Formulae are

part of the public interface of a class. Thus they form documentation and test

both in one piece. Such specification is what we call implementation specific: It

is specific to certain classes and/or interfaces which are part of our particular

implementation. There are also generic specifications, which should be true in

general. For example it is common practice that an application should never

deadlock. In J-LO, such a generic specification needs to be written down only

once and can be checked by the tool without writing any line of code.

In the following section, we provide an overview of the architecture we employ

to implement checking of temporal assertions as stated above.

1.3 An overview of our solution

From the user’s point of view, J-LO works mostly transparent (cf. figure 1.2):

The user supplies formulae to the system by annotating source code in appropri-

ate places. In particular we use Java 5 annotations (see section 2.2), which are

automatically compiled into the bytecode by any Java 5 compliant compiler.

J-LO works then at build time as a simple preprocessor: As input it takes

the annotated bytecode. This can in particular be supplied as a third-party

library. J-LO then instruments the bytecode with runtime-checks that check if

the stated assertions hold. Thus for the user, J-LO is just another tool in the

usual build chain. The temporal assertions can then afterwards be verified by

simply running the instrumented application.

Specification 

G( p ) ... 

Java bytecode 

G( p ) ... 

AFA in AspectJ 

aspect F1 { ... 

Java bytecode 

if(!p) { ... 

Compiler Codegen Weaving 

J-LO

Figure 1.2: Workflow of J-LO usage



Chapter 2

Background

In this chapter we provide all the necessary background information that is

required to understand the implementation details of J-LO. This comprises

formal methods as Model Checking on the one hand as well as practical issues

such as metadata and aspect-oriented programming on the other hand.

2.1 Formal verification

First we introduce the notion of Model Checking, which has similar goals as

runtime verification and uses similar methods, however follows a purely static

approach, which is more powerful in nature but unfortunately may often lead

to performance problems one cannot easily cope with at the current time.

2.1.1 Static verification - Model checking

Clarke et al. define in [CGP99] the term Model Checking as

Model checking [is a method] by which a desired behavioural prop-

erty of a reactive system is verified over a given system (the model)

through an exhaustive enumeration (explicit or implicit) of all the

states reachable by the system and the behaviours that traverse

through them.

So, as we learned, the input to a Model Checking process consists of two im-

portant parts:

1. The model. This shall here be given as a finite state system M .

2. A specification of a behavioural property, which shall here be given in the

form of a finite set of temporal formulae Φ = {ϕ1, . . . , ϕn}.

10



2.1. FORMAL VERIFICATION 11

The output of a Model Checking process is an answer true or false to the

question Does M satisfy Φ ? or in other words: Does M |= Φ hold?

Depending on the kind of temporal formalism that is used, different Model

Checking algorithms are applied. Here we want to focus on Model Checking

for linear temporal logic (LTL) [Pnu77] in detail, since LTL is the formalism we

employ for J-LO. Reasons for why we made this choice for LTL are given in

the following subsections.

All such logics are typically defined over a transition system or Kripke structure.

Thus we first want to introduce those notions.

2.1.1.1 Transition systems and Kripke structures

A Kripke structure over a set P = {p1, . . . , pn} of propositions is a tuple

M = (S , R, L)

with

• S a finite set of states

• R ⊆ S × S a set of directed edges

• L : S → 2P a labeling function which labels each state with a (possibly

empty) set of propositions.

The unlabeled structure (S , R) is a transition system.

For any vertex si ∈ S with L(si) = {pi1 , . . . , pim} ⊆ P we say for each pij ∈

{pi1 , . . . , pim} that pij holds in si or short:

si |= pij .

A pointed Kripke structure (M,s0) is a Kripke structureM with a starting state

s0 ∈ S . Such a pointed Kripke structure typically represents the model which

is to be verified by a Model Checking process. In the following when referring

to the term Kripke structure we imply that this structure is pointed.

2.1.1.2 CTL*, CTL and LTL

Linear temporal logic [Pnu77] is a fragment of the richer generalized computa-

tional tree logic CTL*. Thus we first define CTL* and then derive the subset

LTL and comment on its expressiveness.

CTL* is a propositional mathematical logic over Kripke structures as explained

above. Its atoms are propositions reflecting the current state of a system. CTL*

then combines those propositions using temporal and logical operators as well

as path quantifiers. Our definition follows [TRW03].
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Definition 2.1.1 (Syntax of CTL*)

• For each pi ∈ P , pi is a state formula.

• For state formulae ϕ and ψ, ¬ϕ, ϕ ∧ ψ and ϕ ∨ ψ are state formulae.

• Each state formula is also a path formula.

• For a path formula ϕ, E ϕ and A ϕ are state formulae.

• For path formulae ϕ and ψ, we also have path formulae ¬ϕ, ϕ∧ψ, ϕ∨ψ,

X ϕ, F ϕ, G ϕ, ϕ U ψ and ϕ R ψ.

All state formulae are valid CTL* formulae.

The above definition contains path quantifiers E (Exists) and A (Always), as

well as temporal operators X (neXt), F (Finally), G (Globally), U (Until)

and R (Release). Also we note a distinction between state formulae and path

formulae. The former can be evaluated when focusing on a single state while the

latter require one single path for evaluation. Temporal operators reason about

states on a path. Thus they define the path formulae, whereas path quantifiers

reason about sets of paths starting at a distinct state, and hence define state

formulae. A CTL* formula is always evaluated at the starting state of a pointed

Kripke structure. Hence only state formulae can be valid CTL* formulae.

Semantics of CTL*

The semantics of CTL* refer to the notion of a path. A path is defined as an

infinite sequence of states

π = π[0]π[1] . . . := (π[0], π[1], . . . ).

A path in a transition system M = (S , R, L) adheres to the following condition:

∀i ≥ 0 : (π[i], π[i + 1]) ∈ R.

For a clarified notation we also define πi as the subsequence of π starting at the

position π[i]:

πi := (π[i], π[i + 1], ...).

We define the semantics of CTL* inductively as follows:

For state formulae:
(M,s) |= tt (true)

(M,s) 6|= ff (false)

(M,s) |= pi iff pi ∈ L(s)

(M,s) |= ¬pi iff (M,s) 6|= pi

(M,s) |= ϕ ∧ ψ iff (M,s) |= ϕ ∧ (M,s) |= ψ

(M,s) |= ϕ ∨ ψ iff (M,s) |= ϕ ∨ (M,s) |= ψ

(M,s) |= E ϕ iff ∃π′ : π′[0] = s ∧ (M,π′) |= ϕ

(M,s) |= A ϕ iff ∀π′ : π′[0] = s→ (M,π′) |= ϕ
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For path formulae:
(M,π) |= ϕ iff (M,π[0]) |= ϕ) (ϕ state formula)

(M,π) |= ¬ϕ iff (M,π) 6|= ϕ

(M,π) |= ϕ ∧ ψ iff (M,π) |= ϕ ∧ (M,π) |= ψ

(M,π) |= ϕ ∨ ψ iff (M,π) |= ϕ ∨ (M,π) |= ψ

(M,π) |= X ϕ iff (M,π1) |= ϕ

(M,π) |= ϕ U ψ iff ∃k s.th. (M,πk) |= ψ ∧ ∀l (l < k) → (M,π[l]) |= ϕ

(M,π) |= ϕ R ψ iff ∀k (M,πk) |= ψ ∨ ∃l (l < k) s.th. (M,π[l]) |= ϕ

(M,π) |= F ϕ iff (M,π) |= tt U ϕ

(M,π) |= G ϕ iff (M,π) |= ff R ϕ

This definition identifies R as the dual operator to U. It holds that:

(M,π) |= ϕ U ψ ⇐⇒ (M,π) 6|= ¬ϕ R ¬ψ

Example 2.1.2 (Kripke structure)

Given the Kripke structure of figure 2.1, we evaluate the following formulae at

the state s0:

formula result

p1 U p2 no valid CTL* formula because it is a path formula

AX(p1 U p2) not satisfied (e.g. for paths (s0, s1, s0, . . . ))

EF(AX(p1 U p2)) satisfied (e.g. paths (s0, s2, s3, s4, . . . ))

s0
∅

s1
{p1, p2}

s2
{p1}

s3
{p1}

s4
{p2}

Figure 2.1: Example Kripke structure

For usual Model Checking, one identifies two fragments of CTL*, namely CTL

and LTL which are strongly connected to the distinction between path formulae

and state formulae above.

CTL is the computational tree logic. It is build up in the same way as CTL*,

however temporal operators may not be cascaded. For instance AGFp is a valid

formula in CTL* but not in CTL. As a consequence, such fairness conditions

cannot be expressed in CTL. A CTL formula is evaluated at the starting state

of a Kripke structure, just as in CTL*.
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LTL is the linear temporal logic, the fragment of CTL* gained by removing the

path quantifiers E and A. Thus, an LTL formula always reasons about the

structure of a single path. A Kripke structure (M,s) satisfies an LTL formula

ϕ if ϕ holds on all paths through M starting at s.

In the following we want to concentrate on LTL and see how Model Checking

for an LTL formula can be performed.

2.1.1.3 LTL Model Checking

We define the LTL Model Checking problem as follows:

Given a Kripke structure (M,s) and an LTL formula ϕ, both over

propositions {p1, . . . , pn}, check if (M,s) |= ϕ.

In addition, it is often desired that if (M,s) 6|= ϕ, the Model Checking process

outputs a counterexample, a path through M which violates ϕ.

LTL Model Checking usually employs finite state machines called Büchi au-

tomata. A Büchi automaton is essentially an ordinary finite automaton but

with an acceptance condition suitable for reading words of infinite lengths:

Definition 2.1.3 (Büchi automaton)

A nondeterministic Büchi automaton is a quintuple A = (Q,Σ, q0,∆, F ) with:

• Q finite set of states

• Σ finite alphabet

• q0 ∈ Q initial state

• ∆ ⊆ Q× Σ ×Q transition relation

• F ⊆ Q a set of final states.

A run of A on an input word π = (π[0], π[1], . . . ) ∈ Sω of infinite length is an

infinite sequence ρ = (ρ0, ρ1, . . . ) ∈ Qω satisfying the following conditions:

• ρ0 = q0,

• ∀i ≥ 0 : (ρi, π[i], ρi+1) ∈ ∆.

We say that A accepts a path π if there exists a run ρ of A on π that visits

states in F infinitely often.

Generally for any automaton A, we define the language recognized by A, L(A)

as:

L(A) := { π | A accepts π } ⊆ Sω
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Based on those Büchi automata, the LTL Model Checking process can then be

defined as follows:

1. Transform the given Kripke structure (M,s) into a Büchi automaton

A(M,s) recognizing the ω-language of all infinite paths through (M,s).

2. Transform the formula ¬ϕ into an equivalent Büchi automaton A¬ϕ.

3. Construct a product automaton B recognizing the language

L(A(M,s))
⋂

L(A¬ϕ).

4. Check B for nonemptiness. If L(B) 6= ∅ then (M,s) 6|= ϕ and every path

π ∈ L(B) is a violating path for ϕ in (M,s). Otherwise (M,s) satisfies ϕ.

Step 1 is straightforward. The Kripke structure is simply interpreted as a

Büchi automaton. Steps 3 and 4 are problems of basic automata theory. Step

2 however is nontrivial. Thus we will elaborate on the automaton generation a

bit further.

The automaton generation usually happens in three steps: First the formula ϕ

is converted to an alternating automaton. Then this alternating automaton is

transformed into a generalized Büchi automaton which is then converted to an

ordinary Büchi automaton in a last step.

The implementation of J-LO is entirely based on alternating automata, because

Büchi automata represent a more abstract model which comes unhandy for our

purposes (cf. appendix B). Thus we explain the conversion to alternating

automata in detail. For the subsequent two conversions we point the interested

reader to [Tho03].

2.1.1.4 From LTL to alternating automata

Our translation works similarly to the one described by Gastin and Oddoux

[GO01]. First we want to define alternating automata in general. Then we

define how we interpret such automata in our special setting.

Definition 2.1.4 (Alternating finite automaton)

An alternating finite automaton (AFA) is a quintuple A = (Q,Σ, q0, δ, F ) with

• Q finite set of states

• Σ finite alphabet

• q0 ∈ Q initial state

• δ : Q× Σ → 22Q
transition function
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• F ⊆ Q set of final states.

22Q
is here as usual the powerset of the powerset of Q. Those sets repre-

sent Boolean combinations in Disjunctive Normal Form (DNF). For instance

{{q1, q2}, {q3}} represents the Boolean combination (q1 ∧ q2) ∨ q3. So a transi-

tion leading from q0 to {{q1, q2}, {q3}} would mean a nondeterministic choice

between moving simultaneously to q1 and q2 on the one hand or just to q3 on

the other hand. Using sets instead of Boolean expressions directly leads to

easier semantics. In this representation, each clause (subset of Q) stands for

one single run of A. Note that although AFA allow for nondeterminism in this

way, they are not actually nondeterministic themselves because δ is a function,

mapping each state to a unique clause set of successor states.

A run on an AFA A is a directed acyclic graph over Q adhering to δ. A accepts

an input path π ∈ Σω if there exists a run on π, such that all branches of the

run visit states of F infinitely often.

In the following, we want to adopt this automaton model to linear temporal

logic. In order to do so, it is crucial to know that any LTL formula can be

brought into negation normal form (NNF). In this form, negations only occur

in front of propositions. We define the function nnf as follows:

nnf : LTL → LTLnnf

¬tt 7→ ff

¬ff 7→ tt

¬p 7→ ¬p

¬¬ϕ 7→ nnf (ϕ)

¬(ϕ ∧ ψ) 7→ nnf (¬ϕ) ∨ nnf (¬ψ)

¬(ϕ ∨ ψ) 7→ nnf (¬ϕ) ∧ nnf (¬ψ)

¬X ϕ 7→ X ¬nnf (ϕ)

¬(ϕ R ψ) 7→ (nnf (¬ϕ) U nnf (¬ψ))

¬(ϕ U ψ) 7→ (nnf (¬ϕ) R nnf (¬ψ))

Here we assume that the operators F and G have already been reduced accord-

ing to their semantics:

F ϕ ≡ tt U ϕ

G ϕ ≡ ff R ϕ

LTLnnf is defined as the set of all LTL formulae in NNF. Given this negation

normal form, we can now proceed with the specialization of our automaton

model.
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Definition 2.1.5 (AFA for an LTL formula ϕ)

In our interpretation, the AFA are defined over LTL formulae, thus we have

the following identities for an AFA Aϕ for a given LTL formula ϕ ∈ LTLnnf

over propositions in P. Let the closure of a formula, cl(ϕ), be the set of all

sub-formulae of ϕ (plus the formulae tt and ff). Then

• Q := cl(ϕ) ⊆ LTLnnf

• Σ := 2P

• q0 := ϕ

• F := {q ∈ Q | q = (ϕ R ψ) for some ϕ,ψ ∈ LTLnnf} ∪ {tt}.

F is defined this way because a Release formula is always valid on the empty

path whence an Until formula is not.

Note that all states of the AFA are valid LTL formulae. The transition func-

tion δ is derived directly from the definition of the CTL*/LTL semantics and

recursively defined as follows:

Let P some finite set of propositions, p ∈ P, ϕ, ψ ∈ LTLnnf formulae over P.

Then

• δ(tt,P) = { ∅ }

• δ(ff ,P) = ∅

• δ(p,P) =

{

δ(tt,P) if p ∈ P

δ(ff ,P) otherwise

• δ(¬p,P) =

{

δ(tt,P) if p 6∈ P

δ(ff ,P) otherwise

• δ(ϕ ∧ ψ,P) = δ(ϕ,P)
⊗

δ(ψ,P)

• δ(ϕ ∨ ψ,P) = δ(ϕ,P)
⋃

δ(ψ,P)

• δ(X ϕ,P) = {{ϕ}}

• δ(ϕ U ψ,P) = δ(ψ ∨ (ϕ ∧ X(ϕ U ψ)),P)

• δ(ϕ R ψ,P) = δ(ψ ∧ (ϕ ∨ X(ϕ U ψ)),P)

Here
⊗

is defined as the clause product (derived by the laws of De Morgan):

For two sets s = {s1, . . . , sn} and t = {t1, . . . , tm} of sets, we define

s
⊗
t := { si

⋃
tj | 1 ≤ i ≤ n, 1 ≤ j ≤ m }.
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Also it should be noted that the calculation of δ(ϕ,P) is well-founded and all

leaves are labelled with a subformula of ϕ. In particular, any AFA based on

this definition is known to be weak as defined in [Roh97].

A weak automaton has a partially ordered state set, meaning there exists a

partial order relation � over Q = {q1, . . . , qn} and a permutation i1, . . . , in of

{1, . . . , n} such that {qij � qij+1 | 1 ≤ j < n}.

This weakness property is caused by the fact that each successor state of a state

ϕ of A can only either be ϕ itself or a subformula of ϕ. In particular this means

that there can be no nontrivial cycles during the evaluation of δ.

p

tt

p

ff

¬p

X ϕ

ϕ

ϕ ∨ ψ

A(ϕ) A(ψ)

ϕ ∧ ψ

A(ϕ) A(ψ)

ϕ U ψ

A(ψ) A(ϕ)

ϕ R ψ

A(ϕ) A(ψ)

Figure 2.2: Transition function of an AFA over LTL

Figure 2.2 shows an informal graphical representation of how the transition

function is calculated. Bullets represent conjunctive edges. The dashed nodes

A(ϕ) and A(ψ) represent the automata which are gained through recursive

application of the transition function to ϕ respectively ψ.

An example AFA for the formula ff R (¬p ∨ (tt U q)) is shown in figure

2.3. (Note that edges from propositions to tt respectively ff were omitted for a

better overview.) In particular, the figure shall reflects the partial ordering of

the state set, inducing the tree-like structure of the automaton.

2.1.1.5 From alternating automata to Büchi automata

The conversion from an AFA A to a Büchi automaton commences in two steps:

1. Create a generalized Büchi automaton GA equivalent to A.

2. Create a Büchi automaton BA equivalent to GA.

Those conversions are straightforward and out of the scope of this work. We

point the interested reader to [Tho03].

Important is that in combination one has a method to calculate a Büchi au-

tomaton Bϕ for each LTL formula ϕ. As pointed out in section 2.1.1.3, this



2.1. FORMAL VERIFICATION 19

ff R (¬p ∨ (tt U q))

ff ¬p ∨ (tt U q)

¬p tt U q

q

tt

Figure 2.3: Example AFA for an LTL formula

procedure is then employed to calculate an automaton for the negated speci-

fication, B¬ϕ, which is then combined with the model using a usual product

construction.

We now take a quick excursion and have a look of what this looks like in terms

of a fully-flavoured model checker.

2.1.1.6 LTL Model Checking in Spin

Spin [Hol04] is probably the most widely used LTL model checker today. Spin

uses a process oriented modelling language, Promela – the Process Meta Lan-

guage. The Spin book [Hol04] states:

The specification language is intended to make it easy to find

good abstractions of system designs. Promela is not meant to be

an implementation language but a systems description language. To

make this possible, the emphasis in the language in on the modeling

of process synchronization and coordination, and not on computa-

tion. The language is also targeted to the description of concurrent

software systems, rather than the description of hardware circuits

(which is more common for model checking applications).

The basic building blocks of Spin models are asynchronous pro-

cesses, buffered and unbuffered message channels, synchronising sta-

tements, and structured data. Deliberately, there is no notion of

time, or of a clock: there are no floating point numbers, and there

are only a few computational functions. These restrictions make

it relatively hard to model the computation of, say, a square root

in this language [...], but relatively easy to model and verify the

behaviour of clients and servers in networks of processors [...].
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1 #define a 1

2 #define b 2

3 #define seen a (last seen == a)

4

5 chan ch = [1] of { byte };

6 byte last seen = a;

7

8 proctype A() {

9 do

10 :: ch!a

11 of

12 }

13

14 proctype B() {

15 do

16 :: ch!b

17 of

18 }

19

20 proctype C() {

21 do

22 :: if

23 read a: :: ch?a −> last seen = a

24 read b: :: ch?b −> last seen = b

25 fi

26 of

27 }

28

29 init { atomic { run A(); run B(); run C() }

30 }

Table 2.4: A simple Spin example program

Promela features asynchronous communication via channels, deterministic

and nondeterministic choice, continuous loops, guards and process abstraction.

Table 2.4 gives a small example of a model definition in Promela syntax. Line

5 defines a typed channel of size 1. Lines 8-12 and 14-18 define templates A

and B for two processes which repeatedly write the output a respectively b

to the channel. Lines 20-27 define a process template C for a process which

repeatedly reads incoming input on the channel. When an a is read, C stores

the read element in the variable last seen. This will later be queried with the

proposition seen a. The init statement in line 29 is a special statement used to
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fork particular instances of the process templates defined before.

In Spin, propositions are Boolean expressions as e.g. defined by seen a above.

Those can be used in LTL formulae.

For example calling Spin with spin -f ’[]<> seen_a’ model.prm 1 specifies

that proposition seen a should not hold infinitely often, which is equal to the

fact that a is not received infinitely often. Note that Spin already takes the

negated formula ¬ϕ as input.

In Spin, state labels such as read a and read b in process C represent proposi-

tions for LTL: At each state s, if s is labelled with {l1, . . . , ln}, this means that

in state s the propositions {l1, . . . , ln} hold. It is also possible to mark states

as accepting: s ∈ F ⇐⇒ ∃ l ∈ {l1, . . . , ln} : l starts with accept. This allows

for general queries of liveness conditions (some accepting state has to be seen

infinitely often) and similar.

As stated in the previous sections, LTL Model Checking works by translating

LTL to Büchi automata and then performing a product construction with the

model. Spin does exactly this: For the LTL formula []<> seen_a from above,

it generates a so-called never claim as shown in table 2.5.

This never claim directly models a Büchi automaton: It consists of states

T0 init and accept S1. In each of those states, if seen a is valid, the au-

tomaton switches to accept S1. Otherwise ((1) stands for true), it switches

back to the initial state. The state accept S1 is accepting, while T0 init is not,

so in the end this automaton accepts exactly the language of state sequences

where seen a holds again and again. As the name suggests, a never claim must

never become true for the specification to be fulfilled. This is consistent with

the fact that Spin takes the negated formula as input.

When executed, Spin then combines all generated or explicitly stated never

claims with the rest of the system specification and performs an exhaustive

search over the state space (the emptiness check mentioned in section 2.1.1.3).

The specification is violated if in any never claim it is possible to reach an accep-

tance cycle, a cycle holding an accepting state. When such a cycle is reached,

it is clear that an accepting state is visited again and again. Thus the never

claim becomes true. Spin outputs a path to the entry of the acceptance cycle

as well as the cycle itself. This is called a counterexample for the specification.

2.1.1.7 From Model Checking to Runtime Verification

After this small digression about LTL in the field of static verification we now

want to turn over to the evolving field of Runtime Verification (RV). What

follows is a motivation of RV in general, followed by some peculiarities induced

by the fact that RV usually is performed in a purely dynamic context.

1Spin follows a syntax where [] represents G and <> represents F.



22 CHAPTER 2. BACKGROUND

1 never { /* GFseen_a */

2 T0 init : /* init */

3 if

4 :: (seen a) −> goto accept S1

5 :: (1) −> goto T0 init

6 fi ;

7

8 accept S1 : /* 1 */

9 if

10 :: (seen a) −> goto accept S1

11 :: (1) −> goto T0 init

12 fi ;

13 }

Table 2.5: Never claim for GF seen a

Apparently, Model Checking does not actually verify a real application. Rather

it is a method of verifying a finite-state system (model) of such an application.

Hence it is important that the model approximates the behaviour of the ac-

tual implementation as closely as possible. This however is where the usual

complexity problems arise: While CTL Model Checking can be done in polyno-

mial time, the Model Checking problems for LTL and CTL* are PSPACE hard

[SC85, CES86], which means that the verification time is exponential in the size

of the specification. Hence, although verification is usually linear to the size

of the model, even checking relatively small models can take a long time while

smaller models can be checked faster. Of course, the closer the model approx-

imates reality, the less abstract it is and hence the more states it comprises.

As a result, finite-state systems used in Model Checking are often either model

small systems such as hardware controllers or they model an application on a

very abstract level. The latter case of course makes the method incomplete:

An application can still contain errors on a fine-grained level, which cannot be

detected by verifying an abstract, coarse-grained model. This is where Runtime

Verification comes into play.

2.1.2 Runtime Verification

Runtime Verification (RV) is a special field of runtime testing where test cases

are generated from a formal specification. Thus RV shares with Model Checking

the properties that both assume a given specification and check something for

compliance with this specification. The major differences are the following:

1. While static approaches usually work on a model of a piece of software,

Runtime Verification requires the actual application, simply because the
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specification is checked against a running program (or a trace which was

recorded at an earlier time).

2. As a consequence, paths in the world of Runtime Verification are usually

finite, because the runtime of an application is finite: At some point the

test is finished as the application is shut down. Reasoning abut infinite

execution paths only makes sense if one is able to detect cycles in the

execution flow, which is usually not possible with the Runtime Verification

techniques that are available today.

3. While approaches like Model Checking usually aim to verify the behaviour

of an application on all possible execution paths, in Runtime Verification

one only observes the one and only execution path and checks the speci-

fication against it.

4. As a consequence, Runtime Verification is not actually real verification:

Even when the specification is satisfied on all inspected paths, there might

still be another violating path, which has simply not been tested yet.

Therefore good path coverage is necessary to achieve a high reliability.

As a consequence, Runtime Verification usually collaborates with unit

testing [Bec00], which is aimed at good path coverage as well.

Due to those properties, J-LO takes specifications of the form of LTL formula

with finite path semantics. LTL is suitable here, since it reasons about one single

path, which is the current execution path in our case. Because the application

is checked over a finite running time, the path is always finite and the semantics

are defined accordingly.

J-LO instruments the actual application in such a way, that each given formula

is checked during runtime. Formulae which state liveness conditions (such as

something happens again and again) are evaluated over the whole path and

their final state is reported during application shutdown.

Specification of those formulae takes place using metadata annotations. That

way they become part of the public interface. The annotations are being intro-

duced in the following section.

