The design and implementation of formal monitoring techniques

Eric Bodden

Sable Research Group, School of Computer Science, McGivdusity
eric.bodden@mail.mcgill.ca

Abstract

In runtime monitoring, a programmer specifies a piece of dode
execute when a trace of events occurs during program egecuti
Previous and related work has shown that runtime monitdgolg-
nigues can be useful in order to validate or guarantee tle¢ysaifid
security of running programs. Yet, those techniques havey@b
been able to make the transition to everyday use in regufér so
ware development processes. This is due to two reasonslyFirs
many of the existing runtime monitoring tools cause a sigaift
runtime overhead, lengthening test runs unduly. This iSqadarly
true for tools that allow reasoning about single objectposed to
classes. Secondly, the kind of specifications that can biedtby
such tools often follow a quite cumbersome notation. Thaxlse
to the fact that only verification experts, not programmess) at
all understand what a given specification means and in péatic
whether it is correct. We propose a methodology to overcoatie b
problems by providing a design and efficient implementatibex-
pressive formal monitoring techniques with programmésridly
notations.

Categories and Subject DescriptorsD.3.4 [Programming Lan-
guage Processors—Compilers

General Terms Experimentation, Human Factors, Languages,
Performance, Reliability, Verification

Keywords Program monitoring, runtime verification, program
analysis, aspect-oriented programming

1. Problem Description

Static program verification in the form of model checking éime-
orem proving has in the past been very successful, howevstlyno
when being applied to small embedded systems. The intresic
ponential complexity of the involved algorithms makes itchto
apply them to large-scale applications. Runtime monitpdanrun-
time verification [1] tries to find new ways to support autoetht
verification for such applications. This is done by combinthe
power of declarative safety specifications with automatedstthat
allow to verify these properties not statically but dynaatlicwhen
the program under test is executed. Researchers have prbduc
variety of such tools over the last years, many of which halpdd
to find real errors in large-scale applications.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesatrmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA 07 October 21-25, 2007, Montréal, Québec, Canada.
Copyright(© 2007 ACM [to be supplied]. .. $5.00

Yet, those tools have not yet had any widespread adoption by
programmers in real software development processes. lopof
ion, this is mainly due to two reasons. Firstly, there is avialns
trade-off between expressiveness and complexity of argngiun-
time monitoring tool. The early tools were very lightweigallow-
ing users to specify properties such thia¢ method File.read(..)
must be called only before File.close@uch properties can be
checked very efficiently. However, in an object-orientettise,
usually only per-object specifications make serise:all Files f,
f.read(..) must be called only before f.closd@plementing run-
time monitoring for such properties efficiently is a real ltdrage
and until now the few tools which allow for such kind of spegfi
tions still induce an unduly large runtime overhead in maayes
[4].

Secondly, many runtime verification tools build up on the men
tal legacy of static verification. In static verification,rifiealisms
such as Linear Temporal Logic (LTL) and Computational Tree
Logic (CTL) are very common. Even experts in formal verifica-
tion admit that those formalisms are often hard to handlecde
it is only natural that many programmers perceive runtimeimo
toring as complicated and consequently not very practioaddi-
tion, even if one programmer decides to go through the psocks
learning such a specification language, he might not be aloiem-
municate specifications he wrote to any of his colleague&jnga
potential mistakes harder to spot.

This lack of adoption of runtime monitoring techniques ter
fore leads to the fact that in most software developmenteptsj
formal verification simply does not take place. Instead,dhan
written tests are produced; a process which in itself isoiesiand
error-prone. As a consequence, the potential of those foltech-
niques just remains unused, leaving many faults, whichrotise
could have been detected, quietly buried in program code.

2. Goal Statement

Our goal is to evolve the techniques of runtime monitoringuoh
a state that they cagasily be usedtby reasonably skilled program-
merson large-scale applicationsvritten in modern programming
languages Specifically, we want to tackle the problems of (1) ef-
ficient runtime monitoring for parametrized specificatiamsl (2)
providing specification formalisms that can easily be ustierd by
programmers and can be used to not only verify runtime bebavi
but also communicate design decisions between developers.

To ease the software development process, our approachishou
be automated as much as possible. Therefore, such a toal chai
would have to consist of the following components:

¢ Afront-end that provides support for denoting safety prtps
in a variety of (potentially graphical) specification foriisans.

* A generic back-end that allows for the automatic generatfon
runtime monitors for any such formalism. The generated moni
tors should be as efficient as possible, even if specificatoa
to be evaluated on a per-object basis.

¢ A static analysis framework to specialize instrumentatode
with respect to the program under test. Goal of this fram&wor
is to remove any instrumentation overhead induced by the mon
itor, in case this overhead can statically be proven unisaces

This tool chain would address the stated problems in the fol-
lowing ways. The potentially graphical front-end woulcoal pro-

languages. Once this study has been conducted, the impiemen
tion of both, code generation and static analysis, will beegelized
accordingly.

