
Specifying and Exploiting Advice-Execution Ordering
using Dependency State Machines∗

Eric Bodden
Software Technology Group

Technische Universität Darmstadt, Germany
bodden@acm.org

ABSTRACT
In this paper we present Dependency State Machines, an
annotation language that extends AspectJ with finite-state
machines that define the order in which pieces of advice must
execute to have a visible effect. Dependency State Machines
facilitate the automatic verification and optimization of as-
pects, but also program understanding.

In this work we present the syntax and semantics of De-
pendency State Machines and one possible use case of De-
pendency State Machines: program understanding. We ex-
plain how a set of three static program analyses can ex-
ploit the information that Dependency State Machines carry
to remove advice-dispatch code from program locations at
which dispatching the advice would have no effect. Depen-
dency State Machines hereby help to abstract from the con-
crete implementation of the aspect, making the approach
compatible with a wide range of aspect-generating monitor-
ing tools.

Our extensive evaluation using the DaCapo benchmark
suite shows that our approach can pinpoint to the user ex-
actly the program locations at which the aspect’s execution
matters in many cases. This is particularly useful when
the aspect’s purpose is to identify erroneous execution se-
quences: in these cases, the program locations that our anal-
ysis pinpoints resemble possible points of program failure.

Categories and Subject Descriptors
D.3.4 [Programming Lang.]: Processors—Optimization

General Terms
Experimentation, Languages, Performance

Keywords
Domain-specific aspect languages, compilation and static
program analysis, runtime verification

∗The author conducted this work as a PhD student at
McGill University, under supervision of Laurie Hendren.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOAL’10, March 15, 2010, Rennes and Saint Malo, France.
Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
Pieces of advice are often inter-dependent in the sense

that the execution of one piece of advice will only have
an effect before or after the execution of another. This is
especially true when the aspect that declares these pieces
of advice expresses a state-based runtime monitor. For in-
stance, consider the example aspect in Figure 1, which is-
sues an error message when writing to a disconnected con-
nection. The pieces of advice in this aspect (lines 4–18)
monitor disconnect, reconnect and write events on a con-
nection object. The aspect issues an error message when a
connection is disconnected and then written to without an
intervening reconnect. Figure 2 shows the monitor that this
aspect implements in the form of a finite-state machine that
issues the error message when reaching its accepting state.
It is important to realize that the three pieces of advice
in this aspect are inter-dependent: the effect of executing

1 aspect ConnectionClosed {
2 Set closed = new WeakIdentityHashSet();
3

4 dependent after disconnect(Connection c) returning:
5 call(∗ Connection.disconnect()) && target(c) {
6 closed .add(c);
7 }
8

9 dependent after reconnect(Connection c) returning:
10 call(∗ Connection.reconnect()) && target(c) {
11 closed .remove(c);
12 }
13

14 dependent after write(Connection c) returning:
15 call(∗ Connection.write (..)) && target(c) {
16 if (closed .contains(c))
17 error(”May not write to ”+c+”, as it is closed !”);
18 }
19

20

21 dependency{
22 disconnect, write, reconnect;
23 initial connected: disconnect −> connected,
24 write −> connected,
25 reconnect −> connected,
26 disconnect −> disconnected;
27 disconnected: disconnect −> disconnected,
28 write −> error;
29 final error : write −> error;
30 }
31 }

Figure 1: Monitoring aspect “ConnectionClosed”, annotated
with Dependency State Machine

connectedstart disconnected error

disconnect

reconnect

disconnect,
reconnect, write

write

disconnect write

Figure 2: Finite-state machine for “ConnectionClosed” expl.

one piece of advice depends on whether or not other pieces
of advice executed already. For instance, the write advice
will issue an error message for a connection c if and only if
disconnect executed on c already, and reconnect was not
executed in between. Further, line 17 is the only line that
has an effect that is visible outside the aspect.

When weaving such aspects into a program with modern
aspect compilers like ajc [1] and abc [4], the compilers will
report to the user all the joinpoint shadows at which the
individual pointcuts that the pieces of advice in this aspect
refer to could potentially match a joinpoint at runtime. As
our experiments show, the sheer number of shadows that
such compilers report makes it very hard for programmers
to reason about the effect of these aspects. In the Connec-
tionClosed example, a programmer would have a hard job
trying to determine through manual inspection whether or
not the program can violate the ConnectionClosed property.

Fortunately, as we show in this work, many of these shad-
ows are “irrelevant” in the sense that, when an irrelevant
shadow matches a joinpoint at runtime, then the dispatch
of the piece of advice that induced this shadow will never
have any effect at this program point. For instance, in the
ConnectionClosed example, assume a write shadow at a
program point at which it is known that the connection that
the shadow refers to must be in state “connected”. As the
state machine in Figure 2 and the aspect code show, the
write shadow will have no effect in this state. In the state
machine, the write transition loops, in the aspect code, exe-
cuting the write advice will do nothing because the if-check
that the body contains must evaluate to false.

In this work, we present Dependency State Machines, an
annotation language that extends AspectJ and which makes
such inter-advice dependencies explicit. In particular, a De-
pendency State Machine describes the order in which pieces
of advice have to execute so that the execution of these pieces
of advice, in combination, has an effect that is visible out-
side the aspect itself. Lines 21–30 in Figure 1 show the
appropriate Dependency-State-Machine annotation for the
ConnectionClosed example. As the reader can see, we de-
liberately kept the syntax simple: the annotation directly
encodes the appropriate finite-state-machine representation
(Figure 2) in a textual format. Line 22 enumerates the al-
phabet which this state machine is defined over. Every sym-
bol name in this line refers to a named “dependent” piece of
advice in the same aspect. Lines 23–29 enumerate all states,
along with their outgoing transitions.

If a programmer knows the transition structure of their
monitoring aspect, then the programmer can write these an-
notations by hand. However, many programmers use runtime-
monitoring tools to generate such aspects automatically from
formal property specifications. In this case, the formal speci-
fications often contain enough information already such that
the aspect-generating monitoring tool can automatically gen-
erate the appropriate dependency annotations, too. Many

monitoring tools use finite-state machines as an internal
monitor representation [3, 13, 7, 21], which makes generating
the annotations even easier. In the future, researchers could
also develop tools that generate Dependency State Machines
directly from aspects. However, note that this would involve
analyzing Turing-complete aspect code. Therefore, such ap-
proaches would always only be able to generate Dependency
State Machines for a subset of well-structured aspects.

Once an aspect has been enriched with dependency anno-
tations, tools can exploit the annotations for different pur-
poses. We believe that Dependency State Machines poten-
tially enable a wide range of static analyses and optimiza-
tions. In this work, however, we focus on using Dependency
State Machines to improve program understanding. We
present a flow-sensitive static whole-program analysis, called
“Nop-shadows Analysis”, that can tell apart irrelevant shad-
ows (“nop shadows”) from relevant shadows in many cases.
The Nop-shadows Analysis builds on two flow-insensitive
analyses that we published previously. These earlier analy-
ses had no information about the order in which pieces of
advice must execute, which makes them less precise. In this
paper, we show that the Nop-shadows Analysis significantly
improves over the results of the earlier analyses and that the
combination of all three analyses can significantly reduce the
number of shadows that a programmer has to consider when
attempting to reason about the aspect’s effect.