2.2 Java 5 Metadata

The metadata facility was introduced to Java in version 5, which corresponds

to version 3 of the Java Language Specification [GJSB05]. Its specification

took place in the Java Community Process (JCP) with the Java Specification

Request 175 [JSR]. This document states:
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This facility allows developers to define custom annotation types

and to annotate fields, methods, classes, and other program ele-

ments with annotations corresponding to these types. These anno-

tations do not directly affect the semantics of a program. Devel-

opment and deployment tools can, however, read these annotations

and process them in some fashion, perhaps producing additional

Java programming language source files, XML documents, or other

artifacts to be used in conjunction with the program containing the

annotations.

Every annotation has an annotation type associated with it. In

order to create an annotation type, you must declare it with an

annotation type declaration. In addition to enabling a family of

annotations, declaring an annotation type creates an interface that

can be used to read those annotations. Annotation types can also

be used in the definition of other annotation types, giving rise to

annotation types with deep structure, and allowing substructures to

be reused. Annotation types share the same namespace as ordinary

class and interface types.

In J-LO we use the annotation type shown in table 2.6.

1 @Retention(CLASS)

2 @Target({CONSTRUCTOR,METHOD,TYPE,FIELD})

3 public @interface LTL {

4 String value ();

5 }

Table 2.6: LTL annotation type in J-LO

The annotation type itself contains annotations which alter its applicability:

Line 1 defines that the Retention Policy for annotations of this type shall be

CLASS. This means that such annotations are persistently stored in the bytecode

however are not to be made available to the reflection framework at runtime.

Since J-LO instruments the application statically, this is fully sufficient. There

are other Retention Types SOURCE and RUNTIME. The former advises the com-

piler to not even compile annotations into bytecode, while the latter leads to

annotations which are still available in the bytecode and during the runtime of

the application. The application can use reflection to retrieve annotations over

a generated interface and alter its behaviour according to the semantics of the

annotation.

Line 2 states the possible Element types which annotations of this type can

be attached to. In J-LO, annotations can be attached to constructors, meth-

ods, types and fields. Other available Element Types are PACKAGE, PARAMETER,
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ANNOTATION TYPE and LOCAL VARIABLE, all of which seem not to be very suit-

able locations for the purpose of specifying formulae. It should be noted that

annotations on local variables can only have SOURCE retention, since Java byte-

code is stack based and thus local variables are not retained.

Lines 3 to 5 define the actual annotation type. Its name is LTL and its only

parameter is a String of name value.

The annotation type can then be used as shown in table 2.7.

1 class Foo {

2 @LTL(value=”<someFormula>”)

3 int field = 23;

4

5 @LTL(”<someOtherFormula>”)

6 void bar() {

7 ...

8 }

9 ...

10 }

Table 2.7: Example LTL annotation in J-LO

In line 2, the field is annotated with a value of "<someFormula>". This could

generally be any constant string. In order to be correctly parsed by J-LO, it

will in our case have to adhere to the LTL syntax we define. value is actually a

special label for an annotation parameter: If an annotation has only one para-

meter and its name is value, then this name can be omitted when instantiating

an annotation. An example of this is shown in line 5.

So in our scenario, the user annotates constructors, methods, types and fields

with formulae, which are then being compiled to bytecode using a standard

compiler. J-LO extracts those annotations and applies the appropriate verifi-

cation semantics to the application.

In order to do so, J-LO needs to employ instrumentation techniques. We use

the aspect-oriented language AspectJ for this purpose, which we explain in the

next section.

2.3 Aspect-oriented programming

The purpose of Aspect-oriented programming (AOP) is to separate crosscutting

concerns. Such concerns are typically technical features that scatter throughout

a given program and whose implementation is usually not part of the application

core.
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Such concerns typically include tracing/logging, authentication, caching, trans-

actioning and so forth [Lad03, CCHW05]. Figure 2.8 [CCBH03] shows how

the implementation of logging is originally implemented in the Apache Tomcat

[Goo01] servlet container.

The dark horizontal bars mark regions of code where logging is implemented,

while white regions comprise other source code. Classes shown in gray imple-

ment no logging at all.

As one can easily see, the logging code is scattered through about half of the

classes. Using an aspect, all code concerned with logging could be separated

into one single unit of code.

Figure 2.8: Logging as crosscutting concern in Tomcat

Aspect-oriented programming is performed using an AOP language, which is

usually built as a language extension on top of one of the traditional functional,

imperative or object-oriented programming languages.

Functional languages like LISP and SCHEME [CI91] tend to have support for

AOP virtually built-in [Cos03] and indeed Gregor Kiczales, one of the pioneers

of AOP, mentions [Lem04] that the idea of AOP originates from experiences

with MacLisp.

However, the most widely used aspect-oriented programming language today is

AspectJ , which is built on top of Java. It was originally developed by Xerox

PARC2 in the late 90’s. Later on various companies and researchers contributed

to its development. Especially IBM keeps pushing forward AspectJ till this

date and provides powerful tool integration for several IDEs such as Eclipse3,

which originated from IBM and is now an independent open source project. At

IBM, AOP is today in wide use in a production environment for application

middleware products. According to Bill Gates, also Microsoft started embracing

AOP technology during the last years [SFS02].

In the following we want to introduce the basic concepts of aspect-oriented

programming by giving some examples in AspectJ. Afterwards we explain the

basic semantics of AspectJ as they are necessary to understand the internal

workings of J-LO .

2Palo Alto Research Center
3http://www.eclipse.org/
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2.3.1 The anatomy of an aspect

In AspectJ, an aspect is an implementation of a crosscutting concern. Each

aspect can be understood as a reactive unit: It consists of pointcuts, which tell

when to react, and pieces of advice which tell how to react. Aspects interact

with a base application during runtime at well-defined interaction points.

2.3.1.1 Joinpoints

Those points are called joinpoints. As we will see later on, a joinpoint is not

actually a point but rather an interval in the dynamic control flow of an appli-

cation. Examples are the execution of a method, the initialization of a class or

write access to a field.

Sets of joinpoints can be described by pointcuts.

2.3.1.2 Pointcuts

A pointcut is a predicate over joinpoints. In AspectJ one can distinguish be-

tween the following classes of pointcuts:

• Context binding pointcuts (this, target, args)

Those are used to expose context (objects) to the aspect for internal use.

• Kinded pointcuts (call, set, . . . )

Primitive pointcuts picking out join points of a certain kind (e.g. method

calls, field accesses).

• Lexical pointcuts (within, withincode)

When conjoined with other pointcuts, those pointcuts can restrict the set

of matched joinpoints by lexical scopes.

• Control flow-based pointcuts (cflow, cflowbelow)

Those restrict matching to joinpoints inside a certain control flow.

• Expression-based pointcuts (if)

Those pointcuts can evaluate Boolean expressions and match based on

the evaluation result.

• Boolean combinations

For each two pointcuts pc1 and pc2, !pc1, pc1 || pc2 and pc1 && pc2

are valid pointcuts as well. Their semantics correspond to finite set in-

version, union and intersection respectively.

Each pointcut consists of a keyword (as above) depicting its kind, such as call,

execution etc., and a set of brackets holding a pattern. This pattern can be

of different types, depending on the kind of the pointcut:
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• TypePattern This stands for a pattern over an arbitrary Java type sig-

natures. Such patterns can contain the wildcard ’*’, which stands for

an arbitrary sequence of characters allowed inside an identifier. Also

they can use Boolean combinations of simple TypePatterns or the mod-

ifier ’+’ which matches all subclasses of a type. For instance (Foo* &&

!foo.Bar+) matches all types whose name starts with Foo and which are

not a subtype of foo.Bar.

• IDPattern This describes a pattern over Java identifiers. This can contain

wildcards as noted above.

• FieldPattern A field pattern describes a set of fields. Hence it has the form

ModifiersPattern TypePattern IDPattern. For instance public !static

Number+ num* would mean the set of all fields which are public but not

static, of a subtype of Number and whose name starts with num.

• MethodPattern A method pattern describes a set of methods accordingly.

It is of the form ModifiersPattern TypePattern TypePattern ’.’ IDPattern

’(’ TypePattern ’,’ ... ’)’ [’throws’ TypePattern]. For instance the pat-

tern public boolean *.equals(Object) matches all public methods

returning a boolean defined in any (*) class ans taking a single argument

of type Object.

• ConstructorPattern Such a pattern is meant to match a set of construc-

tors. It is similar to the MethodPattern: The only differences are that

there is no TypePattern for the return type and that the method iden-

tifier is fixed to new. So the pattern protected Cloneable+.new(..)

matches all protected constructors of implementors of the Cloneable

interface which take an arbitrary set of arguments. (’..’ stands for a list

of ’*’ of arbitrary length.)

The full list of available pointcuts in AspectJ is given in the appendix on page

132. Further information can be found in the AspectJ programming guide

[Asp]. We will refer to those pointcuts in the rest of this work.

2.3.1.3 Example

Assume we have an implementation of the aforementioned stack, of which an

excerpt is given by table 2.9.

In line 23, the main method constructs a new Stack with an initial capacity

of -1 which is immediately overriden by the value of INITIALSIZE inside the

constructor at line 10. In line 25, main invokes pop, which raises an exception

at line 14 due to the fact that the Stack is still empty. This exception is then

handled in line 27 by dumping it to System.err.
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1 class Stack extends ArrayList {

2

3 final static int INITIALSIZE = 1;

4

5 static int initialSize () {

6 return INITIALSIZE;

7 }

8

9 Stack(int initialSize ) {

10 super( initialSize>=0?initialSize: initialSize ());

11 }

12

13 Object pop() {

14 return this.remove(this.size()−1);

15 }

16

17 ...

18 }

19

20 class Main {

21

22 public static void main(String[] args) {

23 Stack s = new Stack(−1);

24 try {

25 s .pop();

26 } catch(Exception ex) {

27 System.err.println(ex);

28 }

29 }

30 }

Table 2.9: Example implementation of a stack
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Figure 2.10 shows a sequence diagram of the full execution of the main method.

Classes (static context) are drawn as curved boxes while objects have sharp

edges. The numbers are used to label points or regions (intervals) in the control

flow. The next paragraph describes them in detail.

1

2

Main Stack

new(-1)

initialSize()

4

1

<preinitialization>

super.<init>(1)

<init>(-1)

8

size()

0

remove(-1)

9

System

11

System.err

println(ex)

ex

err

s

s

6

5

<init>

7

pop()

10

get err

s

staticinitialization

staticinitialization

3

Figure 2.10: Example sequence diagram

We assume that we use AspectJ to instrument the two classes Main and Stack

only. Then the following holds.

• The pointcut staticinitialization(*) matches regions 1 and 3.

• Region 2 is for instance matched by execution(* *.main(String[])).
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• The pointcut cflow(execution(* *.main(String[]))) matches every-

thing in the control flow of region 2, which includes any region shown here

except region 1.

• The pointcut cflowbelow(execution(* *.main(String[]))) matches

the same as the last pointcut except region 2 itself.

• preinitialization(Stack.new(*)) matches region 4.

• initialization(Stack.new(*))matches regions 5 and 6, while pointcut

execution(Stack.new(*)) matches 6 only.

• At region 5, args(a) binds a to the value 1, while at region 6, it is bound

to -1, because this is the argument value of the constructor of Stack.

• Since regions 5 and 6 both lie inside the context of s, here both, this(t)

and target(t) binds t to the object s.

• Point number 7 is e.g. matched by call(Object Stack.pop()). Here

target(t) binds t to the Stack instance s. this(m) does not match for

any Object m, since point 7 lies in a static context and hence there is no

executing object.

• Region 9 is e.g. matched by handler(Throwable+), since Exception is

a subtype of Throwable. At this region, args(e) binds e to the thrown

exception ex.

• The pointcut get(PrintStream *) matches region 10.

Boolean combinations and invalid pointcuts

The aforementioned examples all comprised simple kinded pointcuts. Boolean

combinations of pointcuts are used to quantify over joinpoints even further.

For example, conjoining a pointcut pc1 with a pointcut pc2 narrows the set of

matched joinpoints to the intersection of both:

pointcut pc(Foo f): call(* *.foo(..)) && target(f);

This pointcut matches all calls to methods foo on types which are an instance

of Foo. The call target is bound to f. Not all combinations, however, are valid.

The following pointcut is invalid because it tries to bind f under negation. Since

the semantics are equivalent to all joinpoints where either not foo is called or

the call target is no instance of Foo, so there are joinpoints where f cannot be

bound to an instance of Foo.

pointcut notpc(Foo f): !(call(* *.foo(..)) && target(f));
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The AspectJ semantics demand that all parameters must always be bound.

Thus, this pointcut is invalid and an error is be given at compile time. The

reader should keep this in mind, since it is also a crucial point of the semantics

of J-LO.

2.3.1.4 Advice

As mentioned above, a piece of advice [Tei66] (or simply advice for short) is

the functional unit of an aspect. An advice tells, what to do at a particular

joinpoint. Hence, each advice consists of a pointcut specifying when the advice

should apply, and an advice body that executes code at each joinpoint matched

by the pointcut. In AspectJ there are five different kinds of advice:

Before advice This advice executes before each matched joinpoint. If the

before advice throws an exception this can prevent the original joinpoint

from executing.

After advice This advice executes after each matched joinpoint, regardless

the fact whether the joinpoint returned normally or an exception was

thrown.

After returning advice This advice executes after each matched joinpoint

in the case where no exception was thrown. If there is a return value

available, this can be exposed to the advice.

After returning advice This advice executes after each matched joinpoint

in the case where an exception was thrown. The thrown exception can be

exposed to the advice.

Around advice This advice can execute code before any matched joinpoint,

then may optionally proceed with the original joinpoint and execute code

after the original joinpoint has finished execution.

Example 2.3.1 (Advice)

Coming back to our example of a stack, one may find that it would be desirable

to have a somewhat more precise exception message for the case where pop is

invoked on an empty stack. The old code would just issue an inappropriate

ArrayIndexOutOfBoundsException. The advice shown in table 2.11 shows

how a more precise error message could be provided.

Line 1 declares an around advice returning an Object. This around advice

captures joinpoints matched by call(* Stack.pop()) && target(s), with s

being bound to the call target.

In line 4, the advice invokes proceed(..). This either calls the next advice

matching the same joinpoint or the original joinpoint if there is no further
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1 Object around(Stack s):

2 call(∗ Stack.pop()) && target(s) {

3 try {

4 return proceed(s);

5 } catch (ArrayIndexOutOfBoundsException e) {

6 if (s . size()==0) {

7 throw new IllegalStateException(

8 ”Don’t use pop() when Stack is empty!”

9 );

10 } else {

11 throw e;

12 }

13 }

14 }

Table 2.11: Advanced exception handling by the means of an around advice

matching advice as in our example. proceed(..) here gets the parameter s,

which leaves the original call unchanged. One could have rerouted the call to

another Stack by exchanging the parameter for another Stack object.

If this call returns without throwing an exception, the advice simply propagates

the return value as stated in line 4.

However, every ArrayIndexOutOfBoundsException thrown by the stack im-

plementation is caught in line 5. The stack, which has been bound to s is

inspected further: If the size is 0, it throws an appropriate semantic exception

(lines 7-9). Otherwise, the original exception is thrown (line 11).

In that way, an aspect can handle the concern of exception handling as a sepa-

rate, modular unit.

As mentioned in the description of proceed(..), sometimes multiple pieces of

advice can apply to the same joinpoint and in that case it may be important,

which advice is executed first respectively last. This problem can be solved by

defining an advice precedence. Understanding advice precedence is crucial to

understanding J-LO. Thus we explain this mechanism in the following section.

2.3.1.5 Advice precedence

Advice precedence in AspectJ is defined in two layers:

The first layer defines what aspect precedes what other aspects. This is defined

by a declare precedence statement. Such a statement takes a sequence of

type patterns (see page 28) as arguments.
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The following statement shows a declare precedence statement that gives

any aspect matching the type pattern *CachingAspect higher precedence than

any subclass of LoggingAspect.

declare precedence: ∗CachingAspect, LoggingAspect+;

The second layer defines precedence of pieces of advice inside one and the same

aspect. Here precedence is based on the order in which pieces of advice are

written down inside the aspect. The applied rules are indeed far from straight-

forward. Details can be found in the AspectJ documentation [Asp].

In the case of J-LO , we only employ before and after advice. If one limits pieces

of advice to those and makes sure that all before advice precede all after advice

in the textual ordering of each aspect, then those are executed in exactly this

order at each joinpoint.

Apart from declaring precedence, in AspectJ one can also declare other things:

For instance AspectJ supports open classes in a way that an aspect can declare

members (fields or methods) on other classes. In the upcoming AspectJ 5, one

can even declare Java 5 annotations on members or types. This is an interesting

feature for J-LO and thus a feature we briefly want to explain.

2.4 AspectJ and metadata

Ramnivas Laddad’s tutorial at JavaOne 2004 [Jav04] was titled AOP and meta-

data: It takes two to tango. This sentence is not just an empty shell as he

explains: Aspects may well be used to both supply and consume metadata in

a modular way.

2.4.1 Supplying metadata

In AspectJ 5 any aspect can supply metadata to any class by using the declare

annotation statement. The following statement for example marks any method

inside a class Account as Authenticated:

declare annotation: ∗ Account.∗(..)

: @Authenticated(permission=”banking”);

For J-LO this means that in the future specifications could be supplied from

an arbitrary aspect declaring appropriate formulae to arbitrary classes.

2.4.2 Consuming metadata

On the other hand, aspects can consume metadata: The pointcut language was

enhanced to allow matching on entities carrying a specific annotation. The

following pointcut for example matches the execution of any method annotated

with an Authenticated annotation.
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pointcut authenticatedOps():

execution(@Authenticated ∗ ∗.∗(..));

Further details can be found in Laddad’s DeveloperWorks article [Lad05]. This

article was published within the series AOP@Work which is certainly an en-

joyable reading for everyone who wants to get a practical insight into AspectJ

and similar AOP languages.

This shall conclude our excursion to Metadata and aspect-oriented program-

ming. A further note shall be given on weak references, special references which

are used within the J-LO implementation. In order to be able to evaluate for-

mulae with free variables being bound to objects, we have to reference such

objects in the J-LO implementation. In order to not to prevent such bound

objects from being garbage collected, we use weak references whenever possible.

2.5 Weak references in Java

An important feature of managed code environments such as the Java Runtime

Environment is garbage collection (GC). Garbage collection assures that no

memory is being held by the virtual machine for objects which are no longer ac-

cessible. Today there are various efficient garbage collection algorithms around

(see [Jon96] for an overview). In the case of J-LO however, we wanted to

make sure that the runtime verification does not interfere with GC: Objects

should not be prevented from being garbage collected because this could lead

to scalability problems.

Usual references in Java are strong. A strong reference to an object prevents

this object from being garbage collected. Fortunately, since version 1.2, Java

supports weak and soft references. Those are special container types that can

hold one single strong reference to an object. Soft references only differ from

weak references in some minor details which are not of concern for the imple-

mentation of J-LO . Hence in the following, we refer only to weak references as

a shortcut.

If an object o references an object p over a weak reference, and p is not refer-

enced by another strong reference, then p is available for garbage collection (it

is assumed to be unreachable).

Additionally, each weak reference can be queried, if the referenced object is still

available, has not been garbage collected yet. That way J-LO can track objects

without strongly referencing them. Hence, monitored objects can be garbage

collected as if J-LO was not present. If this occurs, J-LO treats this event in a

well-defined way as we explain in section 4.4.2.

This concludes our presentation of background information. Based on this

knowledge, we are now going to proceed with a detailed description of the

syntax and semantics of our formalism.



Chapter 3

The syntax and semantics of

DLTL

This chapter is organized as follows:

First we introduce the syntax that J-LO provides to define LTL formulae. Here

we introduce free variables, which can be bound to objects during runtime.

In the next section, we introduce general finite path semantics for LTL. This is

necessary, since formulae in Runtime Verification reason about a finite execution

path. Our definition follows [HR01c] and has been frequently used in Runtime

Verification literature.

In section 3.2.3 we explain in detail, why those semantics are insufficient in the

case of J-LO where free variables may occur in propositions. We give reasons

for why in J-LO , free variables are bound over time.

This leads to the necessity to partition an LTL formula ϕ into two parts now(ϕ)

and next(ϕ), where the former has to hold at the current state and the latter

on the subsequent path. This transformation is explained in detail in section

3.2.4.

Based on this notion of now and next, in section 3.3 we then define our full

declarative semantics including a description of how free variables are handled.

The aforementioned definition of now and next assumes that in a given formula

no variable is used before it is defined. Hence, section 3.4 presents a static

analysis that allows to decide whether or not a formula fulfills this assumption.

Eventually, section 3.5 introduces the operational and prove them equivalent

with the declarative semantics that have been described before.

So let us begin with the definition of the syntax. Given that we have a distinct

semantics for our LTL formalism which is quite different compared to earlier

approaches, we are going to refer to this special kind of LTL as Dynamic LTL

(DLTL).

36
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3.1 Syntax of DLTL

DLTL is a linear temporal logic over AspectJ pointcuts featuring dynamic bind-

ing of free variables. AspectJ pointcuts are, as explained in section 2.3.1.2,

predicates over joinpoints, those being intervals in the dynamic control flow of

a running application.

Temporal logic usually does not reason about intervals. The atomic unit of

most temporal logics, including LTL, is a state. Hence we would like to be able

to identify points in the dynamic control flow and interpret those as states.

Fortunately, AspectJ gives us the opportunity to execute code both before and

after each joinpoint (cf. section 2.3.1.4).

Making use of this feature, we do not define joinpoints as atoms of our logic but

rather the entry and exit events of joinpoints. Distinguishing, as AspectJ does,

between a normal return and a return by exception, this leads to the following

syntax for propositions:

〈proposition〉 −→ entry( 〈pointcut〉 )

| exit( 〈pointcut〉 )

| exit( 〈pointcut〉 ) returning 〈identifier〉

| exit( 〈pointcut〉 ) throwing 〈identifier〉

The term constructors for formulae are defined as in usual LTL. Normally for

LTL the operators U ,X,¬,∨, and ∧ suffice for full expressiveness. For conve-

nience we allow the full set of LTL operators plus the operators → (implies)

and ↔ (equivalent).

〈arg〉 −→ 〈proposition〉 | 〈formula body〉

〈formula body〉 −→ F( 〈arg〉 ) | G( 〈arg〉 )

| X( 〈arg〉 ) | !( 〈arg〉 )

| ( 〈arg〉 U 〈arg〉 ) | ( 〈arg〉 R 〈arg〉 )

| ( 〈arg〉 || 〈arg〉 ) | ( 〈arg〉 && 〈arg〉 )

| ( 〈arg〉 -> 〈arg〉 ) | ( 〈arg〉 <-> 〈arg〉 )

Here ”!” means negation, ”||” the nonexclusive or, and ”&&” means and.

In J-LO propositions may define and access free variables that bind objects

at runtime. Those variables have to be typed in order to allow for static type

checking and to adhere to the fully typed AspectJ semantics. Thus, free vari-

ables need to be declared with a type in front of the formula:

〈formula〉 −→ [〈formal parameter list〉 :] 〈formula body〉
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1 Stack s:

2 G(

3 (

4 exit( call(Stack.new(..)) ) returning s

5 ) −> (

6 X(

7 F(

8 entry( call(∗ Stack.push(Object)) && target(s) )

9 )

10 )

11 )

12 )

Table 3.1: Stack example in DLTL

Table 3.1 gives a short example of what such a formula could look like.

Line 4 specifies a proposition which holds at the exit event of a constructor call.

Further, it binds the free variable s (declared in line 1). Line 8 specifies the

entry event of a call to push with call target s.

The formula states that globally whenever a new Stack s is constructed, then

finally push is invoked on s.

Having this first initial picture of how properties can be specified with J-LO ,

let us now move to the semantics of such a specification and let us define what

it actually means for an LTL formula to hold on a finite path. The basic idea

is that all safety requirements (”something bad never happens”) are restricted

to the given finite path and all eventualities (lifeness conditions - ”something

good eventually happens”) have to be fulfilled before the path ends.

3.2 Towards a declarative semantics

3.2.1 Notation

For propositions in general we write p, q, · · · ∈ P.

Such propositions may bind free variables. For instance a proposition exit(*

call(A.foo()) && target(x)) binds the variable x — we say it defines a

value for x. We write p(~x), q(~y), . . . for propositions p and q defining variables

~x := {x1, . . . , xn} respectively ~y := {y1, . . . , ym}.

Also, proposition may refer to variables, which have been defined earlier on

a path. For instance a proposition exit(* call(A.foo()) && target(x) &&
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if(x!=y)) refers to a variable y, which is not at the same time defined by the

proposition. We say that the proposition uses y. We underline used variables

and so write p(~x, ~x′) for a proposition p defining variables ~x and using ~x′.1

A state shall in our semantics be identified with the propositions that hold at

this state. Hence, we define the state set S by S := 2P .

3.2.2 General finite path semantics

Let P be a set of atomic propositions and π = π[0]...π[n− 1] ∈ Sn a finite path

with n ≥ 0. For each path position π[i] (0 ≤ i < n) and proposition p ∈ P and

formulae ϕ and ψ:

π[i] |= tt, π[i] 6|= ff ,

π[i] |= p iff p ∈ π[i]

|= X ϕ iff i < n and π[i+ 1] |= ϕ

|= F ϕ iff ∃k (i ≤ k ≤ n) s.th. π[k] |= ϕ

|= G ϕ iff ∀k (i ≤ k ≤ n) → π[k] |= ϕ

|= ϕ U ψ iff ∃k (i ≤ k ≤ n) s.th. π[k] |= ψ

∧ ∀l (i ≤ l < k) → π[l] |= ϕ

|= ϕ R ψ iff ∀k (i ≤ k ≤ n) → π[k] |= ψ

∨ ∃l (i ≤ l < k) s.th. π[l] |= ϕ

Note that formulae ϕ R ψ hold on the empty path with n = 0 whereas U-

formulae do not. Here, still the following equations hold:

F ϕ ≡ tt U ϕ

G ϕ ≡ ff R ϕ

ϕ U ψ ≡ ψ ∨ (ϕ ∧X(ϕ U ψ))

ϕ R ψ ≡ ψ ∧ (ϕ ∨X(ϕ R ψ))

Also, still for each LTL formula with finite path semantics there exists an equiv-

alent formula in negation normal form with solely ¬,X,U,R operators and

negation only in front of propositions, just as over infinite paths (cf. section

2.1).