Easier specification formalisms In a fourth and final step we will
then concentrate on specification languages. We plan ty stxd
isting, potentially graphical, notations in detail. Fockauch no-

grammers to denote safety properties in a way that is close to tation we wish to answer the questionvaliiy it is easier or harder

their mental picture of it. Bridging this gap between what fro-
grammer wants to express and needs to express is essertial in
der to guarantee a minimal chance for error at specificatioa. t
The front-end should potentially be integrated into antexisinte-
grated development environment in order to provide prognams
easy access.

to understand than otherSome particular formalisms could also
only be suited for special kinds of specifications. In thatecae
wish to determine the essence of such specificationsudnycthey
are harder to express in other formalisnisnally, we plan to pro-
vide a prototypical front-end that allows users to denotecip
cations in different formalisms which seem particularlyted for

The back-end then generates efficient code from those safetylarge-scale mainstream software development. The addifian-

properties. At this stage, high-level events are mapped events

other domain-specific language could help answer the quesfi

in the actual code base. From our experience we can tell thatwhether or not domain-specificity in this setting can makese

one potentially good way of doing this would be to ys#ntcuts

of an aspect-oriented programming language [6]. Such qaisit
have proven themselves to be easy enough to understand figr ma
average software developers, as their wide-spread usdtimase
development proves.

Although the back-end generates efficient code, this codatmi
still not be efficient enough, in particular in scenarios rehthe
program under test would trigger the generated runtime tooni
very frequently. Static program analysis can decreaseuttignme
overhead by statically determining that certain statitrimenta-
tion points can never be part of a dynamic trace that woutg tri
ger a violation of the given specification. The static analypack-
end should be able to offer generic analyses that can beedppli
to specifications in arbitrary formalisms and flexible enotg al-
low additional formalism-specific analysis stages to bggéd-in.
Furthermore it must be capable of automatically specraiizhe
generated monitor based on the gathered analysis resutisdér
to make sure the overall goal is reached, we propose thenfiolip
methodology.

3. Approach

Efficient monitor code generation We base our approach on an
already developed back-end feeicematchef]. Tracematches are
an extension to the aspect-oriented programming languagec)
[3] which allows programmers to specify traces via regulqres-
sions with free variables. Avgustinov et al. already idsdi and
solved many of the problems of generating efficient monitatec
[4], yet for some benchmarks large overheads remain.

Removal of unnecessary instrumentation through static gram
analysis In a second step (ongoing), we then design and imple-
ment a set of static analyses which allows us to remove usnece
sary instrumentation induced by the presence of tracemstc¢hi-

tial results, based on a very precise flow-insensitive wipotgram
pointer-analysis [7], seem promising, lowering the rumtiover-
head to under 10% in most cases [5]. Currently, we are expaitim
ing with additional, lightweight but flow-sensitive checkavhich
reduce the overhead even further in some common cases.

Making code generation and analysis generidn a third step we
then plan to conduct a study that investigates how much butke
static analyses and the mechanics for efficient monitor geter-
ation can be generalized. In particular, one has to answeegubs-
tion of exactly what information needs to be known about a given
specification formalism or the given specification itselbider to
make code generation and analysis feasible are confident that
large parts of the analyses should actually be independethieo

formalism in use and hence, those analyses can be used to opti

mize specifications denoted in a variety of different speaffon

3.1 Evaluation

Well-known benchmarks exist for the evaluation of runtinvere
heads and the precision of static analysis. In our work te dag
made use of the DaCapo benchmark suite which consists of ten
medium-sized to large-scale Java applications. We plamoto ¢
duct consistent experiments with this and other benchmaitkss
throughout the entire project. One major contribution of wark

will be to provide a set of specifications that apply to thoeedi-
marks along with a detailed account of how the various opimi
tions behave on those specifications and which of the spaiiifits
are actually violated by the programs.

With respect to specification formalisms, the question af ho
those could be evaluated best, remains still unclear atuhemt
time. Even if one had access to subjects willing to try vasiou
formalisms and compare them on a subjective basis, it woeld b
hard to guarantee internal and external validity due to iy
different background knowledge of the subjects and duettatiye
variety of formalisms to choose from. In general, we tenddiielve
that graphical notations could improve comprehensibilitgt. Yet,
this might be hard to prove. Hence, we would be very grateful f
comments on that matter.

References

[1] 1st to 7th Workshop on Runtime Verification (RV'01 - RV;@0D01-
2007. http://www.runtime-verification.org/.

[2] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren,Ksizins,
0. Lhotak, O. de Moor, D. Sereni, G. Sittampalam, and J. [€ibb
Adding Trace Matching with Free Variables to AspectJ.Object-
Oriented Programming, Systems, Languages and Applicatjzages
345-364. ACM Press, 2005.

[3] AspectJ Eclipse Home. The AspectJ home page. httppfecbrg/aspectj/,
2003.

[4] P. Avgustinov, J. Tibble, and O. de Moor. Making trace ritamng
feasible. INACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages and Applicat907.

[5] E. Bodden, L. Hendren, and O. Lhotak. A staged statiqgam
analysis to improve the performance of runtime monitorinin
European Conference on Object-Oriented ProgrammiBgringer,
July 2007. To appear ibecture Notes of Computer Science

[6] G. Kiczales. Aspect-oriented programmingCM Computing Surveys
28A(4), 1996.

[7] M. Sridharan and R. Bodik. Refinement-based contemsitiee
points-to analysis for Java. IRLDI '06: Proceedings of the 2006
ACM SIGPLAN conference on Programming language design and
implementationpages 387—-400, New York, NY, USA, 2006. ACM
Press.