We validated our approach by applying all three analyses
to the 120 combinations of twelve AspectJ aspects (anno-
tated with Dependency State Machines) with ten bench-
mark programs of the DaCapo Benchmark Suite [6]. As our
results show, our analysis successfully identifies a large frac-
tion of shadows as irrelevant. In combination with our two
previously published analyses, our novel analysis success-
fully identified 36020 of 39194 shadows in our benchmark
set as irrelevant, i.e., a fraction of 92%. In other words,
after applying our analyses, on average, a user would only
have to consider about 8% of all shadows to determine where
the aspect may have a visible effect. For more than half of
the combinations, our analyses were able to show that the
aspect has no effect at all on the program’s execution. Be-
cause our aspects detect erroneous executions, we expect
them to have no effect for correct programs. To summarize,
this paper presents the following original contributions:

• The syntax and semantics of Dependency State Ma-
chines, a novel AspectJ language extension that en-
codes the order in which pieces of advice must execute
to have a visible effect.

• The idea of using Dependency State Machines to im-
prove program understanding by identifying and elim-
inating irrelevant joinpoint shadows, and a static pro-
gram analysis that implements these concepts.

• A set of experiments that show that this program anal-
ysis can significantly reduce the number of joinpoint
shadows that programmers need to consider when try-
ing to reason about their aspects’ effects.

Section 2 explains the syntax of Dependency State Ma-
chines. In Section 3 we explain our semantics of Depen-
dency State Machines. Section 4 outlines three static analy-
ses that exploit these semantics to identify “irrelevant” join-
point shadows. We present benchmark results in Section 5,
discuss related work in Section 6 and conclude in Section 7.

2. SYNTAX OF DEPENDENCY STATE
MACHINES

Figure 1 already demonstrated our language extension us-
ing the ConnectionClosed example. Line 22 establishes the
alphabet that the state machine is evaluated over. Every
symbol in the alphabet refers to a named “dependent” piece
of advice in the same aspect. In our language extension, only
pieces of advice that are declared as “dependent” can have
names. Other pieces of advice have no names and execute
with AspectJ’s standard semantics. Lines 23–29 enumer-
ate all states in the state machine in question, and for each
state enumerate further a (potentially empty) list of out-
going transitions. An entry “s1: l -> s2” reads as “there
exists an l-transition from s1 to s2”. In addition, a program-
mer can mark states as initial or final, i.e., accepting. We
give the complete syntax for Dependency State Machines in
Figure 3, as a syntactic extension to AspectJ.

According to the semantics that we will give to Depen-
dency State Machines, the dependency declaration in the
ConnectionClosed example states that any piece of discon-
nect, write or reconnect advice must execute on a con-
nection c whenever not executing this piece of advice on c

would change the set of joinpoints at which the Dependency
State Machine reaches its final state on c. (More on the
semantics later.) Note, however, that the advice references
in line 22 omit the variable name c of the connection: we
just wrote disconnect, write, reconnect. We can do so
because, by default, a dependency annotation infers variable
names from the formal parameters of the advice declarations
that it references (lines 4, 9 and 14 in the example). This
means that the alphabet declaration in line 22 is actually
a short hand for the more verbose form disconnect(c),

write(c), reconnect(c).
The semantics of variables in dependency declarations is

similar to unification semantics in logic programming lan-
guages like Prolog [14]: The same variable at multiple loca-
tions in the same dependency refers to the same object. For
each advice name, the dependency infers variable names in
the order in which the parameters for this advice are given
at the site of the advice declaration. Variables for return
values from after returning and after throwing advice
are appended to the end. For instance, the following advice
declaration would yield the advice reference createIter (c, i).

dependent after createIter(Collection c) returning(Iterator i):
call(∗ Collection . iterator ()) {}

We decided to allow for this kind of automatic inference
of variable names because both code-generation tools and
programmers frequently seem to follow the convention that
equally-named advice parameters are meant to refer to the
same objects. That way, programmers or code generators
can use the simpler short-form as long as they follow this
convention. Nevertheless the verbose form can be useful in
rare cases. Assume the following piece of advice:

dependent before detectLoops(Node n, Node m):
call(Edge.new(..)) && args(n,m) {
if (n==m) { System.out.println(”No loops allowed!”); }}

This advice only has an effect when n and m both refer to
the same object. However, due to the semantics of AspectJ,
the advice cannot use the same name for both parameters—
the inferred annotation would be detectLoops(n,m). The ver-
bose syntax for dependent advice allows us to state nev-

ertheless that for the advice to have an effect, both pa-
rameters actually have to refer to the same object, say k:
dependency{detectLoops(k,k); ... }.

2.1 Type-checking Dependency State Machines
After parsing, we impose the following semantic checks:

• A piece of advice carries a name if and only if it carries
also a dependent modifier.

• Every advice must be referenced only by a single dec-
laration of a Dependency State Machine.

• The state machine must have at least one initial and
at least one final state.

• The listed alphabet may contain every advice name
only once, i.e., declares a set.

• The names of states must be unique within the depen-
dency declaration.

• Transitions may only refer to the names of advice that
are named in the alphabet of the dependency declara-
tion, and to the names of states that are also declared
in the same dependency declaration.

• Every state must be reachable from an initial state.

• If the verbose form for advice references is used:

– The number of variables for an advice name equals
the number of parameters of the unique advice
with that name, including the after-returning or
after-throwing variable. (inference ensures this)

– Advice parameters that are assigned equal names
have compatible types: For two advice declara-
tions a(A x) and b(B y), with a(p) and b(p)

in the same dependency declaration, A is cast-
convertible [18, §5.5] to B and vice versa.

– Each variable should be mentioned at least twice
inside a dependency declaration. If a variable v is
only mentioned once we give a warning because
in this case the declaration states no dependency
with respect to v. The warning suggests to use the
wildcard “*” instead. Semantically, * also gener-
ates a fresh variable name. However, by stating
* instead of a variable name, the programmer ac-
knowledges explicitly that the parameter at this
position should be ignored when resolving depen-
dencies.

Note that these checks are very minimal and allow for a
large variety of state machines to be supplied. For instance,
we do allow multiple initial and final states. We also allow
the state machine to be non-deterministic. The state ma-
chine can have unproductive states from which no final state
can be reached, and the state machine even does not have
to be connected, i.e. it may consist of multiple components
which are not connected by transitions. In this case, the
state machine essentially consists of multiple state machines
that share a common alphabet. Note that we forbid mul-
tiple dependency declarations to reference the same piece
of advice: because these dependency declarations could use
different alphabets the semantics would be unclear.

Modifier ::= “public” | “synchronized” | . . . | “dependent”

AdviceDecl ::= Modifier* [RetType] BefAftAround AdviceName

“(” [ParamList] “)” [AftRetThrow] “:” Pointcut Block

AdviceName ::= ID

AspectMemberDecl ::= AdviceDecl | . . . | DependencyDecl | DependencySMDecl

DependencySMDecl ::= “dependency”“{” AdviceRefList “;” StateList “;” “}”

AdviceRefList ::= AdviceRef | AdviceRef “,” AdviceRefList

AdviceRef ::= AdviceName | AdviceName “(” VarList “)”

VarList ::= VarName | VarName “,” VarList

VarName ::= ID | “*”

StateList ::= State | State StateList

State ::= StateModifier∗ Identifier [“:” TransitionList] “;”

StateModifier ::= “initial” | “final”

TransitionList ::= Transition | Transition “,” TransitionList

Transition ::= Identifier “->” Identifier

Figure 3: Syntax of Dependency State Machines, as extension (shown in boldface) to the syntax of AspectJ

3. SEMANTICS OF DEPENDENCY STATE
MACHINES

We define the semantics of a Dependency State Machine
as an extension to the usual advice-matching semantics of
AspectJ [19]. Let A be the set of all pieces of advice and J
be the set of all joinpoints that occur on a given program run.
Consistent with our previous work on Dependent Advice [9],
we model advice matching in AspectJ as a function match

that we regard as given by the underlying AspectJ compiler:

match : A×J → {β | β : V ⇀ O} ∪ {⊥}.