Remark 3.2.1 (General assumption)

In the following, we want to assume that ϕ is in negation normal form. This

enables us to restrict definitions to the above operators. It is straightforward

1It shall be noted that this distinction between variable definitions and uses is only neces-

sary for the declarative and operational semantics. Opposed to implementations as e.g. HAWK

[dH05, HBS03a, HBS03b, HBS04] (cf. section 6.2.2), J-LO automatically infers whether a vari-

able is used or defined by a given proposition. This is done by the means of a static analysis

explained in section 3.4.
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to extend any of the definitions to further operators as F and G or the weak

until operator W, which is frequently used in related literature and is defined

as ϕ W ψ := (ϕ U ψ) ∨ G ϕ.

The above definition of finite path semantics has been used in various publica-

tions in the field of Runtime Verification during the past years [HR01c, HBS03a,

HR04]. Initial experiments during the development of J-LO successfully used

the very same semantics without any changes. However, when introducing the

possibility of free variables in propositions, we found that those semantics lead

to problems. The question to be answered turns out to be the following:

For a proposition p(~x) with free variables ~x,

when does p(~x) hold at a state π[i] ∈ 2P ?

The next section explains this problem in detail.

3.2.3 Why usual quantification semantics are insufficient

Usually, when dealing with free variables in mathematical logics of any kind,

the idea is to bind those variables by implicit or explicit quantifications so that

they are not free any more:

Given a variable x with possible valuations over a finite domain DOM and a

formula ϕ(x) where x occurs free in the usual meaning. Then the semantics of

ϕ(x) can simply be defined through quantification.

For universal quantification: Jϕ(x)K := J∀x.ϕ(x)K =
∧

a∈DOM

Jϕ(a)K

For existential quantification: Jϕ(x)K := J∃x.ϕ(x)K =
∨

a∈DOM

Jϕ(a)K

The reader should note the following:

1. ϕ(a) is a formula without any free variables. Thus its semantics are clear.

2. For the above approach, it is essential that |DOM | < ∞, because other-

wise the equations do not hold.

The second point is the essential reason for why this approach is not feasible

in the case where propositions contain free variables. The question is: What is

DOM?

A first idea would be to define DOM as the set of all objects on the heap of a

Java application. This however imposes several problems: First of all, this set

can be of arbitrary size. Theoretically, there is no limit on how many objects

can be instantiated. This size only depends on the available amount of memory.
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Of course one could still argue that the available amount of memory is always

limited and thus we yet have a finite domain. However, even then it would not

be possible for any Java application to conduct any proof over that domain,

since no such program has direct access to the heap2 and hence the domain

cannot be enumerated.

A second approach, which is feasible and indeed was taken in an early Haskell

prototype [SH04], would be to define DOM as the set of all valuations of free

variables which occur during the execution of the path, and then quantify over

this domain.

For example given the formula p(x) ∨ q(y, x) and the path π = {q(1, x)} we

could say that possible valuations are (x, y) ∈ dom(x) × dom(y) = ∅ × {1}.

The Haskell prototype uses universal quantification, so we get:

π |= p(x) ∨ q(y, x) ⇐⇒

π |=
∧

x′∈dom(x)

∧

y′∈dom(y)

p(x) ∨ q(y, x) ⇐⇒

π |=
∧

x′∈∅

∧

y′∈{1}

p(x) ∨ q(y, x) ⇐⇒

true

Given that without taking variables into account, certainly false should be

issued, this result is somewhat undesired. Note that in the one and only state

q(1, x) holds. Actually it would be open to debate, if a proposition q(y, x)

holds at this state or not, due to the use of the undefined value of x. Is this

constraint fulfilled or not? Quantification takes away this complexity: Since in

the example the domain of x is empty, there is nothing to check.

In Haskell this behaviour is natural because formulae are modeled by lambda

functions, which are evaluated lazily: A formula ϕ(x, y) is actually a function

λxλy.ϕ(x, y). Such a function cannot be evaluated before x and y have a defined

value.

The approach however, suffers from two problems in practice:

1. We are bound to universal quantification. This could naturally be solved

by making quantification explicit, penalizing simplicity of the syntax.

2There is a chance of getting a handle to all objects by instrumenting the constructor

execution of java.lang.Object. However, this means instrumenting the Java Runtime Li-

brary, which is not always desirable, nor would it be compliant with the Sun License (see

http://java.sun.com/j2se/1.5.0/). Also it would doubtfully be efficient to do so.



42 CHAPTER 3. THE SYNTAX AND SEMANTICS OF DLTL

2. Since the domain of any variable is determined by the valuations of this

variable over the whole path, this whole path must be known in order to

fully evaluate a formula. This is a major restriction, given that one of the

design goals of J-LO is early fault detection.

The second problem was the reason for defining the semantics of J-LO in a

dynamic way. The semantics of a DLTL formula are not defined over a finite

domain, which is to be known in advance. Rather, the domain establishes itself

as one walks along the path, binding valuations as we go. In order to be able

to do so, we show that each LTL formula ϕ can be split into two parts, now(ϕ)

and next(ϕ), with respect to a state, so that at this state, ϕ holds iff both

now(ϕ) and next(ϕ) hold.

However, this approach forbids formulae as the one above, where propositions

use variables which are still unbound at the time they are to be evaluated.

Hence, in chapter 3.4 we present a static analysis that is able to detect such

formulae.

3.2.4 Transformation to now and next

The declarative semantics of DLTL are based on the idea that valuations are

collected over time and in this way form the domain over which we check.

Essential to the idea are the notions of the current state and future states. Each

LTL formula can be thought of a partition of subformulae, each talking about

either the current state or the rest of the path.

3.2.4.1 The notion of now and next

An important observation is that any LTL formula ϕ can be partitioned, with

respect to the current state π into two formulae now(ϕ) and next(ϕ) in such a

way that π |= ϕ iff π |= now(ϕ) and π |= next(ϕ).

In the following we assume a path π = π[0], . . . , π[n− 1] with n > 0.
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Definition 3.2.2 (Function now)

The function now : LTL → LTL is recursively defined as:

now(p) := p

now(¬p) := ¬now(p)

now(X ϕ) := true

now(ϕ ∧ ψ) := now(ϕ) ∧ now(ψ)

now(ϕ ∨ ψ) := now(ϕ) ∨ now(ψ)

now(ϕ U ψ) := now(ψ ∨ (ϕ ∧ X(ϕ U ψ)))

= now(ψ) ∨ now(ϕ)

now(ϕ R ψ) := now(ψ ∧ (ϕ ∨ X(ϕ R ψ)))

= ( now(ψ) ∧ now(ϕ) ) ∨ now(ψ)

= now(ψ)

Note that for any ϕ the result of now(p) is a Boolean combination of proposi-

tions. The function now(ϕ) reflects that part of ϕ that can be fully evaluated

in state π[i], under the assumption that ϕ holds on the subsequent path.

Definition 3.2.3 (Function next)

For 0 ≤ i < n, the function next : LTL → LTL is recursively defined by

next(ϕ) := X next′(ϕ) with next′(ϕ) defined as:

If i < n then:

next′(p) :=

{

true if π[i] |= p,

false otherwise

next′(¬p) := ¬ next′(p)

next′(X ϕ) := ϕ

next′(ϕ ∧ ψ) := next′(ϕ) ∧ next′(ψ)

next′(ϕ ∨ ψ) := next′(ϕ) ∨ next′(ψ)

next′(ϕ U ψ) := next′(ψ ∨ (ϕ ∧ X(ϕ U ψ)))

next′(ϕ R ψ) := next′(ψ ∧ (ϕ ∨ X(ϕ R ψ)))

Else (i = n):

next′(ϕ) := false

Note that the definition of next depends on the state π[0]. Also note that

whenever next(p) ∈ {true, false}, then we have the opportunity to apply early

fault detection: The formula is fully determined. One can report satisfaction

respectively failure at once.
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Example 3.2.4 (Functions now and next)

Given the formula ϕ = p U q and the path π = {p}{q}, s.th. π |= ϕ holds.

The calculation of now leads to:

now(ϕ) = now(p U q) = q ∨ p

The calculation of next leads to:

next(ϕ)

= X next′(p U q)

= . . .

= X( false ∨ ( next′(p) ∧ next′(X(p U q)) ) )

= X( false ∨ ( true ∧ (p U q) ) )

= X( p U q )

Now it holds that π = {p}{q} |= now(ϕ) = q ∨ p and π = {p}{q} |= next(ϕ) =

X( p U q ).

Theorem 3.2.5 (Correctness of now and next)

For all ϕ ∈ LTL and all π ∈ S+ it holds that:

π |= ϕ ⇐⇒ π |= now(ϕ) ∧ next(ϕ)

Proof 3.2.6 (Correctness of now and next)

Completeness (⇒):

Assume a formula ϕ ∈ DLTL and a path π ∈ S+ and assume that π |= ϕ.

Then in particular it holds that π[0] |= ϕ. Also we know that all parts of ϕ which

are (implicitly3 or explicitly) guarded by an X operator do not contribute to

the truth value of π[0] |= ϕ. Hence it directly follows that π[0] |= now(ϕ). Since

now(ϕ) does not contain any temporal operators, it follows that π |= now(ϕ).

According to the general finite path semantics of LTL (cf. section 3.2.2) we can

easily see that starting from the evaluation of π[1] the formulae ϕ and next(ϕ)

are equivalent, because the definition of next follows the semantics in every case

but the handling of the X operator: The function next pushes the X operator

to the outermost level. Since X is distributive over all LTL operators, this is an

equivalent transformation. Hence π1 |= next(ϕ). Since next(ϕ) is of the form

X next′(ϕ), it also holds that π |= next(ϕ).

Soundness (⇐):

The proof of soundness is similar and is left as an exercise to the reader.

In order to be able to proceed it is important to note the following.

3By implicitly we mean cases where X appears in the semantic evaluation of U or R.
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Observation 3.2.7

The evaluation of now(ϕ) depends only on those propositions in cl(ϕ), which

are not (implicitly or explicitly) guarded by an X operator. Evaluation of the

latter may be deferred at least until the next state. With respect to free variable

bindings this means that we only need to make sure that all variables in the

portion now(ϕ) of ϕ are bound when we want to evaluate ϕ in the current state.

Using now and next, we are now able to define our declarative semantics.

3.3 Declarative semantics of DLTL

In order to do so, we define in an introductory subsection a formal notion of

joinpoints, states, pointcuts, and propositions with free variables. In particular

a pointcut must be able to provide a valuation at a given joinpoint so that we

can use this valuation to bind objects within the formula.

The section is then concluded by the definition of the declarative semantics for

a DLTL formula holding such propositions.

For this section we assume the following notation.

1. V is a finite set of variable names. O is some possibly infinite object

domain.

2. We sometimes write functions in λ-notation: A term λxλy . x < y rep-

resents an anonymous function which takes two arguments x and y and

returns the Boolean value of x < y.

3. For some function we use a set based notation: {x 7→ 1} stands for the

partial function which maps x to 1. (In all other cases the function is

undefined.)

4. Some functions f are defined over propositions, pointcuts or bindings.

Sometimes we apply those functions to whole formulae ϕ. In this context

we mean that the function is applied to all propositions/pointcuts/bind-

ings in cl(ϕ) and the resulting formula is returned. Also such functions

may be overloaded for sets of propositions, which mean that the function

is applied to all elements and the appropriate set is returned. In any case,

the function f̃ shall denote the appropriately overloaded version of f for

its context.

In order to proceed, we still need the following assumption.
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3.3.1 Filtered paths

The declarative semantics are based on the general assumption that we only

observe states where at least one proposition holds. For instance if we specify

that each call to a method f() is followed by a call to g(), then the actual

execution trace

{h}{f, h}{h}{g}

is filtered. The reduced path which is used for further evaluation is

{f}{g}

because h is not contained in cl(ϕ). We proceed by introducing general terms

our semantics are based on.

3.3.2 Basic definitions

Definition 3.3.1 (Joinpoint)

Let O be a (possibly infinite) set of objects. A joinpoint in DLTL is a tuple

ι = (thisι, targetι,argsι, retι, exι) with:

thisι ∈ O ∪ {�} the currently executing object at ι,

targetι ∈ O ∪ {�} the call target object at ι,

argsι ∈ Ok ∪ {�} the argument vector of a method call or execution at ι,

retι ∈ O ∪ {�} the object returned by a method call or execution at ι,

exι ∈ O ∪ {�} the exception thrown at a method call or execution at ι.

Any of this/target/args/ret/ex may be undefined (for instance when executing

in a static context, see figure 2.10). This is reflected by a value of �.

We denote the set of all joinpoints by JP .

Further we define the set of all objects provided by a joinpoint ι, Oι as:

Oι := ( {thisι, targetι, retι, exι}∪{
k⋃

i=1

{oi} | argsι = {o1, . . . , ok}} ) \ {�}.

Definition 3.3.2 (Control flow)

Joinpoints can be cascaded at runtime: Since joinpoints are intervals in the

control flow, one joinpoint can occur within another.

Hence for a joinpoint ι ∈ JP we define its control flow cf low(ι) as the sequence

cf low(ι) := ι0, . . . , ιn−1 ∈ JPn where ιn−1 = ι and for all 0 ≤ i < n− 1 it holds

that ιi+1 occurs within ιi+1.

We define the set of all available objects in the control flow of ι as:

Ocflowι :=
⋃

ι′∈cflow(ι)

Oι′
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Definition 3.3.3 (Entry/exit kinds)

We define the set K of all entry/exit kinds of propositions as

K := {entry, exit, exit returning, exit throwing}.

Also we define a partial order E ⊂ K ×K as:

E := { (k, k) | k ∈ K } ∪ { (exit, exit returning), (exit, exit throwing) }.

This shall reflect the fact that exit is not only matched by exit but also by

exit returning and exit throwing (cf. definition of advice in section 2.3.1.4).

Definition 3.3.4 (State)

A state s is a tuple s = (ιs, ks) ∈ JP × (K\{exit}). We denote the set of

all states as S := JP × (K\{exit}). exit is here excluded because any exit

event is either an exit by throwing an exception (exit throwing) or an exit by

returning some value (exit returning).

Definition 3.3.5 (Pointcut)

A Poincut (or Crosscut, X-Cut) χ is a tuple χ = (µχ, ~vχ, σχ) with:

µχ : JP → B the matching function of χ,

~vχ = {l1, . . . , ln} ∈ 2V the set of variables defined by χ,

σχ : JP → (~vχ → O) the valuation function of χ.4

We denote the set of all pointcuts by PC .

Here for all χ ∈ PC , ι ∈ JP , σχ(ι) is defined if and only if µχ(ι) = true. This is

due to the fact that a pointcut which does not match a joinpoint cannot expose

any values at this joinpoint. Hence, for cases where µχ(ι) = false, we write

σχ(ι) = �. Further, the range of σχ(ι) shall be restricted to values of Ocflowι ,

because according to the AspectJ semantics only objects in the control flow can

be accessed.

Note that for the sake of an easy notation we denote matching functions by

the appropriate pointcut expressions with their natural semantics as defined by

AspectJ.

Example 3.3.6 (Pointcut)

Assume the following AspectJ pointcut definition:

pointcut pc(Stack s): call(Object Stack.pop()) && target(s);

In our notation this would define a pointcut χ = (µχ, ~vχ, σχ) with:

µχ = call(Object Stack.pop()) && target(s),

4Note that here we use the set ~vχ as type. This shall denote that the mapping functions

returned by σχ are partial functions over 2V but fully defined nonpartial functions over ~vχ.
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~vχ = { s },

σχ = λι.{ s 7→ targetι }.

Definition 3.3.7 (Binding)

A binding is a partial function β : V 99K (O ∪ {�}). We denote the set of all

possible bindings as B := {β | β : V 99K (O ∪ {�})}.

A binding function β may define certain variables as unbound5. We denote the

fact that a variable x is unbound by { x 7→ � }.

For each V ′ ⊆ V, we define the set B|V ′ of all bindings over V ′ as B|V ′ := {β :

V ′ 99K (O ∪ {�})}.

Definition 3.3.8 (Proposition)

Let L be a finite set of labels. Then a proposition is a tuple p = (lp, χp, kp, βp) ∈

L × PC ×K ×B.

We call lp the label of p, χp is the pointcut associated with p. kp denotes the

entry/exit kind of p while we call βp the current binding of p.

The binding function βp is dynamic over time. It is initialized as:

βp := { x 7→ � | x is a variable in χp }.

This includes also used variables, variables contained in χp but not in ~vχp .

An example for such a proposition will be given on page 49. We denote the set

of all propositions by P. Further we write Pϕ for the set of all propositions of

a formula ϕ:

Pϕ := cl(ϕ) ∩ P

In the following, we define what it means for a proposition p to hold at a given

state (we say, that p matches the state). This definition is based on the current

binding of p which, as we will see in later sections, is dynamic over time. The

way in which those bindings propagate is the key point of the semantics of J-LO

and also the point where we will use the splitting into now and next.

Definition 3.3.9 (Matching)

For a state s = (ιs, ks) ∈ S and a proposition p = (l, χ, k, β) ∈ P, we say that

p matches s or holds in s, s |= p for short, if with µ′χ := (σ̃χ ◦ β̃) (µχ), the

following conditions hold:

1. µ′χ(ιs) = true,

5One could raise the questions why one does not just drop unbound mappings from the

function definition. The reason for this design decision is that our operational semantics uses

such unbound mappings to replace them by appropriate bindings to objects.
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2. k E ks.

The first requirement states that the pointcut of p must match the given join-

point, where in the matching function free variables have been replaced by first

bindings and then the valuations of the contained pointcut. The second one

requires that the entry/exit kinds are compatible. If a proposition p matches a

state under a certain binding β, we say that β is a satisfying binding for p.

In order to be able to evaluate µ′χ(ιs), one must make sure that µ′χ does not con-

tain any free variables. Variables can be bound by either the binding function

β or the valuation function σχ of the current joinpoint. if pointcuts, may refer

to bound values not exposed by the current joinpoint. Here one must make

sure that the binding function β is rich enough to bind all free variables. The

static analysis we introduce in section 3.4 allows to ensure this. Let us discuss

this problem by an example.

Example 3.3.10 (Proposition)

Assume the following proposition:

exit( call(Object Stack.pop()) && if(o1!=o2) ) returning o1

In our semantics this yields a proposition p = (lp, χp, kp, βp) with:

• lp = "exit( call(Object Stack.pop()) && if(o1!=o2) )

returning o1"

• χp = (µχp , ~vχp , σχp) with

– µχp = call(Object Stack.pop()) && if(o1!=o2)

– ~vχp = { o1 }

– σχp = λι. { o1 7→ retι }

• kp = exit returning

• βp = { o1 7→ �, o2 7→ �}

Note that in particular, the matching function call(Object Stack.pop()) &&

if(o1!=o2) uses variables o1 and o2. The valuation function of the associated

pointcut, σχp , is however only rich enough to define a value for o1. As a

consequence, in order to evaluate µ′χ := (σ̃χp ◦ β̃p) (µχ), one must make sure

that the binding βp provides a value 6= � for o2, when this proposition is to be

evaluated.

While the static analysis we define in section 3.4 will ensure this, for now assume

the following:
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For any formula ϕ, at any given state π[i], all propositions contained in

now(ϕ) are sufficiently bound, so that any variable used in now(ϕ) has a

defined value 6= �.

As we mentioned earlier, the key point of the dynamic semantics of DLTL is

to understand how, when, and where free variables should be bound and most

importantly why one should do it the way we define it.

In the following subsection we hence want to motivate this mechanism by an-

other example.

In this example as well as all the following sections of this chapter we want to

assume that the functions now and next as well as the satisfaction relation |=

are equally defined for DLTL formulae as they are for LTL formulae. Indeed

the semantics are fully equivalent except the different semantics of s |= p for a

state s and a proposition p, because here we need to take bindings into account.

3.3.3 Bindings by example

In this section we use the following notations for propositions with bindings:

The term p(x) stands for a proposition p with ~vχp = {x} and βp = {x 7→ �} (x

is a variable in p, which is currently unbound).

A term p(1) should informally denote the proposition where x has been bound

to 1 ∈ O, so that now βp = {x 7→ 1}.

Example 3.3.11 (Propagation of bindings)

Let ϕ(x) := G(p(x) → F q(x)) and π = {p(1), p(2)}{q(1)}.

We want the semantics of this formula to imply that for each possible valuation

x′ of x on the occurrence of p(x), we finally see the proposition q(x′) on the path.

In other words, the quantification over free variables is reduced to quantification

over states. The given path π would violate ϕ, because p(2) gives a valuation

x = 2 so that there is no matching q(2) to follow.

In order to see how the desired effect can be achieved let’s have a look at now

and next. At π[0] It holds that:

now(ϕ(x)) = true and next(ϕ(x)) = X( ϕ(x) ∧ F q(x) )

Of particular interest here is the result of next. This formula imposes the

obligation on the subsequent path that has to be fulfilled in order to satisfy

ϕ. Here this obligation says that finally q(x) has to hold as well as again ϕ(x)

(this is due to the G operator). What we would actually like is that on the

subsequent path q(1) and q(2) should hold at some point. Also, ϕ(x) should

hold for all possible valuations that are yet unknown.
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Hence, the desired obligation would be X( ϕ(x)∧F q(1)∧F q(2) ). In the final

state π[1] this would evaluate to ϕ(x)∧F q(2), expressing that the requirement

F q(2) was not yet fulfilled. (Note that ϕ(x) ∧ F q(2) is a nonfinal state in an

AFA, while ϕ(x) is final.)

Informally the semantics are as follows.

Observation 3.3.12 (Declarative semantics, informally)

For a formula ϕ(~x) and a state π[i] it holds that π[i] |= ϕ(~x) if and only if for

all possible valuations ~x′ at π[i] both, now(ϕ(~x′)) and next(ϕ(~x′)) hold, where

next leaves variables in the original ϕ(~x) unbound.

The last property might seem as an unusual exception at a first glance. How-

ever, when looking at the equivalent AFA, it becomes clear that the original

formula occurs as subformula of next(ϕ(~x)) in exactly those cases where further

evaluation of the formula is deferred to the next state. Taking into account that

the AFA is partially ordered (see page 2.1.1.4), one can say that variables are

bound if and only if one moves further down in this order, so if one moves from

a state ϕ1 to ϕ2 with ϕ1 � ϕ2.

This observation is already a good start however there is still one uncertainty

that needs disambiguation: What are ”all possible valuations ~x′ at π[i]” ?

This shall be clarified by the next subsection.

3.3.4 Possible valuations

Again, we want to approach this problem by an example.

Example 3.3.13 (Possible valuations)

Assume the formula ϕ(x, y) := p(x, y) → XG p(y, x) and the path π :=

{p(1, 2)}{p(2, 1)}. Intuitively, the path should clearly satisfy ϕ, since p(x, y)

matches π[0] = {p(1, 2)} with x = 1, y = 2 and the formula states that in this

case, p(y, x), i.e. p(2, 1) under those bindings, should hold on the subsequent

path. This is obviously satisfied by the only subsequent state π[1] = {p(2, 1)}.

Important to this example is that p(x, y) and p(y, x) are essentially the same

propositions, not taking bindings into account. Being unbound, they share the

same matching semantics . This means that each state s on π is matched by

p(x, y) if and only if it is matched by p(y, x) or, in other words, p(x, y) holds if

and only if p(y, x) holds.

Hence, in state π[0] we can identify two matching propositions: p(x, y) with

x = 1, y = 2 and p(y, x) with y = 1, x = 2, leading to possible valuations as

x ∈ {1, 2}, y ∈ {1, 2} as a first try.
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If we took this as defined ”set of possible valuations” as referred to in ob-

servation 3.3.12, this would mean, that in state π[1] one would have the fol-

lowing obligations to fulfill: G p(2, 1) and G p(1, 2). This is violated by

π[1] = {p(2, 1)}, since p(1, 2) does not hold.

So apparently the valuation y = 1, x = 2 is not a ”possible valuation” in the

above sense, but why not? The solution becomes clear through inspection of

the given formula. Here, we can see that now(ϕ) = ¬p(x, y) does not contain

p(y, x). Hence, the binding y = 1, x = 2 should not contribute to the truth

value of now(ϕ), nor should it be a binding to persist for the evaluation of

future states.

This observation yields the following definitions.

Definition 3.3.14 (Active propositions)

Let ϕ ∈ DLTL. Then Pact
ϕ ⊆ P, the set of active propositions of ϕ, is defined

as the set of propositions contained in now(ϕ): Pact
ϕ := cl(now(ϕ)) ∩ P.

Definition 3.3.15 (Active propositions at a state)

Pact
ϕ (s) ⊆ P, the set of active propositions in ϕ matching s is defined as:

Pact
ϕ (s) := { p ∈ Pact

ϕ | µχp(ιs) ∧ ks E kp}.

Definition 3.3.16 (Active Bindings)

In order to build the set of active bindings, first we list all possible mappings and

then extract all possible mapping functions from this set. Let s = (ιs, ks) ∈ S

and ϕ ∈ DLTL.

Define allϕ(s) as:

allϕ(s) := {(x, o) ∈ V ×O | ∃p ∈ Pact
ϕ (s) : {x 7→ o} ∈ σχp(ιs)}

Then Bact
ϕ (s) ∈ 2B , the set of active bindings at s under ϕ is defined as:

Bact
ϕ (s) := {β ∈ B | ∀x with (x, o) ∈ allϕ(s) :

∃1{x 7→ o′} ∈ β s.th. (x, o′) ∈ allϕ(s)}

Here ∃1 means: ”exists exactly one”.

Those active bindings are the ”possible valuations” we referred to in observation

3.3.12.

In this observation we also postulated that next should not bind any free vari-

ables ”in the original formula”. Hence, in the following subsection we redefine

next accordingly: The function remains unchanged for all subformulae ϕ′ of

a formula ϕ except in cases where ϕ′ has the form Xϕ′′: Here we only bind

values in the case where ϕ′′ 6= ϕ, because only in those cases where we move

”further down” in the alternating automata, we make a ”real step” according

to the partial order �.
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3.3.5 Redefinition of next for DLTL

Definition 3.3.17 (Function next for DLTL)

Let π ∈ Sn. Let ϕ(~x) ∈ DLTL.

