
The design and implementation of formal monitoring techniques

Eric Bodden
Sable Research Group, School of Computer Science, McGill University

eric.bodden@mail.mcgill.ca

Abstract
In runtime monitoring, a programmer specifies a piece of codeto
execute when a trace of events occurs during program execution.
Previous and related work has shown that runtime monitoringtech-
niques can be useful in order to validate or guarantee the safety and
security of running programs. Yet, those techniques have not yet
been able to make the transition to everyday use in regular soft-
ware development processes. This is due to two reasons. Firstly,
many of the existing runtime monitoring tools cause a significant
runtime overhead, lengthening test runs unduly. This is particularly
true for tools that allow reasoning about single objects, opposed to
classes. Secondly, the kind of specifications that can be verified by
such tools often follow a quite cumbersome notation. This leads
to the fact that only verification experts, not programmers,can at
all understand what a given specification means and in particular,
whether it is correct. We propose a methodology to overcome both
problems by providing a design and efficient implementationof ex-
pressive formal monitoring techniques with programmer-friendly
notations.

Categories and Subject DescriptorsD.3.4 [Programming Lan-
guages]: Processors—Compilers

General Terms Experimentation, Human Factors, Languages,
Performance, Reliability, Verification

Keywords Program monitoring, runtime verification, program
analysis, aspect-oriented programming

1. Problem Description
Static program verification in the form of model checking andthe-
orem proving has in the past been very successful, however mostly
when being applied to small embedded systems. The intrinsicex-
ponential complexity of the involved algorithms makes it hard to
apply them to large-scale applications. Runtime monitoring or run-
time verification [1] tries to find new ways to support automated
verification for such applications. This is done by combining the
power of declarative safety specifications with automated tools that
allow to verify these properties not statically but dynamically when
the program under test is executed. Researchers have produced a
variety of such tools over the last years, many of which have helped
to find real errors in large-scale applications.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA 07 October 21–25, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM [to be supplied]. . . $5.00

Yet, those tools have not yet had any widespread adoption by
programmers in real software development processes. In ouropin-
ion, this is mainly due to two reasons. Firstly, there is an obvious
trade-off between expressiveness and complexity of any given run-
time monitoring tool. The early tools were very lightweight, allow-
ing users to specify properties such thatthe method File.read(..)
must be called only before File.close(). Such properties can be
checked very efficiently. However, in an object-oriented setting,
usually only per-object specifications make sense:for all Files f,
f.read(..) must be called only before f.close(). Implementing run-
time monitoring for such properties efficiently is a real challenge
and until now the few tools which allow for such kind of specifica-
tions still induce an unduly large runtime overhead in many cases
[4].

Secondly, many runtime verification tools build up on the men-
tal legacy of static verification. In static verification, formalisms
such as Linear Temporal Logic (LTL) and Computational Tree
Logic (CTL) are very common. Even experts in formal verifica-
tion admit that those formalisms are often hard to handle.Hence,
it is only natural that many programmers perceive runtime moni-
toring as complicated and consequently not very practical.In addi-
tion, even if one programmer decides to go through the process of
learning such a specification language, he might not be able to com-
municate specifications he wrote to any of his colleagues, making
potential mistakes harder to spot.

This lack of adoption of runtime monitoring techniques there-
fore leads to the fact that in most software development projects
formal verification simply does not take place. Instead, hand-
written tests are produced; a process which in itself is tedious and
error-prone. As a consequence, the potential of those powerful tech-
niques just remains unused, leaving many faults, which otherwise
could have been detected, quietly buried in program code.

2. Goal Statement
Our goal is to evolve the techniques of runtime monitoring tosuch
a state that they caneasily be usedby reasonably skilled program-
merson large-scale applicationswritten in modern programming
languages. Specifically, we want to tackle the problems of (1) ef-
ficient runtime monitoring for parametrized specificationsand (2)
providing specification formalisms that can easily be understood by
programmers and can be used to not only verify runtime behaviour
but also communicate design decisions between developers.

To ease the software development process, our approach should
be automated as much as possible. Therefore, such a tool chain
would have to consist of the following components:

• A front-end that provides support for denoting safety properties
in a variety of (potentially graphical) specification formalisms.

• A generic back-end that allows for the automatic generationof
runtime monitors for any such formalism. The generated moni-
tors should be as efficient as possible, even if specifications are
to be evaluated on a per-object basis.

• A static analysis framework to specialize instrumentationcode
with respect to the program under test. Goal of this framework
is to remove any instrumentation overhead induced by the mon-
itor, in case this overhead can statically be proven unnecessary.

This tool chain would address the stated problems in the fol-
lowing ways. The potentially graphical front-end would allow pro-
grammers to denote safety properties in a way that is close to
their mental picture of it. Bridging this gap between what the pro-
grammer wants to express and needs to express is essential inor-
der to guarantee a minimal chance for error at specification time.
The front-end should potentially be integrated into an existing inte-
grated development environment in order to provide programmers
easy access.