For each pair of advice a ∈ A and joinpoint j ∈ J , match

returns ⊥ in case a does not execute at j. If a does execute
then match returns a variable binding β, a mapping from
a’s parameters to objects ({ } for parameter-less advice).

Based on this definition, we informally demand for any
dependent piece of advice a, that a only has to execute when
it would execute under AspectJ’s semantics and when not
executing a at j would change the set of joinpoints at which
the Dependency State Machine reaches its final state for a
binding “compatible” with β. (We define this term later.)

3.1 Semantics by example
Figure 4 contains a small example program that we use

to explain the intuition behind this semantics. The example
program violates the ConnectionClosed property in lines 5
and 7 by first disconnecting the connection o(c1) and then
writing to o(c1). (For any variable v, we use o(v) to refer to
the object that v references.) The joinpoint shadows [23] at
these two lines are also the only two shadows in the program
that the ConnectionClosed monitoring aspect from Figure 1
must monitor so that this aspect correctly issues its error
message at runtime. In particular, since the monitor starts
off in its initial state “connected”, the write event at line 4
has no impact on the monitor’s state: the monitor loops
on state “connected”, and hence we call the write shadow
at this line “irrelevant”. Similarly, at line 6, the monitor is
guaranteed to be in the “closed” state. Monitoring further

1 public static void main(String args[]) {
2 Connection c1 = new Connection(args[0]),
3 c2 = new Connection(args[1]);
4 c1.write(args [2]); //write(c1)
5 c1.disconnect (); //disconnect(c1)
6 c1.disconnect (); //disconnect(c1)
7 c1.write(args [2]); //write(c1)
8 c1.disconnect (); //disconnect(c1)
9 c2.write(args [2]); //write(c2)

10 }

Figure 4: Example program

disconnect events does not change the automaton state in
this situation either. Hence, the disconnect shadows at this
line is irrelevant as well. The disconnect event at line 8 does
cause a state change (from “connected” to “closed”), but this
state change does not matter: because no write event ever
follows on o(c1), this state change cannot impact the set of
future joinpoints at which the Dependency State Machine
reaches its final state (because there are none), and hence
cannot impact the set of joinpoints at which the runtime
monitor will have a visible effect, i.e., will issue its error
message. This is true even though another write event fol-
lows at line 9. This latter write event occurs on c2 and not
on c1. Because we know that c2 cannot possibly reference
the same object as c1, i.e., o(c1) 6= o(c2), this write event
is not what we call “compatible” with the disconnect event
at line 8.

3.2 Formal semantics
In our view of AspectJ, pieces of advice are matched against

“parameterized traces”, i.e., traces that are parameterized
through variable bindings. The semantics of state machines
are usually defined using words over a finite alphabet Σ. In
particular, state machines as such have no notion of variable
bindings. In the following, we will call traces over Σ, which
are given as input to a Dependency State Machine “ground
traces”, as opposed to the parameterized trace that the pro-

gram execution generates. We will define the semantics of
Dependency State Machines over ground traces. We obtain
these ground traces from the parameterized execution trace
by projecting each parameterized event onto a set of ground
events. This yields a set of ground traces—one ground trace
for every variable binding.

Further, we will define the semantics of Dependency State
Machines in terms of“events”, not joinpoints. Joinpoints dif-
fer from events in that joinpoints describe regions in time
while events describe atomic points. A joinpoint has a be-
ginning and an end, and code can execute before or after the
joinpoint (i.e., at its beginning or end) or instead of the join-
point. In particular, joinpoints can be nested. For instance,
a field-modification joinpoint can be nested in a method-
execution joinpoint. Pieces of advice, even “around advice”,
execute at atomic events before or after a joinpoint. Because
these events are atomic, they cannot be nested. Joinpoints
merely induce these events1.

Event. Let j be an AspectJ joinpoint. Then j induces
two events, jbefore and jafter which occur at the beginning
respectively end of j. For any set J of joinpoints we define
the set E(J) of all events of J as:

E(J) :=
[

j∈J

{jbefore, jafter}.

In the following we will often just write E instead of E(J),
if J is clear from the context.

For any declaration of a Dependency State Machine, the
set of dependent-advice names mentioned in the declaration
of the Dependency State Machine induces an alphabet Σ,
where every element of Σ is the name of one of these de-
pendent pieces of advice. For instance, the alphabet for
the ConnectionClosed dependency state machine from Fig-
ure 1 would be Σ = {disconnect, write, reconnect}. Match-
ing these pieces of advice against a runtime event e results in
a (possibly empty) set of matches for this event, where each
match has a binding attached. We call this set of matches
the parameterized event ê.

Parameterized event. Let e ∈ E be an event and Σ
be the alphabet of advice references in the declaration of a
Dependency State Machine. We define the parameterized
event ê to be the following set:

ê :=
[

a∈Σ

{(a, β) | β = match(e, a) ∧ β 6= ⊥}.

Here, match(e, a) is the “usual” matching function that the
original AspectJ semantics provides, overloaded for events.

We call the set of all parameterized events Ê :

Ê :=
[

e∈E

{ê}

It is necessary to consider sets of matches because multiple
pieces of advice can match the same event. While this is
not usually the case, we decided to cater for the unusual
cases, too. As an example, consider the Dependency State
Machine in the UnusualMonitor aspect in Figure 5a. The
aspect defines a dependency between two pieces of advice a

and b. Note that the pointcut definitions of a and b overlap,
i.e. describe non-disjoint sets of program events. The advice

1Our notion of events is essentially the same as the notion
of joinpoints in the point-in-time joinpoint model that Ma-
suhara, Endoh and Yonezawa proposed earlier [22].

1 aspect UnusualMonitor {
2 dependency{
3 a, b;
4 //transitions omitted from example
5 }
6

7 dependent before a(Object x):
8 call(∗ ∗(..)) && target(x) { ... }
9

10 dependent before b(Object x):
11 call(∗ foo (..)) && target(x) { ... }
12 }

(a) UnusualMonitor aspect with overlapping pointcuts

1 SomeClass v1 = new SomeClass();
2 SomeClass v2 = new SomeClass();
3 v1.foo (); v1.bar(); v2.foo ();

(b) Example program

Figure 5: UnusualMonitor aspect and example program

b executes before all non-static calls to methods named foo.
The advice a executes before these events too, because, by
its definition, it executes before any non-static method call.

Next, assume that we apply this aspect to the little exam-
ple program in Figure 5b. We show the program’s execution
trace in the first row of Figure 6 (to be read from left to
right). This execution trace naturally induces the parame-
terized event trace that we show in the second row of the
figure: this trace is obtained by matching at any event every
piece of advice against this event.

Next we explain how we use projection to obtain “ground
traces”, i.e. Σ-words, from this parameterized event trace.

Projected event. For every ê ∈ Ê and binding β we
define a projection of ê with respect to β:

ê ↓ β := {a ∈ Σ | ∃(a, βa) ∈ ê such that compatible(βa, β)}

Here, compatible is is a relation over bindings as follows:

compatible(β1, β2) :=
∀v ∈ (dom(β1) ∩ dom(β2)) . β1(v) = β2(v)

In this equation, dom(βi) denotes the domain of βi, i.e.,
the set of all variables that βi assigns a value. This means
that β1 and β2 are compatible as long as they do not assign
different objects to the same variable.

Parameterized and projected event trace. Any fi-
nite program run induces a parameterized event trace t̂ =
ê1 . . . ên ∈ Ê∗. For any variable binding β we define a set of
projected traces t̂ ↓ β ⊆ Σ∗ as follows. t̂ ↓ β is the smallest
subset of Σ∗ for which holds:

∀t = e1 . . . en ∈ Σ∗ :
if ∀i ∈ N with 1 ≤ i ≤ n : ei ∈ êi ↓ β then t ∈ t̂ ↓ β

We call traces like t, which are elements of Σ∗, “ground”
traces, as opposed to parameterized traces, which are ele-
ments of Ê∗.