We define next(ϕ(~x)) := nextϕ(~x)(ϕ(~x)) with nextϕ(~x) : DLTL → DLTL being

recursively defined as:

If ϕ′ ∈ cl(ϕ), ~x′ ⊆ ~x and ϕ′(~x′) = X ϕ′′(~x′) then:

nextϕ(~x)(ϕ
′(~x′)) = nextϕ(~x)(X ϕ′′(~x′)) :=

{

ϕ′′(~x) if ϕ′′ = ϕ, (stay unbound)

ϕ′′(~x′) otherwise, (bind)

Else:

nextϕ(~x)(ϕ
′(~x′)) := next(ϕ′(~x′)) (as before)

Now we are ready to define the general declarative semantics. Here we postulate

a function valid : DLTL → B with valid(ϕ) = true if and only if in ϕ any

variable is defined before it is used. In section 3.4 we are going to explain this

function in detail and introduce a static analysis which decides if valid(ϕ) holds

for a given formula ϕ.

3.3.6 Declarative semantics of a DLTL formula

Definition 3.3.18 (Declarative semantics of a DLTL formula)

Let ϕ(~x) ∈ DLTL with valid(ϕ) = true and π ∈ S+.

π |= ϕ(~x)

: ⇐⇒

∀β ∈ Bact
ϕ (π[0]) :

π |= now(β̃(ϕ(~x))) ∧ π |= nextϕ(~x)(β̃(ϕ(~x)))

For the case of the empty path where |π| = 0, we define:

π |= ϕ

: ⇐⇒

ϕ = (ϕ′ R ψ′) for some ϕ′, ψ′ ∈ cl(ϕ)

Example 3.3.19 (Declarative semantics of a DLTL formula)

Let ϕ(x, y) := G( p(x) → XF q(y, x) ) and π := {p(1)}{q(2, x)}.

Further assume that for µχq , the matching function of q has such a structure

that q(2, 1) is a satisfying binding (cf. definition 3.3.9).

Then we have:
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π |= ϕ(x, y)

⇐⇒

∀β ∈ Bact
ϕ (π[0]) :

π |= now(β̃(ϕ(x, y))) ∧ π |= nextϕ(x,y)(β̃(ϕ(x, y)))

⇐⇒

π |= now((λx.x 7→ 1) (ϕ(x, y))
︸ ︷︷ ︸

ϕ(1,y)

) ∧ π |= nextϕ(x,y)((λx.x 7→ 1) (ϕ(x, y))
︸ ︷︷ ︸

ϕ(1,y)

)

⇐⇒

π |= now(ϕ(1, y))
︸ ︷︷ ︸

true

∧ π |= nextϕ(x,y)(ϕ(1, y))
︸ ︷︷ ︸

X( ϕ(x,y) ∧ F q(y,1) )

⇐⇒

π |= true
︸ ︷︷ ︸

true

∧ π |= X( ϕ(x, y) ∧ F q(y, 1) )

⇐⇒

π1 |= ϕ(x, y) ∧ F q(y, 1)
︸ ︷︷ ︸

=:ϕ′(x,y)

⇐⇒

∀β ∈ Bact
ϕ′(x,y)(π[1]) :

π1 |= now(β̃(ϕ′(x, y))) ∧ π1 |= nextϕ′(x,y)(β̃(ϕ′(x, y)))

⇐⇒

π1 |= now((λy.y 7→ 2) (ϕ′(x, y))) ∧ π1 |= nextϕ′(x,y)((λy.y 7→ 2) (ϕ′(x, y)))

⇐⇒

π1 |= now(ϕ(x, 2) ∧ F q(2, 1))
︸ ︷︷ ︸

true

∧ π1 |= nextϕ′(x,y)(ϕ(x, 2) ∧ F q(2, 1))
︸ ︷︷ ︸

X ϕ(x,y)

⇐⇒

π1 |= true ∧ π1 |= X ϕ(x, y)

⇐⇒

π1 |= true ∧ π2 |= ϕ(x, y)
︸ ︷︷ ︸

true

⇐⇒

true

Note that in the last step |π2| = 0 and ϕ(x, y) is a Release formula.

This example shall conclude our definition of the declarative semantics of DLTL.

We now proceed with the definition and correctness proof of the static analysis

which detects invalid formulae.
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3.4 Static analysis

The analysis is based on the idea of use-definition chains (UD chains) as they

are known from compiler construction theory. Opposed to usual UD chains,

which calculate the set of definitions which potentially reach a variable, our

analysis in conservative, meaning that for a used variable we calculate the set

of definitions which certainly reach this variable6. If this is empty, we report

the formula as invalid.

Again, we want to derive the details of this analysis by looking at an example.

Example 3.4.1 (Static Analysis - propagation over ”∧”)

Take for example the following formula:

ϕ(x, y) := p(x) ∧ XF q(y, x)

This formula has an obvious splitting to the subformulae now(ϕ(x, y)) = p(x),

and next(ϕ(x, y)), which depends on the current state s.

Here, two cases can occur:

1. s |= p(x), say with a binding x = 1. This binding is available for the rest

of the path and in particular for the evaluation of nextϕ(x,y)(ϕ(1, y)) =

F q(y, 1) on subsequent states.

2. p(x) 6|= p(x). In this case, we have no binding for x at the current state.

However, this binding would not be needed anyway, since the formula

now(ϕ(x, y)) evaluates to false already.

So informally one can say that bindings defined by propositions progagate over

the ∧-operator : A binding that is defined by a proposition in one branch of an

∧-term is also available in the other branch.

A case which is a bit harder to identify is the following.

Example 3.4.2 (Static Analysis - propagation over ”∨”)

ϕ(x, y) := p(x) → X F q(y, x)

which is in NNF:

¬p(x) ∨ X ( true U q(y, x) )

6Note that it is no error, if a variable has more than one such definition. In this case, the

variable is bound by the first occurring definition. The latter definitions are automatically

turned into uses of this variable.
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At a first glance it seems unclear how a binding should be available for the

evaluation of F q(y, x), given that p(x) occurs in negated form.

However, again it helps to look at the possible cases:

1. p(x) does not hold at the current state s. In this case, we have no binding

for x at the current state. However, again this does not hurt, since both

formulae now(ϕ(x, y)) = ¬p(x) and nextϕ(x,y)(ϕ(x, y)) evaluate to true.

2. p(x) holds at the current state s, say with a binding x = 1. Again,

this binding is available for the rest of the path and in particular for the

evaluation of nextϕ(x,y)(ϕ(1, y))s = F q(y, 1) on subsequent states.

Again, informally one can conclude that bindings defined by negated propositions

progagate over the ∨-operator.

This should tell us that the following formula should be considered as invalid.

Example 3.4.3 (Static Analysis - invalid formula)

Recall again the example from section 3.2.3, which the Haskell version evaluated

to true by quantifying over an empty domain.

p(x) ∨ q(y, x)

Here, p(x) is not negated and is a direct subformula of a ∨-formula.

We can distinguish the following cases:

1. p(x) holds at the current state, thus providing a binding for x. Then now

and next both evaluate to true.

2. p(x) does not hold at the current state, hence we have no binding for x

available. This is interesting with respect to the evaluation of q:

(a) q(y, x) does not hold. This is the easy case. Since neither of the

propositions hold, we should evaluate to false.

(b) q(y, x) holds, providing a binding for y. However, q(y, x) uses x,

whose value is undefined. Those are exactly the cases we want to

exclude.

In order to check if a given formula ϕ ∈ DLTL is valid informally, we proceed

as follows:

1. For each possible point in time (i.e. joinpoint) produce a set def (ϕ) of

variables which are defined at this time.

2. For each such point in time also check for each variable if this variable is

defined on this or one of the previous points in time.
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Such possible points in time can be distinguished by explicit or implicit oc-

currences of the X operator. The set def ⊆ 2V of defined variables is then

calculated according to the above observations:

Definition 3.4.4 (Function def )

Let DLTLnnf the set of all DLTL formulae in negation normal form (cf. section

2.1) and ϕ ∈ DLTLnnf . Let p ∈ P. Then we define def : DLTLnnf → 2V as:

def (ϕ) := def +(ϕ) ∪ def −(ϕ)

where

def +(p) := ~vχp

def +(¬p) := ∅

def +(X ϕ) := ∅

def +(ϕ ∧ ψ) := def +(ϕ) ∪ def +(ψ)

def +(ϕ ∨ ψ) := def +(ϕ) ∩ def +(ψ)

def +(ϕ U ψ) := def +(ψ ∨ (ϕ ∧ X(ϕ U ψ)))

= def +(ϕ) ∩ def +(ψ)

def +(ϕ R ψ) := def +(ψ ∧ (ϕ ∨ X(ϕ R ψ)))

= def +(ψ)

and

def −(p) := ∅

def −(¬p) := ~vχp

def −(X ϕ) := ∅

def −(ϕ ∧ ψ) := def −(ϕ) ∩ def −(ψ)

def −(ϕ ∨ ψ) := def −(ϕ) ∪ def −(ψ)

def −(ϕ U ψ) := def −(ψ ∨ (ϕ ∧ X(ϕ U ψ)))

= def −(ψ)

def −(ϕ R ψ) := def −(ψ ∧ (ϕ ∨ X(ϕ R ψ)))

= def −(ϕ) ∩ def −(ψ)

Here def +(ϕ) provides the variables which are bound by propositions contained

in nonnegated form at the current point in time, while def −(ϕ) provides those

for propositions which occur under negation.

Next, we define the logical counterpart, the function use which represents the

variables of Pϕ which are used by any of the propositions at some point in time

but not defined by the same proposition.
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Definition 3.4.5 (Function use)

Assume that ϕ ∈ DLTLnnf is in negation normal form. Let p ∈ P. Let

�2 ∈ {∧,∨,U,R}. Then we define use : DLTLnnf → 2V as:

use(p) := {x ∈ V | (x, o) ∈ βp ∧ x 6∈ def (p)}

= {x ∈ V | (x, o) ∈ βp ∧ x 6∈ ~vχp}

use(¬p) := use(p)

use(X ϕ) := ∅

use(ϕ�2 ψ) := use(ϕ) ∪ use(ψ)

With those definitions it is now straightforward to define the function valid(ϕ),

which is true if and only if ϕ defines any free variable before it is used.

Definition 3.4.6 (Function valid)

Assume that ϕ ∈ DLTLnnf is in negation normal form. Let p ∈ P. Let

�1 ∈ {¬,X},�2 ∈ {∧,∨,U,R}. Then we define valid : DLTLnnf → B as:

valid(ϕ) := validdef (ϕ)(ϕ)

where for D ⊆ V :

validD(p) := use(p) ⊆ D

validD(�1ϕ) := validD∪def (�1ϕ)(ϕ)

validD(ϕ�2 ψ) := validD∪def (ϕ�2ψ)(ϕ) ∧ validD∪def (ϕ�2ψ)(ψ)

For an implementation one might want to inline the definitions and so derive

reductions as the following:

validD(X ϕ) := validD∪def (X ϕ)(ϕ)

= validD

validD(¬p) := validD∪def (¬p)(ϕ)

= validD∪{~vχp}

. . . and so forth.

Example 3.4.7 (Static analysis - invalid formula (formally))

Let us assume again the following formula, where x means that x is not defined

by q, i.e. x 6∈ ~vχq :

ϕ := p(x) ∨ q(y, x)



3.4. STATIC ANALYSIS 59

Then we have:

valid(ϕ) = validdef (ϕ)(ϕ) = valid∅(ϕ)

= valid∅(p(x) ∨ q(y, x))

= use(ϕ) ⊆ ∅ ∧ valid∅∪def (ϕ)(p(x)) ∧ valid∅∪def (ϕ)(q(y, x))

= {x} ⊆ ∅ ∧ valid∅(p(x)) ∧ valid∅(q(y, x))

= false

Theorem 3.4.8 (Correctness of function valid)

For any formula ϕ ∈ DLTLnnf it holds that:

valid(ϕ) ⇐⇒ any variable in ϕ is defined before it is used

Proof 3.4.9 (Correctness of function valid)

Soundness (⇒):

Let ϕ ∈ DLTLnnf . Assume valid(ϕ) = validD(ϕ) = true with D = def (ϕ). We

perform a proof by structural induction and distinguish the following cases:

1. ϕ = p for some p ∈ P. Since valid(p) = true, we know that use(p) :=

{x ∈ V | (x, o) ∈ βp∧¬x ∈ def (p)} ⊆ D. Also we know by the definition of

def that D contains only variables which are defined on this or previous

temporal layers, because later temporal layers (which are explicitly or

implicitly guarded by X) do not contribute to the function def. Hence,

any variable in p is defined before it is used.

2. ϕ = �1ϕ
′ for some ϕ′ ∈ DLTLnnf . Since valid(ϕ) = true, it must also

hold that validD∪def (ϕ)(ϕ
′) = true. So by induction hypothesis ϕ′ defines

all variables before they are used. Since the move from ϕ′ to ϕ introduces

no new variables, the same holds for ϕ.

3. ϕ = ϕ′ �2 ψ
′ for some ϕ′, ψ′ ∈ DLTLnnf . This case can be handled as

above.

Completeness (⇐):

Let ϕ ∈ DLTLnnf . Assume any variable in ϕ is defined before it is used. We

distinguish the following cases:

ϕ = p for some p ∈ P. Since in p any variable which is used is defined by

the context, we have that ∀x : ((x, o) ∈ βp ∧ ¬x ∈ def (p)) → x ∈ D. Hence,

use(p) ⊆ D and so valid(p) = true.

ϕ = �1ϕ
′ for some ϕ′ ∈ DLTLnnf . Assume, that in ϕ all variables are defined

before they are used. Then by induction hypothesis, valid(ϕ′) = true. Hence

also valid(ϕ) = true.
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ϕ = ϕ′ �2 ψ
′ for some ϕ′, ψ′ ∈ DLTLnnf . Again, this case can be shown as

above.

It should be noted that this analysis is conservative: It assures that if a formula

ϕ is valid, then there is no path π so that there is a variable x in ϕ which could

be used before it is defined when evaluating ϕ over π. Obviously it could be

that those cases do not occur for a given formula and some given set of possible

runtime paths. Hence one could argue that invalid formulae should be treated

with a warning rather than a fast-fail error message. However, when bypassing

the static analysis in that way, the soundness of the matching semantics for a

proposition cannot be guaranteed any more: At the moment where we know

that a formula is valid and we come to decide if a proposition p over variables ~x

matches, then we know that it is sound to define that p does not match if any

of the values of those variables are undefined. When bypassing the analysis,

this guarantee can no longer be given: Hence, one would have no means of

determining an invalid path/formula combination at runtime, which would give

up soundness.

Example 3.4.10 (Unsound evaluation without static analysis)

Let us assume the following formula, where again x is used but not defined in

the proposition q:

ϕ(x, y) := p(x) ∧ q(y, x)

In the case where we do not perform a static analysis, we obviously do not

know if ϕ is valid. In the case where p(x) does not hold at state but q(y, x)

does, say with a value of y = 1 so that q(1, x) holds, we have to decide locally

if q(y, x) matches this current state.

Under the assumption that ϕ is valid, we know that it is safe to evaluate

δ(q(y, x)) to false in cases where x is unbound, because those are only exactly

those cases where p(x) does not hold and hence ϕ evaluates to false anyway. In

particular, when we evaluate δ(r) for a proposition r, this transition is always

well-defined.

If we do not know if ϕ is valid, we cannot make the assumption that ϕ is valid.

Hence, two cases can lead to the evaluation of a proposition r with insufficient

binding:

1. The well-defined cases as above.

2. Cases where a binding is indeed missing, meaning that a variable x is used

before it is defined.

In the second case, there is no value given for x. Hence, the one has to decide if

δ(r(x)) should evaluate to true or false without actually taking x into account,

which cannot lead to sound results in general.
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3.5 Operational semantics of DLTL

Our operational semantics follows the declarative semantics very closely. The

two major differences lie in a necessary special treatment of if pointcuts in

order to evaluate them in the right context.

The operational semantics are based on the following ideas.

1. We use an automaton based approach to propagate formulae over time.

We employ alternating automata (cf. section 2.1.1.4) like they are used

in Model Checking.

2. For each DLTL formula we generate an aspect which at startup regis-

ters the initial configuration of an automaton with an evaluation engine.

This initial configuration is equivalent to the given formula. Then, as

the application runs, the aspect reports at each joinpoint of interest the

currently active set of propositions to the engine, which then calculates

the successor states under those propositions.

3. In most cases, the evaluation of a matching function µχp for a given propo-

sition can entirely be handled by the AspectJ backend. Difficulties only

arise when pointcuts use if pointcuts, because in those cases the seman-

tics of DLTL and AspectJ differ: While if pointcuts in AspectJ can only

access values exposed at the current joinpoint, DLTL allows to also access

values which were defined by the formula on previous points in time. The

solution is to extract if pointcuts (say if(expr)) from a proposition,

replacing them by if(true) within the matching function while at the

same time putting a constraint ”expr” on the proposition7.

3.5.1 General assumptions

For easier reading, we make some general assumptions which shall be assumed

to hold throughout this chapter. In chapter 4 we will show how J-LO makes

sure that those assumptions are met.

3.5.1.1 Alternating automata

In the following, for each ϕ ∈ DLTL we denote by Aϕ the alternating automaton

for ϕ as it was first mentioned in definition 2.1.5. The construction can naturally

be extended for formulae over DLTL.

7Note that it does not suffice to simply eliminate if pointcuts from the pointcut ex-

pression: For a pointcut if(expr()) || pc(), this would lead to a residual pointcut pc(),

matching potentially less joinpoints than the original pointcut, while our technique generates

if(true) || pc(), which matches any joinpoint, so that no joinpoint is lost.
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3.5.1.2 Valid formulae

In this section we assume that each given ϕ ∈ DLTL is valid, i.e. it holds that

valid(ϕ) = true.

3.5.1.3 Valid if pointcuts

For each pointcut if(expr) contained in any proposition of any given DLTL

formula ϕ, we assume that expr is valid in the sense that for any possible

valuation it does not throw an exception and so provides a Boolean value as

result. This allows us to interpret expr as a function over bindings into B. Note

that because all formulae are valid, whenever expr is evaluated one can assume

that either all variables in expr are bound or expr can safely be evaluated to

false, as ϕ is assumed to be valid.

3.5.1.4 No garbage collection

For each object o being bound within a DLTL formula ϕ, we assume for this

section that by binding o, this object is prevented from being garbage collected.

In particular, o is available for subsequent matching and evaluation of if point-

cuts. This is important because the declarative semantics assume that at the

point in time where a proposition p is evaluated, its matching function µχp can

be evaluated, meaning that it does not contain any free variables any more. If

one of the objects referenced by µχp was garbage collected, this could lead to

null being tried to dereferenced during the evaluation of µχp and hence to a

runtime exception. We handle garbage collection by means of weak references

as described in section 4.4.2.

3.5.1.5 No side effects

We assume that for a given specification Φ ⊆ DLTL it holds that the evaluation

of any ϕ1 ∈ Φ is side effect free, meaning that it has no impact whatsoever on

the evaluation of any ϕ2 ∈ Φ (ϕ2 6= ϕ1). Also we assume that the evaluation of

any such ϕ ∈ Φ has no impact on the behaviour of the underlying application

and hence, the verified path π is independent on the specification Φ. The

implementation of J-LO makes sure that the application can be oblivious of

the inserted instrumentation. From a theoretical point of view this might seem

straightforward to achieve but in settings where AOP and multi-threading are

involved, some issues can arise which easily give up this propery. For instance

one has to make sure that accesses to shared variables are properly synchronized.

Section 4.3.6 explains how we deal with such issues.
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3.5.2 Basic Definitions

As done for the declarative semantics, we would first like to introduce some

basic definitions. Most of them are necessary to provide a framework for the

special treatment of if pointcuts.

Definition 3.5.1 (Constraints)

For each V ′ ⊆ V, we define the set CV ′ of all constraints over variables from V ′

as:

CV ′ = {c | c : B|V ′ → B }

Those constraints are used to represent if pointcuts in the right context, where

variables refer to values previously defined on the timeline rather than at the

current joinpoint (which is the AspectJ semantics).

Definition 3.5.2 (Operational proposition)

Let p ∈ P with P as it was defined in definition 3.3.8 with p = (lp, χp, kp, βp) ∈

L × PC ×K ×B.

We define the operational proposition p̂ as: p̂ := (lp, χ
′
p, kp, βp, ~γp) ∈ L × PC ×

K ×B × 2Cdom(βp) where:

χ′
p := (µ′χp

, ~vχp , σχp) with

µ′χp
:= µχpwhere all if pointcuts in µχp have been replaced by if(true),

~γp := {expr | if(expr)is an if pointcut in µχp}

the set of constraints of p̂.

We define the set P̂ of all such operational propositions as: P̂ := {p̂ | p ∈ P}.

Example 3.5.3 (Operational proposition)

As in example 3.3.10 we assume the following proposition p, where o2 is used

but not defined by p:

exit( call(Object Stack.pop()) && if(o1!=o2) )

returning o1

Then p̂ is defined as p̂ := (lp, χ
′
p, kp, βp, ~γp) with:

µ′χp
= call(Object Stack.pop()) && if(true)

= call(Object Stack.pop())

~γp = { λβ . ( β(o1) 6= β(o2) ) ∀β s.th. {o1 7→ o1, o2 7→ o2} ⊆ β }

and lp, kp, βp as before.
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Definition 3.5.4 (Matching of operational propositions)

For a state s = (ιs, ks) ∈ S and an operational proposition p̂ = (lp, χp, kp, βp, ~γp)

∈ P̂ we say that p̂ matches s or holds in s, s |= p̂ for short, if the following

holds:

1. µχ′
p
(ιs) = true,

2. ks E kp,

3. ∀γ ∈ ~γp : γ(βp) = true.

So the definition is essentially equivalent to definition 3.3.9, however addition-

ally all constraints have to be fulfilled. Please note that the static analysis (cf.

section 3.4) makes sure that each formula is valid, i.e. each binding function is

rich enough to allow evaluation of all constraints.

Remark 3.5.5 (Implementation of matching)

The AspectJ based implementation automatically makes sure that the first two

facts are always fulfilled: At each state, only those propositions hold, whose

matching function matches the associated joinpoint and whose entry/exit kind

is compatible with the one of the state. So the only condition that needs to be

checked by our backend is that all constraints are satisfied under the current

binding.

Definition 3.5.6 (Operational formula)

For each formula ϕ ∈ DLTL we denote by ϕ̂ the copy of ϕ where each proposi-

tion p ∈ Pϕ is being replaced by p̂.

Definition 3.5.7 (Alternating automaton for a formula ϕ ∈ DLTL)

We define the AFA Aϕ essentially as it was done for the purpose of Model

Checking (cf. section 2.1.5).

The only small problem that arises with this definition is the fact that the

transition function δ is a function from Q into 22Q
. In an implementation we

want to iterate the application of δ and hence we need to apply it to its own

result. However, it is quite easy to overload δ in such a way that it is defined

for elements of 22Q
as well. We are going to do so in section 3.5.2.1.

We call elements of 22Q
a clause set or a configuration of Aϕ. By overloading δ

in the aforementioned way, one can start with an initial configuration of {{ϕ̂}}

and then simply change to the successor configuration by applying δ.

We call a configuration q accepting if the following holds:

∃c ∈ q ∀ψ ∈ c : ( ψ = tt ∨ ∃ ϕ1, ψ1 : ψ = (ϕ1 R ψ1) )

Consequently we overload the set F of accepting states to a set F of accepting

configurations in that way.
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We define the language of Aϕ as:

L(Aϕ) := {π ∈ S+ | after reading π, Aϕ is in an accepting configuration }

The behaviour of such an AFA shall be reflected by the following example taken

from [BS06].

Example 3.5.8 (Automaton for a DLTL formula)

Let us consider a tree-like data structure that is built up by recursively adding

child nodes to a root. A child c can be added to a tree t, yielding the proposition

add(t, c). The proposition modify(t) holds whenever t is modified and finish(c)

holds at the point in time where the creation of the whole subtree at c is finished.

Now it is a requirement that t should not be modified until the creation of a

subtree has finished. This can be modelled by:

ϕ := G( add(t, c) → (finish(c) R ¬modify(t)) )

Figure 3.5.8 shows the AFA A for ϕ and the corresponding run of its binding

automaton for the following example. The initial formula, together with an

empty binding, is the initial state of BA,V . When reading add(t1, c1), the au-

tomaton moves to ϕ′ := finish(c) R ¬modify(t) with the actual binding of the

current joinpoint and at the same time stays at ϕ with the original (empty)

binding because of the self-loop that is part of the outer G. Note that both

states are within one and the same clause, which means that they are conjoined.

(The corresponding edge is drawn with a bulleted origin.)

ϕ ϕ′

tt

ff

a(t, c)

¬a(t, c)
¬m(t)
∧¬f(c)

f(c)

m(t)
∧¬f(c)

{ {(ϕ, [t 7→ �, c 7→ �])} }

↓ add(t1, c1) ↓

{ {(ϕ, [t 7→ �, c 7→ �]), (ϕ′, [t 7→ t1, c 7→ c1])} }

↓ finish(c1) ↓

{ {(ϕ, [t 7→ �, c 7→ �])} }

↓ add(t1, c2) ↓

{ {ϕ, [t 7→ �, c 7→ �]), (ϕ′, [t 7→ t1, c 7→ c2])} }

↓ modify(t1) ↓

{ {(ϕ, [t 7→ �, c 7→ �]), (ff , [t 7→ t1, c 7→ c2])
︸ ︷︷ ︸

nonfinal

} }

︸ ︷︷ ︸

nonfinal

Figure 3.2: Alternating automaton for a DLTL formula
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Remark 3.5.9 (Transition function)

The transition function δ is the essence of our implementation. Hence we wish

to describe it in detail.

When taking a transition from one configuration to another, this transforms one

set of clauses to another. Each clause holds subformulae of ϕ̂. All the transition

function has to do is to make sure that for each π[i] the appropriate successor

states are generated for all current valuations at π[i], as it was described in

section 3.3.13.