The back-end then generates efficient code from those safety
properties. At this stage, high-level events are mapped onto events
in the actual code base. From our experience we can tell that
one potentially good way of doing this would be to usepointcuts
of an aspect-oriented programming language [6]. Such pointcuts
have proven themselves to be easy enough to understand for many
average software developers, as their wide-spread use in software
development proves.

Although the back-end generates efficient code, this code might
still not be efficient enough, in particular in scenarios where the
program under test would trigger the generated runtime monitor
very frequently. Static program analysis can decrease the runtime
overhead by statically determining that certain static instrumenta-
tion points can never be part of a dynamic trace that would trig-
ger a violation of the given specification. The static analysis back-
end should be able to offer generic analyses that can be applied
to specifications in arbitrary formalisms and flexible enough to al-
low additional formalism-specific analysis stages to be plugged-in.
Furthermore it must be capable of automatically specializing the
generated monitor based on the gathered analysis results. In order
to make sure the overall goal is reached, we propose the following
methodology.

3. Approach
Efficient monitor code generation We base our approach on an
already developed back-end fortracematches[2]. Tracematches are
an extension to the aspect-oriented programming language AspectJ
[3] which allows programmers to specify traces via regular expres-
sions with free variables. Avgustinov et al. already identified and
solved many of the problems of generating efficient monitor code
[4], yet for some benchmarks large overheads remain.

Removal of unnecessary instrumentation through static program
analysis In a second step (ongoing), we then design and imple-
ment a set of static analyses which allows us to remove unneces-
sary instrumentation induced by the presence of tracematches. Ini-
tial results, based on a very precise flow-insensitive whole-program
pointer-analysis [7], seem promising, lowering the runtime over-
head to under 10% in most cases [5]. Currently, we are experiment-
ing with additional, lightweight but flow-sensitive checkers which
reduce the overhead even further in some common cases.

Making code generation and analysis genericIn a third step we
then plan to conduct a study that investigates how much both,those
static analyses and the mechanics for efficient monitor codegener-
ation can be generalized. In particular, one has to answer the ques-
tion of exactly what information needs to be known about a given
specification formalism or the given specification itself inorder to
make code generation and analysis feasible. We are confident that
large parts of the analyses should actually be independent of the
formalism in use and hence, those analyses can be used to opti-
mize specifications denoted in a variety of different specification

languages. Once this study has been conducted, the implementa-
tion of both, code generation and static analysis, will be generalized
accordingly.

Easier specification formalisms In a fourth and final step we will
then concentrate on specification languages. We plan to study ex-
isting, potentially graphical, notations in detail. For each such no-
tation we wish to answer the question ofwhy it is easier or harder
to understand than others. Some particular formalisms could also
only be suited for special kinds of specifications. In that case we
wish to determine the essence of such specifications andwhy they
are harder to express in other formalisms. Finally, we plan to pro-
vide a prototypical front-end that allows users to denote specifi-
cations in different formalisms which seem particularly suited for
large-scale mainstream software development. The addition of an-
other domain-specific language could help answer the question of
whether or not domain-specificity in this setting can make sense.

3.1 Evaluation

Well-known benchmarks exist for the evaluation of runtime over-
heads and the precision of static analysis. In our work to date we
made use of the DaCapo benchmark suite which consists of ten
medium-sized to large-scale Java applications. We plan to con-
duct consistent experiments with this and other benchmark suites
throughout the entire project. One major contribution of our work
will be to provide a set of specifications that apply to those bench-
marks along with a detailed account of how the various optimiza-
tions behave on those specifications and which of the specifications
are actually violated by the programs.

With respect to specification formalisms, the question of how
those could be evaluated best, remains still unclear at the current
time. Even if one had access to subjects willing to try various
formalisms and compare them on a subjective basis, it would be
hard to guarantee internal and external validity due to potentially
different background knowledge of the subjects and due to the large
variety of formalisms to choose from. In general, we tend to believe
that graphical notations could improve comprehensibilitya lot. Yet,
this might be hard to prove. Hence, we would be very grateful for
comments on that matter.

References
[1] 1st to 7th Workshop on Runtime Verification (RV’01 - RV’07), 2001-

2007. http://www.runtime-verification.org/.

[2] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble.
Adding Trace Matching with Free Variables to AspectJ. InObject-
Oriented Programming, Systems, Languages and Applications, pages
345–364. ACM Press, 2005.

[3] AspectJ Eclipse Home. The AspectJ home page. http://eclipse.org/aspectj/,
2003.

[4] P. Avgustinov, J. Tibble, and O. de Moor. Making trace monitoring
feasible. InACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages and Applications, 2007.

[5] E. Bodden, L. Hendren, and O. Lhoták. A staged static program
analysis to improve the performance of runtime monitoring.In
European Conference on Object-Oriented Programming. Springer,
July 2007. To appear inLecture Notes of Computer Science.

[6] G. Kiczales. Aspect-oriented programming.ACM Computing Surveys,
28A(4), 1996.

[7] M. Sridharan and R. Bodı́k. Refinement-based context-sensitive
points-to analysis for Java. InPLDI ’06: Proceedings of the 2006
ACM SIGPLAN conference on Programming language design and
implementation, pages 387–400, New York, NY, USA, 2006. ACM
Press.