For our example, the third and fourth row of Figure 6
show the four ground traces that result when projecting this
parameterized event trace onto the variable bindings x =
o(v1) and x = o(v2). For x = o(v1) we obtain the two
traces “aa” and “ba”, for x = o(v2) we obtain the two traces
“a” and “b”.

A Dependency State Machine will reach its final state (and
the related aspect will have an observable effect, e.g., will is-

execution trace v1.foo(); v1.bar(); v2.foo();

parameterized trace t̂ {(a, x = o(v1)), {(a, x = o(v1))} {(a, x = o(v2)),
(b, x = o(v1))} (b, x = o(v2))}

projected ground traces a a

for t̂ ↓ x = o(v1) b a

projected ground traces a

for t̂ ↓ x = o(v2) b

Figure 6: Traces resulting from code in Figure 5; note that o(v1) 6= o(v2)

sue an error message) whenever a prefix of one of the ground
traces of any variable binding is in the language described
by the state machine. This yields the following definition.

Set of non-empty ground traces of a run. Let t̂ ∈ Ê∗

be the parameterized event trace of a program run. Then we
define the set groundTraces(t̂) of non-empty ground traces
of t̂ as:

groundTraces(t̂) :=

0

@

[

β∈B

t̂ ↓ β

1

A ∩ Σ+

We intersect with Σ+ to exclude the empty trace. This is be-
cause the empty trace cannot possibly cause the monitoring
aspect to have an observable effect.

The semantics of a Dependency State Machine
We define the semantics of Dependency State Machines as
a specialization of the predicate match(a, e), which models
the decision of whether or not the dependent advice a ∈ A
matches at event e ∈ E , and if so, under which variable bind-
ing. As noted earlier, this predicate match is given through
the semantics of plain AspectJ. We call our specialization
stateMatch and define it as follows:

stateMatch : A× Ê∗ × N → {β | β : V ⇀ O} ∪ {⊥}

stateMatch(a, t̂, i) =
let β = match(a, e) in

8

>

<

>

:

β if β 6= ⊥ ∧ ∃t ∈ groundTraces(t̂)

such that necessaryShadow(a, t, i)

⊥ else

As we can see, stateMatch takes as arguments not only the
piece of advice for which we want to determine whether it
should execute at the current event, but also the entire pa-
rameterized event trace t̂, and the current position i in that
event trace. Note that t̂ contains also future events that
are yet to come. This makes the function stateMatch unde-
cidable. This is intentional. Even though there can be no
algorithm that decides stateMatch precisely, we can derive
static analyses that approximate all possible future traces.
The function necessaryShadow mentioned above is a param-
eter to the semantics that can be freely chosen, as long as
it adheres to a certain soundness condition that we define
next. We say that a static optimization for Dependency
State Machines is sound if it adheres to this condition.

Soundness condition.
The soundness condition will demand that an event needs

to be monitored if we would miss a match or obtain a spu-
rious match by not monitoring the event. A Dependency
State Machine M matches, i.e., causes an externally ob-
servable effect after every prefix of the complete execution
trace that is in L(M), the language that M accepts.

Set of prefixes. Let w ∈ Σ∗ be a Σ word. We define the
set pref(w) as:

pref(w) := {p ∈ Σ∗ | ∃s ∈ Σ∗ such that w = ps}

Matching prefixes of a word. Let w ∈ Σ∗ be a Σ word
and L ⊆ Σ a Σ language. Then we define the matching
prefixes of w (with respect to L) to be the set of prefixes of
w in L:

matchesL(w) := pref(w) ∩ L

We will often write matches(w) instead of matchesL(w) if L
is clear from the context.

As before, the predicate necessaryShadow can be freely
chosen, as long as it adheres to the following soundness con-
dition:

Soundness condition. Let L := L(M). For any sound
implementation of necessaryShadow we demand:

∀a ∈ Σ ∀t = t1 . . . ti . . . tn ∈ Σ+ ∀i ∈ N :
a = ti ∧

matchesL(t1 . . . tn) 6= matchesL(t1 . . . ti−1ti+1 . . . tn)
−→ necessaryShadow(a, t, i)

The soundness condition hence states that, if we are about
to read a symbol a, then we can skip a if the monitoring
aspect would have an observable effect when processing the
complete trace t just as often (and at the same points in
time) as it would when processing the partial trace where
ti = a is omitted.

4. IDENTIFYING RELEVANT JOINPOINT
SHADOWS

In this section, we outline how we use Dependency State
Machines to identify “relevant joinpoint shadows”, i.e., shad-
ows that may cause the aspect to have a visible effect at
runtime. We first explain how our novel flow-sensitive anal-
ysis, the Nop-shadows Analysis, identifies “nop shadows”:
shadows that have no such effect. The “relevant” shadows
are then all shadows that the analysis does not classify as
“nop shadows”. In Section 4.2 we then describe how the
Nop-shadows Analysis improves over two analyses that we
published previously, and we explain the added benefit of
Dependency State Machines over our earlier approach. Sec-
tion 4.3 gives the most important implementation details.

4.1 Nop-shadows Analysis
We based the Nop-shadows Analysis entirely on our se-

mantics of Dependency State Machines. This semantics
states that a dependent advice must be dispatched on some
variable binding β if not dispatching the advice would alter
the set of events (or joinpoints) at which the monitor reaches
its final state for a binding that is compatible with β. The
Nop-shadows Analysis exploits this definition by computing

an equivalence relation between states of the Dependency
State Machines. This relation allows the analysis to identify
“nop shadows” as shadows that only switch between equiva-
lent states. We say that two states q1 and q2 are equivalent
at a joinpoint shadow s, and write q1 ≡s q2 if, given all pos-
sible execution paths that may lead up to s and all possible
continuations of the execution after s, the fact whether the
monitor is in state q1 or in state q2 at s does not impact
when the Dependency State Machines reaches its final state
on these possible continuations. The analysis uses points-
to and alias information to disambiguate states for different
variable bindings.

Given this equivalence relation, we can then identify shad-
ows s that only switch between “equivalent” states on all
possible executions that lead through s. By definition of
our semantics of Dependency State Machines we know that
dispatching a piece of advice a at such a shadow s would
have no effect. We exploit this fact in two different ways.
Firstly, we filter the shadow from the list of shadows that
is displayed to the user after weaving. This aids the pro-
grammer in reasoning about the effects that the aspect may
have. Secondly, we remove all advice-dispatch code from
this shadow, potentially speeding up the execution of the
woven program.

Consider again the example that we gave in Figure 4. We
first focus on the write shadow at line 4. Given the only pos-
sible execution path that leads up to this line, we know that
the Dependency State Machine must be in state “connected”
when reaching the line. We also know that a write tran-
sition leads from “connected” back to “connected” only, i.e.,
the transition loops. State “connected” is obviously equiva-
lent to itself: q1 = q2 implies q1 ≡s q2. Therefore, the Nop-
shadows Analysis can safely disable the advice dispatch at
the shadow at line 4. When identifying such a “nop shadow”
and disabling the advice dispatch at this shadow, we re-
iterate the Nop-shadows Analysis, this time under the new
assumption that no advice will be dispatched at the shadow.
During this re-iteration, the analysis will disable the write

shadow at line 9, and either of the disconnect shadows at
line 5 or 6, depending on which one is analyzed first, and the
disconnect shadow at line 8. This last shadow at line 8 is
interesting in the sense that it switches between equivalent
states that are not equal, i.e., we have q1 ≡s q2 although
q1 6= q2. At this shadow, the non-deterministic Dependency
State Machine is simultaneously in states “connected” and
“error”. From these states, the disconnect transition moves
into state “disconnected”. Although this is definitely not the
same internal state, the state “disconnected” is equivalent to
both other states given all possible continuations, i.e., given
all executions that could follow line 8.