Example 3.5.10 (Operational semantics by example)

Take for example the following formula, where we write q(y)y 6=x for the propo-

sition q(y, x) where x is used in a constraint y 6= x:

ϕ(x, y) := G(p(x) → XF q(y)y 6=x)

and the trace π := {p(1), p(2)}{q(2)}{q(3)}, which satisfies ϕ.

The alternating automaton would start in configuration q0 := {{ϕ(x, y)}} ∈

F . At the first state π[0] = {p(1), p(2)} we would get possible valuations of

x ∈ {1, 2}. It holds that π[0] |= now(ϕ(x, y)) = true. For valuations x ∈

{1, 2} we get nextϕ(x,y)(ϕ(1, y)){p(1), p(2)} = ϕ(x, y) ∧ F q(y)y 6=1 respectively

nextϕ(x,y)(ϕ(2, y)){p(1), p(2)} = ϕ(x, y)∧F q(y)y 6=2. In the terms of alternating

automata operating on clause sets, this yields a successor configuration of:

q1 := { {ϕ(x, y),F q(y)y 6=1}, {ϕ(x, y),F q(y)y 6=2} }

Note that q1 6∈ F .

This is the next current configuration for the evaluation of π[1].

At π[1] = {q(2)} we only have one valuation: y ∈ {2}. Under this valuation, the

subformulae ϕ(x, y) and F q(y)y 6=2 remain unchanged, because the former only

”reacts” on p and in case of the latter the constraint y 6= 2 evaluates to false

under the valuation y = 2. Hence, π[1] 6|= q(y)y 6=2 for y = 2. In the case of the

subformula F q(y)y 6=1 it holds that π[1] |= q(y)y 6=1 for y = 2 and so F q(y)y 6=1

evaluates to true, which is { ∅ } in the terms of alternating automata. This

makes the subformula simply disappear and yields the successor state:

q2 := { {ϕ(x, y)}, {ϕ(x, y),F q(y)y 6=2} }

In the last state π[2] = {q(3)} it holds that π[2] |=y=3 q(y)y 6=2 and so we obtain:

q3 := { {ϕ(x, y)} } = q0

Note that q3 ∈ F , since q3 is a Release formula. Hence, π ∈ L(Aϕ).

When looking at state q2 we can make the following observation.
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Observation 3.5.11 (Minimal specification)

The configuration q2 specifies that the formula ϕ(x, y)∨(ϕ(x, y)∧F q(y)y 6=2) has

to hold on the subsequent path. It holds that ϕ(x, y) ∨ (ϕ(x, y) ∧F q(y)y 6=2) =

ϕ(x, y) ∧F q(y)y 6=2. This yields the state q′2 := { {ϕ(x, y),F q(y)y 6=2} }, which

is equivalent to q2. We call q′2 the minimal specification for q2. The observation

leads to what we call the subsumption reduction.

Definition 3.5.12 (Subsumption reduction)

Let ϕ ∈ DLTL and q = {c1, . . . , cn} ∈ 22cl(ϕ)
where the ci are clauses, sets of

states. Then we define the subsumption reduction of q, ssr(q) as:

ssr(q) :=







q if |q| < 2
⋃

i6=j

{ci ∩ cj} otherwise

Theorem 3.5.13 (Correctness of subsumption reduction)

Let ϕ ∈ DLTL, and q ∈ 22cl(ϕ)
. Let s ∈ S . Let Aϕ,q the copy of Aϕ with an

initial configuration of q. Then it holds that:

s ∈ L(Aϕ,q) ⇐⇒ s ∈ L(Aϕ,ssr(q))

This theorem is known as Lee’s Theorem [Lee67]. The easy proof is left as an

exercise to the interested reader. It can be looked up in [Lee67].

3.5.2.1 Definition of δ

Let s ∈ S and ϕ ∈ DLTL. Further let P ′ := Pact
ϕ (s) ⊆ P and B′ := Bact

ϕ (s).

Then, according to definition 3.5.7, the AFA Aϕ equivalent to ϕ is defined as:

Aϕ := (Q,Σ, q0, δ, F ), where we define δ : Q× Σ → Q by:

δ(q, s) := δ(q,Pact
ϕ (s)

︸ ︷︷ ︸

=:P ′

, Bact
ϕ (s)

︸ ︷︷ ︸

=:B′

) (3.1)

where δ({c1, . . . , cn},P
′, B′) :=

⋃

1≤i≤n

δ({ci1 , . . . , cini
},P ′, B′), (3.2)

where δ({ϕ1, . . . , ϕm},P
′, B′) :=

⊗

1≤i≤m

δ(ϕi,P
′, B′), (3.3)

where δ(ϕ,P ′, B′) :=
⊗

β∈B′

δ(ϕ,P ′, β), (3.4)

where δ(ϕ,P ′, β) := δ(ϕ,P ′, β, def (ϕ)). (3.5)

Here equation 3.1 reduces δ of a configuration and a state to δ of a configuration,

the active propositions and bindings at this state. Equation 3.2 then reduces δ
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of a configuration to the join of δ of all clauses. Then equation 3.3 reduces δ of

a clause to the clause product of the results for all single formulae. Equation

3.4 reduces δ of a formula and a set of valuations to the clause product of all

results for a single valuation and this formula. This reflects the fact that a

formula should hold for all possible valuations at a given state. Eventually 3.5

defines the start of a recursive descent, initializing a context D to the set of

variables defined by ϕ, def (ϕ). The recursion then continues as follows.

Definition 3.5.14 (Filtered bindings)

For any set of defined variables D ⊂ V we define the filtered binding β|D as:

β|D := {x 7→ o ∈ β | x ∈ D}

Remark 3.5.15 (Specialization of bindings)

The declarative semantics include a specialization step, where unbound bindings

are replaced by bindings to objects. In order to reflect this on the operational

side, for any β ∈ V → O, we overload β with β̂ : P → P such that for each

p = (lp, χp, kp, βp) ∈ P:

β̂(p) := (lp, χp, kp, β
′
p)

where

β′p := {{x 7→ o} ∈ βp | o 6= �} ∪ {{x 7→ o} ∈ β | βp(x) = �}.

For whole sets of propositions P ′ ⊆ P we define respectively β̂ : 2P → 2P as:

β̂(P ′) := {β̂(p) | p ∈ P ′}

Using those definitions, we can define the recursive descent of δ over ϕ as follows:

δ(p,P ′, β,D) :=

{

{ ∅ } if ∀γ ∈ ~γp : γ(β) = true ∧ β̂|D(p) ∈ β̂|D(P ′)

∅ otherwise

δ(¬p,P ′, β,D) :=

{

{ ∅ } if δ(p,P ′, β,D) = ∅

∅ otherwise

δ(X ϕ,P ′, β,D) := β̂|D(ϕ)

δ(ϕ ∧ ψ,P ′, β,D) := δ(ϕ,P ′, β, D ∪ def (ϕ ∧ ψ) ) ⊗

δ(ψ,P ′, β, D ∪ def (ϕ ∧ ψ) )

δ(ϕ ∨ ψ,P ′, β,D) := δ(ϕ,P ′, β, D ∪ def (ϕ ∨ ψ) ) ∪

δ(ψ,P ′, β, D ∪ def (ϕ ∨ ψ) )

δ(ϕ U ψ,P ′, β,D) := δ( ψ ∨ (ϕ ∧X(ϕ U ψ)) ,P ′, β, D ∪ def (ϕ U ψ) )

δ(ϕ R ψ,P ′, β,D) := δ( ψ ∧ (ϕ ∨X(ϕ R ψ)) ,P ′, β, D ∪ def (ϕ R ψ) )
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Here the only interesting equation is the first one specifying the successor for

a propositional state p. Here, according to remark 3.5.5 we make sure that all

constraints of p are fulfilled under the given binding β and then check of the

specialized version of p under this binding matches one of the propositions that

hold at the current state.

Based on this definition on the AFA Aϕ, we now define the operational seman-

tics.

3.5.3 Operational semantics of a DLTL formula

Definition 3.5.16 (Operational semantics of a DLTL formula)

Let ϕ ∈ DLTL, π ∈ S+. We say that π is a valid path for ϕ, if and only if:

π ∈ L(Aϕ).

In the following we want to prove that the declarative and operational semantics

coincide.

Theorem 3.5.17 (Equivalence of declarative and operational semantics)

Let ϕ ∈ DLTL, π ∈ S ∗. Then:

π |= ϕ ⇐⇒ π ∈ L(Aϕ)

3.5.4 Proof of equivalence of declarative and operational se-

mantics

The proof is structured as follows:

First we briefly give reasons for why an approach based on alternating automata

[MSS88] is correct in general. A formal proof was conducted by Vardi [Var96]

who introduced such automata for the purpose of LTL Model Checking.

What follows is the proof of equivalence on the level of a single valuation and

a single proposition. Based on the assumption that the semantics coincide on

this level, it is then easy to prove equivalence of the whole semantics.

3.5.4.1 Correctness of alternating automata

Vardi gave a formal correctness proof for alternating automata over infinite

paths in chapter 3 of [Var96]. The idea is a simple induction. Based on the

definition of δ it is obvious that the successor configuration of a configuration

c equivalent to a formula ϕ holds exactly the Boolean combination of states,

which represent next(ϕ). The definition of the acceptance set F in our case is

consistent with the fact that each configuration represents a disjunct of con-

juncts. A run of an AFA is accepting in this model, if there exists at least one
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clause in the final configuration such that all states in this clause are Release

formulae. This reflects that obligations (eventualities) which are put on a path

are represented by Until formulae. So when there exists a clause without such

obligations, this means that there exists a run such that all obligations have

been fulfilled. In the other case where no such clause exists, this means that in

all clauses at least one Until formula exists and hence on each run there is at

least one obligation not fulfilled.

3.5.4.2 Correctness on the propositional level

Let s = (ιs, ks) ∈ S and p = (l, χ, k, β) ∈ Pϕ for some formula ϕ. We need to

show that:

s |= p ⇐⇒ δ(p,Pact
ϕ (s), β) = { ∅ }

Completeness (⇒):

Assume s |= p. Then according to section 3.3.9 the following holds:

• µ′χ(ιs) = true,

• k E ks

for µ′χ := (σ̃µ ◦ β̃) (µχ).

On the operational side it holds for any context D that:

δ(p,Pact
ϕ (s), β) = δ(p,Pact

ϕ (s), β,D) :=

{

{ ∅ } if β|D(p) ∈ β|D(Pact
ϕ (s))

∅ otherwise

So we need to show that:

s |= p⇒ β|D(p) ∈ β|D(Pact
ϕ (s)).

Due to our static analysis we know that β|D is rich enough so that there are no

free variables in β|D(p). Since s |= p we know that there is a p′ ∈ Pact
ϕ (s) such

that µχ′

p̂′
(ιs) = true and ks = kp′ . (This is assured by the AspectJ implemen-

tation; cf. remark 3.5.5.) Since β|D is also rich enough to bind all free variables

in p′, and obviously ks = k, it holds that p′ = p. Hence β|D(p) ∈ β|D(Pact
ϕ (s))

holds as well.

Soundness (⇐):

The argument here is the very same. Since δ(p,P(s), β) = { ∅ } holds, we know

that β|D(p) ∈ β|D(P ′). Hence it also holds that µ′χ(ιs) = true and thus also

s |= p.
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3.5.4.3 Correctness in general

For proving the general correctness, we distinguish the two cases of the declar-

ative semantics where the current state π[0] either satisfies now(β̃(ϕ(~x))) or

not.

Case π[0] 6|= now(β̃(ϕ(~x))):

What we need to show is that in this case δ(ϕ, π[0], β) = ∅. Since π[0] 6|=

now(β̃(ϕ(~x))) holds, we know that even under the assumption that the subse-

quent path fulfills all obligations guarded by the X operator, the path violates

ϕ. Hence, it suffices to show that δ(now(ϕ), π[0], β) = ∅. We want to prove the

claim by contradiction:

Assume that δ(now(ϕ), π[0], β) = {c1, . . . , cn} with n > 0 and ∃i(1 ≤ i ≤

n) : |ci| > 0. Let ϕ′ ∈ ci for one such i. By definition, now(ϕ) is a Boolean

combination of propositions. Hence, the calculation of δ(now(ϕ), π[0], β) is fully

reduced to δ of Boolean combinations of ff and tt (resp. their equivalents ∅

and { ∅ }). Hence it suffices to concentrate on the Boolean connectives. For

the clause product ⊗ and any clause sets s1, s2 it holds that |s1⊗ s2| > 0 ⇐⇒

|s1| > 0 ∧ |s2| > 0. For the join operation ∪ and any clause sets s1, s2 it holds

that |s1 ∪ s2| > 0 ⇐⇒ |s1| > 0 ∨ |s2| > 0. So due to our assumption, it has

to hold that now(ϕ) consists of a Boolean combination such that for each join

term the evaluation of at least one of the two branches results in { ∅ } and for

each ⊗ term, the evaluation of both branches results in { ∅ }. If this were the

case, however, this would also mean that π[0] |= now(ϕ(β(~x))) which violates

the assumption.

Case π[0] |= now(ϕ(β(~x))):

In this case we need to show that if δ(ϕ, π[0]) = c it holds that δ∗(c, π1) ∈

F ⇐⇒ π1 |= ϕ (where δ∗ is the transitive hull of δ).

When looking at δ, one can easily see that the only case where formulae are

”produced” for the successor configuration is the one of ϕ = X ϕ′: Here the

inner formula ϕ′ is added - as a copy with specialized bindings. So all formulae

contained in c are subformulae of ϕ. Also, only those ϕ′ with ϕ′ 6= ϕ are

specialized, according to the definition of next for DLTL. Hence it should be

clear that c is equivalent to nextϕ(~x)(ϕ(β(~x))). Since the subsumption reduction

is sound and complete, it follows that δ∗(c, π1) ∈ F ⇐⇒ π1 |= ϕ.



Chapter 4

Implementation

The implementation of the runtime environment follows almost completely the

operational semantics. As the instrumented application runs, this runtime en-

vironment is triggered by aspects which are generated from formulae. Hence,

in a first step we extract formulae from the annotations of Java bytecode. This

is explained in section 4.1. For each formula ϕ ∈ DLTL we generate an aspect

in the AspectJ language. This code generation is performed using an extended

version of the AspectBench Compiler (abc) [ACH+05]. This compiler is intro-

duced in section 4.2. After code generation the generated aspects are instantly

woven into the original application by the abc backend. Figure 4.1 recalls the

workflow of J-LO. Further details about how we extended abc in order to ac-

complish this code generation can be found in our seminar paper [Bod05c]. In

this work we only want to give an overview of the employed tools. The details

of the generated code are given in section 4.3. Here we describe the generated

aspects and their members and explain how they relate to the operational se-

mantics. Section 4.4 explains the treatment of special runtime behaviour such

as exceptions, garbage collection and application shutdown. In particular our

implementation does not prevent any objects of the underlying application from

being garbage collected. In order to do so, we use special hash maps with weak

references (as they were explained in section 2.5) as values.

Specification 

G( p ) ... 

Java bytecode 

G( p ) ... 

AFA in AspectJ 

aspect F1 { ... 

Java bytecode 

if(!p) { ... 

Compiler Codegen Weaving 

J-LO

Figure 4.1: Workflow of J-LO usage

Figure 4.1 is repeated to remind the reader of workflow of J-LO .

72
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4.1 Annotation extraction

For annotation extraction in J-LO, we used the bytecode engineering toolkit

Bat2 [Eic05] which is being developed at the Darmstadt Software Technology

Group and is an offspring of the Magellan [EMOS04] framework for cross-

artefact information retrieval. Specifically, we used BAT2XML, an extension

of BAT2, which allows for transformation of classes in the Java bytecode for-

mat into an XML representation. J-LO uses BAT2XML to generate an XML

representation for each given class. This XML representation is then parsed in

order to extract the LTL formula annotations in String format, using standard

techniques.

BAT2XML allows to preserve line number information contained in the Java

bytecode as well as debug information such as the .java source file which

generated the corresponding bytecode file. Though not yet implemented, future

versions of J-LO could make use of this information in order to point the user

to the location1 where a formula was specified for the purpose of debugging.

As a result of this process, for a given set of class files, J-LO holds a list of LTL

formulae specified in those classes. The formulae are available in String format,

which means that they have to be parsed to be processed any further. This

parsing is accomplished with an extended version of the AspectBench compiler

and also performed at compile time.

In J-LO we install one formula for each annotation at the startup of the ap-

plication. Yet, the runtime environment is is open for extensions, so that one

could also install formulae dynamically, if necessary.

4.2 The AspectBench compiler

Unfortunately in the past, many proposed AspectJ language extensions have

gone into different builds of various compilers - mostly into the ajc [HH04]

compiler (the original implementation by PARC) but also into others like JAsCo

[SVJ03], AspectWerkz [Bon04] or in the form of hand coded preprocessors. The

AspectBench Compiler (abc) [ACH+05] which was developed in cooperation of

the Brics research center, the McGill University, and Oxford University, now

facilitates such extensions by providing an extensible, optimizing compiler for

the AspectJ programming language. This enables researchers to implement

and/or port such extensions into one common framework and so reuse their

implementations, as we described in [Bod05a].

1Unfortunately this information may not be 100% exact since annotations themselves have

no line numbers attached in the bytecode - only executable code has. Hence one would have

to approximate the location of the annotation e.g. by assigning the line number of the next

executable line of code.
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File X File Y

S ::= a include X

| b extend S ::= d

| c | e

File Z Result

include Y S ::= a

drop S ::= b | c

| d | e

Figure 4.2: Grammar extension mechanism

4.2.1 Structure of abc

All major Java-based compilers for AOP languages today, are so-called weaving

compilers: They have two major passes, one compilation pass, where the aspects

are translated into Java bytecode using a special compiler for that language, and

one weaving pass, where calls to the appropriate pieces of advice are woven into

the actual core application at all the places where pointcuts apply. Runtime

checks are inserted at all the necessary places.

As such a compiler, abc is based on two major frameworks: The compiler front-

end is the Polyglot [NCM03] compiler toolkit. Polyglot is a compiler framework

built as a front-end to PPG, an extensible LALR parser generator based on the

CUP LALR parser generator for Java. In PPG, existing grammars can option-

ally be extended by extending or dropping productions of a base grammar. The

example in Figure 4.2 (using simplified non-PPG syntax) demonstrates the ba-

sic principles. An existing grammar can be imported with the include keyword.

New production rules can then be specified, and one can change existing rules

using the keywords extend and drop to add and remove parts of the rule. More

advanced changes, such as modifying the precedence of operators, are also pos-

sible. For further details on the specification of grammar, see [BM03]. Also,

Polyglot uses object association in favour over class inheritance, employing a

sophisticated delegation model. This allows extenders to add or replace func-

tionality piece by piece to distinct node types of the abstract syntax tree (AST)

which do not need to share common super types.

As the weaving backend, the bytecode analysis and optimization framework

Soot is employed. Soot is able to load Polyglot ASTs and/or Java bytecode

and transform those into an internal three address code representation called

Jimple. This representation is stackless and as such allows for relatively easy
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code transformations and analyses. The weaving process which implements

the translation from AspectJ into plain Java, makes use of this representation.

Since Soot is also an optimization framework, many intra- and interprocedural

analyses are already built-in and can easily be extended. They can be applied

to the readily woven code at once, thus generating more efficient code than ajc

does, in certain situations. With respect to compile time performance however,

abc tends to be slower than ajc due to it’s heavily object-oriented structure.

Whereas ajc is optimized for compile time performance, abc is optimized for

extensibility and run time performance of the resulting bytecode.

Figure 4.3 gives an overview of the design of abc.

4.2.2 Polyglot

Polyglot as the abc compiler frontend facilitates easy extensibility not only by

inheritance but also in other directions, by the means of object composition.

This is an enormous benefit over earlier approaches in compiler technologies,

which usually only allowed extensibility by class inheritance, and as such is

truly one-dimensional: Each AST node inherits functionality from its parent

nodes and from nowhere else. During the last years however, many authors like

Gamma et al. [GHJV95] have suggested to use object composition in favour

over class inheritance, because it tends to lead to a more flexible system design.

Polyglot makes consequent use of the delegation pattern, that allows for such

object composition:

Each AST node, whenever visited, dispatches this message first to its delegate

object, which by default is the visited object itself. Figure 4.4 shows how this

delegation model behaves during type checking.

Using this mechanism, one can easily replace or extend functionality that is

spread over various node types, which do not need to share a common super

type.

In addition to delegates, nodes also support a chain of extension objects. An

extension is meant to add members to a set of node types.

Polyglot also supports type checking and other semantic passes for the Java

language. However since we are performing a source to source transformation,

we are not fully exploiting those facilities. We only make use of them implicitly

through the final transformation processes to Java bytecode.

4.2.3 Soot

Soot [VRHS+99] is a bytecode analysis and optimization framework, which

provides common templates for inter- and intraprocedural analyses. Several

such analyses are already built-in. They comprise even complex points-to and
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AspectJ
AST

.java

Java
AST

Aspect
Info

.class

Jimple
skeleton

Jimple
IR

Woven
Jimple

.java.class

Soot decompilationSoot bytecode generation

Polyglot AST transformations

Polyglot parser

Skeleton weaving

Woven
skeleton

Advice weaving

Soot skeleton generation

Soot jimple body generation

Analyses and optimisations

Final
Jimple

Figure 4.3: Design of the AspectBench Compiler
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TypeCheckPass ASTNode1 ASTNode2

del

typeCheck

typeCheck

typeCheck

Figure 4.4: Polyglot delegation model (with call back to original receiver)

flow analyses, which can be used to reason about control flow, possible method

dispatches at runtime and so forth. Obviously, by making use of information

produced by such static analyses, an AspectJ compiler can generate much more

efficient code under certain circumstances. For instance, the evaluation of cflow

could be dramatically accelerated by replacing stacks with counters, which is

possible in most common situations [DGH+04].

Nevertheless, Soot is in the first place used within abc because of the Jimple rep-

resentation it provides. A Jimple program consists of a stackless, three-address

code (executing object, arguments and result) representation of Java bytecode.

In Jimple, all implicit method invocations (e.g. String concatenation) and im-

plicit references to the currently executing object (this) have been resolved.

As a result, all objects that contribute to the implementation of a method body

are explicitly available in a local variable and each statement consists only of at

most one method call and one assignment. This makes Jimple easy to process

and an ideal base for modifications as they have to be performed by the advice

weaving process.

Figure 4.5 gives an example of this representation: Figure 4.5(a) defines a class

in normal Java syntax while figure 4.5(b) shows the corresponding Jimple code.

In abc, weaving is implemented by generating a so-called AspectInfo data struc-

ture, which describes transformations on the level of Jimple code. This code

can then, using Soot, be transformed to bytecode or source code again. The

latter is particularly useful for educational purposes, since one can see at once,

how advice weaving affects given classes.
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1 public class Foo {

2 int a;

3

4 public int f(int x,int y , int z) {

5 return a+x∗y+z;

6 }

7 }
(a) Java code

1 public class Foo extends java.lang.Object {

2

3 int a;

4

5 public int f(int, int, int) {

6

7 Foo this;

8 int x, y, z, $i0 , $i1 , $i2 , $i3 ;

9

10 this := @this: Foo;

11 x := @parameter0: int;

12 y := @parameter1: int;

13 z := @parameter2: int;

14 $i0 = this.<Foo: int a>;

15 $i1 = x ∗ y;

16 $i2 = $i0 + $i1;

17 $i3 = $i2 + z;

18 return $i3;

19 }

20

21 //Implicit constructor omitted

22 }
(b) Jimple code

Figure 4.5: Java class and corresponding Jimple code
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This shall conclude our brief overview of the abc framework. Further details

about how we extend it to achieve the desired code generation can be found in

[Bod05c]. The next section will explain what the generated code looks like and

why it fulfills the necessary requirements for the operational semantics.

4.3 Code generation

Generally, for each specified formula, we generate a single aspect. Each such

aspect defines implicitly a singleton object (see [GHJV95] for a description of

the Singleton Design Pattern). This object is automatically instantiated at the

first time a piece of advice of this aspect is to be executed. All fields we declare

on such an aspect are of private scope and hence only visible to the declaring

aspect. This ensures the desired property that evaluation of a single formula

should not interfere with the evaluation of other formulae - at least for the case

of single-threaded applications. For the case of multi-threaded applications we

need to handle some synchronization issues. This is described in section 4.3.6.

The following subsections explain the components which are generated for each

formula/aspect. We assume that a formula ϕ ∈ DLTL is given.

4.3.1 Propositions

For each proposition in Pϕ, we generate a constant of type IProposition using

the following factory method of the class IFormulaFactory:

IProposition Proposition(

String propLabel,

String [] boundFormals,

IIfClosure [] ifClosures

)

The parameters have the following semantics:

• propLabel - The textual representation of this proposition, corresponding

to lp.

• boundFormals - An array holding all names of variables which are bound

by this proposition, corresponding to ~vχp .

• ifClosures - An array of if-closures (constraints) that have to be fulfilled

by this proposition, corresponding to γp.
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public interface IIfClosure {

public boolean satisfiedUnderBindings(

WeakValuesMap<String, Object> currentBinding

) throws UserCausedException;

public String[] variableNames();

public String toString();

}

Table 4.6: Interface for if-closures

4.3.1.1 If-closures

An if-closure is a simple closure that encapsulates the evaluation of a constraint.

Each such closure adheres to the interface shown in table 4.6.

The method satisfiedUnderBindings returns for a given binding if the expres-

sion represented by this closure is satisfied under the given bindings. The para-

meter currentBinding represents the function β, which maps variable names

(type String) to objects (type Object). In cases where the evaluation of the

represented expression leads to an exception, this exception is wrapped in a

UserCausedException. This mechanism allows J-LO to gracefully report such

exceptions to the user instead of just shutting down.

The method variableNames returns an array of names of all variables that

are used in the expression this closure represents. This is used within the

proposition to enable binding of those variables.

The method toString returns a String representation of the associated expres-

sion for debugging purposes.

Example 4.3.1 (If-closure)

For a pointcut if(s!=t) we generate the closure shown in table 4.7.

In lines 5-8, the values for s and t are retrieved from the map. In the case

where those values have wrong types, a ClassCastException is thrown and

false is returned.

Line 10 then evaluates the actual expression. In the case where s or t are null,

a NullPointerException is thrown and false is returned2.