Computing the appropriate equivalence relation requires
both a forward and a backward-analysis component: the
forward component computes equivalencies between states
“with respect to the past”, while the backward analysis com-
putes equivalencies “with respect to the future”, i.e., with
respect to the possible continuations. The forward-analysis
component works by propagating through the program the
states of a determinized version of the original Dependency
State Machine M. The backward-analysis component is
an exact dual of the forward one: it propagates backwards
through the program the states of a determinized version
of the inverted state machine of M. To obtain an efficient
implementation, our analysis uses flow-sensitive information

on an intra-procedural, i.e., per-method level only, and uses
a coarse grain flow-insensitive abstraction at method bound-
aries. Space limitations prevents us from explaining the
Nop-shadows Analysis any further. The author’s disserta-
tion [8, Section 5.2] explains the analysis in all detail.

4.2 Dependent Advice and previously
published analysis stages

In previous work [9], we proposed “Dependent Advice”,
an AspectJ language extension that, similar to Dependency
State Machines, expresses inter-dependencies between pieces
of advice. Although both approaches share some ideas, De-
pendency State Machines improve over Dependent Advice in
several ways. The most important improvement is that De-
pendency State Machines, unlike Dependent Advice, encode
the order in which pieces of advice are meant to execute. The
Nop-shadows Analysis from above makes heavy use of this
information by propagating the state of Dependency State
Machines through the program according to their transition
tables, which expresses the execution order.

Our earlier approach, Dependent Advice, encoded no such
information: a correct Dependent-Advice declaration for our
ConnectionClosed example property would be the following.

dependency{ strong disconnect, write; weak reconnect; }

This declaration follows the syntax that we proposed in ear-
lier work. The declaration states that disconnect and write

share a “strong” dependency. This means that disconnect

only needs to execute (on a connection c) if there is a chance
of write executing (on c) as well, and the other way around.
The additional “weak” reference to reconnect states that,
if the strong dependency is fulfilled, i.e., if both discon-

nect and write may execute on the same connection c then
reconnect has to be enabled on c as well, but not the other
way around.

In our earlier work, we presented two flow-insensitive static
program analyses that make use of this information. The
first analysis, the Quick Check, uses syntactic information
only, that we can obtain directly through the weaving pro-
cess. In our example, if the analysis finds that a program
disconnects and reconnects connections but never writes to
any connection, i.e., there is no write shadow, then this
program cannot fulfil the dependency, and hence the entire
aspect can have no visible effect for this program.

The second analysis stage, the Orphan-shadows Analy-
sis, performs the same check, but on a per-object basis.
This stage uses a flow-insensitive, context-sensitive points-to
analysis [26] to disambiguate pointer references. This allows
the analysis to decide which joinpoint shadows could po-
tentially refer to the same objects. The analysis then uses
this information as follows. In our example, if the program
disconnects a particular connection c but never writes to c,
then for this c the dependency is not fulfilled and therefore
one does not need to monitor any disconnect, reconnect
or write events on this connection.

We specifically designed Dependency State Machines in
such a way that they are backward compatible to Dependent
Advice in the following way. In our previous work we de-
scribed an algorithm“genDeps”, which generates Dependent-
Advice declarations from any given finite-state machine. We
took care to define the semantics of Dependency State Ma-
chines in such a way that one can apply genDeps directly to
any Dependency State Machine to obtain a set of Dependent-

Advice declarations. The flow-insensitive analyses that we
proposed earlier can then directly operate on these declara-
tions. This means, that for our ConnectionClosed example,
one could obtain the Dependent-Advice declaration that we
mentioned above simply by applying the genDeps algorithm
to the Dependency State Machine from Figure 1.

In our view, Dependency State Machines are easier to un-
derstand than Dependent Advice because their semantics
follow the semantics of finite-state machines, which are well
understood. Especially, it is safe to assume that most pro-
grammers are familiar with the basic semantics of finite-state
machines. For Dependent Advice, the semantics are less ob-
vious. Therefore, Dependency State Machines combine two
advantages: they encode richer information, and neverthe-
less they are potentially easier to use.

4.3 Implementation
The flow-insensitive Quick Check and the Orphan-shadows

Analysis generally finish faster than the more involved flow-
sensitive Nop-shadows Analysis. Therefore, it is a good idea
to apply the Nop-shadows Analysis only after the Quick
Check and the Orphan-shadows Analysis have been applied
first.

We implemented Dependency State Machines as an exten-
sion to the AspectBench Compiler [4] (abc) that builds on
exactly these ideas. Our abc extension first extracts Depen-
dency State Machines from the aspect definitions. Then it
uses the genDeps algorithm to generate Dependent-Advice
declarations from these Dependency State Machines. Next,
we instruct abc to weave all aspects (whether they contain
dependency declarations or not) into the given program.
Our extension then applies both the Quick Check and the
Orphan-shadows Analysis from previous work. These anal-
yses only access the generated flow-insensitive Dependent-
Advice declarations, no Dependency State Machines. If po-
tentially relevant shadows remain after applying these two
stages, then our extension invokes the Nop-shadows Analy-
sis. This analysis is flow-sensitive, and therefore it accesses
the Dependency State Machines to extract the information
about the advice-execution ordering that the state machine’s
transition structure expresses. Every analysis stage may
identify “irrelevant” shadows. In the end, our extension in-
structs abc to un-weave and re-weave the program, this time
with all “irrelevant shadows” disabled.

Our abc extension contains two front-ends that both cre-
ate an internal representation of the Dependency State Ma-
chines that the given program contains. One front end is
implemented as an extension to the abc-internal parser. We
use this front end to parse AspectJ source files that con-
tain declarations of Dependency State Machines. The sec-
ond front end that we provide creates the internal repre-
sentation of the Dependency State Machines directly from
a given set of tracematches [3]. Tracematches is another
AspectJ language extension that allows programmers to de-
fine an AspectJ-based runtime monitor in a declarative way,
using a regular-expression syntax. The aspects that abc
generates from tracematches are never written to disc. abc
instead generates these aspects in the form of Jimple [28]
three-address code, an internal representation of the com-
piler, and then weaves the aspects into the designated pro-
gram directly on this representation. Our tracematch front
end therefore extracts the state machine directly from abc’s
internal representation of the tracematch.

5. EXPERIMENTS
To validate our approach, we defined a set of twelve mon-

itoring aspects as tracematches. All aspects monitor for vi-
olations of safety properties. Table 1 explains the properties
that these aspects monitor. We then applied the twelve as-
pects to ten benchmark programs of the DaCapo benchmark
suite [6]. This lead to 120 aspect/benchmark combinations.

We were interested in answering two research questions.
The first question evaluates how much our approach im-
proves over previous work: (1) How effective is the Nop-
shadows Analysis in identifying irrelevant shadows when
compared to our two previously published static analyses
that consider flow-insensitive dependency information from
Dependent Advice only? The second question evaluates our
approach from the user’s point-of-view: (2) How effective is
the overall approach, i.e., the combination of all three anal-
ysis stages (Quick Check, Orphan-shadows Analysis and our
novel Nop-shadows Analysis) in telling apart irrelevant shad-
ows from potentially relevant shadows.

To answer both questions, we decided to compare the
number of shadows that our approach fails to identify as ir-
relevant, i.e., the number of potentially relevant shadows, to
two different baselines: (1) the number of shadows that re-
main potentially relevant after applying the first two analysis
stages, and (2) the total number of shadows that a compiler
that is unaware of our dependency annotation and conducts
no static analysis would present to the user. Table 2 sum-
marizes our analysis results with respect to both baselines.