If everything goes fine, the Boolean value of the expression is returned. If the

evaluation of line 10 causes an exception this is known to be due to invalid

2Actually the runtime library ensures type safety and non-nullness of s and t so this check

is really pedantic.
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1 new IIfClosure() {

2 public boolean satisfiedUnderBindings(

3 WeakValuesMap currentBindings) {

4 try {

5 final Singleton s =

6 (Singleton) currentBindings.get(”s”);

7 final Singleton t =

8 (Singleton) currentBindings.get(”t”);

9 try {

10 return s != t;

11 } catch (java.lang.Exception ex) {

12 throw new IIfClosure.UserCausedException(

13 ex,

14 ”s != t”

15 );

16 }

17 } catch (java.lang.NullPointerException ex) {

18 return false;

19 } catch (java.lang.ClassCastException ex) {

20 return false;

21 }

22 }

23

24 public java.lang.String [] variableNames() {

25 return new java.lang.String[] { ”s”, ”t” };

26 }

27

28 public java.lang.String toString() {

29 return ”s != t”;

30 }

31 }

Table 4.7: Example if-closure

input. Hence, we wrap the exception to be recognized as caused by the user

(lines 12-15).

This concludes our examination of if-closures and propositions.

Each proposition is assigned to a private variable prop<i>where <i> is a natural

number ≥ 0.

Those propositions are then combined with temporal operators to form the

actual formula.
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4.3.2 Initial formula

A private final field formula is generated and initialized with a term represen-

tation of the formula, using the previously defined propositions as atoms. For

instance the formula of example 3.5.10, G( p(x) → XF q(y)y 6=x ), would induce

the representation shown in table 4.8.

1 private final IFormula formula =

2 factory .G(

3 factory .Impl(

4 prop0,

5 factory .X(

6 factory .F(prop1)

7 )

8 )

9 );

Table 4.8: Example formula instantiation

We can see that although Java has no native support for algebraic data types,

one can easily get equivalent functionality by chaining objects together to trees.

J-LO instantiates such formulae at startup of the application. As one can see,

it would be no problem though, to install further formulae as the application

runs. This could be a desirable feature for future work.

4.3.3 Initialization/bootstrapping code

Initialization is performed within the constructor of the aspect. The constructor

registers the initial formula (see section 4.3.2) with the VerificationRuntime.

This induces a small problem: Aspects are instantiated lazily. The pointcuts

generated for an aspect are defined by the propositions contained in the for-

mula. An aspect is instantiated immediately before the first time, a piece of

advice of this aspect is to be executed. Liveness conditions such as F p would

imply that whenever p does not occur on a path, the aspect would not even

be instantiated, because µχp never matches and hence no advice is executed.

This would mean that the formula would never be installed and hence not be

verified. Therefore we generate an additional empty advice in each such aspect,

which just initializes the aspect at startup3 :

before():

execution (public static void ∗.main(String[])) {}

3We are aware of the fact that Java applications can be run without actually having a main

method by bootstrapping the application within a static block. However we believe that this

is not actually made use of in any real Java application.
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Apart from those members which define and register a formula, a verification

aspect also contains a mechanism for collecting propositions at joinpoints of

interests and for triggering transitions of the associated AFA.

4.3.4 Mechanism for collecting propositions

Propositions are collected using the set currentProps, which is private to each

aspect. Each time when the matching function pointcut µχp matches a joinpoint

ι, an appropriate proposition is instantiated and added to currentProps. In

the case where multiple such propositions match the same joinpoint, all those

propositions are added in the same way. Here it is important to make use of a

well defined advice precedence (cf. section 2.3.1.5). We recall that if all before

advice precede after advice, all matching pieces of advice are executed in the

order in which they are written down in the source code. So at the end of each

aspect we generate a transition advice, which reports the set currentProps

to the VerificationRuntime and so demands a transition of the related AFA

under those propositions.

Table 4.10 shows the piece of advice that are generated for the formula of table

4.9, specifying the semantics of the Singleton design pattern (cf. [GHJV95]):

There should only be one single instance of any subclass of Singleton.

Note that in a general AspectJ setting it is usually not necessarily true, that

each call to a constructor returns a new object every time, since an aspect can

intercept the call and return a cached object instead. The formula assures that

never a new one is returned after the first call.

Lines 1-7 of the excerpt in table 4.10 define the advice responsible for collecting

the proposition p := exit( call(Singleton+.new(..)) ) returning s.

Line 1 defines that the advice is to be executed after the joinpoint. This is due

to the fact that we have an exit proposition. Also, line 1 binds the variable s

to the return value. Line 2 is a generic pointcut that constraints this advice to

not match any joinpoints which lie within the control flow of joinpoints within

our Runtime Verification package. This assures that the instrumentation does

not monitor itself. Line 3 holds the pointcut µ′χp
. Line 4 generates a new

hash map with weak values (this is explained further in section 4.4.2) repre-

senting the binding function βp. Line 5 builds up this binding by associating

the variable name "s" with the object s. Lines 6-8 then add a copy of prop0 to

currentProps, which is specialized under βp. This is the proposition p̂, which

we referred to earlier.

Lines 11-19 behave equally with respect to the second contained proposition

q := exit( call(Singleton+.new(..)) && if(s!=t)) returning t. The

only notable difference is that this proposition contains an if pointcut, namely

if(s!=t). As explained in the operational semantics, this leads on the one

hand to an if-closure generated on prop1 (cf. table 4.7) and on the other hand
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Singleton s , Singleton t :

G(

(

exit( call(Singleton+.new(..)) ) returning s

) −> (

X(

!(

F(

exit( call(Singleton+.new(..)) && if(s!=t))

returning t

)

)

)

)

)

Table 4.9: Formula for the Singleton Design Pattern

to a substitution of if(s!=t) by if(true) in µ′χq
, as one can see in line 13.

As a result, the associated piece of advice will execute also if s!=t does not

hold. However, in this case the if-closure will evaluate to false and hence the

proposition as a whole will not hold in this case.

Note that there is no way to directly decide s!=t from within the piece of advice

(lines 11-19) because one has no access to s. (s is used by q but not defined

by q.)

4.3.5 Triggering a transition

Lines 21-32 of table 4.10 show the transition advice. As mentioned before,

this advice is executed at each matching joinpoint after all other pieces of

advice matching the same joinpoint. To assure as well as possible that the

transition advice is only triggered when necessary, lines 23-26 hold a disjunct

of all matching functions of all contained propositions. Hence, the advice is

executed whenever at least one proposition holds at the current joinpoint. Lines

27-30 trigger the transition of the associated AFA under the given propositions.

Line 31 eventually clears the set currentProps for later reuse.

4.3.6 Multithreading issues

Nowadays many Java applications tend to be multi-threaded and hence this

was an issue we needed to address.
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1 after() returning(Singleton s):

2 !cflow(within(rwth.i2.ltlrv ..∗)) &&

3 call((Singleton+).new(..)) {

4 final WeakValuesMap bindings = new WeakValuesHashMap();

5 bindings.put(”s”, s );

6 currentProps.add(

7 prop0.specializeBindings(bindings)

8 );

9 }

10

11 after() returning(Singleton t):

12 !cflow(within(rwth.i2.ltlrv ..∗)) &&

13 (call((Singleton+).new(..)) && if(true)) {

14 final WeakValuesMap bindings = new WeakValuesHashMap();

15 bindings.put(”t”, t );

16 currentProps.add(

17 prop1.specializeBindings(bindings)

18 );

19 }

20

21 after():

22 !cflow(within(rwth.i2.ltlrv ..∗)) &&

23 (

24 call((Singleton+).new(..)) ||

25 call((Singleton+).new(..)) && if(true)

26 ) {

27 VerificationRuntime.getInstance().updateFormula(

28 ”Formula1”,

29 currentProps

30 );

31 currentProps.clear ();

32 }

Table 4.10: Generated pieces of advice
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All functions implementing the transition relation δ are performing nondestruc-

tive updates. Also all those functions except some inside the class Proposition

are stateless. Hence, making them thread safe was not a difficult task.

The only problem we came across when testing our concurrent lock order rever-

sal example (see section 5.2.3.3), was about ”collecting the set of propositions

holding at a state”: As noted above, propositions for each formula ϕ are col-

lected by a unique aspect instance associated with ϕ. In a multi-threaded

environment it may happen that multiple joinpoints on multiple threads oc-

cur at the same time. Without precaution, propositions of both threads could

be merged in the set currentProps of this aspect before finally the transition

advice is executed by one of the threads.

Theoretically there are at least two ways to solve this problem. The first is to

lock the aspect whenever the first advice executes and unlock it after a transition

is taken. This would be safe, however could very much slow down the system.

Also is would forbid concurrent calculation of δ for multiple threads.

The other option is to make the field currentProps a ThreadLocal. This means

that any thread in the virtual machine gets its own copy of the field. Hence the

sets cannot be accidently be mixed. J-LO implements this behaviour.

This concludes our summary of the code generation part of J-LO . The next

section gives some details about special cases of exceptional runtime behaviour

such garbage collection, shutdown and exceptions caused by invalid input.

4.4 Dealing with exceptional runtime behaviour

4.4.1 Notification of shutdown

One crucial point of the DLTL semantics is that they are defined over paths

of finite length. As a consequence, J-LO needs to be notified somehow about

the end of the execution path in order to report about the final configuration

of each AFA.

This is accomplished by adding the additional aspect ShutdownHook as shown

in table 4.11.

Line 3 declares that this aspect should have precedence over all others. With

other words no other aspect can intercept the execution of ShutdownHook.

The empty advice at lines 5-8 causes this aspect to be instantiated the first time

when a class is instantiated which resides not within the runtime verification

package.

When this happens, this causes the constructor defined by the lines 8-16 to

execute. The constructor then installs a Shutdown Hook4, a nonactive thread,

4see http://java.sun.com/j2se/1.5.0/docs/guide/lang/hook-design.html
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1 public aspect ShutdownHook {

2

3 declare precedence: ShutdownHook,∗;

4

5 before():

6 staticinitialization(∗) &&

7 !within(rwth.i2.ltlrv ..∗) {

8 }

9

10 public ShutdownHook(){

11 Runtime.getRuntime().addShutdownHook(

12 new Thread() {

13 public void run() {

14 VerificationRuntime

15 .getInstance (). tearDown();

16 }

17 }

18 );

19 }

20

21 }

Table 4.11: Shutdown hook aspect in J-LO

with the virtual machine. When shutting down, all installed shutdown hooks

are executed concurrently. The shutdown hook invokes tearDown() on the

verification runtime (line 15). This causes that the current configuration of

all attached AFAs is reported to all registered observers (see section 4.4.3). A

configuration can then be queried if it is final. Any AFA which is in a nonfinal

configuration at this state directly relates to a formula which was violated by

that path.

Note that shutdown hooks may not be executed in the case where the virtual

machine simply dies (e.g. when invoking kill -9 under Linux).

4.4.2 Behaviour under presence of garbage collection

As already mentioned in section 2.5, in J-LO objects should not be prevented

from being garbage collected because this could lead into scalability problems.

On the other hand we needed to ensure sound semantics for the case of GC.

Although we could not make any assumptions about the actual implementation

of GC it turned out that there was no need for this because the following

invariant always holds:
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A proposition referencing an object which is unreachable from the rest of the

program can never match again.

The reason for this invariant is that the propositions on an execution path

can only expose objects which are available on the control flow of the current

joinpoint (cf. definition 3.3.9), Ocflowι . If an object o is unreachable, it can

never occur in this set again. Hence, no state on the subsequent path can

define a variable with value o any more. As a result no proposition using a

variable which is bound to o can match a state on this rest of the path.

For this reason, the implementation of J-LO uses a hash map with weak values

as representation of the binding βp for any proposition p. Whenever such a weak

values map is accessed, all entries pointing to objects which are not accessible

any more are pruned from the map. (This can easily be implemented by using

a ReferenceQueue.)

Additionally, J-LO stores for each proposition p the initial size b of βp. When-

ever a proposition is tried to match against a state, we first check if |βp| < b.

If this is the case, p changes its internal state in such a way that it will never

match again. Then it is semantically equivalent to ff .

It should be noted that during calculation of the successor of a configuration

using δ, those references are temporarily made strong in order to avoid cases

where objects are available during the evaluation of one branch of a formulae

but not on another.

4.4.3 Observing configuration changes

After having explained how we assure that the J-LO implementation complies

with the general assumptions of the operational semantics, we now explain how

changes of the configuration of an AFA can be intercepted.

The key component here is the interface VerificationRuntime.Listener as

shown in table 4.12.

Lines 3-7 define the method notifyRegistered, which notifies the observer

that a new formula was registered with the verification runtime. It propa-

gates a unique formula ID, the thread which registered the formula and a

Configuration object which represents the initial configuration of the formula.

This configuration can be rendered into String format and can also be queried

if it is (non)final or (non)accepting.

Lines 9-13 define the method notifyUpdate which is called whenever a transi-

tion was taken for the given formula. The parameters are equal to the ones of

notifyRegistered. The configuration is here the new configuration result-

ing from the transition.

The method notifyTearDown is defined by the lines 15-18. It is called when the

virtual machine shuts down and hence the end of the execution path is reached.
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1 public interface Listener {

2

3 public void notifyRegistered(

4 String formulaId,

5 Thread associatedThread,

6 Configuration initialConfig

7 );

8

9 public void notifyUpdate(

10 String formulaId,

11 Thread associatedThread,

12 Configuration newConfig

13 );

14

15 public void notifyTearDown(

16 String formulaId,

17 Configuration config

18 );

19

20 public void notifyOnUserCauseException(

21 String formulaId,

22 Thread associatedThread,

23 String ifExpression ,

24 Throwable exception,

25 Configuration config

26 );

27

28 }

Table 4.12: Listener interface in J-LO

When this happens, this method is called for any currently installed formula

with the formula ID and the final configuration as a parameter. By inspecting

if this configuration is final it can easily be determined whether the associated

formula is satisfied on the observed path.

Important note for users: Note that notifyTearDown is executed within

the control flow of a shutdown hook (cf. section 4.4.1). No other shutdown

hooks may be installed from within such a context. While usually one would

never even try to do so we found that apparently some methods of the Sun

Abstract Windowing Toolkit (AWT) implicitly do so, in particular the methods

of java.awt.Toolkit.
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4.4.3.1 User caused exceptions

Lines 20-26 define the method notifyOnUserCausedException. This method

is called whenever the evaluation of an if-closure (cf. section 4.3.1.1) leads to

an exception which is caused by an invalid expression. A typical case would be

the if pointcut if(1/0<2) which would raise an exception due to the division

by zero. When this happens, the formula is removed from further verification.

In particular no calls to notifyUpdate and notifyTearDown will be performed

any more for this formula.

Also notifyOnUserCausedException is called with the following arguments:

The ID of the formula, the thread which triggered the evaluation (This might

be important to debugging because the expression could access the thread.),

the expression that caused the exception in String format, the exception that

was thrown and the last configuration before the transition was tried to be

taken. Given that the configuration holds all current bindings it should be

straightforward to determine the cause of the exception.

4.4.3.2 Custom observers

J-LO provides a default implementation of this interface, which just dumps all

the available information to the console. Of course more intelligent observers

are possible. For instance an observer could have a special treatment for certain

formulae to implement fast fail semantics (”abort application immediately”) or

issue notifications over some communication channel etc. This however is out

of the scope of this work and will be addressed in the future.

This shall conclude our summary of the implementation details of J-LO. Fur-

ther information about how J-LO is used along with further examples may be

found on http://www-i2.informatik.rwth-aachen.de/JLO/.

The next chapter will elaborate on the correctness and performance of the J-LO

implementation.
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Metrics and performance

In this section we want to report on how we tested J-LO with respect to cor-

rectness and performance.

5.1 Correctness of the implementation

Though we did not formally prove the implementation of J-LO correct, we

are reasonably confident that it correctly implements the operational semantics

given in section 3.5 for the following reasons:

First of all most of the functions defined by the operational semantics are rea-

sonably small and straightforward to implement. We have used the Eclipse

metrics plug-in1 to derive the following data:

• An average method of the J-LO runtime library has about 7 lines of code,

the whole library has about 2000 method lines of code (MLOC2).

• The only methods that were reported as ”out of bounds” because they

were unreasonably long or had unreasonably many possible paths were

generated methods implementing equals and hashCode for some objects.

Those methods are not thought to be read or altered by human beings

anyway.

Hence we believe that the implementation is easy to follow and should hence

be easy to prove equivalent to the operational semantics if needed.

Additionally we employed the tool FindBugs3 in order to find potential sources

of bugs in the implementation of the runtime library. Two minor issues were

found and immediately resolved.

1available at http://metrics.sourceforge.net/
2non-blank and non-comment lines within method bodies
3available at http://findbugs.sourceforge.net/

91
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With respect to the code generation part of J-LO we would have to prove

abc correct as well as our implementation of additional compiler passes, which

would certainly be a hard task. We did not conduct such a proof and rely on

the brought user base of abc and its principal components Soot and Polyglot.

Indeed abc has proven to be very stable in the past and bugs do not seem to

be reported very frequently.

5.2 Performance

This section is split into two parts. First we want to give some arguments for the

general theoretical performance of the employed algorithms. Then in the second

subsection we elaborate on the performance of the specific implementation of

J-LO .

5.2.1 Theoretical performance

As noted above, the evaluation of each formula can be performed separately.

Thus the overall cost of Runtime Verification is linear in the number of formulae.

Each formula first needs to be brought into negation normal form and then

installed with the runtime engine. This can be seen as constant cost over the

running time of the application. The cost of the evaluation of installed formulae

then heavily depends on the following factors:

1. The size of the formula.

2. The kind of pointcuts defined by the propositions of the formula.

3. The number of different bindings available at a joinpoint.

The first point is general to all algorithms employing LTL: For a given formula

ϕ it is known (e.g. [VW86]) that the calculation of a successor of ϕ has an

exponential worst case complexity in |ϕ| := |cl(ϕ)|.

Since in the case of J-LO we generate successor states on-the-fly, we know the

set of propositions to calculate the (unique) successor for, so here the cost is

constant with respect to the number of propositions.

To some amount δ may be statically precalculated, which theoretically should

yield a constant cost for taking transitions at runtime. However, the use of

dynamic bindings leads into problems here. We comment on this further in the

section about related work, specifically section 6.3.2.3.

The second point is specific to AspectJ: J-LO allows arbitrary AspectJ point-

cuts to occur within a proposition. Recalling our definition of a filtered path
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(cf. section 3.3.1), this of course means that the more joinpoints are matched

by the pointcuts contained in a formula, the more frequently the AFA for this

formula is updated.

The worst case scenario is here an unguarded if pointcut: A pointcut as

if(A.field==true) leads, as described in section 4.3.1.1, to a piece of ad-

vice with associated pointcut if(true). This means that this piece of advice

and hence the evaluation of δ is triggered at every possible joinpoint, which is

certainly very expensive. Hence we advise users to guard such pointcuts e.g.

by writing instead: set(A.field) && args(bool) && if(bool==true). This

would only capture events where the field is set, which should be sufficient in

most cases and would capture much less joinpoints, hence being more efficient.

The third point depends on the way how proposition specifications overlap

within the definition of a formula. Usually the number of possible valuations

at a joinpoint is 1. However in cases where multiple pointcuts holding an

overlapping set s of variables match an overlapping set of joinpoints, this leads

to multiple valuations for all variables in s. According to the definition of δ, we

have to evaluate formulae for all such valuations, which makes the calculation

of δ more expensive.

5.2.2 Performance of the implementation

We did some performance measurements using the commercial tool JProbe

[JPr]. JProbe allows to take detailed profiles down to the level of single Java

statements.

Interestingly, the analysis showed that the largest part of the overhead was

caused by the fact that we use a set based implementation and not actually

by the intrinsic complexity of the algorithms. Specifically, the implementation

uses hash sets over hash sets of formulae. Whenever a formula is added to such

a set, its hash code needs to be calculated. Over 70% of the time were spent

in this calculation of hash codes. Calculation is done by recursively calculating

hash codes for all propositions over the whole term structure of the formula.

For the calculation of the hash codes of propositions it is crucial that bindings

are taken into account, because a proposition p(x) has different semantics than

p(1) where x has been bound to 1. This again makes it necessary to calculate

a hash code for a weak values hash map (see section 4.4.2) and this is where

performance is lost: Since weak values maps hold a volatile set of mappings, in

order to calculate the hash code one needs to generate a current snapshot of

the contents of the map and generate a hash code from this snapshot. This is

rather expensive, especially when done so frequently.

We implemented some different caching techniques to counterbalance this be-

haviour with notable success. Yet it seems to be a good idea to employ a

different implementation technique in future versions.
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In addition to profiling, we tested the running time of some small example

applications in contrast to their counterpart which had been instrumented with

J-LO .

Here it showed up that it is not only important, what formulae are specified

in the system but also how expensive the execution of the uninstrumented code

(we call this the ”shadow” of the formula) is.

Specifically we attached a formula to an ArrayList based stack, stating that after

each push operation top returns the pushed element until another push or pop

is invoked. Then we pushed 1000 times the same object in the stack. Naturally,

the calculation of δ for this formula was rather constant. Though, this constant

overhead proved quite expensive compared to the usual push operation. In fact

it slowed down the operation by about a factor 1000.

When reasoning about operations on a higher level however, those operations

tend to be more expensive themselves so that the constant cost of the evaluation

of a specific formula is rather small compared to the execution of the shadow.

Altogether one can say that if joinpoints of interest occur reasonably seldom

and show a reasonably small shadow then the instrumentation overhead showed

negligible.

Static precalculation (see section 6.3.2.3 and our publication [Bod05b]) should

help to mitigate this overhead to the feasible minimum.

5.2.3 Benchmarks

We performed the following further benchmarks to see how well J-LO behaves

when applied to different problem classes.

• Iterator - This is an example specification taken from the Java API, which

checks for the correct use of iterators. This benchmark puts particular

stress on the application because the access to an iterator is usually quite

fast compared to what has to be done on the verification side, so the

overhead of the instrumentation could show a significant slowdown.

• HashSets - This benchmarks is similar to the one before but it imple-

ments a specification, which cannot be implemented using normal object

oriented techniques in a convenient way.

• LockOrderReversal - This benchmarks looks for locks (semaphores) being

taken in a wrong order and is hence important to concurrency. This

example is particularly interesting because it uses virtually all features of

J-LO , in particular if pointcuts and concurrency and uses a relatively

large formula. Also it shows a property which approximates erroneous

behaviour and hence should issue a warning rather than an error.

In the following we report on all those benchmarks in detail.
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1 Collection c, Iterator i :

2 G(

3 (

4 exit (call(∗ Collection+.iterator ()) && target(c))

5 returning i

6 ) −> (

7 X(

8 G(

9 (

10 entry(

11 ( call(∗ Collection+.add∗(..))

12 || call(∗ Collection+.remove∗(..))

13 || call(∗ Collection+.clear ())

14 ) && target(c)

15 )

16 ) −> (

17 G(

18 !(

19 entry(call(∗ Iterator .next()) && target(i))

20 )

21 )

22 )

23 )

24 )

25 )

26 )

Figure 5.1: Safe iterator formula

5.2.3.1 Safe iterators

The safe iterator-pattern mentioned in the introduction states that:

For each Iterator i obtained from a Collection c, there must never be an

invocation of i.next() after the collection has been modified.
It is enforced in the Java 5 library as follows: The Iterator implementation

contains a mechanism to track modifications of the underlying collection by

means of a modification counter. If the collection c is updated, the modification-

count obtained by the iterator i on instantiation time and the current counter

of the collection disagree and lead to an exception on the next access to the

iterator. In this case, the specification has crept into the implementation of

both the iterator and the collection.

In our formalism the requirement can be specified in a modular way through

the formula in Figure 5.1.
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Line 1 declares the free variables c and i that each collection and iterator in

question will be bound to. The actual formula is stated in lines 2-25, specifying

through the outer “Globally” that this assertion should be checked on the whole

execution path (and hence for all created iterators). For each iterator (left-hand

side of the outer implication), we require of the remainder of the execution that

after a call to add, remove or clear no call to i.next() must occur.

We have successfully validated this formula in practice: [AAS+04] discusses an

instance of the safe iterator pattern in JHotDraw (a Java drawing package,

available at http://www.jhotdraw.org/) as use case. We were able to repro-

duce their results by executing a sequence of events violating the pattern in the

graphical user interface. The error was properly picked up. If no instrumenta-

tion had been present, the error would probably have gone unnoticed.

With respect to runtime performance, the formula showed the expected behav-

iour: When used to instrument collections/iterators in the standard JDK, the

overhead was significant, i.e. we could observer a slowdown of several orders of

magnitude. That is because the specialized checks in the JDK involve only one

single integer comparison while in the case of J-LO we have to evaluate a whole

formula. The instrumentation in JHotDraw performed much better, since the

iterators were used less frequently so that in this case, the additional overhead

was relatively low. Still, we could observe some overhead, which suggests that

there is room for optimization.

5.2.3.2 Unsafe use of HashSets

Another practical application of our framework is based on an actual bug pat-

tern observed by colleagues: When a collection is inserted into a HashSet, modi-

fications to the contained collections influence the result of HashSet.contains-

queries. This behaviour was not anticipated and led to unexpected results.

While this is only arguably a bug but rather a mistake, the source code had to

be screened for possible uses under the wrong assumptions. We captured this

behaviour the following way:

For each HashSet s that contains a Collection c, there must be no invocation

of s.contains(c) if the collection has been modified, unless the collection has

been removed from the set in between.

With J-LO , specifying this property is easily done by a straight forward transla-

tion into linear temporal logic (see Figure 5.2). In contrast to the safe iterators,

this is an application-specific formula that requires understanding and analysis

of the application. Consequently, false use of hash sets which would be de-

tected by this formula would go unnoticed with the standard Java development

toolkit.

A comprehensive survey of existing verification patterns and how to express

them in various specification formalism including LTL can be found in [DAC99].
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1 Collection c, HashSet s:

2 G(

3 (

4 exit (call(∗ HashSet+.add(..))

5 && target(s) && args(c))

6 ) −> (

7 X(

8 G(

9 (

10 entry(

11 ( call(∗ Collection+.add∗(..))

12 || call(∗ Collection+.remove∗(..))

13 || call(∗ Collection+.clear ())

14 ) && target(c)

15 )

16 ) −> (

17 (

18 entry(call(∗ HashSet+.remove(..))

19 && target(s) && args(c))

20 ) R (

21 !(

22 entry(call(∗ HashSet+.contains(..))

23 && target(s) && args(c))

24 )

25 )

26 )

27 )

28 )

29 )

30 )

Figure 5.2: HashSet formula
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It can serve as a starting-point into specifying properties. The HashSet re-

quirement can for example be identified as a combination of the “Universality

After”-pattern and a variant of the “Absence of P after Q until R”-pattern,

where P is the contains, Q modify and R the remove-action.

5.2.3.3 Lock order reveral

To avoid the problem of lock-order reversal (cf. [Hav00], [SH04]), we would

like to assert through an LTL formula that if two locks are taken in a specific

order (with no unlocking in between), the system should warn these locks are

also being used in swapped order because in concurrent programs this would

mean that two threads could deadlock when their execution is scheduled in an

unfortunate order.

Notice that we do not want to abort the execution in this example: we are here

interested in mere warnings, as a violation of the formula might not coincide

with a deadlock. To observe the behaviour of the whole execution-path (of

which the erroneous behaviour might only be a sub-path), we wrap the formula

into the temporal Globally.

Thus, if we consider a class Lock with explicit lock and unlock methods like

we might find them in any programming language, we obtain for two threads

pi, pj and two locks lx, ly the formula (it is arguable if LTL is an appropriate

specification language):

¬lock(pi,ly) U (lock(pi,lx) ∧ (¬unlock(pi,lx) U lock(pi,ly)))

→ G¬(¬lock(pj ,lx) U (lock(pj ,ly) ∧ (¬unlock(pj ,ly) U lock(pj ,lx)))), i 6= j, x 6= y

Notice that the formula has four parameters: two locks and two threads. In

the example, the thread-identifier shall be passed as an argument, although in

a typical implementation it might be implicit (e.g. stored in a special variable

or obtainable through an API).

pointcut lock(Thread t, Lock l):
call(Lock.lock(Thread)) && args(t) && target(l);

pointcut unlock(Thread t, Lock l):
call(Lock.unlock(Thread)) && args(t) && target(l);

Thread i,j; Lock x,y;
¬lock(i,y) U (lock(i,x) ∧ (¬unlock(i,x) U (lock(i,y) ∧ ¬target(x))))
→ G ¬ (¬lock(j,x)

U (lock(j,y) ∧ ¬args(i) ∧ (¬unlock(j,y) U lock(j,x) )))

Table 5.3: Lock order reveral formula

Translating the above formula into a new variant of the LTL-syntax allowing

predefined named pointcuts results in the expression shown in table 5.3. (We

distinguish between logical operators in LTL and AspectJ for clarity.)
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We have successfully used this formula to identify the pattern of lock order

reversal in the Java 5 development kit, which introduced a new concurrency

API.

Step-by-step instructions along with all related code are available on our web-

site: http://www-i2.informatik.rwth-aachen.de/JLO

Note that part of this section was published in [SB05, BS06] and hence was

co-authored by Volker Stolz.



Chapter 6

Related Work

In this section we present related and previous work both, in the field of Runtime

Verification and the field of aspect-oriented programming.

6.1 Design by contract

Runtime Verification can be seen as an extension of the well-known Design By

Contract (DBC) principle, which became popular through the work of Bertrand

Meyer [Mey92a] and his reference implementation in the programming language

Eiffel [Mey92b].

6.1.1 DBC in Eiffel

In DBC, the programmer is able to annotate a method with preconditions,

postconditions and invariants, which are checked during runtime before, after

respectively during the execution of the annotated method.

Table 6.1 (adopted from the Eiffel manual pages1) gives an example of such

conditions. The annotated method shall put the element x into a map, so that

it is retrievable by key.

Lines 2 to 5 state required preconditions: The capacity should not be exceeded

and the key may not be empty. Lines 7 to 11 state postconditions which shall

hold after the method body has been executed: x shall be contained in the map;

item should return x for this key and the value count should have increased

by 1.

There are other languages with native support for DBC, namely D2, Lisaac3,

and the ADA [Led83] based SPARK4, which aims at high-integrity software

development.

1http://archive.eiffel.com/doc/manuals/technology/contract/page.html
2http://www.digitalmars.com/d/index.html
3http://isaacos.loria.fr/
4http://www.praxis-his.com/sparkada/

100
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1 put (x: ELEMENT; key: STRING) is

2 require

3 count < capacity

4 not key.empty

5 do

6 ... Some insertion algorithm ...

7 ensure

8 has (x)

9 item (key) = x

10 count = old count + 1

11 end

Table 6.1: Example for pre and postconditions in Eiffel

Several DBC implementation for Java exist. We are aware of JML[BCC+05],

Contract4J, Jose, Barter, iContract, JMSAssert, JContract, Jass, conaj and

OCL4Java (see table 6.2). They all work with source code based specification

of pre and postconditions. The one that comes closest to the technology of

J-LO is Contract4J [con] version 1. (Contract4J version 2 which was released

in October 2005 is an entirely different tool with its own architecture.)

Tool URL

Barter http://barter.sourceforge.net/

Cona http://www.ccs.neu.edu/home/lorenz/papers/

Contract4J http://www.contract4j.org/

iContract http://www.javaworld.com/javaworld

/jw-02-2001/jw-0216-cooltools.html

Jass http://csd.informatik.uni-oldenburg.de/∼jass/

JContract http://www.parasoft.com/jsp

/products/home.jsp?product=Jcontract

JML http://www.cs.iastate.edu/∼leavens/JML/

JMSAssert http://www.mmsindia.com/JMSAssert.html

Jose http://www.faculty.idc.ac.il/yishai/jose/

OCL4Java http://www.ocl4java.org/

Table 6.2: DBC tools for Java

6.1.2 Contract4J

Similar to J-LO , Contract4J is also based on Java 5 annotations and the genera-

tion of AspectJ code. However, Contract4J uses the Java Annotation Processing
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Tool (APT)5, which comes with the Java Development Kit. This allows anno-

tation extraction from source code only. Contract4J uses APT to produce an

XML structure holding all annotation information. Then it uses XSLT [Cla99]

transformations to produce aspects implementing runtime checks for the given

conditions. In that way, the internal workflow is quite similar to the one of

J-LO except J-LO does not employ XSLT transformations but rather a real

compiler for code transformations, providing static type checking and more.

We believe that apart from the automaton-based backend, that J-LO provides,

Contract4J and J-LO have much in common and so we met with the developer

of Contract4J, Dean Wampler at the AOSD ’05 conference and talked about a

possible bundling of efforts.

Equal to all other aforementioned tools, Contract4J allows simple DBC, while

the logic provided by J-LO is much richer. Although those pre and postcon-

ditions are very valuable and already much more expressive and convenient to

use than the aforementioned assertions, they still do not provide any temporal

notion: Pre and postconditions as well as invariants only reason about each

single method invocation. There is no way of specifying temporal interdepen-

dencies as they can be expressed with LTL. On the other hand, any pre and

postcondition and invariant can easily be expressed in our formalism. Hence,

Runtime Verification provides a superset of expressiveness compared to DBC.

In July 2005 an expert group was founded with the goal to bring DBC into

the standard Java Development Kit under a Java Specification Request. The

group consisted of team members from development groups of most of the afore-

mentioned tools. The author of this work was representing J-LO. The group

discussed the different tradeoffs that were taken in the various interpretations

of DBC.

For instance the specification language in question can be implemented by a

language extension to Java. This however requires new compilers. Another

standard technique would be to use annotations as J-LO does. A drawback

here was that some Strings need to be escaped. Especially line feeds need to

be treated by concatenation of single line Strings, which looks not very nice.

Another option would be to use the specification language within comments,

which does not require such escaping. This however leads to semantical difficul-

ties because usually comments should have no effect on the program semantics

whatsoever.

Unfortunately after discussing those and other issues, in August the group even-

tually fall apart when Sun decided to not support the development of DBC any

further. Hence it is very questionable that support for any Runtime Verification

beyond the assert statement which is contained today, will make it into native

Java. Microsoft on the other hand seems to have recognized the usefulness of

5http://java.sun.com/j2se/1.5.0/docs/guide/apt/
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such approaches by providing Spec# [BLS04], a DBC language extension for

the C# programming language.

6.2 Runtime Verification

With respect to Runtime Verification, few tools have been released so far.

6.2.1 Java PathExplorer

The probably best known project is the Java PathExplorer (JPaX) [HR04]

developed by Havelund and Roşu at NASA AMES, not to be mistaken for the

Java PathFinder (JPF) [WKGS00] which is a model checker for Java. While

JPF was made open source in 2005, JPaX has unfortunately been under closed

source development by now.

Despite this fact, there have been many publications about the design and

successful application of the tool [HR01a, HR01b, HR04] which give reasonable

input for comparison with J-LO .

The JPaX system consists of two distinct components, which are loosely cou-

pled, the first one being an instrumentation engine, which adds hooks to the

application to be monitored. Such hooks consist of the specification of a place

where the hook should be applied to (e.g. the name of a field) and a labeled

Boolean proposition which can access values that lie within the scope of the

instrumentation point. Those propositions can then be used in a specification,

which can for instance be pinned down using LTL. Such specifications can then

be verified at runtime using the second JPaX component: The hooks in the in-

strumented application issue messages to a backend, stating which propositions

hold at the current time. The backend then evaluates the specification over this

explicit trace.

Table 6.3 gives an example specification taken from [HR04]. Line 2 states that

the field C.x is to be monitored. Line 3 then defines a proposition A that holds

iff C.x is greater than 0. Line 5 specifies the formula F1, which demands that

A holds on the entire path. (In JPaX, G is written as [] and F as <>, just as

in Spin, cf. section 2.1.1.6.)

6.2.1.1 Trace model

As the example suggests, propositions in JPaX are atomic, meaning that at

each point in time a propositions either holds or not, irrespective of any other

condition. In particular, propositions cannot contain any free variables. This

makes it easy to separate the instrumented application from the evaluating

backend: All the instrumentation has to do is issue a message “proposition pi
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1 // instrumentation:

2 monitor C.x;

3 proposition A is C.x > 0;

4 // verification:

5 formula F1 is []A

Table 6.3: Example specification in JPaX

changed” whenever the truth value of a proposition pi changes from true to

false or vice versa. Such messages can easily be sent over arbitrary streams,

hence allowing to execute the evaluation backend in another process or even

on another machine. In the case of J-LO, this is not possible in the same

way, since propositions have to expose objects to the backend. In particular,

if-closures need to be able to access bound objects in order to have their truth

value determined. This could however be solved by evaluating if-closures within

the application and sending the calculated truth values to the backend along

with the current set of propositions. J-LO is currently designed to be executed

in the same process as the instrumented application. Future versions might

however address this issue as explained above.

6.2.1.2 Evaluation of specifications

In JPaX, specifications over propositions can be written in different formalism

as future time LTL (the kind of LTL J-LO uses as well), past time LTL [HR04]

and others. The mechanism is generally extensible, because JPaX uses the

rewriting engine Maude [CDE+99, CDE+03] for evaluation. In Maude recursive

definitions as the one of LTL operators can easily be specified by just a few lines.

According to the authors, Maude is very efficient and is usable for formulae of

a larger size.

6.2.1.3 Expressiveness

As mentioned above, tracking objects by binding them to free variables is not

possible in JPaX, which is certainly the biggest advantage of the DLTL used

in J-LO. Another advantage which must be taken into account is that in

DLTL propositions are more expressive than the usual Boolean expressions

which JPaX provides. Everything that can be expressed in JPaX can be ex-

pressed in DLTL as well, using if pointcuts. On the other hand, DLTL can

use various other pointcuts in order to match on method calls, exceptions being

thrown and so forth (see appendix C for a full list). Hence we conclude that

J-LO provides a formalism which is more powerful than the one provided by

JPaX but is less extensible due to higher requirements on the implementation

side.
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This concludes our overview of JPaX. Another verification tool, very recently

developed also by Havelund is HAWK, an object-oriented extension to the EA-

GLE logic and its supporting tools.

6.2.2 HAWK and EAGLE

HAWK [dH05] is a programming-oriented extension of the rule-based logic EA-

GLE [HBS03a, HBS03b, HBS04] that is allows for specifications in various tem-

poral logics of different kinds. EAGLE computes the truth values of temporal

formulae by calculating a minimal respectively maximal fixpoint to the recur-

sive definitions of temporal operators such as given by Fϕ ≡ ϕ∨X Fϕ. As such

EAGLE is very generic and can be used for virtually any kind of specification

logic and programming language of the base program. From a specification

EAGLE generates an observer that implements its semantics and is notifies

whenever events of interest occur.

HAWK is a logic and tool for runtime verification of Java and is built on top of

EAGLE. Specifications written in HAWK are ultimately being translated into

EAGLE monitors. Similar to J-LO, HAWK allows users to refer to events on

the execution trace of a running Java application and to expose objects at those

objects in order to bind them to free variables. The way quantification takes

place also coincides with our strategy in J-LO: Quantification over variables is

reduced to quantification over events.

While J-LO provides all AspectJ pointcuts in order to match such events,

HAWK can only match on method execution and return. Also, the HAWK

logic is less flexible: It only allows a subset of LTL to be used, namely the

following to forms:

<event>proposition [event]proposition

Here event corresponds to a method call or return that may bind free variables

in proposition. Unlike in J-LO, variables to be exposed have to be annotated

with question marks, such as

<o?.someMethod(p?)returns r?> P

which binds o, p and r in the scope of P . In J-LO the static analysis (cf. section

3.4) determines automatically where objects are to be bound and where they

are to be matched against.

The semantics of the construct <e>p corresponds roughly to the LTL formula

F(e ∧ p): It has conjunctive semantics, while [e]p corresponds to G(e → p).

That way it provides the two patterns in LTL that we also found are used most

frequently, however it does not support the full LTL formalism.
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Another big difference is that events are assumed to be non-overlapping, i.e.

that at each state at most one proposition holds. As we show in [BS06], this

leads to a less expressive formalism: Certain temporal patterns can only be

expressed in a cumbersome way, other cannot be expressed at all.

Also, while in J-LO the end of a path is implicitly signalled by a shutdown

hook (cf. section 4.4.1), in HAWK the user has to specify the shutdown event

manually.

Table 6.4 shows a HAWK example specification stating that for each buffer b,

whenever o is put into the buffer this implies that when eventually get is invoked

on this buffer the returned object k is identical to o. The same property could

have been specified in J-LO in a similar manner.

1 observer BufferObserver {

2

3 classPath = C:/src

4 targetPath = C:/src

5 terminationMethod = bufferexample.Barrier.end()

6

7 var Buffer b; var Object o; var Object k;

8

9 mon B =

10 Always ( [b?.put(o?)]

11 Eventually ( <b.get() returns k?> (o == k) ).

12

13 }

Table 6.4: HAWK example specification

It should be noted that the implementors of HAWK do not give any informations

about the performance of their approach. In particular, the generated EAGLE

code is dynamically parsed at startup of the application which rather seems like

something that should be done at compile time.

With respect to aspect-orientation d’Amorim and Havelund write [dH05]:

To some extend AOP can be seen as just a clean solution to the

instrumentation of programs. For this purpose, we used extensively

the AspectJ AOP tool. We believe, however, that a natural ex-

tension of this work is the introduction of temporal advices, which

could be integrated in an AOP tool. In contrast to the usual advices,

temporal advices can provide a means to define hooks for code to be

executed upon validation or violation of a finite-trace requirement.
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In that way, J-LO can be seen as the implementation of this long term goal.

Especially the syntax we proposed in [BS06] seem to reflect exactly what the

authors had in mind.

6.2.3 dtrace

dtrace is a tracing module for Sun’s operating system Solaris. It is particu-

larly designed for the purpose of allowing instrumentation of running systems

in a production environment. Hence, careful design was necessary for the hooks

that are available in the tracing language. Support by the operating system is

necessary in order to allow the installation of hooks into a running application.

Using specialized techniques, developers are able to instrument running, unin-

terpreted applications in such a way that there is a zero runtime overhead when

the instrumentation is disabled again. The purpose of dtrace is solely tracing,

which is quite different from the purpose of Runtime Verification. Yet, dtrace

supports a powerful trace filtering language which might be used to achieve

similar goals.

The major drawback of dtrace is that it is not portable at all to other platforms.

Also concluding from the examples the authors give, it might be cumbersome

to express properties using variable bindings.

6.2.4 Temporal Rover

The company Time Rover sells the commercial product Temporal Rover (TR),

which is naturally under closed source development. However, the documenta-

tion6 and technical papers available online reveal that the basic model of TR

are what the authors call state chart assertions. Such assertions are temporal

assertions similar to the ones that can be expressed with J-LO, however are

written down in a graphical way using a state chart-like notation.

The documentation reveals further that among the languages that can be used

to specify temporal assertions there are also textual temporal logics as future

and past time LTL, and MTL, the Metric Temporal Logic, which provides

LTL-like operators that can be annotated with real-time contraints such as

G<10(p→ Xq) which reads as always within the next 10 cycles, whenever p

holds, q has to hold in the next cycle.

The formalism is very similar to Timed Propositional Temporal Logic (TPTL)

which was introduced by Alur et al. [AH89], and has recently been shown

[BCM05] to be slightly more expressive than MTL.

Generally we believe that J-LO could easily be extended to accommodate a

similar extension for real time constraints given that all one would have to do is

6http://www.time-rover.com/tl.html
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record time stamps and match against them. In a certain sense, DLTL already

allows the definition of such constraints by the use of if pointcuts accessing an

explicit clock object. Of course one must take into account that runtime instru-

mentation and evaluation might distort the runtime behaviour with respect to

timing guarantees. This of course is a general problem of Runtime Verification

and not specific to J-LO.

Temporal Rover also provides a syntactic extension of LTL, which allows to

express counting properties such as that an event happens exactly n times.

While in pure LTL such conditions are generally impossible to express for a

nonconstant n (e.g.[Tho81]), its syntax and evaluation can easily be extended

to bypass this problem, making LTL recognize exactly the regular languages

over finite words.

In Temporal Rover, the temporal assertions are embedded in comments and

their semantics are implemented by a source-to-source transformation.

6.2.5 Java MaC

Java MaC [KVK+04] is a runtime-assurance tool for Java. The Meta Event

Definition Language (MEDL) is used to specify safety properties. As the MaC

architecture was designed to be language-independent, a Primitive Event De-

finition Language (PEDL) provides the binding to the target language, here

Java. While Java-PEDL has been designed to closely correspond to Java, it is

not as comfortable to use as AspectJ where expressions are not modelled after

Java, but in fact are Java expression. Also, state in MEDL seems to be limited

to primitive types or in other words: Free variables cannot be bound to objects.

6.2.6 Valgrind

Valgrind [NS03] is a system for profiling x86 programs by instrumenting them

at runtime. Tools for detecting memory management and threading bugs are

provided. Extending Valgrind should be the natural choice if applications com-

piled to native code (e.g. from C or C++) should be instrumented. In fact,

an earlier version contained a tool implementing the Eraser-algorithm which

detects data-races in multi-threaded programs [SBN+97].

6.3 Trace Languages

Especially in the aspect-oriented software development community, there have

been quite some advances towards trace languages within the past years.
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6.3.1 Overview

In the following we first want to give an overview of the different approaches

that have been published so far.

6.3.1.1 Stateful Aspects

Starting in 2001, Douence, Fradet, Motelet and Südholt published severel ar-

ticles [DMS01, DFS02, DFS04b, DFS04a] describing stateful, history based as-

pects. They introduce an aspects calculus where advice can be triggered by

a sequence of joinpoints. While this calculus has proven very effective in the

area of formal methods, it is less oriented towards an implementation than the

approach we took with J-LO and DLTL. At least one implementation which

was inspired by their work is implemented in JaSCo [SV03, VS04], an aspect-

oriented framework for component based software development.

6.3.1.2 Tracecuts

In their URD tool Walker et al. [WV04] implemented so-called tracecuts, certain

pointcuts that let the user specify context-free expressions over the execution

flow, which have been matched in order to make such a tracecut apply to a

certain joinpoint (Table 6.5).

tracecut isSafe() ::= a() completed()∗ $;

tracecut completed() ::= a() [completed()] b()

| c() [completed()] d();

tracecut a() ::= entry(safePc());

tracecut b() ::= exit(safePc());

tracecut c() ::= entry(unsafePc());

tracecut d() ::= exit(unsafePc());

pointcut safePc(): execution(∗ ∗.safe());

pointcut unsafePc(): execution(∗ ∗.unsafe(..));

Table 6.5: Tracecuts in the URD tool

The tracecut isSafe() is here defined by the means of context-free gram-

mars over pointcuts. It matches nested calls to safePc(), not followed by

unsafePc().

Since tracecuts allow specification of context-free expressions they allow the

detection of recursive events. As a result, the implementation however needs to

employ push down automata to recognize those languages, which theoretically

can lead to an unbounded stack size in general. Walker’s work focuses of the

elimination of this overhead in his work.
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In tracecuts one is however even able to attach arbitrary action rules to each

match. A keyword fail can be used to conditionally ignore the match. As

a consequence, the language of recognizable traces is even more than context-

free, presumably even Turing complete. As a consequence, tracecuts are not

suitable as a formal specification language, because efficient reasoning about

the specification language itself would be impossible.

6.3.1.3 Alpha

In [OM04, BMO05], Bockisch, Mezini and Ostermann introduce a very general

extension mechanism for pointcuts, by defining pointcuts as predicates in the

logic programming language Prolog. They provide an implementation called

Alpha, which exposes runtime information about the control flow and heap

through prolog facts which can hence be matched on using user defined predi-

cates. This mechanism is obviously extremely powerful and certainly well suited

for rapid prototyping and initial experiments. However, the authors agree that

an implementation using pure Prolog is too inefficient at the current time to be

used in production systems. Future work will show how far one can go using

such open systems.

6.3.2 Tracematches

The model and implementation which come closest to the one used in J-LO is

certainly the one of tracematches [AAS+04] introduced by the abc [ACH+05]

development group. Hence we want to compare both tools in detail.

6.3.2.1 Introduction

A tracematch tm can be interpreted as a tuple tm = (V,Σ,P,B), where V is

some finite set of typed variables, Σ is a finite alphabet of symbols {a1, ..., an},

P is a regular expression over Σ and B is a body, containing pure Java code

with access to variable bindings defined over V.

As in J-LO, symbols in tracematches can bind free variables from V. Hence,

for a symbol ai binding v, we write ai(v) in the following.

The regular expressions that can be used in tracematches are the ones known

from the usual mathematic calculi, containing concatenation, logical disjunction

and the Kleene star. (The implementation also provides the notation a+ for at

least one occurrence of a and a[n] for a . . . a (n times), however this does not

alter the expressiveness.)

An example the authors give is the following (we use an excerpt from the original

text in [AAS+04]):



6.3. TRACE LANGUAGES 111

The application is to log the actions of the users of a database

whenever a user has logged in, we want to report the queries of that

user. For simplicity, we consider a system where only one user is

logged in at any time.

Variables that are to be bound in the pattern of a tracematch

are declared in its header (line 1). Here there are two such variables,

namely the user u and a query q. The first symbol we declare is the

one that binds u, via a call to the login(..) method (lines 2-4). We

also track logout actions, so that we stop logging when the user has

finished (lines 5-6). Finally, we declare a symbol for query events

(lines 7-9), and intercept the value of the query in variable q. The

pattern is then very simple: we just look for queries that follow a

login event (line 11). Whenever this matches a suffix of the current

trace, we print an appropriate logging message that reports both

the user u and the query q (line 13).

1 tracematch (User u, Query q) {

2 sym login after returning:

3 call (∗ LoginManager.login(User,..))

4 && args(u,..);

5 sym logout after:

6 call(∗ LoginManager.logout());

7 sym query before:

8 call(∗ Database.query(Query))

9 && args(q);

10

11 login query+

12 {

13 System.out.println(u + ” made query ” + q);

14 }

15 }

Here the tracematch can be identified as tm = (V,Σ,P,B) with V = {u, q},

Σ = {login(u), logout, query(q)}, P = [login(u) query(q) query(q)∗] and the

shown body. Note in particular that the symbol logout is defined but does not

occur in the pattern. This means that any trace where this symbol is seen

between a login and a query will not be matched.

The semantics of tracematches are quite similar to the ones defined for DLTL

given that the above tracematch matches on all possible valuations for the given

variables. In particular given the example tracematch, logging would happen

after each query which follows a login (given that no logout has happened

before).
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6.3.2.2 Comparison of the implementation

As a consequence, the implementation is quite similar. The aspects structure

with one advice for each symbol and one transition advice in the end (they

call it some advice) is even equal. However in the tracematch implementation

transitions are calculated right in the aspect while in the case of J-LO this is

left to the runtime environment and the aspect only triggers a transition. This

is neither good nor bad and just a design decision.

Another similarity is that they use no explicit representation of a state. A

tracematch is evaluated using its natural representation of its pattern as an

NFA. However, the states of this NFA are represented by constraints: At the

beginning, the NFA is in its initial state, meaning that the constraint of q0
is true while the one of all other states is false. As the automaton takes

transitions into other states, the constraints of those states are simply updated

with the valuations which hold at those states. This is similar to the fact that

in J-LO states are represented by formulae with their appropriate binding.

6.3.2.3 Static precalculation of states

One major difference to J-LO is that the entire NFA is precomputed, including

the transition structure. Over LTL this is hardly possible because LTL allows

explicit negation and conjunct, which must be paid for by a double exponen-

tial blowup when calculating all possible transitions: For any LTL formula ϕ

of size |ϕ| = |cl(ϕ)| =: m over n propositions, there can be up to 2mn dif-

ferent successor configurations, because the AFA can for each different subset

of propositions take a transition into any subset of states/subformulae (whose

number is bounded by m).

We did gave static precalculation a try using a method described by Gian-

nakopoulou and Havelund [GH01]. The AFA is translated into a DFA as fol-

lows: Starting with the initial formula as state, calculate all possible successor

configurations for all possible 2n combinations of propositions. Repeat this for

all new configurations until all configurations have been generated. Since there

can only be up to 2m such configurations, the algorithms must eventually termi-

nate. Our implementation should be reasonably fast given that we implemented

it by indexing propositions as integers using bit shift operations throughout the

whole calculation. The authors are happy to provide the implementation on

request. However still, for our LOR example formula, this yielded a DFA with

214 states, whose calculation took about 54 seconds on a 3GhZ Pentium 4 with

the JDK 1.5.0 04-b05 on Windows which we consider as too slow for practical

applications.