5.1 Analysis precision compared to previously
published analyses

Table 2a shows the fraction of shadows that the Nop-
shadows Analysis identified as irrelevant, where the base-
line of this fraction is the number of potentially relevant
shadows after applying the Quick Check and the Orphan-
shadows Analysis. From this table we omitted those entries
(and, where applicable, entire lines) for which the number
of potentially relevant shadows was zero already after just
applying these two analysis stages. The fraction of shadows
that the Nop-shadows Analysis identified as nop shadows
appears in white. For some combinations where only few
shadows remained enabled after applying the analysis, we
inspected these shadows manually. In gray we show the
fraction of shadows that we manually determined to be rel-
evant. The remaining black slices represent shadows that
remain active even after analysis, either due to analysis im-
precision or because they are actually relevant although they
were not manually confirmed to be relevant. For the combi-
nation fop-FailSafeIterMap (1374 shadows to analyze), our
Nop-shadows Analysis ran out of memory although we had
provided abc with three gigabytes of heap space. As a re-
search prototype, our analysis is currently not optimized
towards low memory consumption.

For 18 out of these 43 combinations (41%), our novel Nop-
shadows Analysis was able to identify all shadows as irrel-
evant. Because our aspects monitor safety properties, this
means that, in these 18 cases, the analysis proved that the
given program cannot possibly violate the given property.
These cases appear as all-white circles. In four other cases,
shadows remained enabled, but only because they do trigger
a property violation. These cases appear as circles that only
contain gray or white but no black slices. In other words, the
analysis gave exactly the correct result, with no false posi-

property name description
ASyncContainsAll synchronize on d when calling c.containsAll(d)) for synchronized collections c and d
ASyncIterC only iterate a synchronized collection c when owning a lock on c
ASyncIterM only iterate a synchronized map m when owning a lock on m
FailSafeEnum do not update a vector while iterating over it
FailSafeEnumHT do not update a hash table while iterating over its elements or keys
FailSafeIter do not update a collection while iterating over it
FailSafeIterMap do not update a map while iterating over its keys or values
HasNextElem always call hasMoreElements before calling nextElement on an Enumeration
HasNext always call hasNext before calling next on an Iterator
LeakingSync only access a synchronized collection using its synchronized wrapper
Reader do not use a Reader after its InputStream was closed
Writer do not use a Writer after its OutputStream was closed

Table 1: Relevant typestate properties and their names

antlr bloat chart fop hsqldb jython luindex lusearch pmd xalan

FailSafeEnum
0

3

6

7

44

47

0

5

0

10

FailSafeEnumHT 26

30

3

3

61

76

0

15

0

5

FailSafeIter
830

922

149

160

112

116

0

27

16

36

287

302

FailSafeIterMap
444

446

49

49 OOME
133

151

204

314

HasNextElem 0

86

0

8

0

6

34

47

0

16

0

6

0

6

1

3

HasNext 452

565

48

82

0

8

24

31

0

12

0

22

184

250

Reader
0

14

3

3

4

4

0

24

Writer
35

44

15

19

10

10

0

7

(a) Potentially relevant shadows as fraction of shadows that remain after first two analysis stages

antlr bloat chart fop hsqldb jython luindex lusearch pmd xalan

ASyncContainsAll
0

71

0

6

0

31

0

18

0

18

0

10

ASyncIterC
0

1621

0

498

0

146

0

33

0

128

0

149

0

149

0

671

ASyncIterM 0

1684

0

507

0

176

0

39

0

138

0

152

0

152

0

718

FailSafeEnum
0

76

0

3

0

1

6

18

0

120

44

110

0

61

0

61

0

21

0

222

FailSafeEnumHT
26

133

0

102

0

44

0

205

3

114

61

153

0

37

0

37

0

100

0

319

FailSafeIter 0

23

830

1394

149

510

0

288

0

112

112

253

0

217

16

217

287

546

0

158

FailSafeIterMap
0

130

444

1180

49

374 OOME
0

252

133

250

0

136

0

136

204

583

0

540

HasNextElem
0

117

0

4

0

12

0

53

34

64

0

22

0

22

0

11

1

63

HasNext
452

849

48

248

0

72

0

16

24

63

0

74

0

74

184

346

LeakingSync 0

170

0

1994

0

920

0

2347

0

528

0

1082

0

629

0

629

0

986

0

1005

Reader
0

50

0

7

0

65

0

102

3

1216

4

139

0

226

0

226

0

102

0

106

Writer
35

171

15

563

0

70

0

429

10

1378

0

462

0

146

0

146

0

62

0

751

(b) Potentially relevant shadows as fraction of total shadows after weaving

Table 2: Irrelevant vs. potentially relevant shadows. White slices represent shadows that the Nop-shadows Analysis identified
as irrelevant. Black slices represent shadows that we fail to identify as irrelevant, due to analysis imprecision or because the
shadows are relevant. Gray slices represent shadows that we confirmed to be relevant, through manual inspection. The outer
rings represent the aspect’s runtime overhead after optimizing the advice dispatch. Solid: overhead ≥ 15%, dashed: overhead
< 15%, dotted: no overhead. OOME = OutOfMemoryException during static analysis

tives, in half of the cases. In three cases, the analysis failed
to identify any nop shadow (black circles). In the remain-
ing 18 cases, the analysis identified a sometimes significant
amount of irrelevant shadows, but not all.

Our analysis works well on the antlr, fop, hsqldb, luin-
dex, lusearch and xalan benchmarks. Most of the potential
false positives (black in the figure) appear only because the
benchmarks use reflection. Due to a known deficiency [2],
Java’s Cloneable interface contains no public declaration
of a clone() method. Therefore, Java’s type system may
prevent clients from calling clone() even on Cloneable ob-
jects. chart uses reflection to call the clone() method on
objects that implement the Cloneable interface. Because
chart clones collections, our points-to analysis has to safely
assume that the collections could be of any type, including
EmptySet, which, as a singleton object, is stored in a static
field, causing our analysis to lose all context information.
bloat, jython and pmd cause similar problems.

There appear to be only few cases where our analysis is too
imprecise because of its design. For example, two actually ir-
relevant final shadows remain enabled in hsqldb with Reader
and Writer. These false positives occur because xalan uses
different methods to open, close and write to streams. Our
current implementation of the Nop-shadows Analysis uses
flow-sensitive information on an intra-procedural level only,
and therefore cannot possibly produce precise analysis re-
sults in this context. In the future, we plan to extend the
Nop-shadows Analysis into a fully inter-procedural version
that will treat these cases more precisely.

DaCapo’s benchmarks load classes using reflection. Static
analyses like ours have to be aware of these classes so that
they can construct a sound call graph. We wrote an AspectJ
aspect that would print at every call to forName and a few
other reflective calls the name of the class that this call loads
and the location from which it is loaded. We further double-
checked with Ondřej Lhoták, who compiled such lists of dy-
namic classes earlier. We then provided the abc-internal
call-graph analysis with this information. The resulting call
graph is sound for the program runs that DaCapo performs.
A limitation of our approach is that obtaining a call graph
that is sound for all runs may be challenging for programs
that use reflection.

For eclipse we were unable to determine where dynamic
classes are loaded from. eclipse loads classes not from JAR
files but from “resource URLs”, which eclipse resolves in-
ternally, usually to JAR files within other JAR files. abc
currently cannot load classes from such URLs and that is
why we omit eclipse in our experiments. The jython bench-
mark generates code at runtime, which it then loads. We did
not analyze this code and so made the unsound assumption
that this code would not invoke any dependent advice.