In the case of regular expressions, which have no explicit negation nor conjuncts,

the tracematch implementation can use the following equation in order to ease

the implementation:
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δ(q, {ai1 , . . . , aij}) = (δ(q, ai1), . . . , δ(q, aij ))

This means that if the automaton is in state q takes a transition at a state

where symbols {ai1 , . . . , aij} hold, it can simply take the transitions one after

another. Hence, it suffices to calculate the transition structure for each single

symbol, which yields a transition table of at most the size of m× n where m is

the number of states of the NFA and n the number of symbols.

6.3.2.4 Expressiveness

As a result, in tracematches it is generally impossible to express that certain

propositions should be valid at the same time, because the above equality im-

plies a disjunction, not a conjunction. Also negation can only be expressed

implicitly. In most cases this is not a real problem because the ∧ and ¬ op-

erators can be pushed down into the symbol definitions, because for each two

symbols s and t there exists symbols ¬s and s∧ t, due to the fact that symbols

are in fact pointcuts. However, in pointcuts (and hence symbols) variables can-

not be bound under negation, because if a pointcut does not match, there is no

binding to expose. Hence, pushing down negations into symbols is not possible

when variables are to be bound by this symbol.

Assume for example the DLTL formula F(a(x, y) ∧ XF(b(x) ∧ ¬c(y))). Here

one would need to find a regular expression that makes sure that when b(x)

holds, c(y) does not hold at the same time. Since negation is not explicitly

possible, a first try could be to include a symbol c(y) in the alphabet Σ which

is not contained in P. This however would rule out traces as a(1, 2)c(2)b(1),

which are matched by the formula but would be forbidden by such a regular

expression. Also b(x)∧¬c(y) cannot be combined to a single symbol b nc(x, y),

because that would mean that the c(y) part would bind y under negation, which

is not possible at the moment in the implementation of tracematches. Table 6.6

shows an invalid tracematch which visualizes this attempt. In line 3, a compiler

error would be issued, because the symbol b nc is matched whenever c does not

hold. Hence, b nc cannot bind y.

As a result, such formulae cannot currently be expressed in tracematches. Al-

lowing explicit negation and conjunction in patterns would easily close this

gap, however would naturally lead to the same complexity problems with static

precalculation.

Regular expressions vs. LTL On the other hand there are certain prop-

erties which are hard to express in DLTL. For instance the fact that an event

a is followed by b which is followed by c can in a regular expression be written

simply as a b c, while in LTL one would have to specify this as a ∧ ( (¬b ∧

¬c) U (b ∧ (¬c) U c) ). This is due to the fact that regular expressions are
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1 tracematch(X x, Y y) {

2 sym a after: a(x,y);

3 sym b nc after: b(x) && !c(y);

4

5 a b nc {

6 //do something

7 }

8 }

Table 6.6: Invalid tracematch binding y under negation

evaluated from one element of a concatenation to another, while in LTL for-

mulae are evaluated from one context to another, those being divided by X

operators as described in the semantics section. Hence, in regular expressions

it is cumbersome to specify events that may interleave: For instance if one want

to specify that somewhere on the trace the events a, b and c happen, this can

be written simply as Fa∧Fb∧Fc, while in a regular expression that would need

to be written as (aΣ∗(bΣ∗c)|(cΣ∗b)) | (bΣ∗(aΣ∗c)|(cΣ∗a)) | (cΣ∗(bΣ∗a)|(aΣ∗b)).

Generally however, regular expressions are slightly more powerful than LTL in

a theoretical context, since LTL is known to be unable to describe counting lan-

guages (see [TRW03]). The term counting is here meant as modulo counting :

For instance an even number of a’s can easily be defined by the regular expres-

sion (aa)∗, while it is impossible to define this language in LTL. However, we

think that this kind of counting is of questionable use in the setting of Runtime

Verification.

6.3.2.5 Synergies

Generally we found that most design decisions during the implementation of

both, J-LO and tracematches were reasonable with respect to the actual pur-

pose and targeted user base of the tool: While we still believe that LTL is

probably the best suited specification language for the purpose of Runtime

Verification, there may well be cases where regular expressions are shorter and

easier to read as shown above. In the general setting of tracematches, which

allow the execution of arbitrary code and hence form a general purpose lan-

guage for traces matching, targeting a broad user base, regular expressions are

certainly the better choice taking into account their broad acceptance.

Generally both implementations have a lot in common and actually only differ

in the input language and the automaton model (AFAs vs. NFAs).

Starting on January 1st 2006, the author of this work will be joining the abc

group, who is meanwhile optimizing the runtime overhead of the tracematch
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implementation by the means of static analysis. Hence, it might well be the

case that parts of J-LO might be replaced by the tracematch codebase or reused

there conversely.

We point the interested reader to [BS06], where we introduce tracechecks, an

approach to unify both, the tracematch implementation and J-LO. In this work

we show how tracematches can be expressed in the terms of J-LO with only

slight modifications to the operational semantics.



Chapter 7

Conclusion

We have presented a runtime verification tool based on the aspect-oriented

programming language AspectJ and linear temporal logic (LTL). We make use

of AspectJ to instrument the application to verify on the one hand and employ

AspectJ pointcuts as propositions of our logic on the other hand. As a result,

we gain an expressive formalism which is capable of instance based reasoning

about the execution trace of any Java application.

The major contributions of this work are a precise declarative and operational

semantics of LTL for free variable bindings and a trace model based on pred-

icate logic which is rich enough to allow for the evaluation of such formulae.

We presented the reference implementation J-LO and reported on important

details of this implementation with respect to the operational semantics. When

comparing to related work on the field of aspect-oriented programming, we no-

ticed that all previous approaches model a trace as a pure sequence of states

— a model, which is not rich enough to be able to express interleaving and

overlapping events. Hence, within this field, the trace model as such can be

seen as a contribution of its own.

Further we discussed how J-LO can be used to identify temporal bug patterns

such as faulty use of data structures (stacks, iterators, hast sets) as well as the

problem of lock order reversal. We commented on the runtime overhead one

has to expect when applying J-LO to an application and pointed out room for

further optimization.

Future work will comprise optimizing the implementation through static checks

approximation and applying J-LO to some industrial size applications.

Our prototype of J-LO is available from

http://www-i2.informatik.rwth-aachen.de/JLO/.
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tection and resolution of aspect interactions. In Proceedings of

the ACM SIGPLAN/SIGSOFT Conference on Generative Pro-

gramming and Component Engineering (GPCE’02), pages 173–

188, 2002.



120 BIBLIOGRAPHY
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Appendix A

Overview of own related

publications

Here we briefly point to own publications which are related to J-LO. They are

listed in chronological order. All those works can be found at:

http://bodden.de/publications/

A.1 A Lightweight LTL Runtime Verification Tool

for Java

Eric Bodden. In OOPSLA’04 ACM Conference on Object-Oriented Systems,

Languages and Applications (Companion), SIGPLAN, Vancouver, Canada, Oc-

tober 2004. Citation code: [Bod04]

Abstract

Runtime verification is a special form of runtime testing by employing for-

mal methods and languages such as next-time free linear-time temporal logic

(LTL\X) which is used in this work. The discipline serves the purpose of

asserting certain design-time assumptions about object-oriented (OO) entities

such as objects, methods, and so forth. In this paper we propose a linear-time

logic over joinpoints, and explain a lightweight runtime verification tool based

on this logic, J2SE 5 metadata and an AspectJ-based runtime backend. Imple-

mentations have been proposed so far for imperative and functional languages.

To our best knowledge our approach is the first to allow addressing of entire

sets of states, also over subclass boundaries, thus exploiting the OO nature.

Background

This was the first work about J-LO . Here we first proposed the idea of applying

Runtime Verification through specifications on the form of metadata annota-

tions and implemented by the means of AOP. In this early stage we still propose

that the Next operator should not be used because it seems unclear what the
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next joinpoint is in an arbitrary aspect-oriented program. In later versions we

saw that there can be situations where X is useful, so today J-LO does allow

using this operator. This paper was submitted to the OOPSLA Student Re-

search Competition and won the third prize in the undergraduate category. At

the OOPSLA conference we got to know the AspectBench Compiler, on which

J-LO is based on today.

A.2 Concern specific languages and their implemen-

tation with abc

Eric Bodden. Proceedings of Workshop on Software-engineering Properties of

Languages and Aspect Technologies (SPLAT) 2005, Chicago, USA, March 2005.

Citation code: [Bod05a]

Abstract

In this work first we introduce the notion of concern specific languages (CSL)

which are to a specific crosscutting concern, what domain specific languages are

to a specific domain. Implementing such CSLs was a tedious task in the past

since no extensible frameworks for implementing crosscutting concerns existed.

With the AspectBench Compiler (abc), which was released in October 2004,

researchers now have a powerful extensible compiler for the aspect-oriented

language AspectJ, enabling easy implementation of language extensions or even

whole CSL for a specific crosscutting concern. We first motivate CSLs in general

and give examples of such languages which exist already. In the subsequent

chapters we introduce one specific CSL and report on our implementation using

abc and specifically about how CSLs can interact with and reuse each other.

We will see that the use of CSLs in general provides better comprehensibility

and analyzability. Finally we show how metadata annotations can facilitate the

implementation and deployment of CSLs.

Background

This paper is theoretical in nature and discusses the LTL we use with respect

to other domain specific languages. During our research we found that other

languages as our LTL exist which are not really specific to an application domain

but rather to a common crosscutting concern (e.g. Runtime Verification). This

yields a definition of Concern Specific Languages (CSL) and identifies the LTL

we use as one of those.

A.3 Implementing concern-specific languages with

abc

Eric Bodden. In Seminar on Aspect-oriented technologies. Institut für Informa-

tionssysteme, Prof. Steimann, Fachgebiet Wissensbasierte Systeme, Hannover
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University. February 2005. Citation code: [Bod05c]

Abstract

In this work first we introduce the notion of concern specific languages (CSL)

which are to a specific crosscutting concern, what domain specific languages

are to a specific domain. Implementing such CSLs was a tedious task in the

past since no extensible frameworks for implementing crosscutting concerns

existed. Ostermann and Mezini proposed a Prolog based implementation of

aspect-oriented programming which would enable easy extension of the pro-

gramming language. However, it is not yet clear what runtime impact will be

involved with such an approach. With the AspectBench Compiler (abc), which

was released in October 2004, researchers now have a powerful extensible com-

piler for the aspect-oriented language AspectJ, enabling easy implementation

of language extensions or even whole CSL for a specific crosscutting concern.

We first motivate CSLs in general and then introduce the abc framework. In

the subsequent chapters we introduce our specific CSL and report on the steps

necessary to implementing it using abc. Finally we recapitulate on the ease of

use of abc and conclude with a proposal for further development of this compiler

framework.

Background

This work gives many implementation details with respect to the frontend, i.e.

the abc framework. Its purpose is not only to explain how our LTL logic can

be implemented with abc — since there was only little documentation about

abc at the time, we also how abc can be extended for the implementation of

Concern Specific Languages in general.

A.4 Efficient and Expressive Runtime Verification

for Java

Eric Bodden. In proceedings of the Grand finals of the ACM Student Re-

search Competition 2005, San Francisco, CA, USA, March 2005. Citation code:

[Bod05b]

Abstract

The contributions of this work are a new formalism which allows to build ex-

pressive formulae over temporal traces in an intuitive way as well as a complete

implementation of this formalism, which instruments any given Java application

in bytecode form with appropriate runtime checks of those formulae. The for-

malism is based on Next-time free Linear-time temporal logic over finite traces.

The temporal operators of this logic are applied to a universe of pointcuts in

the aspect-oriented language AspectJ. This approach is novel and unique in

the field. Formulae are deployed either by the use of Java 5 metadata anno-

tations or in an XML format. The generated instrumentation code is efficient
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and generally scalable up to large-scale applications. The instrumentation code

can be proven to be side-effect free, meaning, that it is oblivious to the base

application.

Background

This work is winner of the Grand Finals of the 2005 ACM Student Research

Competition, undergraduate categorie. It is an extended version of the OOP-

SLA’04 paper containing an extensive comparison to previous work and ex-

plaining an approach which directly translates formulae into Büchi automata.

Such an approach promises to be highly efficient at runtime because the state to

be stored is reduced to a minimum. However, it gives in general no indication

of how bindings should be updated during matching. That’s why we opted for

alternating automata in this thesis. Nevertheless, we provide a discussion of

the Büchi automaton attempt in section B.

A.5 Temporal Assertions using AspectJ

Volker Stolz, Eric Bodden. In proceedings of RV’05 - Fifth Workshop on Run-

time Verification, Satellite workshop of CAV 2005, Edinburgh, Scotland, UK,

July 2005. Citation code: [SB05]

Abstract

We present a runtime verification framework for Java programs. Properties

can be specified in Linear-time Temporal Logic (LTL) over AspectJ pointcuts.

These properties are checked during program-execution by an automaton-based

approach where transitions are triggered through aspects. No Java source code

is necessary since AspectJ works on the bytecode level, thus even allowing

instrumentation of third-party applications. As an example, we discuss safety

properties and lock-order reversal.

Background

The contribution of this submission is the formal model we employed in J-LO .

In particular we explain how we make use of alternating automata and how we

employ AspectJ in order to retrieve a trace of a running application.

A.6 Tracechecks: Combining tracematches and tem-

poral logic

Volker Stolz, Eric Bodden. Submitted to AOSD’06 - Sixth annual ACM confer-

ence on Aspect-Oriented Software Development, Bonn, Germany, March 2006.

Citation code: [BS06]

Abstract

Tracechecks are a formalism based on linear temporal logic (LTL) with variable
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bindings and AspectJ pointcuts for the purpose of verification. We demonstrate

how tracechecks can be used to model temporal assertions. These assertions

reason about the dynamic control flow of the application. We explain in detail

how we make use of AspectJ pointcuts to derive a formal model of an existing

application and use LTL to express temporal assertions over this model.

Tracechecks are closely related to tracematches, an AspectJ extension provided

in the AspectBench Compiler (abc). Tracematches allow to specify trace con-

ditions as regular expressions.

We provide an extensive comparison of tracechecks and tracematches, specifi-

cally showing that, unlike regular expressions, LTL offers quantification, nega-

tion and conjunction and yields shorter specifications of interleaving events.

Since regular expressions are better suited for some specifications, we show how

both approaches can be unified in a single operational semantics. This yields a

powerful framework for temporal reasoning, which allows for the specification

of temporal assertions in a combined formalism.

Background

In this work we provide an extensive comparison to tracematches [AAS+04] (cf.

section 6.3.2) and show that they can be expressed in terms of the alternating

automata present in J-LO with only slight modifications to the backend. This

paper was finished right before finishing this thesis and so represents the latest

state of the project.
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Pitfalls we came across

In this section we briefly want to comment on some pitfalls we came across

during our research, in order to prevent other people making the same mistakes.

B.1 Büchi automata over finite paths

Our initial publication at OOPSLA’04 (cf. section A.1) we were still of the opin-

ion that ordinary Büchi automata can be used to implement finite path seman-

tics of LTL formulae by simple interpreting them as NFA. As Giannakopoulou

and Havelund noted [GH01] and as we found out by own test cases, this is not

generally possible: The generated Büchi automata have to fulfill certain con-

ditions, which were not always fulfilled when generating Büchi automata using

existing tools.

In particular, we applied the program ltl2ba [Odd] to several example formulae.

ltl2ba takes an LTL formula (without free variables) as input and generates a

¯
automata equivalent to that formula - “equivalent” here meaning equivalence

over infinite paths. Unfortunately it turned out that the generated automata

did not yield the same equivalence over finite paths. As an example, consider

the automaton in figure B.1.

q0 q1 q2p q

Σ

Figure B.1: Büchi automaton for p ∧ Xq

It shows the Büchi automaton for the formula p∧Xq generated by ltl2ba. Over

infinite paths it implements the correct semantics: A final state will be visited

infinitely often if and only if p holds at the first state and q at the next one.
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Note that in this automaton the state q1 is final. In fact, for the language

accepted by this automaton it makes no difference at all whether q1 is final or

not, because any finite prefix of an observed path is ignored in the acceptance

condition for Büchi automata.

For any finite path however, the fact if q1 is final is quite important: Consider

the path π = {p} of length 1. Here p holds at the first state, but q does not

hold at the next state because there simply is no next state at all. Of course,

we would like to reject such a trace. Hence we cannot simply use the Büchi

automaton and interpret it over finite paths, because in this case the trace

would be accepted due to the fact that q1 is final.

So in a nutshell, Büchi generated by ltl2ba are useless for us. Yet there may

be other tools around, which generate automata that can be used over fi-

nite paths. The webpage http://www.ti.informatik.uni-kiel.de/∼fritz/

ABA-Simulation/ltl.cgi gives an overview of the results of various LTL to

Büchi automaton translation tools.

Another reason for why we switched from Büchi automata to alternating au-

tomata is that the former give no indication of how bindings should be prop-

agated during evaluation. In the AFA approach, it became clear that free

variables have to be bound whenever moving to a new state via the X operator

and conversely no binding should take place when taking a self-loop back to the

original state. This behaviour was induced by the partially ordered state set

of an AFA. When generating a Büchi automaton from an AFA, one abstracts

away all opportunities for such perceptions.

B.2 The trace model

In the beginning of this research we made the same mistake which has been

done several times in related work in the field of aspect-oriented programming

(cf. section 6.3): We chose the wrong trace model. When thinking of an

execution trace one usually thinks of a sequence of events that occur during

the execution of a program. However, since we are using pointcuts which are

predicates over such events, it should become clear that we actually need to

employ a predicate logic and an appropriate trace model, mapping each event

to the set of predicates that match this event. As we show in [BS06], such

a trace model is important in order to derive a logic which is closed under

negation.
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AspectJ pointcuts

The pointcut language of AspectJ 1.2 comprises the following kinds of pointcuts.

Informal definitions of id, type, method and constructor patterns are given on

page 28.

Context exposure
Those three pointcuts are used to expose context. They all match on actual

runtime types.

This

Syntax this( TypePattern ), this( Identifier )

Semantics matches each joinpoint, where the currently executing object is an

instance of a type matched by TypePattern resp. the declared type of the

Identifier

binds Identifier to the currently executing object

Target

Syntax target( TypePattern ), this( Identifier )

Semantics matches each joinpoint, where the called object is an instance of a

type matched by TypePattern resp. the declared type of the Identifier

binds Identifier to the target object

Args

Syntax args( ArgPattern )

Semantics matches each joinpoint, where the actual types of the arguments

are matched by the ArgPattern

132
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binds Identifier to an array containing the argument objects; primitive are

automatically boxed into objects

Primitive / kinded pointcuts
Those pick out joinpoints of a certain kind (method call, field access, etc.). They

all match the execution of a single statement or a interval of the dynamic control

flow. Each pointcut can expose state in combination with this, target,args

(see above).

Execution

Syntax execution( MethodPattern ), execution( ConstructorPattern )

Semantics matches the execution of any method/constructor matched by the

MethodPattern/ConstructorPattern

binds this to executing object (or null if method is static)

binds target to executing object (or null if method is static)

binds args to arguments of method invocation

Call

Syntax call( MethodPattern ), call( ConstructorPattern )

Semantics matches call to any method/constructor matched by the Method-

Pattern/ConstructorPattern

binds this to caller object (or null if called from static context)

binds target to called object (or null if method is static)

binds args to arguments of method invocation

Get

Syntax get( FieldPattern )

Semantics matches reading access to any field matched by the FieldPattern

binds this to accessed object

binds target to accessed object

binds args to empty

Set

Syntax set( FieldPattern )
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Semantics matches writing access to any field matched by the FieldPattern

binds this to accessed object

binds target to accessed object

binds args to new field value

Static Initialization

Syntax staticinitilization( TypePattern )

Semantics matches initialization of all static members as well as the execution

of the static{...} block in all types matched by TypePattern

binds this to null

binds target to null

binds args to empty

Pre-Initialization

Syntax preinitilization( ConstructorPattern )

Semantics matches code executed between entry of a constructor matched by

ConstructorPattern and the first line after the call to super(...)

binds this to null

binds target to null

binds args to arguments of constructor invocation

Initialization

Syntax initilization( ConstructorPattern )

Semantics matches code executed in a constructor matched by Constructor-

Pattern starting from the first line after the call to super(...)

binds this to object being initialized

binds target to object being initialized

binds args to arguments of constructor invocation

Execution Handler

Syntax handler( TypePattern )
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Semantics matches code executed inside exception handlers for exceptions

matched by TypePattern

binds this to executing object (or null if surrounding method is static)

binds target to executing object (or null if surrounding method is static)

binds args to the exception to handle

Lexical scope pointcuts
Those allow to restrict other pointcuts to certain lexical scopes.

Lexical scoping over types

Syntax within( TypePattern )

Semantics matches code in the lexical scope of a type matched by TypePattern

binding of this,target,args null resp. empty

Lexical scoping over methods/constructors

Syntax withincode( MethodPattern ), withincode( ConstructorPattern )

Semantics matches code in the lexical scope of a method/constructor matched

by MethodPattern/ConstructorPattern

binding of this,target,args null resp. empty

Control flow-based pointcuts
Those allow to restrict matching to the control flow of other pointcuts.

Control flow

Syntax cflow( Pointcut )

Semantics matches any joinpoint occurring in the control flow of the any

joinpoint matched by Pointcut

binding of this,target,args null resp. empty

Control flow (below)

Syntax cflowbelow( Pointcut )

Semantics matches any joinpoint occurring in the control flow of the any

joinpoint matched by Pointcut which is not matched by Pointcut itself

binding of this,target,args null resp. empty
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Expression-based pointcuts
Those allow the dynamic evaluation of Boolean expressions.

Boolean evaluation

Syntax if( BooleanExpression )

Semantics matches any joinpoint at which the BooleanExpression holds; the

BooleanExpression can only access static members, parameters exposed

by the enclosing pointcut or advice, and reflective information

binding of this,target,args null resp. empty



Appendix D

Contents of the CD-ROM

Attached to this thesis you find a CD-ROM with the following contents:

• This thesis

• The final presentation

• Copy of the J-LO-Website

• Full source code of the J-LO distribution (version 0.9.1) along with

• Binary distribution of J-LO (version 0.9.1) to run test instances including

full API documentation for the runtime library

• Test cases

• Copies of all scientific papers published by Eric Bodden and related to

J-LO (see appendix A)

Details are given by the file index.html in the root directory of the CD-ROM.

It can be viewed using any standard web browser. In order to view all of the

documents, you will also need the free Acrobat Reader, which can be downloaded

at http://www.adobe.com/products/acrobat/readstep.html.
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Appendix E

Symbols and notations

A automaton, page 14

B a Büchi automaton, page 15

F set of final states, page 14

Q finite set of states, page 14

q0 initial state, page 14

ρ run of an automaton, page 14

Σ finite alphabet, page 14

∆ transition relation, page 14

A(M,s) automaton for a pointed transition system, page 15

Aϕ automaton equivalent to ϕ, page 15

DOM a global domain, page 40

dom(x) the domain w.r.t. variable x, page 40

λx.(x > 0) the function evaluating x > 0 with x free variable, page 41

L(A) language recognized by A, page 14

A ϕ CTL*/CTL operator for all paths ϕ, page 11

E ϕ CTL*/CTL operator exists a path s.th. ϕ, page 11

F ϕ CTL*/LTL operator finally ϕ, page 11

G ϕ CTL*/LTL operator globally ϕ, page 11

X ϕ CTL*/LTL operator next ϕ, page 11

ϕ R ψ CTL*/LTL operator ϕ releases ψ, page 11

ϕ U ψ CTL*/LTL operator ϕ until ψ, page 11

ϕ W ψ CTL*/LTL operator ϕ until ψ (weak), page 40

LTLnnf set of LTL formulae in negation normal form, page 16

{x 7→ 1} anonymous function mapping x to 1, page 45

M a model / Kripke structure, page 11

JϕK semantics of ϕ, page 40

f̃ appropriately overloaded version of function f , page 45
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p a proposition, page 11

P a set of propositions, page 11

p(x) a proposition with free variable x, page 38

p(x, y) a proposition providing a value for x and using y, page 39

S finite state set of a Kripke structure, page 11

L labeling function of a Kripke structure, page 11

R edge relation of a Kripke structure, page 11

s |= ϕ state s models/satisfies formula ϕ, page 12

next(ϕ) future part of ϕ, page 42

now(ϕ) current part of ϕ, page 42

π a path, page 12

π[i] the i-th state of path π, page 12

πi the suffix of π starting at π[i], page 12

s
⊗
t clause product of clause sets s and t, page 17

S1 ∩ S2 intersection of S1 and S2, page 52

S1 ∪ S2 union of S1 and S2, page 17

2S set of all subsets of S (powerset), page 11

~x a set or vector x = {x1, . . . , xn}, page 38

<> SPIN syntax for finally , page 21

[] SPIN syntax for globally , page 21

ff state representing false, page 12

tt state representing true, page 12
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example

stack, 8
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now(ϕ), 42
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next′(ϕ), 42

correctness, 44

next, 43

now, 42

garbage collection, 35

generalized Büchi automaton, 15, 18

holds, 48, 64

if-closure, 80

if-closures, 79

joinpoint, 46

joinpoints, 27

Kripke structure, 11
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example, 13

pointed, 11

label, 48

Linear temporal logic (LTL), 11

LTL Model Checking process, 15

matches, 48, 64

matching function, 47

metadata annotations, 23

minimal specification, 67

Model Checking, 10

model, 10
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Model checking
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MTL, 107

negation normal form (NNF), 16

function nnf , 16

never claim, 21

object domain O, 46
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path, 12

path formula, 12

path quantifiers, 12

pointcut, 27

pointcuts, 27

proceed, 32

Process Meta Language, 19
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Retention Policy, 24

Runtime Verification, 22

satisfying binding, 49

semantic interface, 9

semantics

declarative, 45

shadow, 94
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state formula, 12
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temporal bug pattern, 8

temporal operators, 12

the current state, 42

tracematches, 110
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