5.2 Fraction of potentially relevant shadows
over number of all shadows after weaving

Table 2b shows the fraction of shadows that the Nop-
shadows Analysis identified as irrelevant, where the baseline
of this fraction is the number of all shadows that a compiler
without any of our static analysis would usually report to the
user. This fraction shows to what extend users can benefit
through the use of Dependency State Machines in general,
when applying all three of our static analyses in combina-
tion, compared to not using Dependency State Machines at
all. Opposed to Table 2a, this table shows the important

piece of information that, in many cases, the Quick Check
and the Orphan-shadows Analysis manage to identify many
irrelevant shadows already. Often, these analyses are even
sufficient to identify that all shadows are irrelevant, i.e., that
the aspect will never have a visible effect. The high amount
of white and gray in this table shows that our overall static-
analysis approach is very effective in pinpointing to the user
the relevant shadows that will cause the aspect to have a
visual effect at runtime.

5.3 Reduction of runtime overhead
An added benefit of our analysis is that we can use the

analysis result to optimize the advice dispatch, which may
reduce the aspect’s runtime overhead. Table 2 gives qualita-
tive information about the optimized aspect’s runtime over-
head through the ring that surround each circle. (The au-
thor’s dissertation [8] gives the full data.) Interestingly, the
number of remaining shadows does not necessarily corre-
spond directly to the resulting runtime overhead. For in-
stance, only 15 out of 563 shadow remain in bloat-Writer,
but these shadow executes so often that they cause a run-
time overhead of more than 15%. chart-FailSafeIterMap,
on the other hand, contains 49 residual shadows, but there
is no observable overhead. Altogether, after applying the
Nop-shadows Analysis, only nine combinations remain that
have a significantly perceivable overhead of more than 15%.
Most combinations show zero overhead, five combinations
show an overhead of below 15%, which seems negligible in
many cases.

6. RELATED WORK
We compare our work to the most related static program

analyses and to aspect-oriented model-checking approaches.
In addition, we discuss tools that generate AspectJ aspects
from high-level specifications and whether these tools could
generate Dependency State Machines as well.

6.1 Static program analysis
Whole-program analysis of tracematches. Trace-

matches [3] is an AspectJ language extension that allows
programmers to express finite-state properties using a high-
level language that is based on regular expressions. Like
Dependency State Machines, tracematches are implemented
on top of the AspectBench Compiler. During compilation,
the compiler internally reduces tracematches to“normal”As-
pectJ aspects. Several people [10, 11, 24], including our-
selves, have proposed static analyses that exploit the infor-
mation that tracematches contain to optimize advice dis-
patch. The Quick Check and the Orphan-shadows Anal-
ysis, that we discussed in Section 4, are generalized ver-
sions of two similar analyses that we previously implemented
specifically for tracematches [10]. The Nop-shadows Anal-
ysis that we presented in this paper is defined directly in
terms of Dependency State Machines, and we never im-
plemented a tracematch-specific version for it (although we
could have). The advantage of Dependency State Machines
is not that they improve the analyzability of tracematches
or similar formalisms, but rather that Dependency State
Machines make existing analyses applicable to aspects in
general, no matter whether the aspects were generated from
tracematches, from any other high-level specification or even
written by hand.

Monitor optimizations. Avgustinov et al. [5] proposed
optimizations to the monitoring aspect itself: Leak elimi-
nation discards monitoring state for objects that have been
garbage collected. Indexing provides for fast access to par-
tial matches. These optimizations are crucial to make run-
time monitoring feasible at all and therefore we enabled
them in our experiments when generating aspects from trace-
matches. JavaMOP [13] and PTQL [17] implement weaker
variants of these optimizations.

One big advantage of Dependency State Machines is that
they allow researchers to de-couple the optimizations of run-
time monitors, i.e., the code that “goes into the advice bod-
ies”, from analyzing and optimizing the advice dispatch,
based on the order in which these pieces of advice should
execute. In theory it would be possible to determine an as-
pect’s transition structure directly through static analysis,
without requiring an explicit dependency annotation. How-
ever, general AspectJ code is Turing complete, which makes
this analysis problem generally undecidable. In particular,
the optimizations that aspect-generating monitoring tools
conduct can lead to arbitrarily complex aspect code, much
more complex than the code that we showed in Figure 1.
This makes it very hard for static analyses to re-discover
the transition structure directly from the code. Dependency
State Machines elegantly solve this problem by simply spec-
ifying the transition structure directly in a machine readable
format.

6.2 Model Checking
Goldman and Katz [16] propose a model-checking ap-

proach that can “once and for all” verify an aspect “relative
to its specification”, i.e., independently of any specific pro-
gram that this aspect may be woven into. The authors devel-
oped the MAVEN tool that implements this modular aspect-
verification mechanism. Like ourselves, the authors assume
that the aspect’s internal structure can be represented as
a finite-state machine. However, unlike us, Goldman and
Katz do not state how programmers would communicate
this transition structure to the model checker. Our pro-
posed syntax, Dependency State Machines, closed this gap.
Another restriction of Goldman and Katz’s approach is that
the authors assume that one can represent the non-aspect
parts of the program as a finite-state machine as well. This
is necessary, because the authors model the weaving process
through a series on transformations on state machines. In
our approach, we make no such assumption. We leave the
weaving semantics to standard AspectJ.

It would be an interesting piece of future work to deter-
mine whether the semantics that we gave to Dependency
State Machines is compatible with the finite-state-machine
semantics that Goldman and Katz’s approach requires. If
so, it should be easily possible to integrate MAVEN with
our abc extension.

6.3 Aspect-generating tools
JavaMOP. JavaMOP [13] is an open research frame-

work for generating AspectJ monitoring aspects from several
kinds of formal specifications, including Extended Regular
Expressions, Past-time and Future-Time Linear Temporal
Logic. In previous work [9], Feng Chen has modified the
JavaMOP implementation so that it internally generates a
finite-state machine from all these formal specification, re-
gardless of the formalism that is used. JavaMOP can di-

rectly benefit from Dependency State Machines by annotat-
ing the generated aspects with these state machines.

Association aspects and relational aspects. Sakurai
et al. [25] proposed association aspects, an AspectJ language
extension that allows programmers to restrict advice execu-
tion to joinpoints involving objects that the programmer ex-
plicitly associated with an aspect. A programmer associates
an object o with an aspect A by calling A.associate(o),
and releases the association via A.release(o). In earlier
work [12] we showed that one can implement relational as-
pects, a variant of association aspects, via a syntactic trans-
formation into tracematches. abc implements relational as-
pects that way, and the implementation automatically ben-
efits from our extension: The optimizations proposed in this
paper remove advice dispatch code for an advice contained
in an aspect A from locations where the objects involved are
known to be either not yet associated with A or to already
have been released from A.

S2A, M2Aspects and J-LO. Maoz and Harel proposed
S2A, a tool [21] to generate executable AspectJ code from
Live Sequence Charts [15] (LSCs). An LSC and its gener-
ated aspects can either implement functional aspects of a
system, or they can be used for runtime monitoring, report-
ing error messages when they match. Some of the aspects
that S2A generates are history-based, and in fact even imple-
ment a finite-state machine. We confirmed with Maoz that
S2A could, in principle, generate dependency annotations
for these aspects and that they could lead to optimization
potential similar to what we observed in our experiments,
at least when LSCs are used to specify forbidden scenarios,
implemented as runtime monitors. M2Aspects [20] gener-
ates AspectJ aspects from scenario-based software specifica-
tions, denoted as Message Sequence Charts (MSCs). MSCs
are less expressive than LSCs. Hence we believe that one
could also modify M2Aspects to generate dependent advice.
J-LO, the Java Logical Observer [7, 27] generates AspectJ
aspects from formulae written in a special future-time linear
temporal logic with free variables. Internally, J-LO repre-
sents the formulae using alternating automata. There ex-
ists a standard algorithm to convert alternating automata
into finite-state machines. J-LO could therefore easily ben-
efit from Dependency State Machines by implementing this
conversion and annotating the generated aspect with the
appropriate Dependency-State-Machine declaration.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented Dependency State Ma-

chines, a language extension to AspectJ that expressed the
order in which pieces of advice have to occur, so that these
pieces of advice, in combination have an effect that is visible
outside the declaring aspect. We have shown how to use
the information that Dependency State Machines provide
to facilitate program understanding. We have outlined a
set of static analyses that can identify “irrelevant” joinpoint
shadows with high precision. When trying to determine the
effects that their aspects may have, programmers do not
need to consider such irrelevant shadows.

Nevertheless, we believe that also in fields different from
program understanding, Dependency State Machines offer
the potential for a lot of exciting research opportunities that
researchers could address in the near future. One interesting
field of research could be the inference of Dependency State
Machines. Our current approach assumes that Dependency

State Machines are present in aspect code, i.e., that either
the programmer or some aspect generating tool supplied the
state-machine declaration. In many cases, it could be pos-
sible to infer these declarations automatically from aspect
code or from dynamic executions.

Another interesting research question would be how De-
pendency State Machines can be used to verify or check
an aspect’s execution. According to the semantics that we
gave in this paper, a Dependency State Machine expresses
the order in which pieces of advice must execute to have
a visible effect. One could give different semantics to De-
pendency State Machines, e.g. that a Dependency State
Machine describes the order in which pieces of advice are
allowed to be called by the surrounding context, i.e., the
program which the pieces of advice are woven into. Static
or runtime verification could then try to determine, for a
particular execution context, whether this context fulfils the
aspects execution requirements.

Acknowledgements. This work originated from a col-
laboration of the author with Feng Chen and his supervisor
Grigore Roşu. Tragically, Feng passed away in summer 2009.
May he rest in peace and may his legacy not be forgotten.
The author conducted this work as a PhD student at McGill
University, under supervision of Laurie Hendren. Thanks,
Laurie, for all the support you gave me at McGill. This
work was supported by the Center for Advanced Security
Research Darmstadt (www.cased.de).

8. REFERENCES
[1] The AspectJ home page. http://eclipse.org/aspectj/.
[2] Bug-database entry regarding “Cloneable”. http://bugs.

sun.com/bugdatabase/view_bug.do?bug_id=4098033.
[3] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren,

S. Kuzins, O. Lhoták, O. de Moor, D. Sereni,
G. Sittampalam, and J. Tibble. Adding Trace Matching
with Free Variables to AspectJ. In International
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 345–364.
ACM Press, Oct. 2005.

[4] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
J. Lhoták, O. Lhoták, O. de Moor, D. Sereni,
G. Sittampalam, and J. Tibble. abc: An extensible AspectJ
compiler. In International Conference on Aspect-oriented
Software Development (AOSD), pages 87–98. ACM Press,
Mar. 2005.

[5] P. Avgustinov, J. Tibble, and O. de Moor. Making trace
monitoring feasible. In International Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 589–608. ACM Press, Oct.
2007.

[6] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan,
K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg,
D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking,
M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanovic, T. VanDrunen, D. von Dincklage, and
B. Wiedermann. The DaCapo benchmarks: Java
benchmarking development and analysis. In OOPSLA,
pages 169–190. ACM Press, Oct. 2006.

[7] E. Bodden. J-LO - A tool for runtime-checking temporal
assertions. Diploma thesis, RWTH Aachen University,
November 2005.

[8] E. Bodden. Verifying finite-state properties of large-scale
programs. PhD thesis, McGill University, June 2009.

[9] E. Bodden, F. Chen, and G. Roşu. Dependent advice: a
general approach to optimizing history-based aspects. In
AOSD ’09: Proceedings of the 8th ACM international
conference on Aspect-oriented software development, pages
3–14. ACM, 2009.

[10] E. Bodden, L. J. Hendren, and O. Lhoták. A staged static
program analysis to improve the performance of runtime
monitoring. In European Conference on Object-Oriented
Programming (ECOOP), volume 4609 of Lecture Notes in
Computer Science (LNCS), pages 525–549. Springer, 2007.

[11] E. Bodden, P. Lam, and L. Hendren. Finding programming
errors earlier by evaluating runtime monitors ahead-of-time.
In Symposium on the Foundations of Software Engineering
(FSE), pages 36–47, New York, NY, USA, 2008. ACM.

[12] E. Bodden, R. Shaikh, and L. Hendren. Relational aspects
as tracematches. In International Conference on
Aspect-oriented Software Development (AOSD), pages
84–95. ACM Press, Mar. 2008.

[13] F. Chen and G. Roşu. MOP: an efficient and generic
runtime verification framework. In International
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 569–588.
ACM Press, Oct. 2007.

[14] W. F. Clocksin and C. Mellish. Programming in Prolog, 5th
Edition. Springer, 2003.

[15] W. Damm and D. Harel. LSCs: Breathing life into message
sequence charts. Formal Methods in System Design,
19(1):45–80, 1999.

[16] M. Goldman and S. Katz. MAVEN: Modular Aspect
Verification. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), pages 308–322, 2007.

[17] S. Goldsmith, R. O’Callahan, and A. Aiken. Relational
queries over program traces. In International Conference
on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 385–402, Oct. 2005.

[18] J. Gosling, B. Joy, G. Steele, and G. Bracha. The
Java(TM) Language Specification, Third Edition.
Addison-Wesley Professional, 2005.

[19] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. In
International Conference on Aspect-oriented Software
Development (AOSD), pages 26–35. ACM Press, Mar. 2004.

[20] I. H. Krüger, G. Lee, and M. Meisinger. Automating
software architecture exploration with M2Aspects. In
SCESM, pages 51–58. ACM Press, 2006.

[21] S. Maoz and D. Harel. From multi-modal scenarios to code:
compiling LSCs into AspectJ. In Symposium on the
Foundations of Software Engineering (FSE), pages
219–230. ACM Press, Nov. 2006.

[22] H. Masuhara, Y. Endoh, and A. Yonezawa. A fine-grained
join point model for more reusable aspects. Programming
Languages and Systems, 4279:131–147, 2006.

[23] H. Masuhara, G. Kiczales, and C. Dutchyn. A compilation
and optimization model for aspect-oriented programs. In
International Conference on Compiler Construction (CC),
volume 2622 of Lecture Notes in Computer Science
(LNCS), pages 46–60. Springer, Apr. 2003.

[24] N. A. Naeem and O. Lhoták. Typestate-like analysis of
multiple interacting objects. In International Conference
on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 347–366, New York,
NY, USA, 2008. ACM.

[25] K. Sakurai, H. Masuhara, N. Ubayashi, S. Matsuura, and
S. Komiya. Association aspects. In International
Conference on Aspect-oriented Software Development
(AOSD), pages 16–25, Mar. 2004.

[26] M. Sridharan and R. Bod́ık. Refinement-based
context-sensitive points-to analysis for Java. In Conference
on Programming Language Design and Implementation
(PLDI), pages 387–400, June 2006.

[27] V. Stolz and E. Bodden. Temporal Assertions using
AspectJ. In 5th Workshop on Runtime Verification, volume
144 of Electronic Notes in Theoretical Computer Science,
pages 109–124, July 2005.

[28] R. Vallée-Rai and L. Hendren. Jimple: Simplifying Java
Bytecode for Analyses and Transformations. Technical
Report 1998-4, Sable Research Group, July 1998.

